GVN.cpp revision 2a29899d74476e2a14069af7231ab76d8322a157
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Value.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/PostOrderIterator.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/MemoryDependenceAnalysis.h"
36#include "llvm/Support/CFG.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Compiler.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include <cstdio>
45using namespace llvm;
46
47STATISTIC(NumGVNInstr,  "Number of instructions deleted");
48STATISTIC(NumGVNLoad,   "Number of loads deleted");
49STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
50STATISTIC(NumGVNBlocks, "Number of blocks merged");
51STATISTIC(NumPRELoad,   "Number of loads PRE'd");
52
53static cl::opt<bool> EnablePRE("enable-pre",
54                               cl::init(true), cl::Hidden);
55static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
56
57//===----------------------------------------------------------------------===//
58//                         ValueTable Class
59//===----------------------------------------------------------------------===//
60
61/// This class holds the mapping between values and value numbers.  It is used
62/// as an efficient mechanism to determine the expression-wise equivalence of
63/// two values.
64namespace {
65  struct VISIBILITY_HIDDEN Expression {
66    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
67                            UDIV, SDIV, FDIV, UREM, SREM,
68                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
69                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
70                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
71                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
72                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
73                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
74                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
75                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
76                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
77                            EMPTY, TOMBSTONE };
78
79    ExpressionOpcode opcode;
80    const Type* type;
81    uint32_t firstVN;
82    uint32_t secondVN;
83    uint32_t thirdVN;
84    SmallVector<uint32_t, 4> varargs;
85    Value* function;
86
87    Expression() { }
88    Expression(ExpressionOpcode o) : opcode(o) { }
89
90    bool operator==(const Expression &other) const {
91      if (opcode != other.opcode)
92        return false;
93      else if (opcode == EMPTY || opcode == TOMBSTONE)
94        return true;
95      else if (type != other.type)
96        return false;
97      else if (function != other.function)
98        return false;
99      else if (firstVN != other.firstVN)
100        return false;
101      else if (secondVN != other.secondVN)
102        return false;
103      else if (thirdVN != other.thirdVN)
104        return false;
105      else {
106        if (varargs.size() != other.varargs.size())
107          return false;
108
109        for (size_t i = 0; i < varargs.size(); ++i)
110          if (varargs[i] != other.varargs[i])
111            return false;
112
113        return true;
114      }
115    }
116
117    bool operator!=(const Expression &other) const {
118      return !(*this == other);
119    }
120  };
121
122  class VISIBILITY_HIDDEN ValueTable {
123    private:
124      DenseMap<Value*, uint32_t> valueNumbering;
125      DenseMap<Expression, uint32_t> expressionNumbering;
126      AliasAnalysis* AA;
127      MemoryDependenceAnalysis* MD;
128      DominatorTree* DT;
129
130      uint32_t nextValueNumber;
131
132      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
133      Expression::ExpressionOpcode getOpcode(CmpInst* C);
134      Expression::ExpressionOpcode getOpcode(CastInst* C);
135      Expression create_expression(BinaryOperator* BO);
136      Expression create_expression(CmpInst* C);
137      Expression create_expression(ShuffleVectorInst* V);
138      Expression create_expression(ExtractElementInst* C);
139      Expression create_expression(InsertElementInst* V);
140      Expression create_expression(SelectInst* V);
141      Expression create_expression(CastInst* C);
142      Expression create_expression(GetElementPtrInst* G);
143      Expression create_expression(CallInst* C);
144      Expression create_expression(Constant* C);
145    public:
146      ValueTable() : nextValueNumber(1) { }
147      uint32_t lookup_or_add(Value* V);
148      uint32_t lookup(Value* V) const;
149      void add(Value* V, uint32_t num);
150      void clear();
151      void erase(Value* v);
152      unsigned size();
153      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
154      AliasAnalysis *getAliasAnalysis() const { return AA; }
155      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
156      void setDomTree(DominatorTree* D) { DT = D; }
157      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
158      void verifyRemoved(const Value *) const;
159  };
160}
161
162namespace llvm {
163template <> struct DenseMapInfo<Expression> {
164  static inline Expression getEmptyKey() {
165    return Expression(Expression::EMPTY);
166  }
167
168  static inline Expression getTombstoneKey() {
169    return Expression(Expression::TOMBSTONE);
170  }
171
172  static unsigned getHashValue(const Expression e) {
173    unsigned hash = e.opcode;
174
175    hash = e.firstVN + hash * 37;
176    hash = e.secondVN + hash * 37;
177    hash = e.thirdVN + hash * 37;
178
179    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
180            (unsigned)((uintptr_t)e.type >> 9)) +
181           hash * 37;
182
183    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
184         E = e.varargs.end(); I != E; ++I)
185      hash = *I + hash * 37;
186
187    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
188            (unsigned)((uintptr_t)e.function >> 9)) +
189           hash * 37;
190
191    return hash;
192  }
193  static bool isEqual(const Expression &LHS, const Expression &RHS) {
194    return LHS == RHS;
195  }
196  static bool isPod() { return true; }
197};
198}
199
200//===----------------------------------------------------------------------===//
201//                     ValueTable Internal Functions
202//===----------------------------------------------------------------------===//
203Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
204  switch(BO->getOpcode()) {
205  default: // THIS SHOULD NEVER HAPPEN
206    llvm_unreachable("Binary operator with unknown opcode?");
207  case Instruction::Add:  return Expression::ADD;
208  case Instruction::FAdd: return Expression::FADD;
209  case Instruction::Sub:  return Expression::SUB;
210  case Instruction::FSub: return Expression::FSUB;
211  case Instruction::Mul:  return Expression::MUL;
212  case Instruction::FMul: return Expression::FMUL;
213  case Instruction::UDiv: return Expression::UDIV;
214  case Instruction::SDiv: return Expression::SDIV;
215  case Instruction::FDiv: return Expression::FDIV;
216  case Instruction::URem: return Expression::UREM;
217  case Instruction::SRem: return Expression::SREM;
218  case Instruction::FRem: return Expression::FREM;
219  case Instruction::Shl:  return Expression::SHL;
220  case Instruction::LShr: return Expression::LSHR;
221  case Instruction::AShr: return Expression::ASHR;
222  case Instruction::And:  return Expression::AND;
223  case Instruction::Or:   return Expression::OR;
224  case Instruction::Xor:  return Expression::XOR;
225  }
226}
227
228Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
229  if (isa<ICmpInst>(C)) {
230    switch (C->getPredicate()) {
231    default:  // THIS SHOULD NEVER HAPPEN
232      llvm_unreachable("Comparison with unknown predicate?");
233    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
234    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
235    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
236    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
237    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
238    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
239    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
240    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
241    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
242    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
243    }
244  } else {
245    switch (C->getPredicate()) {
246    default: // THIS SHOULD NEVER HAPPEN
247      llvm_unreachable("Comparison with unknown predicate?");
248    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
249    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
250    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
251    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
252    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
253    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
254    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
255    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
256    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
257    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
258    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
259    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
260    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
261    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
262    }
263  }
264}
265
266Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
267  switch(C->getOpcode()) {
268  default: // THIS SHOULD NEVER HAPPEN
269    llvm_unreachable("Cast operator with unknown opcode?");
270  case Instruction::Trunc:    return Expression::TRUNC;
271  case Instruction::ZExt:     return Expression::ZEXT;
272  case Instruction::SExt:     return Expression::SEXT;
273  case Instruction::FPToUI:   return Expression::FPTOUI;
274  case Instruction::FPToSI:   return Expression::FPTOSI;
275  case Instruction::UIToFP:   return Expression::UITOFP;
276  case Instruction::SIToFP:   return Expression::SITOFP;
277  case Instruction::FPTrunc:  return Expression::FPTRUNC;
278  case Instruction::FPExt:    return Expression::FPEXT;
279  case Instruction::PtrToInt: return Expression::PTRTOINT;
280  case Instruction::IntToPtr: return Expression::INTTOPTR;
281  case Instruction::BitCast:  return Expression::BITCAST;
282  }
283}
284
285Expression ValueTable::create_expression(CallInst* C) {
286  Expression e;
287
288  e.type = C->getType();
289  e.firstVN = 0;
290  e.secondVN = 0;
291  e.thirdVN = 0;
292  e.function = C->getCalledFunction();
293  e.opcode = Expression::CALL;
294
295  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
296       I != E; ++I)
297    e.varargs.push_back(lookup_or_add(*I));
298
299  return e;
300}
301
302Expression ValueTable::create_expression(BinaryOperator* BO) {
303  Expression e;
304
305  e.firstVN = lookup_or_add(BO->getOperand(0));
306  e.secondVN = lookup_or_add(BO->getOperand(1));
307  e.thirdVN = 0;
308  e.function = 0;
309  e.type = BO->getType();
310  e.opcode = getOpcode(BO);
311
312  return e;
313}
314
315Expression ValueTable::create_expression(CmpInst* C) {
316  Expression e;
317
318  e.firstVN = lookup_or_add(C->getOperand(0));
319  e.secondVN = lookup_or_add(C->getOperand(1));
320  e.thirdVN = 0;
321  e.function = 0;
322  e.type = C->getType();
323  e.opcode = getOpcode(C);
324
325  return e;
326}
327
328Expression ValueTable::create_expression(CastInst* C) {
329  Expression e;
330
331  e.firstVN = lookup_or_add(C->getOperand(0));
332  e.secondVN = 0;
333  e.thirdVN = 0;
334  e.function = 0;
335  e.type = C->getType();
336  e.opcode = getOpcode(C);
337
338  return e;
339}
340
341Expression ValueTable::create_expression(ShuffleVectorInst* S) {
342  Expression e;
343
344  e.firstVN = lookup_or_add(S->getOperand(0));
345  e.secondVN = lookup_or_add(S->getOperand(1));
346  e.thirdVN = lookup_or_add(S->getOperand(2));
347  e.function = 0;
348  e.type = S->getType();
349  e.opcode = Expression::SHUFFLE;
350
351  return e;
352}
353
354Expression ValueTable::create_expression(ExtractElementInst* E) {
355  Expression e;
356
357  e.firstVN = lookup_or_add(E->getOperand(0));
358  e.secondVN = lookup_or_add(E->getOperand(1));
359  e.thirdVN = 0;
360  e.function = 0;
361  e.type = E->getType();
362  e.opcode = Expression::EXTRACT;
363
364  return e;
365}
366
367Expression ValueTable::create_expression(InsertElementInst* I) {
368  Expression e;
369
370  e.firstVN = lookup_or_add(I->getOperand(0));
371  e.secondVN = lookup_or_add(I->getOperand(1));
372  e.thirdVN = lookup_or_add(I->getOperand(2));
373  e.function = 0;
374  e.type = I->getType();
375  e.opcode = Expression::INSERT;
376
377  return e;
378}
379
380Expression ValueTable::create_expression(SelectInst* I) {
381  Expression e;
382
383  e.firstVN = lookup_or_add(I->getCondition());
384  e.secondVN = lookup_or_add(I->getTrueValue());
385  e.thirdVN = lookup_or_add(I->getFalseValue());
386  e.function = 0;
387  e.type = I->getType();
388  e.opcode = Expression::SELECT;
389
390  return e;
391}
392
393Expression ValueTable::create_expression(GetElementPtrInst* G) {
394  Expression e;
395
396  e.firstVN = lookup_or_add(G->getPointerOperand());
397  e.secondVN = 0;
398  e.thirdVN = 0;
399  e.function = 0;
400  e.type = G->getType();
401  e.opcode = Expression::GEP;
402
403  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
404       I != E; ++I)
405    e.varargs.push_back(lookup_or_add(*I));
406
407  return e;
408}
409
410//===----------------------------------------------------------------------===//
411//                     ValueTable External Functions
412//===----------------------------------------------------------------------===//
413
414/// add - Insert a value into the table with a specified value number.
415void ValueTable::add(Value* V, uint32_t num) {
416  valueNumbering.insert(std::make_pair(V, num));
417}
418
419/// lookup_or_add - Returns the value number for the specified value, assigning
420/// it a new number if it did not have one before.
421uint32_t ValueTable::lookup_or_add(Value* V) {
422  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
423  if (VI != valueNumbering.end())
424    return VI->second;
425
426  if (CallInst* C = dyn_cast<CallInst>(V)) {
427    if (AA->doesNotAccessMemory(C)) {
428      Expression e = create_expression(C);
429
430      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
431      if (EI != expressionNumbering.end()) {
432        valueNumbering.insert(std::make_pair(V, EI->second));
433        return EI->second;
434      } else {
435        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
436        valueNumbering.insert(std::make_pair(V, nextValueNumber));
437
438        return nextValueNumber++;
439      }
440    } else if (AA->onlyReadsMemory(C)) {
441      Expression e = create_expression(C);
442
443      if (expressionNumbering.find(e) == expressionNumbering.end()) {
444        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
445        valueNumbering.insert(std::make_pair(V, nextValueNumber));
446        return nextValueNumber++;
447      }
448
449      MemDepResult local_dep = MD->getDependency(C);
450
451      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
452        valueNumbering.insert(std::make_pair(V, nextValueNumber));
453        return nextValueNumber++;
454      }
455
456      if (local_dep.isDef()) {
457        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
458
459        if (local_cdep->getNumOperands() != C->getNumOperands()) {
460          valueNumbering.insert(std::make_pair(V, nextValueNumber));
461          return nextValueNumber++;
462        }
463
464        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
465          uint32_t c_vn = lookup_or_add(C->getOperand(i));
466          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
467          if (c_vn != cd_vn) {
468            valueNumbering.insert(std::make_pair(V, nextValueNumber));
469            return nextValueNumber++;
470          }
471        }
472
473        uint32_t v = lookup_or_add(local_cdep);
474        valueNumbering.insert(std::make_pair(V, v));
475        return v;
476      }
477
478      // Non-local case.
479      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
480        MD->getNonLocalCallDependency(CallSite(C));
481      // FIXME: call/call dependencies for readonly calls should return def, not
482      // clobber!  Move the checking logic to MemDep!
483      CallInst* cdep = 0;
484
485      // Check to see if we have a single dominating call instruction that is
486      // identical to C.
487      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
488        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
489        // Ignore non-local dependencies.
490        if (I->second.isNonLocal())
491          continue;
492
493        // We don't handle non-depedencies.  If we already have a call, reject
494        // instruction dependencies.
495        if (I->second.isClobber() || cdep != 0) {
496          cdep = 0;
497          break;
498        }
499
500        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
501        // FIXME: All duplicated with non-local case.
502        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
503          cdep = NonLocalDepCall;
504          continue;
505        }
506
507        cdep = 0;
508        break;
509      }
510
511      if (!cdep) {
512        valueNumbering.insert(std::make_pair(V, nextValueNumber));
513        return nextValueNumber++;
514      }
515
516      if (cdep->getNumOperands() != C->getNumOperands()) {
517        valueNumbering.insert(std::make_pair(V, nextValueNumber));
518        return nextValueNumber++;
519      }
520      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
521        uint32_t c_vn = lookup_or_add(C->getOperand(i));
522        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
523        if (c_vn != cd_vn) {
524          valueNumbering.insert(std::make_pair(V, nextValueNumber));
525          return nextValueNumber++;
526        }
527      }
528
529      uint32_t v = lookup_or_add(cdep);
530      valueNumbering.insert(std::make_pair(V, v));
531      return v;
532
533    } else {
534      valueNumbering.insert(std::make_pair(V, nextValueNumber));
535      return nextValueNumber++;
536    }
537  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
538    Expression e = create_expression(BO);
539
540    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
541    if (EI != expressionNumbering.end()) {
542      valueNumbering.insert(std::make_pair(V, EI->second));
543      return EI->second;
544    } else {
545      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
546      valueNumbering.insert(std::make_pair(V, nextValueNumber));
547
548      return nextValueNumber++;
549    }
550  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
551    Expression e = create_expression(C);
552
553    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
554    if (EI != expressionNumbering.end()) {
555      valueNumbering.insert(std::make_pair(V, EI->second));
556      return EI->second;
557    } else {
558      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
559      valueNumbering.insert(std::make_pair(V, nextValueNumber));
560
561      return nextValueNumber++;
562    }
563  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
564    Expression e = create_expression(U);
565
566    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
567    if (EI != expressionNumbering.end()) {
568      valueNumbering.insert(std::make_pair(V, EI->second));
569      return EI->second;
570    } else {
571      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
572      valueNumbering.insert(std::make_pair(V, nextValueNumber));
573
574      return nextValueNumber++;
575    }
576  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
577    Expression e = create_expression(U);
578
579    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
580    if (EI != expressionNumbering.end()) {
581      valueNumbering.insert(std::make_pair(V, EI->second));
582      return EI->second;
583    } else {
584      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
585      valueNumbering.insert(std::make_pair(V, nextValueNumber));
586
587      return nextValueNumber++;
588    }
589  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
590    Expression e = create_expression(U);
591
592    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
593    if (EI != expressionNumbering.end()) {
594      valueNumbering.insert(std::make_pair(V, EI->second));
595      return EI->second;
596    } else {
597      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
598      valueNumbering.insert(std::make_pair(V, nextValueNumber));
599
600      return nextValueNumber++;
601    }
602  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
603    Expression e = create_expression(U);
604
605    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
606    if (EI != expressionNumbering.end()) {
607      valueNumbering.insert(std::make_pair(V, EI->second));
608      return EI->second;
609    } else {
610      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
611      valueNumbering.insert(std::make_pair(V, nextValueNumber));
612
613      return nextValueNumber++;
614    }
615  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
616    Expression e = create_expression(U);
617
618    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
619    if (EI != expressionNumbering.end()) {
620      valueNumbering.insert(std::make_pair(V, EI->second));
621      return EI->second;
622    } else {
623      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
624      valueNumbering.insert(std::make_pair(V, nextValueNumber));
625
626      return nextValueNumber++;
627    }
628  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
629    Expression e = create_expression(U);
630
631    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
632    if (EI != expressionNumbering.end()) {
633      valueNumbering.insert(std::make_pair(V, EI->second));
634      return EI->second;
635    } else {
636      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
637      valueNumbering.insert(std::make_pair(V, nextValueNumber));
638
639      return nextValueNumber++;
640    }
641  } else {
642    valueNumbering.insert(std::make_pair(V, nextValueNumber));
643    return nextValueNumber++;
644  }
645}
646
647/// lookup - Returns the value number of the specified value. Fails if
648/// the value has not yet been numbered.
649uint32_t ValueTable::lookup(Value* V) const {
650  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
651  assert(VI != valueNumbering.end() && "Value not numbered?");
652  return VI->second;
653}
654
655/// clear - Remove all entries from the ValueTable
656void ValueTable::clear() {
657  valueNumbering.clear();
658  expressionNumbering.clear();
659  nextValueNumber = 1;
660}
661
662/// erase - Remove a value from the value numbering
663void ValueTable::erase(Value* V) {
664  valueNumbering.erase(V);
665}
666
667/// verifyRemoved - Verify that the value is removed from all internal data
668/// structures.
669void ValueTable::verifyRemoved(const Value *V) const {
670  for (DenseMap<Value*, uint32_t>::iterator
671         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
672    assert(I->first != V && "Inst still occurs in value numbering map!");
673  }
674}
675
676//===----------------------------------------------------------------------===//
677//                                GVN Pass
678//===----------------------------------------------------------------------===//
679
680namespace {
681  struct VISIBILITY_HIDDEN ValueNumberScope {
682    ValueNumberScope* parent;
683    DenseMap<uint32_t, Value*> table;
684
685    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
686  };
687}
688
689namespace {
690
691  class VISIBILITY_HIDDEN GVN : public FunctionPass {
692    bool runOnFunction(Function &F);
693  public:
694    static char ID; // Pass identification, replacement for typeid
695    GVN() : FunctionPass(&ID) { }
696
697  private:
698    MemoryDependenceAnalysis *MD;
699    DominatorTree *DT;
700
701    ValueTable VN;
702    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
703
704    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
705    PhiMapType phiMap;
706
707
708    // This transformation requires dominator postdominator info
709    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
710      AU.addRequired<DominatorTree>();
711      AU.addRequired<MemoryDependenceAnalysis>();
712      AU.addRequired<AliasAnalysis>();
713
714      AU.addPreserved<DominatorTree>();
715      AU.addPreserved<AliasAnalysis>();
716    }
717
718    // Helper fuctions
719    // FIXME: eliminate or document these better
720    bool processLoad(LoadInst* L,
721                     SmallVectorImpl<Instruction*> &toErase);
722    bool processInstruction(Instruction* I,
723                            SmallVectorImpl<Instruction*> &toErase);
724    bool processNonLocalLoad(LoadInst* L,
725                             SmallVectorImpl<Instruction*> &toErase);
726    bool processBlock(BasicBlock* BB);
727    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
728                            DenseMap<BasicBlock*, Value*> &Phis,
729                            bool top_level = false);
730    void dump(DenseMap<uint32_t, Value*>& d);
731    bool iterateOnFunction(Function &F);
732    Value* CollapsePhi(PHINode* p);
733    bool isSafeReplacement(PHINode* p, Instruction* inst);
734    bool performPRE(Function& F);
735    Value* lookupNumber(BasicBlock* BB, uint32_t num);
736    bool mergeBlockIntoPredecessor(BasicBlock* BB);
737    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
738    void cleanupGlobalSets();
739    void verifyRemoved(const Instruction *I) const;
740  };
741
742  char GVN::ID = 0;
743}
744
745// createGVNPass - The public interface to this file...
746FunctionPass *llvm::createGVNPass() { return new GVN(); }
747
748static RegisterPass<GVN> X("gvn",
749                           "Global Value Numbering");
750
751void GVN::dump(DenseMap<uint32_t, Value*>& d) {
752  printf("{\n");
753  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
754       E = d.end(); I != E; ++I) {
755      printf("%d\n", I->first);
756      I->second->dump();
757  }
758  printf("}\n");
759}
760
761Value* GVN::CollapsePhi(PHINode* p) {
762  Value* constVal = p->hasConstantValue();
763  if (!constVal) return 0;
764
765  Instruction* inst = dyn_cast<Instruction>(constVal);
766  if (!inst)
767    return constVal;
768
769  if (DT->dominates(inst, p))
770    if (isSafeReplacement(p, inst))
771      return inst;
772  return 0;
773}
774
775bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
776  if (!isa<PHINode>(inst))
777    return true;
778
779  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
780       UI != E; ++UI)
781    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
782      if (use_phi->getParent() == inst->getParent())
783        return false;
784
785  return true;
786}
787
788/// GetValueForBlock - Get the value to use within the specified basic block.
789/// available values are in Phis.
790Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
791                             DenseMap<BasicBlock*, Value*> &Phis,
792                             bool top_level) {
793
794  // If we have already computed this value, return the previously computed val.
795  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
796  if (V != Phis.end() && !top_level) return V->second;
797
798  // If the block is unreachable, just return undef, since this path
799  // can't actually occur at runtime.
800  if (!DT->isReachableFromEntry(BB))
801    return Phis[BB] = UndefValue::get(orig->getType());
802
803  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
804    Value *ret = GetValueForBlock(Pred, orig, Phis);
805    Phis[BB] = ret;
806    return ret;
807  }
808
809  // Get the number of predecessors of this block so we can reserve space later.
810  // If there is already a PHI in it, use the #preds from it, otherwise count.
811  // Getting it from the PHI is constant time.
812  unsigned NumPreds;
813  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
814    NumPreds = ExistingPN->getNumIncomingValues();
815  else
816    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
817
818  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
819  // now, then get values to fill in the incoming values for the PHI.
820  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
821                                BB->begin());
822  PN->reserveOperandSpace(NumPreds);
823
824  Phis.insert(std::make_pair(BB, PN));
825
826  // Fill in the incoming values for the block.
827  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
828    Value* val = GetValueForBlock(*PI, orig, Phis);
829    PN->addIncoming(val, *PI);
830  }
831
832  VN.getAliasAnalysis()->copyValue(orig, PN);
833
834  // Attempt to collapse PHI nodes that are trivially redundant
835  Value* v = CollapsePhi(PN);
836  if (!v) {
837    // Cache our phi construction results
838    if (LoadInst* L = dyn_cast<LoadInst>(orig))
839      phiMap[L->getPointerOperand()].insert(PN);
840    else
841      phiMap[orig].insert(PN);
842
843    return PN;
844  }
845
846  PN->replaceAllUsesWith(v);
847  if (isa<PointerType>(v->getType()))
848    MD->invalidateCachedPointerInfo(v);
849
850  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
851       E = Phis.end(); I != E; ++I)
852    if (I->second == PN)
853      I->second = v;
854
855  DEBUG(errs() << "GVN removed: " << *PN << '\n');
856  MD->removeInstruction(PN);
857  PN->eraseFromParent();
858  DEBUG(verifyRemoved(PN));
859
860  Phis[BB] = v;
861  return v;
862}
863
864/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
865/// we're analyzing is fully available in the specified block.  As we go, keep
866/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
867/// map is actually a tri-state map with the following values:
868///   0) we know the block *is not* fully available.
869///   1) we know the block *is* fully available.
870///   2) we do not know whether the block is fully available or not, but we are
871///      currently speculating that it will be.
872///   3) we are speculating for this block and have used that to speculate for
873///      other blocks.
874static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
875                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
876  // Optimistically assume that the block is fully available and check to see
877  // if we already know about this block in one lookup.
878  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
879    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
880
881  // If the entry already existed for this block, return the precomputed value.
882  if (!IV.second) {
883    // If this is a speculative "available" value, mark it as being used for
884    // speculation of other blocks.
885    if (IV.first->second == 2)
886      IV.first->second = 3;
887    return IV.first->second != 0;
888  }
889
890  // Otherwise, see if it is fully available in all predecessors.
891  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
892
893  // If this block has no predecessors, it isn't live-in here.
894  if (PI == PE)
895    goto SpeculationFailure;
896
897  for (; PI != PE; ++PI)
898    // If the value isn't fully available in one of our predecessors, then it
899    // isn't fully available in this block either.  Undo our previous
900    // optimistic assumption and bail out.
901    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
902      goto SpeculationFailure;
903
904  return true;
905
906// SpeculationFailure - If we get here, we found out that this is not, after
907// all, a fully-available block.  We have a problem if we speculated on this and
908// used the speculation to mark other blocks as available.
909SpeculationFailure:
910  char &BBVal = FullyAvailableBlocks[BB];
911
912  // If we didn't speculate on this, just return with it set to false.
913  if (BBVal == 2) {
914    BBVal = 0;
915    return false;
916  }
917
918  // If we did speculate on this value, we could have blocks set to 1 that are
919  // incorrect.  Walk the (transitive) successors of this block and mark them as
920  // 0 if set to one.
921  SmallVector<BasicBlock*, 32> BBWorklist;
922  BBWorklist.push_back(BB);
923
924  while (!BBWorklist.empty()) {
925    BasicBlock *Entry = BBWorklist.pop_back_val();
926    // Note that this sets blocks to 0 (unavailable) if they happen to not
927    // already be in FullyAvailableBlocks.  This is safe.
928    char &EntryVal = FullyAvailableBlocks[Entry];
929    if (EntryVal == 0) continue;  // Already unavailable.
930
931    // Mark as unavailable.
932    EntryVal = 0;
933
934    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
935      BBWorklist.push_back(*I);
936  }
937
938  return false;
939}
940
941/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
942/// non-local by performing PHI construction.
943bool GVN::processNonLocalLoad(LoadInst *LI,
944                              SmallVectorImpl<Instruction*> &toErase) {
945  // Find the non-local dependencies of the load.
946  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
947  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
948                                   Deps);
949  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
950  //             << Deps.size() << *LI << '\n');
951
952  // If we had to process more than one hundred blocks to find the
953  // dependencies, this load isn't worth worrying about.  Optimizing
954  // it will be too expensive.
955  if (Deps.size() > 100)
956    return false;
957
958  // If we had a phi translation failure, we'll have a single entry which is a
959  // clobber in the current block.  Reject this early.
960  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
961    DEBUG(
962      errs() << "GVN: non-local load ";
963      WriteAsOperand(errs(), LI);
964      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
965    );
966    return false;
967  }
968
969  // Filter out useless results (non-locals, etc).  Keep track of the blocks
970  // where we have a value available in repl, also keep track of whether we see
971  // dependencies that produce an unknown value for the load (such as a call
972  // that could potentially clobber the load).
973  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
974  SmallVector<BasicBlock*, 16> UnavailableBlocks;
975
976  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
977    BasicBlock *DepBB = Deps[i].first;
978    MemDepResult DepInfo = Deps[i].second;
979
980    if (DepInfo.isClobber()) {
981      UnavailableBlocks.push_back(DepBB);
982      continue;
983    }
984
985    Instruction *DepInst = DepInfo.getInst();
986
987    // Loading the allocation -> undef.
988    if (isa<AllocationInst>(DepInst)) {
989      ValuesPerBlock.push_back(std::make_pair(DepBB,
990                               UndefValue::get(LI->getType())));
991      continue;
992    }
993
994    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
995      // Reject loads and stores that are to the same address but are of
996      // different types.
997      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
998      // of bitfield access, it would be interesting to optimize for it at some
999      // point.
1000      if (S->getOperand(0)->getType() != LI->getType()) {
1001        UnavailableBlocks.push_back(DepBB);
1002        continue;
1003      }
1004
1005      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1006
1007    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1008      if (LD->getType() != LI->getType()) {
1009        UnavailableBlocks.push_back(DepBB);
1010        continue;
1011      }
1012      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1013    } else {
1014      UnavailableBlocks.push_back(DepBB);
1015      continue;
1016    }
1017  }
1018
1019  // If we have no predecessors that produce a known value for this load, exit
1020  // early.
1021  if (ValuesPerBlock.empty()) return false;
1022
1023  // If all of the instructions we depend on produce a known value for this
1024  // load, then it is fully redundant and we can use PHI insertion to compute
1025  // its value.  Insert PHIs and remove the fully redundant value now.
1026  if (UnavailableBlocks.empty()) {
1027    // Use cached PHI construction information from previous runs
1028    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1029    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1030    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1031         I != E; ++I) {
1032      if ((*I)->getParent() == LI->getParent()) {
1033        DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
1034        LI->replaceAllUsesWith(*I);
1035        if (isa<PointerType>((*I)->getType()))
1036          MD->invalidateCachedPointerInfo(*I);
1037        toErase.push_back(LI);
1038        NumGVNLoad++;
1039        return true;
1040      }
1041
1042      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1043    }
1044
1045    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1046
1047    DenseMap<BasicBlock*, Value*> BlockReplValues;
1048    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1049    // Perform PHI construction.
1050    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1051    LI->replaceAllUsesWith(v);
1052
1053    if (isa<PHINode>(v))
1054      v->takeName(LI);
1055    if (isa<PointerType>(v->getType()))
1056      MD->invalidateCachedPointerInfo(v);
1057    toErase.push_back(LI);
1058    NumGVNLoad++;
1059    return true;
1060  }
1061
1062  if (!EnablePRE || !EnableLoadPRE)
1063    return false;
1064
1065  // Okay, we have *some* definitions of the value.  This means that the value
1066  // is available in some of our (transitive) predecessors.  Lets think about
1067  // doing PRE of this load.  This will involve inserting a new load into the
1068  // predecessor when it's not available.  We could do this in general, but
1069  // prefer to not increase code size.  As such, we only do this when we know
1070  // that we only have to insert *one* load (which means we're basically moving
1071  // the load, not inserting a new one).
1072
1073  SmallPtrSet<BasicBlock *, 4> Blockers;
1074  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1075    Blockers.insert(UnavailableBlocks[i]);
1076
1077  // Lets find first basic block with more than one predecessor.  Walk backwards
1078  // through predecessors if needed.
1079  BasicBlock *LoadBB = LI->getParent();
1080  BasicBlock *TmpBB = LoadBB;
1081
1082  bool isSinglePred = false;
1083  bool allSingleSucc = true;
1084  while (TmpBB->getSinglePredecessor()) {
1085    isSinglePred = true;
1086    TmpBB = TmpBB->getSinglePredecessor();
1087    if (!TmpBB) // If haven't found any, bail now.
1088      return false;
1089    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1090      return false;
1091    if (Blockers.count(TmpBB))
1092      return false;
1093    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1094      allSingleSucc = false;
1095  }
1096
1097  assert(TmpBB);
1098  LoadBB = TmpBB;
1099
1100  // If we have a repl set with LI itself in it, this means we have a loop where
1101  // at least one of the values is LI.  Since this means that we won't be able
1102  // to eliminate LI even if we insert uses in the other predecessors, we will
1103  // end up increasing code size.  Reject this by scanning for LI.
1104  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1105    if (ValuesPerBlock[i].second == LI)
1106      return false;
1107
1108  if (isSinglePred) {
1109    bool isHot = false;
1110    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1111      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1112	// "Hot" Instruction is in some loop (because it dominates its dep.
1113	// instruction).
1114	if (DT->dominates(LI, I)) {
1115	  isHot = true;
1116	  break;
1117	}
1118
1119    // We are interested only in "hot" instructions. We don't want to do any
1120    // mis-optimizations here.
1121    if (!isHot)
1122      return false;
1123  }
1124
1125  // Okay, we have some hope :).  Check to see if the loaded value is fully
1126  // available in all but one predecessor.
1127  // FIXME: If we could restructure the CFG, we could make a common pred with
1128  // all the preds that don't have an available LI and insert a new load into
1129  // that one block.
1130  BasicBlock *UnavailablePred = 0;
1131
1132  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1133  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1134    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1135  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1136    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1137
1138  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1139       PI != E; ++PI) {
1140    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1141      continue;
1142
1143    // If this load is not available in multiple predecessors, reject it.
1144    if (UnavailablePred && UnavailablePred != *PI)
1145      return false;
1146    UnavailablePred = *PI;
1147  }
1148
1149  assert(UnavailablePred != 0 &&
1150         "Fully available value should be eliminated above!");
1151
1152  // If the loaded pointer is PHI node defined in this block, do PHI translation
1153  // to get its value in the predecessor.
1154  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1155
1156  // Make sure the value is live in the predecessor.  If it was defined by a
1157  // non-PHI instruction in this block, we don't know how to recompute it above.
1158  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1159    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1160      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1161                   << *LPInst << '\n' << *LI << "\n");
1162      return false;
1163    }
1164
1165  // We don't currently handle critical edges :(
1166  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1167    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1168                 << UnavailablePred->getName() << "': " << *LI << '\n');
1169    return false;
1170  }
1171
1172  // Make sure it is valid to move this load here.  We have to watch out for:
1173  //  @1 = getelementptr (i8* p, ...
1174  //  test p and branch if == 0
1175  //  load @1
1176  // It is valid to have the getelementptr before the test, even if p can be 0,
1177  // as getelementptr only does address arithmetic.
1178  // If we are not pushing the value through any multiple-successor blocks
1179  // we do not have this case.  Otherwise, check that the load is safe to
1180  // put anywhere; this can be improved, but should be conservatively safe.
1181  if (!allSingleSucc &&
1182      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1183    return false;
1184
1185  // Okay, we can eliminate this load by inserting a reload in the predecessor
1186  // and using PHI construction to get the value in the other predecessors, do
1187  // it.
1188  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1189
1190  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1191                                LI->getAlignment(),
1192                                UnavailablePred->getTerminator());
1193
1194  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1195  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1196       I != E; ++I)
1197    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1198
1199  DenseMap<BasicBlock*, Value*> BlockReplValues;
1200  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1201  BlockReplValues[UnavailablePred] = NewLoad;
1202
1203  // Perform PHI construction.
1204  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1205  LI->replaceAllUsesWith(v);
1206  if (isa<PHINode>(v))
1207    v->takeName(LI);
1208  if (isa<PointerType>(v->getType()))
1209    MD->invalidateCachedPointerInfo(v);
1210  toErase.push_back(LI);
1211  NumPRELoad++;
1212  return true;
1213}
1214
1215/// processLoad - Attempt to eliminate a load, first by eliminating it
1216/// locally, and then attempting non-local elimination if that fails.
1217bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1218  if (L->isVolatile())
1219    return false;
1220
1221  Value* pointer = L->getPointerOperand();
1222
1223  // ... to a pointer that has been loaded from before...
1224  MemDepResult dep = MD->getDependency(L);
1225
1226  // If the value isn't available, don't do anything!
1227  if (dep.isClobber()) {
1228    DEBUG(
1229      // fast print dep, using operator<< on instruction would be too slow
1230      errs() << "GVN: load ";
1231      WriteAsOperand(errs(), L);
1232      Instruction *I = dep.getInst();
1233      errs() << " is clobbered by " << *I << '\n';
1234    );
1235    return false;
1236  }
1237
1238  // If it is defined in another block, try harder.
1239  if (dep.isNonLocal())
1240    return processNonLocalLoad(L, toErase);
1241
1242  Instruction *DepInst = dep.getInst();
1243  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1244    // Only forward substitute stores to loads of the same type.
1245    // FIXME: Could do better!
1246    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1247      return false;
1248
1249    // Remove it!
1250    L->replaceAllUsesWith(DepSI->getOperand(0));
1251    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1252      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1253    toErase.push_back(L);
1254    NumGVNLoad++;
1255    return true;
1256  }
1257
1258  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1259    // Only forward substitute stores to loads of the same type.
1260    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1261    if (DepLI->getType() != L->getType())
1262      return false;
1263
1264    // Remove it!
1265    L->replaceAllUsesWith(DepLI);
1266    if (isa<PointerType>(DepLI->getType()))
1267      MD->invalidateCachedPointerInfo(DepLI);
1268    toErase.push_back(L);
1269    NumGVNLoad++;
1270    return true;
1271  }
1272
1273  // If this load really doesn't depend on anything, then we must be loading an
1274  // undef value.  This can happen when loading for a fresh allocation with no
1275  // intervening stores, for example.
1276  if (isa<AllocationInst>(DepInst)) {
1277    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1278    toErase.push_back(L);
1279    NumGVNLoad++;
1280    return true;
1281  }
1282
1283  return false;
1284}
1285
1286Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1287  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1288  if (I == localAvail.end())
1289    return 0;
1290
1291  ValueNumberScope* locals = I->second;
1292
1293  while (locals) {
1294    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1295    if (I != locals->table.end())
1296      return I->second;
1297    else
1298      locals = locals->parent;
1299  }
1300
1301  return 0;
1302}
1303
1304/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1305/// by inheritance from the dominator fails, see if we can perform phi
1306/// construction to eliminate the redundancy.
1307Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1308  BasicBlock* BaseBlock = orig->getParent();
1309
1310  SmallPtrSet<BasicBlock*, 4> Visited;
1311  SmallVector<BasicBlock*, 8> Stack;
1312  Stack.push_back(BaseBlock);
1313
1314  DenseMap<BasicBlock*, Value*> Results;
1315
1316  // Walk backwards through our predecessors, looking for instances of the
1317  // value number we're looking for.  Instances are recorded in the Results
1318  // map, which is then used to perform phi construction.
1319  while (!Stack.empty()) {
1320    BasicBlock* Current = Stack.back();
1321    Stack.pop_back();
1322
1323    // If we've walked all the way to a proper dominator, then give up. Cases
1324    // where the instance is in the dominator will have been caught by the fast
1325    // path, and any cases that require phi construction further than this are
1326    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1327    // time improvement.
1328    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1329
1330    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1331                                                       localAvail.find(Current);
1332    if (LA == localAvail.end()) return 0;
1333    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1334
1335    if (V != LA->second->table.end()) {
1336      // Found an instance, record it.
1337      Results.insert(std::make_pair(Current, V->second));
1338      continue;
1339    }
1340
1341    // If we reach the beginning of the function, then give up.
1342    if (pred_begin(Current) == pred_end(Current))
1343      return 0;
1344
1345    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1346         PI != PE; ++PI)
1347      if (Visited.insert(*PI))
1348        Stack.push_back(*PI);
1349  }
1350
1351  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1352  if (Results.size() == 0)
1353    return 0;
1354  else
1355    return GetValueForBlock(BaseBlock, orig, Results, true);
1356}
1357
1358/// processInstruction - When calculating availability, handle an instruction
1359/// by inserting it into the appropriate sets
1360bool GVN::processInstruction(Instruction *I,
1361                             SmallVectorImpl<Instruction*> &toErase) {
1362  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1363    bool changed = processLoad(L, toErase);
1364
1365    if (!changed) {
1366      unsigned num = VN.lookup_or_add(L);
1367      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1368    }
1369
1370    return changed;
1371  }
1372
1373  uint32_t nextNum = VN.getNextUnusedValueNumber();
1374  unsigned num = VN.lookup_or_add(I);
1375
1376  if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1377    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1378
1379    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1380      return false;
1381
1382    Value* branchCond = BI->getCondition();
1383    uint32_t condVN = VN.lookup_or_add(branchCond);
1384
1385    BasicBlock* trueSucc = BI->getSuccessor(0);
1386    BasicBlock* falseSucc = BI->getSuccessor(1);
1387
1388    if (trueSucc->getSinglePredecessor())
1389      localAvail[trueSucc]->table[condVN] =
1390        ConstantInt::getTrue(trueSucc->getContext());
1391    if (falseSucc->getSinglePredecessor())
1392      localAvail[falseSucc]->table[condVN] =
1393        ConstantInt::getFalse(trueSucc->getContext());
1394
1395    return false;
1396
1397  // Allocations are always uniquely numbered, so we can save time and memory
1398  // by fast failing them.
1399  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1400    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1401    return false;
1402  }
1403
1404  // Collapse PHI nodes
1405  if (PHINode* p = dyn_cast<PHINode>(I)) {
1406    Value* constVal = CollapsePhi(p);
1407
1408    if (constVal) {
1409      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1410           PI != PE; ++PI)
1411        PI->second.erase(p);
1412
1413      p->replaceAllUsesWith(constVal);
1414      if (isa<PointerType>(constVal->getType()))
1415        MD->invalidateCachedPointerInfo(constVal);
1416      VN.erase(p);
1417
1418      toErase.push_back(p);
1419    } else {
1420      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1421    }
1422
1423  // If the number we were assigned was a brand new VN, then we don't
1424  // need to do a lookup to see if the number already exists
1425  // somewhere in the domtree: it can't!
1426  } else if (num == nextNum) {
1427    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1428
1429  // Perform fast-path value-number based elimination of values inherited from
1430  // dominators.
1431  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1432    // Remove it!
1433    VN.erase(I);
1434    I->replaceAllUsesWith(repl);
1435    if (isa<PointerType>(repl->getType()))
1436      MD->invalidateCachedPointerInfo(repl);
1437    toErase.push_back(I);
1438    return true;
1439
1440#if 0
1441  // Perform slow-pathvalue-number based elimination with phi construction.
1442  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1443    // Remove it!
1444    VN.erase(I);
1445    I->replaceAllUsesWith(repl);
1446    if (isa<PointerType>(repl->getType()))
1447      MD->invalidateCachedPointerInfo(repl);
1448    toErase.push_back(I);
1449    return true;
1450#endif
1451  } else {
1452    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1453  }
1454
1455  return false;
1456}
1457
1458/// runOnFunction - This is the main transformation entry point for a function.
1459bool GVN::runOnFunction(Function& F) {
1460  MD = &getAnalysis<MemoryDependenceAnalysis>();
1461  DT = &getAnalysis<DominatorTree>();
1462  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1463  VN.setMemDep(MD);
1464  VN.setDomTree(DT);
1465
1466  bool changed = false;
1467  bool shouldContinue = true;
1468
1469  // Merge unconditional branches, allowing PRE to catch more
1470  // optimization opportunities.
1471  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1472    BasicBlock* BB = FI;
1473    ++FI;
1474    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1475    if (removedBlock) NumGVNBlocks++;
1476
1477    changed |= removedBlock;
1478  }
1479
1480  unsigned Iteration = 0;
1481
1482  while (shouldContinue) {
1483    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1484    shouldContinue = iterateOnFunction(F);
1485    changed |= shouldContinue;
1486    ++Iteration;
1487  }
1488
1489  if (EnablePRE) {
1490    bool PREChanged = true;
1491    while (PREChanged) {
1492      PREChanged = performPRE(F);
1493      changed |= PREChanged;
1494    }
1495  }
1496  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1497  // computations into blocks where they become fully redundant.  Note that
1498  // we can't do this until PRE's critical edge splitting updates memdep.
1499  // Actually, when this happens, we should just fully integrate PRE into GVN.
1500
1501  cleanupGlobalSets();
1502
1503  return changed;
1504}
1505
1506
1507bool GVN::processBlock(BasicBlock* BB) {
1508  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1509  // incrementing BI before processing an instruction).
1510  SmallVector<Instruction*, 8> toErase;
1511  bool changed_function = false;
1512
1513  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1514       BI != BE;) {
1515    changed_function |= processInstruction(BI, toErase);
1516    if (toErase.empty()) {
1517      ++BI;
1518      continue;
1519    }
1520
1521    // If we need some instructions deleted, do it now.
1522    NumGVNInstr += toErase.size();
1523
1524    // Avoid iterator invalidation.
1525    bool AtStart = BI == BB->begin();
1526    if (!AtStart)
1527      --BI;
1528
1529    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1530         E = toErase.end(); I != E; ++I) {
1531      DEBUG(errs() << "GVN removed: " << **I << '\n');
1532      MD->removeInstruction(*I);
1533      (*I)->eraseFromParent();
1534      DEBUG(verifyRemoved(*I));
1535    }
1536    toErase.clear();
1537
1538    if (AtStart)
1539      BI = BB->begin();
1540    else
1541      ++BI;
1542  }
1543
1544  return changed_function;
1545}
1546
1547/// performPRE - Perform a purely local form of PRE that looks for diamond
1548/// control flow patterns and attempts to perform simple PRE at the join point.
1549bool GVN::performPRE(Function& F) {
1550  bool Changed = false;
1551  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1552  DenseMap<BasicBlock*, Value*> predMap;
1553  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1554       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1555    BasicBlock* CurrentBlock = *DI;
1556
1557    // Nothing to PRE in the entry block.
1558    if (CurrentBlock == &F.getEntryBlock()) continue;
1559
1560    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1561         BE = CurrentBlock->end(); BI != BE; ) {
1562      Instruction *CurInst = BI++;
1563
1564      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1565          isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
1566          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1567          isa<DbgInfoIntrinsic>(CurInst))
1568        continue;
1569
1570      uint32_t valno = VN.lookup(CurInst);
1571
1572      // Look for the predecessors for PRE opportunities.  We're
1573      // only trying to solve the basic diamond case, where
1574      // a value is computed in the successor and one predecessor,
1575      // but not the other.  We also explicitly disallow cases
1576      // where the successor is its own predecessor, because they're
1577      // more complicated to get right.
1578      unsigned numWith = 0;
1579      unsigned numWithout = 0;
1580      BasicBlock* PREPred = 0;
1581      predMap.clear();
1582
1583      for (pred_iterator PI = pred_begin(CurrentBlock),
1584           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1585        // We're not interested in PRE where the block is its
1586        // own predecessor, on in blocks with predecessors
1587        // that are not reachable.
1588        if (*PI == CurrentBlock) {
1589          numWithout = 2;
1590          break;
1591        } else if (!localAvail.count(*PI))  {
1592          numWithout = 2;
1593          break;
1594        }
1595
1596        DenseMap<uint32_t, Value*>::iterator predV =
1597                                            localAvail[*PI]->table.find(valno);
1598        if (predV == localAvail[*PI]->table.end()) {
1599          PREPred = *PI;
1600          numWithout++;
1601        } else if (predV->second == CurInst) {
1602          numWithout = 2;
1603        } else {
1604          predMap[*PI] = predV->second;
1605          numWith++;
1606        }
1607      }
1608
1609      // Don't do PRE when it might increase code size, i.e. when
1610      // we would need to insert instructions in more than one pred.
1611      if (numWithout != 1 || numWith == 0)
1612        continue;
1613
1614      // We can't do PRE safely on a critical edge, so instead we schedule
1615      // the edge to be split and perform the PRE the next time we iterate
1616      // on the function.
1617      unsigned succNum = 0;
1618      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1619           i != e; ++i)
1620        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1621          succNum = i;
1622          break;
1623        }
1624
1625      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1626        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1627        continue;
1628      }
1629
1630      // Instantiate the expression the in predecessor that lacked it.
1631      // Because we are going top-down through the block, all value numbers
1632      // will be available in the predecessor by the time we need them.  Any
1633      // that weren't original present will have been instantiated earlier
1634      // in this loop.
1635      Instruction* PREInstr = CurInst->clone(CurInst->getContext());
1636      bool success = true;
1637      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1638        Value *Op = PREInstr->getOperand(i);
1639        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1640          continue;
1641
1642        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1643          PREInstr->setOperand(i, V);
1644        } else {
1645          success = false;
1646          break;
1647        }
1648      }
1649
1650      // Fail out if we encounter an operand that is not available in
1651      // the PRE predecessor.  This is typically because of loads which
1652      // are not value numbered precisely.
1653      if (!success) {
1654        delete PREInstr;
1655        DEBUG(verifyRemoved(PREInstr));
1656        continue;
1657      }
1658
1659      PREInstr->insertBefore(PREPred->getTerminator());
1660      PREInstr->setName(CurInst->getName() + ".pre");
1661      predMap[PREPred] = PREInstr;
1662      VN.add(PREInstr, valno);
1663      NumGVNPRE++;
1664
1665      // Update the availability map to include the new instruction.
1666      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1667
1668      // Create a PHI to make the value available in this block.
1669      PHINode* Phi = PHINode::Create(CurInst->getType(),
1670                                     CurInst->getName() + ".pre-phi",
1671                                     CurrentBlock->begin());
1672      for (pred_iterator PI = pred_begin(CurrentBlock),
1673           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1674        Phi->addIncoming(predMap[*PI], *PI);
1675
1676      VN.add(Phi, valno);
1677      localAvail[CurrentBlock]->table[valno] = Phi;
1678
1679      CurInst->replaceAllUsesWith(Phi);
1680      if (isa<PointerType>(Phi->getType()))
1681        MD->invalidateCachedPointerInfo(Phi);
1682      VN.erase(CurInst);
1683
1684      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1685      MD->removeInstruction(CurInst);
1686      CurInst->eraseFromParent();
1687      DEBUG(verifyRemoved(CurInst));
1688      Changed = true;
1689    }
1690  }
1691
1692  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1693       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1694    SplitCriticalEdge(I->first, I->second, this);
1695
1696  return Changed || toSplit.size();
1697}
1698
1699/// iterateOnFunction - Executes one iteration of GVN
1700bool GVN::iterateOnFunction(Function &F) {
1701  cleanupGlobalSets();
1702
1703  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1704       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1705    if (DI->getIDom())
1706      localAvail[DI->getBlock()] =
1707                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1708    else
1709      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1710  }
1711
1712  // Top-down walk of the dominator tree
1713  bool changed = false;
1714#if 0
1715  // Needed for value numbering with phi construction to work.
1716  ReversePostOrderTraversal<Function*> RPOT(&F);
1717  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1718       RE = RPOT.end(); RI != RE; ++RI)
1719    changed |= processBlock(*RI);
1720#else
1721  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1722       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1723    changed |= processBlock(DI->getBlock());
1724#endif
1725
1726  return changed;
1727}
1728
1729void GVN::cleanupGlobalSets() {
1730  VN.clear();
1731  phiMap.clear();
1732
1733  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1734       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1735    delete I->second;
1736  localAvail.clear();
1737}
1738
1739/// verifyRemoved - Verify that the specified instruction does not occur in our
1740/// internal data structures.
1741void GVN::verifyRemoved(const Instruction *Inst) const {
1742  VN.verifyRemoved(Inst);
1743
1744  // Walk through the PHI map to make sure the instruction isn't hiding in there
1745  // somewhere.
1746  for (PhiMapType::iterator
1747         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1748    assert(I->first != Inst && "Inst is still a key in PHI map!");
1749
1750    for (SmallPtrSet<Instruction*, 4>::iterator
1751           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1752      assert(*II != Inst && "Inst is still a value in PHI map!");
1753    }
1754  }
1755
1756  // Walk through the value number scope to make sure the instruction isn't
1757  // ferreted away in it.
1758  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1759         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1760    const ValueNumberScope *VNS = I->second;
1761
1762    while (VNS) {
1763      for (DenseMap<uint32_t, Value*>::iterator
1764             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1765        assert(II->second != Inst && "Inst still in value numbering scope!");
1766      }
1767
1768      VNS = VNS->parent;
1769    }
1770  }
1771}
1772