GVN.cpp revision 2ab36d350293c77fc8941ce1023e4899df7e3a82
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/Loads.h"
39#include "llvm/Analysis/MemoryBuiltins.h"
40#include "llvm/Analysis/MemoryDependenceAnalysis.h"
41#include "llvm/Analysis/PHITransAddr.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/GetElementPtrTypeIterator.h"
47#include "llvm/Support/IRBuilder.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumGVNInstr,  "Number of instructions deleted");
56STATISTIC(NumGVNLoad,   "Number of loads deleted");
57STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
58STATISTIC(NumGVNBlocks, "Number of blocks merged");
59STATISTIC(NumPRELoad,   "Number of loads PRE'd");
60
61static cl::opt<bool> EnablePRE("enable-pre",
62                               cl::init(true), cl::Hidden);
63static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
64
65//===----------------------------------------------------------------------===//
66//                         ValueTable Class
67//===----------------------------------------------------------------------===//
68
69/// This class holds the mapping between values and value numbers.  It is used
70/// as an efficient mechanism to determine the expression-wise equivalence of
71/// two values.
72namespace {
73  struct Expression {
74    enum ExpressionOpcode {
75      ADD = Instruction::Add,
76      FADD = Instruction::FAdd,
77      SUB = Instruction::Sub,
78      FSUB = Instruction::FSub,
79      MUL = Instruction::Mul,
80      FMUL = Instruction::FMul,
81      UDIV = Instruction::UDiv,
82      SDIV = Instruction::SDiv,
83      FDIV = Instruction::FDiv,
84      UREM = Instruction::URem,
85      SREM = Instruction::SRem,
86      FREM = Instruction::FRem,
87      SHL = Instruction::Shl,
88      LSHR = Instruction::LShr,
89      ASHR = Instruction::AShr,
90      AND = Instruction::And,
91      OR = Instruction::Or,
92      XOR = Instruction::Xor,
93      TRUNC = Instruction::Trunc,
94      ZEXT = Instruction::ZExt,
95      SEXT = Instruction::SExt,
96      FPTOUI = Instruction::FPToUI,
97      FPTOSI = Instruction::FPToSI,
98      UITOFP = Instruction::UIToFP,
99      SITOFP = Instruction::SIToFP,
100      FPTRUNC = Instruction::FPTrunc,
101      FPEXT = Instruction::FPExt,
102      PTRTOINT = Instruction::PtrToInt,
103      INTTOPTR = Instruction::IntToPtr,
104      BITCAST = Instruction::BitCast,
105      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
106      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
107      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
108      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
109      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
110      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
111      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
112
113    ExpressionOpcode opcode;
114    const Type* type;
115    SmallVector<uint32_t, 4> varargs;
116    Value *function;
117
118    Expression() { }
119    Expression(ExpressionOpcode o) : opcode(o) { }
120
121    bool operator==(const Expression &other) const {
122      if (opcode != other.opcode)
123        return false;
124      else if (opcode == EMPTY || opcode == TOMBSTONE)
125        return true;
126      else if (type != other.type)
127        return false;
128      else if (function != other.function)
129        return false;
130      else {
131        if (varargs.size() != other.varargs.size())
132          return false;
133
134        for (size_t i = 0; i < varargs.size(); ++i)
135          if (varargs[i] != other.varargs[i])
136            return false;
137
138        return true;
139      }
140    }
141
142    /*bool operator!=(const Expression &other) const {
143      return !(*this == other);
144    }*/
145  };
146
147  class ValueTable {
148    private:
149      DenseMap<Value*, uint32_t> valueNumbering;
150      DenseMap<Expression, uint32_t> expressionNumbering;
151      AliasAnalysis* AA;
152      MemoryDependenceAnalysis* MD;
153      DominatorTree* DT;
154
155      uint32_t nextValueNumber;
156
157      Expression::ExpressionOpcode getOpcode(CmpInst* C);
158      Expression create_expression(BinaryOperator* BO);
159      Expression create_expression(CmpInst* C);
160      Expression create_expression(ShuffleVectorInst* V);
161      Expression create_expression(ExtractElementInst* C);
162      Expression create_expression(InsertElementInst* V);
163      Expression create_expression(SelectInst* V);
164      Expression create_expression(CastInst* C);
165      Expression create_expression(GetElementPtrInst* G);
166      Expression create_expression(CallInst* C);
167      Expression create_expression(ExtractValueInst* C);
168      Expression create_expression(InsertValueInst* C);
169
170      uint32_t lookup_or_add_call(CallInst* C);
171    public:
172      ValueTable() : nextValueNumber(1) { }
173      uint32_t lookup_or_add(Value *V);
174      uint32_t lookup(Value *V) const;
175      void add(Value *V, uint32_t num);
176      void clear();
177      void erase(Value *v);
178      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
179      AliasAnalysis *getAliasAnalysis() const { return AA; }
180      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
181      void setDomTree(DominatorTree* D) { DT = D; }
182      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
183      void verifyRemoved(const Value *) const;
184  };
185}
186
187namespace llvm {
188template <> struct DenseMapInfo<Expression> {
189  static inline Expression getEmptyKey() {
190    return Expression(Expression::EMPTY);
191  }
192
193  static inline Expression getTombstoneKey() {
194    return Expression(Expression::TOMBSTONE);
195  }
196
197  static unsigned getHashValue(const Expression e) {
198    unsigned hash = e.opcode;
199
200    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
201            (unsigned)((uintptr_t)e.type >> 9));
202
203    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
204         E = e.varargs.end(); I != E; ++I)
205      hash = *I + hash * 37;
206
207    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
208            (unsigned)((uintptr_t)e.function >> 9)) +
209           hash * 37;
210
211    return hash;
212  }
213  static bool isEqual(const Expression &LHS, const Expression &RHS) {
214    return LHS == RHS;
215  }
216};
217
218template <>
219struct isPodLike<Expression> { static const bool value = true; };
220
221}
222
223//===----------------------------------------------------------------------===//
224//                     ValueTable Internal Functions
225//===----------------------------------------------------------------------===//
226
227Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
228  if (isa<ICmpInst>(C)) {
229    switch (C->getPredicate()) {
230    default:  // THIS SHOULD NEVER HAPPEN
231      llvm_unreachable("Comparison with unknown predicate?");
232    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
233    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
234    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
235    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
236    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
237    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
238    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
239    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
240    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
241    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
242    }
243  } else {
244    switch (C->getPredicate()) {
245    default: // THIS SHOULD NEVER HAPPEN
246      llvm_unreachable("Comparison with unknown predicate?");
247    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
248    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
249    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
250    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
251    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
252    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
253    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
254    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
255    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
256    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
257    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
258    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
259    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
260    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
261    }
262  }
263}
264
265Expression ValueTable::create_expression(CallInst* C) {
266  Expression e;
267
268  e.type = C->getType();
269  e.function = C->getCalledFunction();
270  e.opcode = Expression::CALL;
271
272  CallSite CS(C);
273  for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
274       I != E; ++I)
275    e.varargs.push_back(lookup_or_add(*I));
276
277  return e;
278}
279
280Expression ValueTable::create_expression(BinaryOperator* BO) {
281  Expression e;
282  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
283  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
284  e.function = 0;
285  e.type = BO->getType();
286  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
287
288  return e;
289}
290
291Expression ValueTable::create_expression(CmpInst* C) {
292  Expression e;
293
294  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
295  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
296  e.function = 0;
297  e.type = C->getType();
298  e.opcode = getOpcode(C);
299
300  return e;
301}
302
303Expression ValueTable::create_expression(CastInst* C) {
304  Expression e;
305
306  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
307  e.function = 0;
308  e.type = C->getType();
309  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
310
311  return e;
312}
313
314Expression ValueTable::create_expression(ShuffleVectorInst* S) {
315  Expression e;
316
317  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
318  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
319  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
320  e.function = 0;
321  e.type = S->getType();
322  e.opcode = Expression::SHUFFLE;
323
324  return e;
325}
326
327Expression ValueTable::create_expression(ExtractElementInst* E) {
328  Expression e;
329
330  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
331  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
332  e.function = 0;
333  e.type = E->getType();
334  e.opcode = Expression::EXTRACT;
335
336  return e;
337}
338
339Expression ValueTable::create_expression(InsertElementInst* I) {
340  Expression e;
341
342  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
343  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
344  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
345  e.function = 0;
346  e.type = I->getType();
347  e.opcode = Expression::INSERT;
348
349  return e;
350}
351
352Expression ValueTable::create_expression(SelectInst* I) {
353  Expression e;
354
355  e.varargs.push_back(lookup_or_add(I->getCondition()));
356  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
357  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
358  e.function = 0;
359  e.type = I->getType();
360  e.opcode = Expression::SELECT;
361
362  return e;
363}
364
365Expression ValueTable::create_expression(GetElementPtrInst* G) {
366  Expression e;
367
368  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
369  e.function = 0;
370  e.type = G->getType();
371  e.opcode = Expression::GEP;
372
373  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
374       I != E; ++I)
375    e.varargs.push_back(lookup_or_add(*I));
376
377  return e;
378}
379
380Expression ValueTable::create_expression(ExtractValueInst* E) {
381  Expression e;
382
383  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
384  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
385       II != IE; ++II)
386    e.varargs.push_back(*II);
387  e.function = 0;
388  e.type = E->getType();
389  e.opcode = Expression::EXTRACTVALUE;
390
391  return e;
392}
393
394Expression ValueTable::create_expression(InsertValueInst* E) {
395  Expression e;
396
397  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
398  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
399  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
400       II != IE; ++II)
401    e.varargs.push_back(*II);
402  e.function = 0;
403  e.type = E->getType();
404  e.opcode = Expression::INSERTVALUE;
405
406  return e;
407}
408
409//===----------------------------------------------------------------------===//
410//                     ValueTable External Functions
411//===----------------------------------------------------------------------===//
412
413/// add - Insert a value into the table with a specified value number.
414void ValueTable::add(Value *V, uint32_t num) {
415  valueNumbering.insert(std::make_pair(V, num));
416}
417
418uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
419  if (AA->doesNotAccessMemory(C)) {
420    Expression exp = create_expression(C);
421    uint32_t& e = expressionNumbering[exp];
422    if (!e) e = nextValueNumber++;
423    valueNumbering[C] = e;
424    return e;
425  } else if (AA->onlyReadsMemory(C)) {
426    Expression exp = create_expression(C);
427    uint32_t& e = expressionNumbering[exp];
428    if (!e) {
429      e = nextValueNumber++;
430      valueNumbering[C] = e;
431      return e;
432    }
433    if (!MD) {
434      e = nextValueNumber++;
435      valueNumbering[C] = e;
436      return e;
437    }
438
439    MemDepResult local_dep = MD->getDependency(C);
440
441    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
442      valueNumbering[C] =  nextValueNumber;
443      return nextValueNumber++;
444    }
445
446    if (local_dep.isDef()) {
447      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
448
449      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
450        valueNumbering[C] = nextValueNumber;
451        return nextValueNumber++;
452      }
453
454      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
455        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
456        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
457        if (c_vn != cd_vn) {
458          valueNumbering[C] = nextValueNumber;
459          return nextValueNumber++;
460        }
461      }
462
463      uint32_t v = lookup_or_add(local_cdep);
464      valueNumbering[C] = v;
465      return v;
466    }
467
468    // Non-local case.
469    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
470      MD->getNonLocalCallDependency(CallSite(C));
471    // FIXME: call/call dependencies for readonly calls should return def, not
472    // clobber!  Move the checking logic to MemDep!
473    CallInst* cdep = 0;
474
475    // Check to see if we have a single dominating call instruction that is
476    // identical to C.
477    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
478      const NonLocalDepEntry *I = &deps[i];
479      // Ignore non-local dependencies.
480      if (I->getResult().isNonLocal())
481        continue;
482
483      // We don't handle non-depedencies.  If we already have a call, reject
484      // instruction dependencies.
485      if (I->getResult().isClobber() || cdep != 0) {
486        cdep = 0;
487        break;
488      }
489
490      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
491      // FIXME: All duplicated with non-local case.
492      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
493        cdep = NonLocalDepCall;
494        continue;
495      }
496
497      cdep = 0;
498      break;
499    }
500
501    if (!cdep) {
502      valueNumbering[C] = nextValueNumber;
503      return nextValueNumber++;
504    }
505
506    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
507      valueNumbering[C] = nextValueNumber;
508      return nextValueNumber++;
509    }
510    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
511      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
512      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
513      if (c_vn != cd_vn) {
514        valueNumbering[C] = nextValueNumber;
515        return nextValueNumber++;
516      }
517    }
518
519    uint32_t v = lookup_or_add(cdep);
520    valueNumbering[C] = v;
521    return v;
522
523  } else {
524    valueNumbering[C] = nextValueNumber;
525    return nextValueNumber++;
526  }
527}
528
529/// lookup_or_add - Returns the value number for the specified value, assigning
530/// it a new number if it did not have one before.
531uint32_t ValueTable::lookup_or_add(Value *V) {
532  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
533  if (VI != valueNumbering.end())
534    return VI->second;
535
536  if (!isa<Instruction>(V)) {
537    valueNumbering[V] = nextValueNumber;
538    return nextValueNumber++;
539  }
540
541  Instruction* I = cast<Instruction>(V);
542  Expression exp;
543  switch (I->getOpcode()) {
544    case Instruction::Call:
545      return lookup_or_add_call(cast<CallInst>(I));
546    case Instruction::Add:
547    case Instruction::FAdd:
548    case Instruction::Sub:
549    case Instruction::FSub:
550    case Instruction::Mul:
551    case Instruction::FMul:
552    case Instruction::UDiv:
553    case Instruction::SDiv:
554    case Instruction::FDiv:
555    case Instruction::URem:
556    case Instruction::SRem:
557    case Instruction::FRem:
558    case Instruction::Shl:
559    case Instruction::LShr:
560    case Instruction::AShr:
561    case Instruction::And:
562    case Instruction::Or :
563    case Instruction::Xor:
564      exp = create_expression(cast<BinaryOperator>(I));
565      break;
566    case Instruction::ICmp:
567    case Instruction::FCmp:
568      exp = create_expression(cast<CmpInst>(I));
569      break;
570    case Instruction::Trunc:
571    case Instruction::ZExt:
572    case Instruction::SExt:
573    case Instruction::FPToUI:
574    case Instruction::FPToSI:
575    case Instruction::UIToFP:
576    case Instruction::SIToFP:
577    case Instruction::FPTrunc:
578    case Instruction::FPExt:
579    case Instruction::PtrToInt:
580    case Instruction::IntToPtr:
581    case Instruction::BitCast:
582      exp = create_expression(cast<CastInst>(I));
583      break;
584    case Instruction::Select:
585      exp = create_expression(cast<SelectInst>(I));
586      break;
587    case Instruction::ExtractElement:
588      exp = create_expression(cast<ExtractElementInst>(I));
589      break;
590    case Instruction::InsertElement:
591      exp = create_expression(cast<InsertElementInst>(I));
592      break;
593    case Instruction::ShuffleVector:
594      exp = create_expression(cast<ShuffleVectorInst>(I));
595      break;
596    case Instruction::ExtractValue:
597      exp = create_expression(cast<ExtractValueInst>(I));
598      break;
599    case Instruction::InsertValue:
600      exp = create_expression(cast<InsertValueInst>(I));
601      break;
602    case Instruction::GetElementPtr:
603      exp = create_expression(cast<GetElementPtrInst>(I));
604      break;
605    default:
606      valueNumbering[V] = nextValueNumber;
607      return nextValueNumber++;
608  }
609
610  uint32_t& e = expressionNumbering[exp];
611  if (!e) e = nextValueNumber++;
612  valueNumbering[V] = e;
613  return e;
614}
615
616/// lookup - Returns the value number of the specified value. Fails if
617/// the value has not yet been numbered.
618uint32_t ValueTable::lookup(Value *V) const {
619  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
620  assert(VI != valueNumbering.end() && "Value not numbered?");
621  return VI->second;
622}
623
624/// clear - Remove all entries from the ValueTable
625void ValueTable::clear() {
626  valueNumbering.clear();
627  expressionNumbering.clear();
628  nextValueNumber = 1;
629}
630
631/// erase - Remove a value from the value numbering
632void ValueTable::erase(Value *V) {
633  valueNumbering.erase(V);
634}
635
636/// verifyRemoved - Verify that the value is removed from all internal data
637/// structures.
638void ValueTable::verifyRemoved(const Value *V) const {
639  for (DenseMap<Value*, uint32_t>::const_iterator
640         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
641    assert(I->first != V && "Inst still occurs in value numbering map!");
642  }
643}
644
645//===----------------------------------------------------------------------===//
646//                                GVN Pass
647//===----------------------------------------------------------------------===//
648
649namespace {
650  struct ValueNumberScope {
651    ValueNumberScope* parent;
652    DenseMap<uint32_t, Value*> table;
653
654    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
655  };
656}
657
658namespace {
659
660  class GVN : public FunctionPass {
661    bool runOnFunction(Function &F);
662  public:
663    static char ID; // Pass identification, replacement for typeid
664    explicit GVN(bool noloads = false)
665      : FunctionPass(ID), NoLoads(noloads), MD(0) { }
666
667  private:
668    bool NoLoads;
669    MemoryDependenceAnalysis *MD;
670    DominatorTree *DT;
671
672    ValueTable VN;
673    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
674
675    // List of critical edges to be split between iterations.
676    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
677
678    // This transformation requires dominator postdominator info
679    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
680      AU.addRequired<DominatorTree>();
681      if (!NoLoads)
682        AU.addRequired<MemoryDependenceAnalysis>();
683      AU.addRequired<AliasAnalysis>();
684
685      AU.addPreserved<DominatorTree>();
686      AU.addPreserved<AliasAnalysis>();
687    }
688
689    // Helper fuctions
690    // FIXME: eliminate or document these better
691    bool processLoad(LoadInst* L,
692                     SmallVectorImpl<Instruction*> &toErase);
693    bool processInstruction(Instruction *I,
694                            SmallVectorImpl<Instruction*> &toErase);
695    bool processNonLocalLoad(LoadInst* L,
696                             SmallVectorImpl<Instruction*> &toErase);
697    bool processBlock(BasicBlock *BB);
698    void dump(DenseMap<uint32_t, Value*>& d);
699    bool iterateOnFunction(Function &F);
700    Value *CollapsePhi(PHINode* p);
701    bool performPRE(Function& F);
702    Value *lookupNumber(BasicBlock *BB, uint32_t num);
703    void cleanupGlobalSets();
704    void verifyRemoved(const Instruction *I) const;
705    bool splitCriticalEdges();
706  };
707
708  char GVN::ID = 0;
709}
710
711// createGVNPass - The public interface to this file...
712FunctionPass *llvm::createGVNPass(bool NoLoads) {
713  return new GVN(NoLoads);
714}
715
716INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
717INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
718INITIALIZE_PASS_DEPENDENCY(DominatorTree)
719INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
720INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
721
722void GVN::dump(DenseMap<uint32_t, Value*>& d) {
723  errs() << "{\n";
724  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
725       E = d.end(); I != E; ++I) {
726      errs() << I->first << "\n";
727      I->second->dump();
728  }
729  errs() << "}\n";
730}
731
732static bool isSafeReplacement(PHINode* p, Instruction *inst) {
733  if (!isa<PHINode>(inst))
734    return true;
735
736  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
737       UI != E; ++UI)
738    if (PHINode* use_phi = dyn_cast<PHINode>(*UI))
739      if (use_phi->getParent() == inst->getParent())
740        return false;
741
742  return true;
743}
744
745Value *GVN::CollapsePhi(PHINode *PN) {
746  Value *ConstVal = PN->hasConstantValue(DT);
747  if (!ConstVal) return 0;
748
749  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
750  if (!Inst)
751    return ConstVal;
752
753  if (DT->dominates(Inst, PN))
754    if (isSafeReplacement(PN, Inst))
755      return Inst;
756  return 0;
757}
758
759/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
760/// we're analyzing is fully available in the specified block.  As we go, keep
761/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
762/// map is actually a tri-state map with the following values:
763///   0) we know the block *is not* fully available.
764///   1) we know the block *is* fully available.
765///   2) we do not know whether the block is fully available or not, but we are
766///      currently speculating that it will be.
767///   3) we are speculating for this block and have used that to speculate for
768///      other blocks.
769static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
770                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
771  // Optimistically assume that the block is fully available and check to see
772  // if we already know about this block in one lookup.
773  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
774    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
775
776  // If the entry already existed for this block, return the precomputed value.
777  if (!IV.second) {
778    // If this is a speculative "available" value, mark it as being used for
779    // speculation of other blocks.
780    if (IV.first->second == 2)
781      IV.first->second = 3;
782    return IV.first->second != 0;
783  }
784
785  // Otherwise, see if it is fully available in all predecessors.
786  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
787
788  // If this block has no predecessors, it isn't live-in here.
789  if (PI == PE)
790    goto SpeculationFailure;
791
792  for (; PI != PE; ++PI)
793    // If the value isn't fully available in one of our predecessors, then it
794    // isn't fully available in this block either.  Undo our previous
795    // optimistic assumption and bail out.
796    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
797      goto SpeculationFailure;
798
799  return true;
800
801// SpeculationFailure - If we get here, we found out that this is not, after
802// all, a fully-available block.  We have a problem if we speculated on this and
803// used the speculation to mark other blocks as available.
804SpeculationFailure:
805  char &BBVal = FullyAvailableBlocks[BB];
806
807  // If we didn't speculate on this, just return with it set to false.
808  if (BBVal == 2) {
809    BBVal = 0;
810    return false;
811  }
812
813  // If we did speculate on this value, we could have blocks set to 1 that are
814  // incorrect.  Walk the (transitive) successors of this block and mark them as
815  // 0 if set to one.
816  SmallVector<BasicBlock*, 32> BBWorklist;
817  BBWorklist.push_back(BB);
818
819  do {
820    BasicBlock *Entry = BBWorklist.pop_back_val();
821    // Note that this sets blocks to 0 (unavailable) if they happen to not
822    // already be in FullyAvailableBlocks.  This is safe.
823    char &EntryVal = FullyAvailableBlocks[Entry];
824    if (EntryVal == 0) continue;  // Already unavailable.
825
826    // Mark as unavailable.
827    EntryVal = 0;
828
829    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
830      BBWorklist.push_back(*I);
831  } while (!BBWorklist.empty());
832
833  return false;
834}
835
836
837/// CanCoerceMustAliasedValueToLoad - Return true if
838/// CoerceAvailableValueToLoadType will succeed.
839static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
840                                            const Type *LoadTy,
841                                            const TargetData &TD) {
842  // If the loaded or stored value is an first class array or struct, don't try
843  // to transform them.  We need to be able to bitcast to integer.
844  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
845      StoredVal->getType()->isStructTy() ||
846      StoredVal->getType()->isArrayTy())
847    return false;
848
849  // The store has to be at least as big as the load.
850  if (TD.getTypeSizeInBits(StoredVal->getType()) <
851        TD.getTypeSizeInBits(LoadTy))
852    return false;
853
854  return true;
855}
856
857
858/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
859/// then a load from a must-aliased pointer of a different type, try to coerce
860/// the stored value.  LoadedTy is the type of the load we want to replace and
861/// InsertPt is the place to insert new instructions.
862///
863/// If we can't do it, return null.
864static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
865                                             const Type *LoadedTy,
866                                             Instruction *InsertPt,
867                                             const TargetData &TD) {
868  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
869    return 0;
870
871  const Type *StoredValTy = StoredVal->getType();
872
873  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
874  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
875
876  // If the store and reload are the same size, we can always reuse it.
877  if (StoreSize == LoadSize) {
878    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
879      // Pointer to Pointer -> use bitcast.
880      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
881    }
882
883    // Convert source pointers to integers, which can be bitcast.
884    if (StoredValTy->isPointerTy()) {
885      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
886      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
887    }
888
889    const Type *TypeToCastTo = LoadedTy;
890    if (TypeToCastTo->isPointerTy())
891      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
892
893    if (StoredValTy != TypeToCastTo)
894      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
895
896    // Cast to pointer if the load needs a pointer type.
897    if (LoadedTy->isPointerTy())
898      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
899
900    return StoredVal;
901  }
902
903  // If the loaded value is smaller than the available value, then we can
904  // extract out a piece from it.  If the available value is too small, then we
905  // can't do anything.
906  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
907
908  // Convert source pointers to integers, which can be manipulated.
909  if (StoredValTy->isPointerTy()) {
910    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
911    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
912  }
913
914  // Convert vectors and fp to integer, which can be manipulated.
915  if (!StoredValTy->isIntegerTy()) {
916    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
917    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
918  }
919
920  // If this is a big-endian system, we need to shift the value down to the low
921  // bits so that a truncate will work.
922  if (TD.isBigEndian()) {
923    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
924    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
925  }
926
927  // Truncate the integer to the right size now.
928  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
929  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
930
931  if (LoadedTy == NewIntTy)
932    return StoredVal;
933
934  // If the result is a pointer, inttoptr.
935  if (LoadedTy->isPointerTy())
936    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
937
938  // Otherwise, bitcast.
939  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
940}
941
942/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
943/// be expressed as a base pointer plus a constant offset.  Return the base and
944/// offset to the caller.
945static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
946                                        const TargetData &TD) {
947  Operator *PtrOp = dyn_cast<Operator>(Ptr);
948  if (PtrOp == 0) return Ptr;
949
950  // Just look through bitcasts.
951  if (PtrOp->getOpcode() == Instruction::BitCast)
952    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
953
954  // If this is a GEP with constant indices, we can look through it.
955  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
956  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
957
958  gep_type_iterator GTI = gep_type_begin(GEP);
959  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
960       ++I, ++GTI) {
961    ConstantInt *OpC = cast<ConstantInt>(*I);
962    if (OpC->isZero()) continue;
963
964    // Handle a struct and array indices which add their offset to the pointer.
965    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
966      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
967    } else {
968      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
969      Offset += OpC->getSExtValue()*Size;
970    }
971  }
972
973  // Re-sign extend from the pointer size if needed to get overflow edge cases
974  // right.
975  unsigned PtrSize = TD.getPointerSizeInBits();
976  if (PtrSize < 64)
977    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
978
979  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
980}
981
982
983/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
984/// memdep query of a load that ends up being a clobbering memory write (store,
985/// memset, memcpy, memmove).  This means that the write *may* provide bits used
986/// by the load but we can't be sure because the pointers don't mustalias.
987///
988/// Check this case to see if there is anything more we can do before we give
989/// up.  This returns -1 if we have to give up, or a byte number in the stored
990/// value of the piece that feeds the load.
991static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
992                                          Value *WritePtr,
993                                          uint64_t WriteSizeInBits,
994                                          const TargetData &TD) {
995  // If the loaded or stored value is an first class array or struct, don't try
996  // to transform them.  We need to be able to bitcast to integer.
997  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
998    return -1;
999
1000  int64_t StoreOffset = 0, LoadOffset = 0;
1001  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1002  Value *LoadBase =
1003    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1004  if (StoreBase != LoadBase)
1005    return -1;
1006
1007  // If the load and store are to the exact same address, they should have been
1008  // a must alias.  AA must have gotten confused.
1009  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1010  // to a load from the base of the memset.
1011#if 0
1012  if (LoadOffset == StoreOffset) {
1013    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1014    << "Base       = " << *StoreBase << "\n"
1015    << "Store Ptr  = " << *WritePtr << "\n"
1016    << "Store Offs = " << StoreOffset << "\n"
1017    << "Load Ptr   = " << *LoadPtr << "\n";
1018    abort();
1019  }
1020#endif
1021
1022  // If the load and store don't overlap at all, the store doesn't provide
1023  // anything to the load.  In this case, they really don't alias at all, AA
1024  // must have gotten confused.
1025  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1026  // remove this check, as it is duplicated with what we have below.
1027  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1028
1029  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1030    return -1;
1031  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1032  LoadSize >>= 3;
1033
1034
1035  bool isAAFailure = false;
1036  if (StoreOffset < LoadOffset)
1037    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1038  else
1039    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1040
1041  if (isAAFailure) {
1042#if 0
1043    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1044    << "Base       = " << *StoreBase << "\n"
1045    << "Store Ptr  = " << *WritePtr << "\n"
1046    << "Store Offs = " << StoreOffset << "\n"
1047    << "Load Ptr   = " << *LoadPtr << "\n";
1048    abort();
1049#endif
1050    return -1;
1051  }
1052
1053  // If the Load isn't completely contained within the stored bits, we don't
1054  // have all the bits to feed it.  We could do something crazy in the future
1055  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1056  // valuable.
1057  if (StoreOffset > LoadOffset ||
1058      StoreOffset+StoreSize < LoadOffset+LoadSize)
1059    return -1;
1060
1061  // Okay, we can do this transformation.  Return the number of bytes into the
1062  // store that the load is.
1063  return LoadOffset-StoreOffset;
1064}
1065
1066/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1067/// memdep query of a load that ends up being a clobbering store.
1068static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1069                                          StoreInst *DepSI,
1070                                          const TargetData &TD) {
1071  // Cannot handle reading from store of first-class aggregate yet.
1072  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1073      DepSI->getOperand(0)->getType()->isArrayTy())
1074    return -1;
1075
1076  Value *StorePtr = DepSI->getPointerOperand();
1077  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1078  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1079                                        StorePtr, StoreSize, TD);
1080}
1081
1082static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1083                                            MemIntrinsic *MI,
1084                                            const TargetData &TD) {
1085  // If the mem operation is a non-constant size, we can't handle it.
1086  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1087  if (SizeCst == 0) return -1;
1088  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1089
1090  // If this is memset, we just need to see if the offset is valid in the size
1091  // of the memset..
1092  if (MI->getIntrinsicID() == Intrinsic::memset)
1093    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1094                                          MemSizeInBits, TD);
1095
1096  // If we have a memcpy/memmove, the only case we can handle is if this is a
1097  // copy from constant memory.  In that case, we can read directly from the
1098  // constant memory.
1099  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1100
1101  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1102  if (Src == 0) return -1;
1103
1104  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1105  if (GV == 0 || !GV->isConstant()) return -1;
1106
1107  // See if the access is within the bounds of the transfer.
1108  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1109                                              MI->getDest(), MemSizeInBits, TD);
1110  if (Offset == -1)
1111    return Offset;
1112
1113  // Otherwise, see if we can constant fold a load from the constant with the
1114  // offset applied as appropriate.
1115  Src = ConstantExpr::getBitCast(Src,
1116                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1117  Constant *OffsetCst =
1118    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1119  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1120  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1121  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1122    return Offset;
1123  return -1;
1124}
1125
1126
1127/// GetStoreValueForLoad - This function is called when we have a
1128/// memdep query of a load that ends up being a clobbering store.  This means
1129/// that the store *may* provide bits used by the load but we can't be sure
1130/// because the pointers don't mustalias.  Check this case to see if there is
1131/// anything more we can do before we give up.
1132static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1133                                   const Type *LoadTy,
1134                                   Instruction *InsertPt, const TargetData &TD){
1135  LLVMContext &Ctx = SrcVal->getType()->getContext();
1136
1137  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1138  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1139
1140  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1141
1142  // Compute which bits of the stored value are being used by the load.  Convert
1143  // to an integer type to start with.
1144  if (SrcVal->getType()->isPointerTy())
1145    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1146  if (!SrcVal->getType()->isIntegerTy())
1147    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1148                                   "tmp");
1149
1150  // Shift the bits to the least significant depending on endianness.
1151  unsigned ShiftAmt;
1152  if (TD.isLittleEndian())
1153    ShiftAmt = Offset*8;
1154  else
1155    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1156
1157  if (ShiftAmt)
1158    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1159
1160  if (LoadSize != StoreSize)
1161    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1162                                 "tmp");
1163
1164  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1165}
1166
1167/// GetMemInstValueForLoad - This function is called when we have a
1168/// memdep query of a load that ends up being a clobbering mem intrinsic.
1169static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1170                                     const Type *LoadTy, Instruction *InsertPt,
1171                                     const TargetData &TD){
1172  LLVMContext &Ctx = LoadTy->getContext();
1173  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1174
1175  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1176
1177  // We know that this method is only called when the mem transfer fully
1178  // provides the bits for the load.
1179  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1180    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1181    // independently of what the offset is.
1182    Value *Val = MSI->getValue();
1183    if (LoadSize != 1)
1184      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1185
1186    Value *OneElt = Val;
1187
1188    // Splat the value out to the right number of bits.
1189    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1190      // If we can double the number of bytes set, do it.
1191      if (NumBytesSet*2 <= LoadSize) {
1192        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1193        Val = Builder.CreateOr(Val, ShVal);
1194        NumBytesSet <<= 1;
1195        continue;
1196      }
1197
1198      // Otherwise insert one byte at a time.
1199      Value *ShVal = Builder.CreateShl(Val, 1*8);
1200      Val = Builder.CreateOr(OneElt, ShVal);
1201      ++NumBytesSet;
1202    }
1203
1204    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1205  }
1206
1207  // Otherwise, this is a memcpy/memmove from a constant global.
1208  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1209  Constant *Src = cast<Constant>(MTI->getSource());
1210
1211  // Otherwise, see if we can constant fold a load from the constant with the
1212  // offset applied as appropriate.
1213  Src = ConstantExpr::getBitCast(Src,
1214                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1215  Constant *OffsetCst =
1216  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1217  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1218  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1219  return ConstantFoldLoadFromConstPtr(Src, &TD);
1220}
1221
1222namespace {
1223
1224struct AvailableValueInBlock {
1225  /// BB - The basic block in question.
1226  BasicBlock *BB;
1227  enum ValType {
1228    SimpleVal,  // A simple offsetted value that is accessed.
1229    MemIntrin   // A memory intrinsic which is loaded from.
1230  };
1231
1232  /// V - The value that is live out of the block.
1233  PointerIntPair<Value *, 1, ValType> Val;
1234
1235  /// Offset - The byte offset in Val that is interesting for the load query.
1236  unsigned Offset;
1237
1238  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1239                                   unsigned Offset = 0) {
1240    AvailableValueInBlock Res;
1241    Res.BB = BB;
1242    Res.Val.setPointer(V);
1243    Res.Val.setInt(SimpleVal);
1244    Res.Offset = Offset;
1245    return Res;
1246  }
1247
1248  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1249                                     unsigned Offset = 0) {
1250    AvailableValueInBlock Res;
1251    Res.BB = BB;
1252    Res.Val.setPointer(MI);
1253    Res.Val.setInt(MemIntrin);
1254    Res.Offset = Offset;
1255    return Res;
1256  }
1257
1258  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1259  Value *getSimpleValue() const {
1260    assert(isSimpleValue() && "Wrong accessor");
1261    return Val.getPointer();
1262  }
1263
1264  MemIntrinsic *getMemIntrinValue() const {
1265    assert(!isSimpleValue() && "Wrong accessor");
1266    return cast<MemIntrinsic>(Val.getPointer());
1267  }
1268
1269  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1270  /// defined here to the specified type.  This handles various coercion cases.
1271  Value *MaterializeAdjustedValue(const Type *LoadTy,
1272                                  const TargetData *TD) const {
1273    Value *Res;
1274    if (isSimpleValue()) {
1275      Res = getSimpleValue();
1276      if (Res->getType() != LoadTy) {
1277        assert(TD && "Need target data to handle type mismatch case");
1278        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1279                                   *TD);
1280
1281        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1282                     << *getSimpleValue() << '\n'
1283                     << *Res << '\n' << "\n\n\n");
1284      }
1285    } else {
1286      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1287                                   LoadTy, BB->getTerminator(), *TD);
1288      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1289                   << "  " << *getMemIntrinValue() << '\n'
1290                   << *Res << '\n' << "\n\n\n");
1291    }
1292    return Res;
1293  }
1294};
1295
1296}
1297
1298/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1299/// construct SSA form, allowing us to eliminate LI.  This returns the value
1300/// that should be used at LI's definition site.
1301static Value *ConstructSSAForLoadSet(LoadInst *LI,
1302                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1303                                     const TargetData *TD,
1304                                     const DominatorTree &DT,
1305                                     AliasAnalysis *AA) {
1306  // Check for the fully redundant, dominating load case.  In this case, we can
1307  // just use the dominating value directly.
1308  if (ValuesPerBlock.size() == 1 &&
1309      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1310    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1311
1312  // Otherwise, we have to construct SSA form.
1313  SmallVector<PHINode*, 8> NewPHIs;
1314  SSAUpdater SSAUpdate(&NewPHIs);
1315  SSAUpdate.Initialize(LI->getType(), LI->getName());
1316
1317  const Type *LoadTy = LI->getType();
1318
1319  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1320    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1321    BasicBlock *BB = AV.BB;
1322
1323    if (SSAUpdate.HasValueForBlock(BB))
1324      continue;
1325
1326    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1327  }
1328
1329  // Perform PHI construction.
1330  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1331
1332  // If new PHI nodes were created, notify alias analysis.
1333  if (V->getType()->isPointerTy())
1334    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1335      AA->copyValue(LI, NewPHIs[i]);
1336
1337  return V;
1338}
1339
1340static bool isLifetimeStart(const Instruction *Inst) {
1341  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1342    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1343  return false;
1344}
1345
1346/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1347/// non-local by performing PHI construction.
1348bool GVN::processNonLocalLoad(LoadInst *LI,
1349                              SmallVectorImpl<Instruction*> &toErase) {
1350  // Find the non-local dependencies of the load.
1351  SmallVector<NonLocalDepResult, 64> Deps;
1352  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1353                                   Deps);
1354  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1355  //             << Deps.size() << *LI << '\n');
1356
1357  // If we had to process more than one hundred blocks to find the
1358  // dependencies, this load isn't worth worrying about.  Optimizing
1359  // it will be too expensive.
1360  if (Deps.size() > 100)
1361    return false;
1362
1363  // If we had a phi translation failure, we'll have a single entry which is a
1364  // clobber in the current block.  Reject this early.
1365  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1366    DEBUG(
1367      dbgs() << "GVN: non-local load ";
1368      WriteAsOperand(dbgs(), LI);
1369      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1370    );
1371    return false;
1372  }
1373
1374  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1375  // where we have a value available in repl, also keep track of whether we see
1376  // dependencies that produce an unknown value for the load (such as a call
1377  // that could potentially clobber the load).
1378  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1379  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1380
1381  const TargetData *TD = 0;
1382
1383  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1384    BasicBlock *DepBB = Deps[i].getBB();
1385    MemDepResult DepInfo = Deps[i].getResult();
1386
1387    if (DepInfo.isClobber()) {
1388      // The address being loaded in this non-local block may not be the same as
1389      // the pointer operand of the load if PHI translation occurs.  Make sure
1390      // to consider the right address.
1391      Value *Address = Deps[i].getAddress();
1392
1393      // If the dependence is to a store that writes to a superset of the bits
1394      // read by the load, we can extract the bits we need for the load from the
1395      // stored value.
1396      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1397        if (TD == 0)
1398          TD = getAnalysisIfAvailable<TargetData>();
1399        if (TD && Address) {
1400          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1401                                                      DepSI, *TD);
1402          if (Offset != -1) {
1403            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1404                                                           DepSI->getOperand(0),
1405                                                                Offset));
1406            continue;
1407          }
1408        }
1409      }
1410
1411      // If the clobbering value is a memset/memcpy/memmove, see if we can
1412      // forward a value on from it.
1413      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1414        if (TD == 0)
1415          TD = getAnalysisIfAvailable<TargetData>();
1416        if (TD && Address) {
1417          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1418                                                        DepMI, *TD);
1419          if (Offset != -1) {
1420            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1421                                                                  Offset));
1422            continue;
1423          }
1424        }
1425      }
1426
1427      UnavailableBlocks.push_back(DepBB);
1428      continue;
1429    }
1430
1431    Instruction *DepInst = DepInfo.getInst();
1432
1433    // Loading the allocation -> undef.
1434    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1435        // Loading immediately after lifetime begin -> undef.
1436        isLifetimeStart(DepInst)) {
1437      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1438                                             UndefValue::get(LI->getType())));
1439      continue;
1440    }
1441
1442    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1443      // Reject loads and stores that are to the same address but are of
1444      // different types if we have to.
1445      if (S->getOperand(0)->getType() != LI->getType()) {
1446        if (TD == 0)
1447          TD = getAnalysisIfAvailable<TargetData>();
1448
1449        // If the stored value is larger or equal to the loaded value, we can
1450        // reuse it.
1451        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1452                                                        LI->getType(), *TD)) {
1453          UnavailableBlocks.push_back(DepBB);
1454          continue;
1455        }
1456      }
1457
1458      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1459                                                          S->getOperand(0)));
1460      continue;
1461    }
1462
1463    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1464      // If the types mismatch and we can't handle it, reject reuse of the load.
1465      if (LD->getType() != LI->getType()) {
1466        if (TD == 0)
1467          TD = getAnalysisIfAvailable<TargetData>();
1468
1469        // If the stored value is larger or equal to the loaded value, we can
1470        // reuse it.
1471        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1472          UnavailableBlocks.push_back(DepBB);
1473          continue;
1474        }
1475      }
1476      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1477      continue;
1478    }
1479
1480    UnavailableBlocks.push_back(DepBB);
1481    continue;
1482  }
1483
1484  // If we have no predecessors that produce a known value for this load, exit
1485  // early.
1486  if (ValuesPerBlock.empty()) return false;
1487
1488  // If all of the instructions we depend on produce a known value for this
1489  // load, then it is fully redundant and we can use PHI insertion to compute
1490  // its value.  Insert PHIs and remove the fully redundant value now.
1491  if (UnavailableBlocks.empty()) {
1492    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1493
1494    // Perform PHI construction.
1495    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1496                                      VN.getAliasAnalysis());
1497    LI->replaceAllUsesWith(V);
1498
1499    if (isa<PHINode>(V))
1500      V->takeName(LI);
1501    if (V->getType()->isPointerTy())
1502      MD->invalidateCachedPointerInfo(V);
1503    VN.erase(LI);
1504    toErase.push_back(LI);
1505    ++NumGVNLoad;
1506    return true;
1507  }
1508
1509  if (!EnablePRE || !EnableLoadPRE)
1510    return false;
1511
1512  // Okay, we have *some* definitions of the value.  This means that the value
1513  // is available in some of our (transitive) predecessors.  Lets think about
1514  // doing PRE of this load.  This will involve inserting a new load into the
1515  // predecessor when it's not available.  We could do this in general, but
1516  // prefer to not increase code size.  As such, we only do this when we know
1517  // that we only have to insert *one* load (which means we're basically moving
1518  // the load, not inserting a new one).
1519
1520  SmallPtrSet<BasicBlock *, 4> Blockers;
1521  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1522    Blockers.insert(UnavailableBlocks[i]);
1523
1524  // Lets find first basic block with more than one predecessor.  Walk backwards
1525  // through predecessors if needed.
1526  BasicBlock *LoadBB = LI->getParent();
1527  BasicBlock *TmpBB = LoadBB;
1528
1529  bool isSinglePred = false;
1530  bool allSingleSucc = true;
1531  while (TmpBB->getSinglePredecessor()) {
1532    isSinglePred = true;
1533    TmpBB = TmpBB->getSinglePredecessor();
1534    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1535      return false;
1536    if (Blockers.count(TmpBB))
1537      return false;
1538
1539    // If any of these blocks has more than one successor (i.e. if the edge we
1540    // just traversed was critical), then there are other paths through this
1541    // block along which the load may not be anticipated.  Hoisting the load
1542    // above this block would be adding the load to execution paths along
1543    // which it was not previously executed.
1544    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1545      return false;
1546  }
1547
1548  assert(TmpBB);
1549  LoadBB = TmpBB;
1550
1551  // FIXME: It is extremely unclear what this loop is doing, other than
1552  // artificially restricting loadpre.
1553  if (isSinglePred) {
1554    bool isHot = false;
1555    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1556      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1557      if (AV.isSimpleValue())
1558        // "Hot" Instruction is in some loop (because it dominates its dep.
1559        // instruction).
1560        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1561          if (DT->dominates(LI, I)) {
1562            isHot = true;
1563            break;
1564          }
1565    }
1566
1567    // We are interested only in "hot" instructions. We don't want to do any
1568    // mis-optimizations here.
1569    if (!isHot)
1570      return false;
1571  }
1572
1573  // Check to see how many predecessors have the loaded value fully
1574  // available.
1575  DenseMap<BasicBlock*, Value*> PredLoads;
1576  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1577  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1578    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1579  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1580    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1581
1582  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1583  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1584       PI != E; ++PI) {
1585    BasicBlock *Pred = *PI;
1586    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1587      continue;
1588    }
1589    PredLoads[Pred] = 0;
1590
1591    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1592      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1593        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1594              << Pred->getName() << "': " << *LI << '\n');
1595        return false;
1596      }
1597      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1598      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1599    }
1600  }
1601  if (!NeedToSplit.empty()) {
1602    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1603    return false;
1604  }
1605
1606  // Decide whether PRE is profitable for this load.
1607  unsigned NumUnavailablePreds = PredLoads.size();
1608  assert(NumUnavailablePreds != 0 &&
1609         "Fully available value should be eliminated above!");
1610
1611  // If this load is unavailable in multiple predecessors, reject it.
1612  // FIXME: If we could restructure the CFG, we could make a common pred with
1613  // all the preds that don't have an available LI and insert a new load into
1614  // that one block.
1615  if (NumUnavailablePreds != 1)
1616      return false;
1617
1618  // Check if the load can safely be moved to all the unavailable predecessors.
1619  bool CanDoPRE = true;
1620  SmallVector<Instruction*, 8> NewInsts;
1621  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1622         E = PredLoads.end(); I != E; ++I) {
1623    BasicBlock *UnavailablePred = I->first;
1624
1625    // Do PHI translation to get its value in the predecessor if necessary.  The
1626    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1627
1628    // If all preds have a single successor, then we know it is safe to insert
1629    // the load on the pred (?!?), so we can insert code to materialize the
1630    // pointer if it is not available.
1631    PHITransAddr Address(LI->getOperand(0), TD);
1632    Value *LoadPtr = 0;
1633    if (allSingleSucc) {
1634      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1635                                                  *DT, NewInsts);
1636    } else {
1637      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1638      LoadPtr = Address.getAddr();
1639    }
1640
1641    // If we couldn't find or insert a computation of this phi translated value,
1642    // we fail PRE.
1643    if (LoadPtr == 0) {
1644      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1645            << *LI->getOperand(0) << "\n");
1646      CanDoPRE = false;
1647      break;
1648    }
1649
1650    // Make sure it is valid to move this load here.  We have to watch out for:
1651    //  @1 = getelementptr (i8* p, ...
1652    //  test p and branch if == 0
1653    //  load @1
1654    // It is valid to have the getelementptr before the test, even if p can be 0,
1655    // as getelementptr only does address arithmetic.
1656    // If we are not pushing the value through any multiple-successor blocks
1657    // we do not have this case.  Otherwise, check that the load is safe to
1658    // put anywhere; this can be improved, but should be conservatively safe.
1659    if (!allSingleSucc &&
1660        // FIXME: REEVALUTE THIS.
1661        !isSafeToLoadUnconditionally(LoadPtr,
1662                                     UnavailablePred->getTerminator(),
1663                                     LI->getAlignment(), TD)) {
1664      CanDoPRE = false;
1665      break;
1666    }
1667
1668    I->second = LoadPtr;
1669  }
1670
1671  if (!CanDoPRE) {
1672    while (!NewInsts.empty())
1673      NewInsts.pop_back_val()->eraseFromParent();
1674    return false;
1675  }
1676
1677  // Okay, we can eliminate this load by inserting a reload in the predecessor
1678  // and using PHI construction to get the value in the other predecessors, do
1679  // it.
1680  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1681  DEBUG(if (!NewInsts.empty())
1682          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1683                 << *NewInsts.back() << '\n');
1684
1685  // Assign value numbers to the new instructions.
1686  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1687    // FIXME: We really _ought_ to insert these value numbers into their
1688    // parent's availability map.  However, in doing so, we risk getting into
1689    // ordering issues.  If a block hasn't been processed yet, we would be
1690    // marking a value as AVAIL-IN, which isn't what we intend.
1691    VN.lookup_or_add(NewInsts[i]);
1692  }
1693
1694  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1695         E = PredLoads.end(); I != E; ++I) {
1696    BasicBlock *UnavailablePred = I->first;
1697    Value *LoadPtr = I->second;
1698
1699    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1700                                  LI->getAlignment(),
1701                                  UnavailablePred->getTerminator());
1702
1703    // Add the newly created load.
1704    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1705                                                        NewLoad));
1706    MD->invalidateCachedPointerInfo(LoadPtr);
1707    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1708  }
1709
1710  // Perform PHI construction.
1711  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1712                                    VN.getAliasAnalysis());
1713  LI->replaceAllUsesWith(V);
1714  if (isa<PHINode>(V))
1715    V->takeName(LI);
1716  if (V->getType()->isPointerTy())
1717    MD->invalidateCachedPointerInfo(V);
1718  VN.erase(LI);
1719  toErase.push_back(LI);
1720  ++NumPRELoad;
1721  return true;
1722}
1723
1724/// processLoad - Attempt to eliminate a load, first by eliminating it
1725/// locally, and then attempting non-local elimination if that fails.
1726bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1727  if (!MD)
1728    return false;
1729
1730  if (L->isVolatile())
1731    return false;
1732
1733  // ... to a pointer that has been loaded from before...
1734  MemDepResult Dep = MD->getDependency(L);
1735
1736  // If the value isn't available, don't do anything!
1737  if (Dep.isClobber()) {
1738    // Check to see if we have something like this:
1739    //   store i32 123, i32* %P
1740    //   %A = bitcast i32* %P to i8*
1741    //   %B = gep i8* %A, i32 1
1742    //   %C = load i8* %B
1743    //
1744    // We could do that by recognizing if the clobber instructions are obviously
1745    // a common base + constant offset, and if the previous store (or memset)
1746    // completely covers this load.  This sort of thing can happen in bitfield
1747    // access code.
1748    Value *AvailVal = 0;
1749    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1750      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1751        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1752                                                    L->getPointerOperand(),
1753                                                    DepSI, *TD);
1754        if (Offset != -1)
1755          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1756                                          L->getType(), L, *TD);
1757      }
1758
1759    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1760    // a value on from it.
1761    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1762      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1763        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1764                                                      L->getPointerOperand(),
1765                                                      DepMI, *TD);
1766        if (Offset != -1)
1767          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1768      }
1769    }
1770
1771    if (AvailVal) {
1772      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1773            << *AvailVal << '\n' << *L << "\n\n\n");
1774
1775      // Replace the load!
1776      L->replaceAllUsesWith(AvailVal);
1777      if (AvailVal->getType()->isPointerTy())
1778        MD->invalidateCachedPointerInfo(AvailVal);
1779      VN.erase(L);
1780      toErase.push_back(L);
1781      ++NumGVNLoad;
1782      return true;
1783    }
1784
1785    DEBUG(
1786      // fast print dep, using operator<< on instruction would be too slow
1787      dbgs() << "GVN: load ";
1788      WriteAsOperand(dbgs(), L);
1789      Instruction *I = Dep.getInst();
1790      dbgs() << " is clobbered by " << *I << '\n';
1791    );
1792    return false;
1793  }
1794
1795  // If it is defined in another block, try harder.
1796  if (Dep.isNonLocal())
1797    return processNonLocalLoad(L, toErase);
1798
1799  Instruction *DepInst = Dep.getInst();
1800  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1801    Value *StoredVal = DepSI->getOperand(0);
1802
1803    // The store and load are to a must-aliased pointer, but they may not
1804    // actually have the same type.  See if we know how to reuse the stored
1805    // value (depending on its type).
1806    const TargetData *TD = 0;
1807    if (StoredVal->getType() != L->getType()) {
1808      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1809        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1810                                                   L, *TD);
1811        if (StoredVal == 0)
1812          return false;
1813
1814        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1815                     << '\n' << *L << "\n\n\n");
1816      }
1817      else
1818        return false;
1819    }
1820
1821    // Remove it!
1822    L->replaceAllUsesWith(StoredVal);
1823    if (StoredVal->getType()->isPointerTy())
1824      MD->invalidateCachedPointerInfo(StoredVal);
1825    VN.erase(L);
1826    toErase.push_back(L);
1827    ++NumGVNLoad;
1828    return true;
1829  }
1830
1831  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1832    Value *AvailableVal = DepLI;
1833
1834    // The loads are of a must-aliased pointer, but they may not actually have
1835    // the same type.  See if we know how to reuse the previously loaded value
1836    // (depending on its type).
1837    const TargetData *TD = 0;
1838    if (DepLI->getType() != L->getType()) {
1839      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1840        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1841        if (AvailableVal == 0)
1842          return false;
1843
1844        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1845                     << "\n" << *L << "\n\n\n");
1846      }
1847      else
1848        return false;
1849    }
1850
1851    // Remove it!
1852    L->replaceAllUsesWith(AvailableVal);
1853    if (DepLI->getType()->isPointerTy())
1854      MD->invalidateCachedPointerInfo(DepLI);
1855    VN.erase(L);
1856    toErase.push_back(L);
1857    ++NumGVNLoad;
1858    return true;
1859  }
1860
1861  // If this load really doesn't depend on anything, then we must be loading an
1862  // undef value.  This can happen when loading for a fresh allocation with no
1863  // intervening stores, for example.
1864  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1865    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1866    VN.erase(L);
1867    toErase.push_back(L);
1868    ++NumGVNLoad;
1869    return true;
1870  }
1871
1872  // If this load occurs either right after a lifetime begin,
1873  // then the loaded value is undefined.
1874  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1875    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1876      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1877      VN.erase(L);
1878      toErase.push_back(L);
1879      ++NumGVNLoad;
1880      return true;
1881    }
1882  }
1883
1884  return false;
1885}
1886
1887Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1888  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1889  if (I == localAvail.end())
1890    return 0;
1891
1892  ValueNumberScope *Locals = I->second;
1893  while (Locals) {
1894    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1895    if (I != Locals->table.end())
1896      return I->second;
1897    Locals = Locals->parent;
1898  }
1899
1900  return 0;
1901}
1902
1903
1904/// processInstruction - When calculating availability, handle an instruction
1905/// by inserting it into the appropriate sets
1906bool GVN::processInstruction(Instruction *I,
1907                             SmallVectorImpl<Instruction*> &toErase) {
1908  // Ignore dbg info intrinsics.
1909  if (isa<DbgInfoIntrinsic>(I))
1910    return false;
1911
1912  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1913    bool Changed = processLoad(LI, toErase);
1914
1915    if (!Changed) {
1916      unsigned Num = VN.lookup_or_add(LI);
1917      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1918    }
1919
1920    return Changed;
1921  }
1922
1923  uint32_t NextNum = VN.getNextUnusedValueNumber();
1924  unsigned Num = VN.lookup_or_add(I);
1925
1926  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1927    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1928
1929    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1930      return false;
1931
1932    Value *BranchCond = BI->getCondition();
1933    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1934
1935    BasicBlock *TrueSucc = BI->getSuccessor(0);
1936    BasicBlock *FalseSucc = BI->getSuccessor(1);
1937
1938    if (TrueSucc->getSinglePredecessor())
1939      localAvail[TrueSucc]->table[CondVN] =
1940        ConstantInt::getTrue(TrueSucc->getContext());
1941    if (FalseSucc->getSinglePredecessor())
1942      localAvail[FalseSucc]->table[CondVN] =
1943        ConstantInt::getFalse(TrueSucc->getContext());
1944
1945    return false;
1946
1947  // Allocations are always uniquely numbered, so we can save time and memory
1948  // by fast failing them.
1949  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1950    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1951    return false;
1952  }
1953
1954  // Collapse PHI nodes
1955  if (PHINode* p = dyn_cast<PHINode>(I)) {
1956    Value *constVal = CollapsePhi(p);
1957
1958    if (constVal) {
1959      p->replaceAllUsesWith(constVal);
1960      if (MD && constVal->getType()->isPointerTy())
1961        MD->invalidateCachedPointerInfo(constVal);
1962      VN.erase(p);
1963
1964      toErase.push_back(p);
1965    } else {
1966      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1967    }
1968
1969  // If the number we were assigned was a brand new VN, then we don't
1970  // need to do a lookup to see if the number already exists
1971  // somewhere in the domtree: it can't!
1972  } else if (Num == NextNum) {
1973    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1974
1975  // Perform fast-path value-number based elimination of values inherited from
1976  // dominators.
1977  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1978    // Remove it!
1979    VN.erase(I);
1980    I->replaceAllUsesWith(repl);
1981    if (MD && repl->getType()->isPointerTy())
1982      MD->invalidateCachedPointerInfo(repl);
1983    toErase.push_back(I);
1984    return true;
1985
1986  } else {
1987    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1988  }
1989
1990  return false;
1991}
1992
1993/// runOnFunction - This is the main transformation entry point for a function.
1994bool GVN::runOnFunction(Function& F) {
1995  if (!NoLoads)
1996    MD = &getAnalysis<MemoryDependenceAnalysis>();
1997  DT = &getAnalysis<DominatorTree>();
1998  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1999  VN.setMemDep(MD);
2000  VN.setDomTree(DT);
2001
2002  bool Changed = false;
2003  bool ShouldContinue = true;
2004
2005  // Merge unconditional branches, allowing PRE to catch more
2006  // optimization opportunities.
2007  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2008    BasicBlock *BB = FI;
2009    ++FI;
2010    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2011    if (removedBlock) ++NumGVNBlocks;
2012
2013    Changed |= removedBlock;
2014  }
2015
2016  unsigned Iteration = 0;
2017
2018  while (ShouldContinue) {
2019    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2020    ShouldContinue = iterateOnFunction(F);
2021    if (splitCriticalEdges())
2022      ShouldContinue = true;
2023    Changed |= ShouldContinue;
2024    ++Iteration;
2025  }
2026
2027  if (EnablePRE) {
2028    bool PREChanged = true;
2029    while (PREChanged) {
2030      PREChanged = performPRE(F);
2031      Changed |= PREChanged;
2032    }
2033  }
2034  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2035  // computations into blocks where they become fully redundant.  Note that
2036  // we can't do this until PRE's critical edge splitting updates memdep.
2037  // Actually, when this happens, we should just fully integrate PRE into GVN.
2038
2039  cleanupGlobalSets();
2040
2041  return Changed;
2042}
2043
2044
2045bool GVN::processBlock(BasicBlock *BB) {
2046  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2047  // incrementing BI before processing an instruction).
2048  SmallVector<Instruction*, 8> toErase;
2049  bool ChangedFunction = false;
2050
2051  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2052       BI != BE;) {
2053    ChangedFunction |= processInstruction(BI, toErase);
2054    if (toErase.empty()) {
2055      ++BI;
2056      continue;
2057    }
2058
2059    // If we need some instructions deleted, do it now.
2060    NumGVNInstr += toErase.size();
2061
2062    // Avoid iterator invalidation.
2063    bool AtStart = BI == BB->begin();
2064    if (!AtStart)
2065      --BI;
2066
2067    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2068         E = toErase.end(); I != E; ++I) {
2069      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2070      if (MD) MD->removeInstruction(*I);
2071      (*I)->eraseFromParent();
2072      DEBUG(verifyRemoved(*I));
2073    }
2074    toErase.clear();
2075
2076    if (AtStart)
2077      BI = BB->begin();
2078    else
2079      ++BI;
2080  }
2081
2082  return ChangedFunction;
2083}
2084
2085/// performPRE - Perform a purely local form of PRE that looks for diamond
2086/// control flow patterns and attempts to perform simple PRE at the join point.
2087bool GVN::performPRE(Function &F) {
2088  bool Changed = false;
2089  DenseMap<BasicBlock*, Value*> predMap;
2090  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2091       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2092    BasicBlock *CurrentBlock = *DI;
2093
2094    // Nothing to PRE in the entry block.
2095    if (CurrentBlock == &F.getEntryBlock()) continue;
2096
2097    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2098         BE = CurrentBlock->end(); BI != BE; ) {
2099      Instruction *CurInst = BI++;
2100
2101      if (isa<AllocaInst>(CurInst) ||
2102          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2103          CurInst->getType()->isVoidTy() ||
2104          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2105          isa<DbgInfoIntrinsic>(CurInst))
2106        continue;
2107
2108      // We don't currently value number ANY inline asm calls.
2109      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2110        if (CallI->isInlineAsm())
2111          continue;
2112
2113      uint32_t ValNo = VN.lookup(CurInst);
2114
2115      // Look for the predecessors for PRE opportunities.  We're
2116      // only trying to solve the basic diamond case, where
2117      // a value is computed in the successor and one predecessor,
2118      // but not the other.  We also explicitly disallow cases
2119      // where the successor is its own predecessor, because they're
2120      // more complicated to get right.
2121      unsigned NumWith = 0;
2122      unsigned NumWithout = 0;
2123      BasicBlock *PREPred = 0;
2124      predMap.clear();
2125
2126      for (pred_iterator PI = pred_begin(CurrentBlock),
2127           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2128        BasicBlock *P = *PI;
2129        // We're not interested in PRE where the block is its
2130        // own predecessor, or in blocks with predecessors
2131        // that are not reachable.
2132        if (P == CurrentBlock) {
2133          NumWithout = 2;
2134          break;
2135        } else if (!localAvail.count(P))  {
2136          NumWithout = 2;
2137          break;
2138        }
2139
2140        DenseMap<uint32_t, Value*>::iterator predV =
2141                                            localAvail[P]->table.find(ValNo);
2142        if (predV == localAvail[P]->table.end()) {
2143          PREPred = P;
2144          ++NumWithout;
2145        } else if (predV->second == CurInst) {
2146          NumWithout = 2;
2147        } else {
2148          predMap[P] = predV->second;
2149          ++NumWith;
2150        }
2151      }
2152
2153      // Don't do PRE when it might increase code size, i.e. when
2154      // we would need to insert instructions in more than one pred.
2155      if (NumWithout != 1 || NumWith == 0)
2156        continue;
2157
2158      // Don't do PRE across indirect branch.
2159      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2160        continue;
2161
2162      // We can't do PRE safely on a critical edge, so instead we schedule
2163      // the edge to be split and perform the PRE the next time we iterate
2164      // on the function.
2165      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2166      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2167        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2168        continue;
2169      }
2170
2171      // Instantiate the expression in the predecessor that lacked it.
2172      // Because we are going top-down through the block, all value numbers
2173      // will be available in the predecessor by the time we need them.  Any
2174      // that weren't originally present will have been instantiated earlier
2175      // in this loop.
2176      Instruction *PREInstr = CurInst->clone();
2177      bool success = true;
2178      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2179        Value *Op = PREInstr->getOperand(i);
2180        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2181          continue;
2182
2183        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2184          PREInstr->setOperand(i, V);
2185        } else {
2186          success = false;
2187          break;
2188        }
2189      }
2190
2191      // Fail out if we encounter an operand that is not available in
2192      // the PRE predecessor.  This is typically because of loads which
2193      // are not value numbered precisely.
2194      if (!success) {
2195        delete PREInstr;
2196        DEBUG(verifyRemoved(PREInstr));
2197        continue;
2198      }
2199
2200      PREInstr->insertBefore(PREPred->getTerminator());
2201      PREInstr->setName(CurInst->getName() + ".pre");
2202      predMap[PREPred] = PREInstr;
2203      VN.add(PREInstr, ValNo);
2204      ++NumGVNPRE;
2205
2206      // Update the availability map to include the new instruction.
2207      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2208
2209      // Create a PHI to make the value available in this block.
2210      PHINode* Phi = PHINode::Create(CurInst->getType(),
2211                                     CurInst->getName() + ".pre-phi",
2212                                     CurrentBlock->begin());
2213      for (pred_iterator PI = pred_begin(CurrentBlock),
2214           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2215        BasicBlock *P = *PI;
2216        Phi->addIncoming(predMap[P], P);
2217      }
2218
2219      VN.add(Phi, ValNo);
2220      localAvail[CurrentBlock]->table[ValNo] = Phi;
2221
2222      CurInst->replaceAllUsesWith(Phi);
2223      if (MD && Phi->getType()->isPointerTy())
2224        MD->invalidateCachedPointerInfo(Phi);
2225      VN.erase(CurInst);
2226
2227      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2228      if (MD) MD->removeInstruction(CurInst);
2229      CurInst->eraseFromParent();
2230      DEBUG(verifyRemoved(CurInst));
2231      Changed = true;
2232    }
2233  }
2234
2235  if (splitCriticalEdges())
2236    Changed = true;
2237
2238  return Changed;
2239}
2240
2241/// splitCriticalEdges - Split critical edges found during the previous
2242/// iteration that may enable further optimization.
2243bool GVN::splitCriticalEdges() {
2244  if (toSplit.empty())
2245    return false;
2246  do {
2247    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2248    SplitCriticalEdge(Edge.first, Edge.second, this);
2249  } while (!toSplit.empty());
2250  if (MD) MD->invalidateCachedPredecessors();
2251  return true;
2252}
2253
2254/// iterateOnFunction - Executes one iteration of GVN
2255bool GVN::iterateOnFunction(Function &F) {
2256  cleanupGlobalSets();
2257
2258  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2259       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2260    if (DI->getIDom())
2261      localAvail[DI->getBlock()] =
2262                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2263    else
2264      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2265  }
2266
2267  // Top-down walk of the dominator tree
2268  bool Changed = false;
2269#if 0
2270  // Needed for value numbering with phi construction to work.
2271  ReversePostOrderTraversal<Function*> RPOT(&F);
2272  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2273       RE = RPOT.end(); RI != RE; ++RI)
2274    Changed |= processBlock(*RI);
2275#else
2276  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2277       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2278    Changed |= processBlock(DI->getBlock());
2279#endif
2280
2281  return Changed;
2282}
2283
2284void GVN::cleanupGlobalSets() {
2285  VN.clear();
2286
2287  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2288       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2289    delete I->second;
2290  localAvail.clear();
2291}
2292
2293/// verifyRemoved - Verify that the specified instruction does not occur in our
2294/// internal data structures.
2295void GVN::verifyRemoved(const Instruction *Inst) const {
2296  VN.verifyRemoved(Inst);
2297
2298  // Walk through the value number scope to make sure the instruction isn't
2299  // ferreted away in it.
2300  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2301         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2302    const ValueNumberScope *VNS = I->second;
2303
2304    while (VNS) {
2305      for (DenseMap<uint32_t, Value*>::const_iterator
2306             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2307        assert(II->second != Inst && "Inst still in value numbering scope!");
2308      }
2309
2310      VNS = VNS->parent;
2311    }
2312  }
2313}
2314