GVN.cpp revision 2f192c256c28f3b6c018f59e96380cd26f59c767
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/MemoryBuiltins.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include <cstdio>
49using namespace llvm;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumPRELoad,   "Number of loads PRE'd");
56
57static cl::opt<bool> EnablePRE("enable-pre",
58                               cl::init(true), cl::Hidden);
59static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
60
61//===----------------------------------------------------------------------===//
62//                         ValueTable Class
63//===----------------------------------------------------------------------===//
64
65/// This class holds the mapping between values and value numbers.  It is used
66/// as an efficient mechanism to determine the expression-wise equivalence of
67/// two values.
68namespace {
69  struct Expression {
70    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
71                            UDIV, SDIV, FDIV, UREM, SREM,
72                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
73                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
74                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
75                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
76                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
77                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
78                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
79                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
80                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
81                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
82
83    ExpressionOpcode opcode;
84    const Type* type;
85    SmallVector<uint32_t, 4> varargs;
86    Value *function;
87
88    Expression() { }
89    Expression(ExpressionOpcode o) : opcode(o) { }
90
91    bool operator==(const Expression &other) const {
92      if (opcode != other.opcode)
93        return false;
94      else if (opcode == EMPTY || opcode == TOMBSTONE)
95        return true;
96      else if (type != other.type)
97        return false;
98      else if (function != other.function)
99        return false;
100      else {
101        if (varargs.size() != other.varargs.size())
102          return false;
103
104        for (size_t i = 0; i < varargs.size(); ++i)
105          if (varargs[i] != other.varargs[i])
106            return false;
107
108        return true;
109      }
110    }
111
112    bool operator!=(const Expression &other) const {
113      return !(*this == other);
114    }
115  };
116
117  class ValueTable {
118    private:
119      DenseMap<Value*, uint32_t> valueNumbering;
120      DenseMap<Expression, uint32_t> expressionNumbering;
121      AliasAnalysis* AA;
122      MemoryDependenceAnalysis* MD;
123      DominatorTree* DT;
124
125      uint32_t nextValueNumber;
126
127      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
128      Expression::ExpressionOpcode getOpcode(CmpInst* C);
129      Expression::ExpressionOpcode getOpcode(CastInst* C);
130      Expression create_expression(BinaryOperator* BO);
131      Expression create_expression(CmpInst* C);
132      Expression create_expression(ShuffleVectorInst* V);
133      Expression create_expression(ExtractElementInst* C);
134      Expression create_expression(InsertElementInst* V);
135      Expression create_expression(SelectInst* V);
136      Expression create_expression(CastInst* C);
137      Expression create_expression(GetElementPtrInst* G);
138      Expression create_expression(CallInst* C);
139      Expression create_expression(Constant* C);
140      Expression create_expression(ExtractValueInst* C);
141      Expression create_expression(InsertValueInst* C);
142
143      uint32_t lookup_or_add_call(CallInst* C);
144    public:
145      ValueTable() : nextValueNumber(1) { }
146      uint32_t lookup_or_add(Value *V);
147      uint32_t lookup(Value *V) const;
148      void add(Value *V, uint32_t num);
149      void clear();
150      void erase(Value *v);
151      unsigned size();
152      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
153      AliasAnalysis *getAliasAnalysis() const { return AA; }
154      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
155      void setDomTree(DominatorTree* D) { DT = D; }
156      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
157      void verifyRemoved(const Value *) const;
158  };
159}
160
161namespace llvm {
162template <> struct DenseMapInfo<Expression> {
163  static inline Expression getEmptyKey() {
164    return Expression(Expression::EMPTY);
165  }
166
167  static inline Expression getTombstoneKey() {
168    return Expression(Expression::TOMBSTONE);
169  }
170
171  static unsigned getHashValue(const Expression e) {
172    unsigned hash = e.opcode;
173
174    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
175            (unsigned)((uintptr_t)e.type >> 9));
176
177    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
178         E = e.varargs.end(); I != E; ++I)
179      hash = *I + hash * 37;
180
181    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
182            (unsigned)((uintptr_t)e.function >> 9)) +
183           hash * 37;
184
185    return hash;
186  }
187  static bool isEqual(const Expression &LHS, const Expression &RHS) {
188    return LHS == RHS;
189  }
190  static bool isPod() { return true; }
191};
192}
193
194//===----------------------------------------------------------------------===//
195//                     ValueTable Internal Functions
196//===----------------------------------------------------------------------===//
197Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
198  switch(BO->getOpcode()) {
199  default: // THIS SHOULD NEVER HAPPEN
200    llvm_unreachable("Binary operator with unknown opcode?");
201  case Instruction::Add:  return Expression::ADD;
202  case Instruction::FAdd: return Expression::FADD;
203  case Instruction::Sub:  return Expression::SUB;
204  case Instruction::FSub: return Expression::FSUB;
205  case Instruction::Mul:  return Expression::MUL;
206  case Instruction::FMul: return Expression::FMUL;
207  case Instruction::UDiv: return Expression::UDIV;
208  case Instruction::SDiv: return Expression::SDIV;
209  case Instruction::FDiv: return Expression::FDIV;
210  case Instruction::URem: return Expression::UREM;
211  case Instruction::SRem: return Expression::SREM;
212  case Instruction::FRem: return Expression::FREM;
213  case Instruction::Shl:  return Expression::SHL;
214  case Instruction::LShr: return Expression::LSHR;
215  case Instruction::AShr: return Expression::ASHR;
216  case Instruction::And:  return Expression::AND;
217  case Instruction::Or:   return Expression::OR;
218  case Instruction::Xor:  return Expression::XOR;
219  }
220}
221
222Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
223  if (isa<ICmpInst>(C)) {
224    switch (C->getPredicate()) {
225    default:  // THIS SHOULD NEVER HAPPEN
226      llvm_unreachable("Comparison with unknown predicate?");
227    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
228    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
229    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
230    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
231    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
232    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
233    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
234    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
235    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
236    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
237    }
238  } else {
239    switch (C->getPredicate()) {
240    default: // THIS SHOULD NEVER HAPPEN
241      llvm_unreachable("Comparison with unknown predicate?");
242    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
243    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
244    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
245    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
246    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
247    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
248    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
249    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
250    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
251    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
252    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
253    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
254    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
255    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
256    }
257  }
258}
259
260Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
261  switch(C->getOpcode()) {
262  default: // THIS SHOULD NEVER HAPPEN
263    llvm_unreachable("Cast operator with unknown opcode?");
264  case Instruction::Trunc:    return Expression::TRUNC;
265  case Instruction::ZExt:     return Expression::ZEXT;
266  case Instruction::SExt:     return Expression::SEXT;
267  case Instruction::FPToUI:   return Expression::FPTOUI;
268  case Instruction::FPToSI:   return Expression::FPTOSI;
269  case Instruction::UIToFP:   return Expression::UITOFP;
270  case Instruction::SIToFP:   return Expression::SITOFP;
271  case Instruction::FPTrunc:  return Expression::FPTRUNC;
272  case Instruction::FPExt:    return Expression::FPEXT;
273  case Instruction::PtrToInt: return Expression::PTRTOINT;
274  case Instruction::IntToPtr: return Expression::INTTOPTR;
275  case Instruction::BitCast:  return Expression::BITCAST;
276  }
277}
278
279Expression ValueTable::create_expression(CallInst* C) {
280  Expression e;
281
282  e.type = C->getType();
283  e.function = C->getCalledFunction();
284  e.opcode = Expression::CALL;
285
286  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
287       I != E; ++I)
288    e.varargs.push_back(lookup_or_add(*I));
289
290  return e;
291}
292
293Expression ValueTable::create_expression(BinaryOperator* BO) {
294  Expression e;
295  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
296  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
297  e.function = 0;
298  e.type = BO->getType();
299  e.opcode = getOpcode(BO);
300
301  return e;
302}
303
304Expression ValueTable::create_expression(CmpInst* C) {
305  Expression e;
306
307  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
308  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
309  e.function = 0;
310  e.type = C->getType();
311  e.opcode = getOpcode(C);
312
313  return e;
314}
315
316Expression ValueTable::create_expression(CastInst* C) {
317  Expression e;
318
319  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
320  e.function = 0;
321  e.type = C->getType();
322  e.opcode = getOpcode(C);
323
324  return e;
325}
326
327Expression ValueTable::create_expression(ShuffleVectorInst* S) {
328  Expression e;
329
330  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
331  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
332  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
333  e.function = 0;
334  e.type = S->getType();
335  e.opcode = Expression::SHUFFLE;
336
337  return e;
338}
339
340Expression ValueTable::create_expression(ExtractElementInst* E) {
341  Expression e;
342
343  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
344  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
345  e.function = 0;
346  e.type = E->getType();
347  e.opcode = Expression::EXTRACT;
348
349  return e;
350}
351
352Expression ValueTable::create_expression(InsertElementInst* I) {
353  Expression e;
354
355  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
356  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
357  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
358  e.function = 0;
359  e.type = I->getType();
360  e.opcode = Expression::INSERT;
361
362  return e;
363}
364
365Expression ValueTable::create_expression(SelectInst* I) {
366  Expression e;
367
368  e.varargs.push_back(lookup_or_add(I->getCondition()));
369  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
370  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
371  e.function = 0;
372  e.type = I->getType();
373  e.opcode = Expression::SELECT;
374
375  return e;
376}
377
378Expression ValueTable::create_expression(GetElementPtrInst* G) {
379  Expression e;
380
381  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
382  e.function = 0;
383  e.type = G->getType();
384  e.opcode = Expression::GEP;
385
386  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
387       I != E; ++I)
388    e.varargs.push_back(lookup_or_add(*I));
389
390  return e;
391}
392
393Expression ValueTable::create_expression(ExtractValueInst* E) {
394  Expression e;
395
396  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
397  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
398       II != IE; ++II)
399    e.varargs.push_back(*II);
400  e.function = 0;
401  e.type = E->getType();
402  e.opcode = Expression::EXTRACTVALUE;
403
404  return e;
405}
406
407Expression ValueTable::create_expression(InsertValueInst* E) {
408  Expression e;
409
410  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
411  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
412  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
413       II != IE; ++II)
414    e.varargs.push_back(*II);
415  e.function = 0;
416  e.type = E->getType();
417  e.opcode = Expression::INSERTVALUE;
418
419  return e;
420}
421
422//===----------------------------------------------------------------------===//
423//                     ValueTable External Functions
424//===----------------------------------------------------------------------===//
425
426/// add - Insert a value into the table with a specified value number.
427void ValueTable::add(Value *V, uint32_t num) {
428  valueNumbering.insert(std::make_pair(V, num));
429}
430
431uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
432  if (AA->doesNotAccessMemory(C)) {
433    Expression exp = create_expression(C);
434    uint32_t& e = expressionNumbering[exp];
435    if (!e) e = nextValueNumber++;
436    valueNumbering[C] = e;
437    return e;
438  } else if (AA->onlyReadsMemory(C)) {
439    Expression exp = create_expression(C);
440    uint32_t& e = expressionNumbering[exp];
441    if (!e) {
442      e = nextValueNumber++;
443      valueNumbering[C] = e;
444      return e;
445    }
446
447    MemDepResult local_dep = MD->getDependency(C);
448
449    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
450      valueNumbering[C] =  nextValueNumber;
451      return nextValueNumber++;
452    }
453
454    if (local_dep.isDef()) {
455      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
456
457      if (local_cdep->getNumOperands() != C->getNumOperands()) {
458        valueNumbering[C] = nextValueNumber;
459        return nextValueNumber++;
460      }
461
462      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
463        uint32_t c_vn = lookup_or_add(C->getOperand(i));
464        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
465        if (c_vn != cd_vn) {
466          valueNumbering[C] = nextValueNumber;
467          return nextValueNumber++;
468        }
469      }
470
471      uint32_t v = lookup_or_add(local_cdep);
472      valueNumbering[C] = v;
473      return v;
474    }
475
476    // Non-local case.
477    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
478      MD->getNonLocalCallDependency(CallSite(C));
479    // FIXME: call/call dependencies for readonly calls should return def, not
480    // clobber!  Move the checking logic to MemDep!
481    CallInst* cdep = 0;
482
483    // Check to see if we have a single dominating call instruction that is
484    // identical to C.
485    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
486      const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
487      // Ignore non-local dependencies.
488      if (I->second.isNonLocal())
489        continue;
490
491      // We don't handle non-depedencies.  If we already have a call, reject
492      // instruction dependencies.
493      if (I->second.isClobber() || cdep != 0) {
494        cdep = 0;
495        break;
496      }
497
498      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
499      // FIXME: All duplicated with non-local case.
500      if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
501        cdep = NonLocalDepCall;
502        continue;
503      }
504
505      cdep = 0;
506      break;
507    }
508
509    if (!cdep) {
510      valueNumbering[C] = nextValueNumber;
511      return nextValueNumber++;
512    }
513
514    if (cdep->getNumOperands() != C->getNumOperands()) {
515      valueNumbering[C] = nextValueNumber;
516      return nextValueNumber++;
517    }
518    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
519      uint32_t c_vn = lookup_or_add(C->getOperand(i));
520      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
521      if (c_vn != cd_vn) {
522        valueNumbering[C] = nextValueNumber;
523        return nextValueNumber++;
524      }
525    }
526
527    uint32_t v = lookup_or_add(cdep);
528    valueNumbering[C] = v;
529    return v;
530
531  } else {
532    valueNumbering[C] = nextValueNumber;
533    return nextValueNumber++;
534  }
535}
536
537/// lookup_or_add - Returns the value number for the specified value, assigning
538/// it a new number if it did not have one before.
539uint32_t ValueTable::lookup_or_add(Value *V) {
540  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
541  if (VI != valueNumbering.end())
542    return VI->second;
543
544  if (!isa<Instruction>(V)) {
545    valueNumbering[V] = nextValueNumber;
546    return nextValueNumber++;
547  }
548
549  Instruction* I = cast<Instruction>(V);
550  Expression exp;
551  switch (I->getOpcode()) {
552    case Instruction::Call:
553      return lookup_or_add_call(cast<CallInst>(I));
554    case Instruction::Add:
555    case Instruction::FAdd:
556    case Instruction::Sub:
557    case Instruction::FSub:
558    case Instruction::Mul:
559    case Instruction::FMul:
560    case Instruction::UDiv:
561    case Instruction::SDiv:
562    case Instruction::FDiv:
563    case Instruction::URem:
564    case Instruction::SRem:
565    case Instruction::FRem:
566    case Instruction::Shl:
567    case Instruction::LShr:
568    case Instruction::AShr:
569    case Instruction::And:
570    case Instruction::Or :
571    case Instruction::Xor:
572      exp = create_expression(cast<BinaryOperator>(I));
573      break;
574    case Instruction::ICmp:
575    case Instruction::FCmp:
576      exp = create_expression(cast<CmpInst>(I));
577      break;
578    case Instruction::Trunc:
579    case Instruction::ZExt:
580    case Instruction::SExt:
581    case Instruction::FPToUI:
582    case Instruction::FPToSI:
583    case Instruction::UIToFP:
584    case Instruction::SIToFP:
585    case Instruction::FPTrunc:
586    case Instruction::FPExt:
587    case Instruction::PtrToInt:
588    case Instruction::IntToPtr:
589    case Instruction::BitCast:
590      exp = create_expression(cast<CastInst>(I));
591      break;
592    case Instruction::Select:
593      exp = create_expression(cast<SelectInst>(I));
594      break;
595    case Instruction::ExtractElement:
596      exp = create_expression(cast<ExtractElementInst>(I));
597      break;
598    case Instruction::InsertElement:
599      exp = create_expression(cast<InsertElementInst>(I));
600      break;
601    case Instruction::ShuffleVector:
602      exp = create_expression(cast<ShuffleVectorInst>(I));
603      break;
604    case Instruction::ExtractValue:
605      exp = create_expression(cast<ExtractValueInst>(I));
606      break;
607    case Instruction::InsertValue:
608      exp = create_expression(cast<InsertValueInst>(I));
609      break;
610    case Instruction::GetElementPtr:
611      exp = create_expression(cast<GetElementPtrInst>(I));
612      break;
613    default:
614      valueNumbering[V] = nextValueNumber;
615      return nextValueNumber++;
616  }
617
618  uint32_t& e = expressionNumbering[exp];
619  if (!e) e = nextValueNumber++;
620  valueNumbering[V] = e;
621  return e;
622}
623
624/// lookup - Returns the value number of the specified value. Fails if
625/// the value has not yet been numbered.
626uint32_t ValueTable::lookup(Value *V) const {
627  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
628  assert(VI != valueNumbering.end() && "Value not numbered?");
629  return VI->second;
630}
631
632/// clear - Remove all entries from the ValueTable
633void ValueTable::clear() {
634  valueNumbering.clear();
635  expressionNumbering.clear();
636  nextValueNumber = 1;
637}
638
639/// erase - Remove a value from the value numbering
640void ValueTable::erase(Value *V) {
641  valueNumbering.erase(V);
642}
643
644/// verifyRemoved - Verify that the value is removed from all internal data
645/// structures.
646void ValueTable::verifyRemoved(const Value *V) const {
647  for (DenseMap<Value*, uint32_t>::iterator
648         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
649    assert(I->first != V && "Inst still occurs in value numbering map!");
650  }
651}
652
653//===----------------------------------------------------------------------===//
654//                                GVN Pass
655//===----------------------------------------------------------------------===//
656
657namespace {
658  struct ValueNumberScope {
659    ValueNumberScope* parent;
660    DenseMap<uint32_t, Value*> table;
661
662    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
663  };
664}
665
666namespace {
667
668  class GVN : public FunctionPass {
669    bool runOnFunction(Function &F);
670  public:
671    static char ID; // Pass identification, replacement for typeid
672    GVN(bool nopre = false) : FunctionPass(&ID), NoPRE(nopre) { }
673
674  private:
675    bool NoPRE;
676    MemoryDependenceAnalysis *MD;
677    DominatorTree *DT;
678
679    ValueTable VN;
680    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
681
682    // This transformation requires dominator postdominator info
683    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
684      AU.addRequired<DominatorTree>();
685      AU.addRequired<MemoryDependenceAnalysis>();
686      AU.addRequired<AliasAnalysis>();
687
688      AU.addPreserved<DominatorTree>();
689      AU.addPreserved<AliasAnalysis>();
690    }
691
692    // Helper fuctions
693    // FIXME: eliminate or document these better
694    bool processLoad(LoadInst* L,
695                     SmallVectorImpl<Instruction*> &toErase);
696    bool processInstruction(Instruction *I,
697                            SmallVectorImpl<Instruction*> &toErase);
698    bool processNonLocalLoad(LoadInst* L,
699                             SmallVectorImpl<Instruction*> &toErase);
700    bool processBlock(BasicBlock *BB);
701    void dump(DenseMap<uint32_t, Value*>& d);
702    bool iterateOnFunction(Function &F);
703    Value *CollapsePhi(PHINode* p);
704    bool performPRE(Function& F);
705    Value *lookupNumber(BasicBlock *BB, uint32_t num);
706    void cleanupGlobalSets();
707    void verifyRemoved(const Instruction *I) const;
708  };
709
710  char GVN::ID = 0;
711}
712
713// createGVNPass - The public interface to this file...
714FunctionPass *llvm::createGVNPass(bool NoPRE) { return new GVN(NoPRE); }
715
716static RegisterPass<GVN> X("gvn",
717                           "Global Value Numbering");
718
719void GVN::dump(DenseMap<uint32_t, Value*>& d) {
720  printf("{\n");
721  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
722       E = d.end(); I != E; ++I) {
723      printf("%d\n", I->first);
724      I->second->dump();
725  }
726  printf("}\n");
727}
728
729static bool isSafeReplacement(PHINode* p, Instruction *inst) {
730  if (!isa<PHINode>(inst))
731    return true;
732
733  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
734       UI != E; ++UI)
735    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
736      if (use_phi->getParent() == inst->getParent())
737        return false;
738
739  return true;
740}
741
742Value *GVN::CollapsePhi(PHINode *PN) {
743  Value *ConstVal = PN->hasConstantValue(DT);
744  if (!ConstVal) return 0;
745
746  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
747  if (!Inst)
748    return ConstVal;
749
750  if (DT->dominates(Inst, PN))
751    if (isSafeReplacement(PN, Inst))
752      return Inst;
753  return 0;
754}
755
756/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
757/// we're analyzing is fully available in the specified block.  As we go, keep
758/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
759/// map is actually a tri-state map with the following values:
760///   0) we know the block *is not* fully available.
761///   1) we know the block *is* fully available.
762///   2) we do not know whether the block is fully available or not, but we are
763///      currently speculating that it will be.
764///   3) we are speculating for this block and have used that to speculate for
765///      other blocks.
766static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
767                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
768  // Optimistically assume that the block is fully available and check to see
769  // if we already know about this block in one lookup.
770  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
771    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
772
773  // If the entry already existed for this block, return the precomputed value.
774  if (!IV.second) {
775    // If this is a speculative "available" value, mark it as being used for
776    // speculation of other blocks.
777    if (IV.first->second == 2)
778      IV.first->second = 3;
779    return IV.first->second != 0;
780  }
781
782  // Otherwise, see if it is fully available in all predecessors.
783  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
784
785  // If this block has no predecessors, it isn't live-in here.
786  if (PI == PE)
787    goto SpeculationFailure;
788
789  for (; PI != PE; ++PI)
790    // If the value isn't fully available in one of our predecessors, then it
791    // isn't fully available in this block either.  Undo our previous
792    // optimistic assumption and bail out.
793    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
794      goto SpeculationFailure;
795
796  return true;
797
798// SpeculationFailure - If we get here, we found out that this is not, after
799// all, a fully-available block.  We have a problem if we speculated on this and
800// used the speculation to mark other blocks as available.
801SpeculationFailure:
802  char &BBVal = FullyAvailableBlocks[BB];
803
804  // If we didn't speculate on this, just return with it set to false.
805  if (BBVal == 2) {
806    BBVal = 0;
807    return false;
808  }
809
810  // If we did speculate on this value, we could have blocks set to 1 that are
811  // incorrect.  Walk the (transitive) successors of this block and mark them as
812  // 0 if set to one.
813  SmallVector<BasicBlock*, 32> BBWorklist;
814  BBWorklist.push_back(BB);
815
816  while (!BBWorklist.empty()) {
817    BasicBlock *Entry = BBWorklist.pop_back_val();
818    // Note that this sets blocks to 0 (unavailable) if they happen to not
819    // already be in FullyAvailableBlocks.  This is safe.
820    char &EntryVal = FullyAvailableBlocks[Entry];
821    if (EntryVal == 0) continue;  // Already unavailable.
822
823    // Mark as unavailable.
824    EntryVal = 0;
825
826    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
827      BBWorklist.push_back(*I);
828  }
829
830  return false;
831}
832
833
834/// CanCoerceMustAliasedValueToLoad - Return true if
835/// CoerceAvailableValueToLoadType will succeed.
836static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
837                                            const Type *LoadTy,
838                                            const TargetData &TD) {
839  // If the loaded or stored value is an first class array or struct, don't try
840  // to transform them.  We need to be able to bitcast to integer.
841  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
842      isa<StructType>(StoredVal->getType()) ||
843      isa<ArrayType>(StoredVal->getType()))
844    return false;
845
846  // The store has to be at least as big as the load.
847  if (TD.getTypeSizeInBits(StoredVal->getType()) <
848        TD.getTypeSizeInBits(LoadTy))
849    return false;
850
851  return true;
852}
853
854
855/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
856/// then a load from a must-aliased pointer of a different type, try to coerce
857/// the stored value.  LoadedTy is the type of the load we want to replace and
858/// InsertPt is the place to insert new instructions.
859///
860/// If we can't do it, return null.
861static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
862                                             const Type *LoadedTy,
863                                             Instruction *InsertPt,
864                                             const TargetData &TD) {
865  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
866    return 0;
867
868  const Type *StoredValTy = StoredVal->getType();
869
870  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
871  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
872
873  // If the store and reload are the same size, we can always reuse it.
874  if (StoreSize == LoadSize) {
875    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
876      // Pointer to Pointer -> use bitcast.
877      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
878    }
879
880    // Convert source pointers to integers, which can be bitcast.
881    if (isa<PointerType>(StoredValTy)) {
882      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
883      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
884    }
885
886    const Type *TypeToCastTo = LoadedTy;
887    if (isa<PointerType>(TypeToCastTo))
888      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
889
890    if (StoredValTy != TypeToCastTo)
891      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
892
893    // Cast to pointer if the load needs a pointer type.
894    if (isa<PointerType>(LoadedTy))
895      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
896
897    return StoredVal;
898  }
899
900  // If the loaded value is smaller than the available value, then we can
901  // extract out a piece from it.  If the available value is too small, then we
902  // can't do anything.
903  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
904
905  // Convert source pointers to integers, which can be manipulated.
906  if (isa<PointerType>(StoredValTy)) {
907    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
908    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
909  }
910
911  // Convert vectors and fp to integer, which can be manipulated.
912  if (!isa<IntegerType>(StoredValTy)) {
913    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
914    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
915  }
916
917  // If this is a big-endian system, we need to shift the value down to the low
918  // bits so that a truncate will work.
919  if (TD.isBigEndian()) {
920    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
921    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
922  }
923
924  // Truncate the integer to the right size now.
925  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
926  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
927
928  if (LoadedTy == NewIntTy)
929    return StoredVal;
930
931  // If the result is a pointer, inttoptr.
932  if (isa<PointerType>(LoadedTy))
933    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
934
935  // Otherwise, bitcast.
936  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
937}
938
939/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
940/// be expressed as a base pointer plus a constant offset.  Return the base and
941/// offset to the caller.
942static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
943                                        const TargetData &TD) {
944  Operator *PtrOp = dyn_cast<Operator>(Ptr);
945  if (PtrOp == 0) return Ptr;
946
947  // Just look through bitcasts.
948  if (PtrOp->getOpcode() == Instruction::BitCast)
949    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
950
951  // If this is a GEP with constant indices, we can look through it.
952  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
953  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
954
955  gep_type_iterator GTI = gep_type_begin(GEP);
956  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
957       ++I, ++GTI) {
958    ConstantInt *OpC = cast<ConstantInt>(*I);
959    if (OpC->isZero()) continue;
960
961    // Handle a struct and array indices which add their offset to the pointer.
962    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
963      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
964    } else {
965      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
966      Offset += OpC->getSExtValue()*Size;
967    }
968  }
969
970  // Re-sign extend from the pointer size if needed to get overflow edge cases
971  // right.
972  unsigned PtrSize = TD.getPointerSizeInBits();
973  if (PtrSize < 64)
974    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
975
976  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
977}
978
979
980/// AnalyzeLoadFromClobberingStore - This function is called when we have a
981/// memdep query of a load that ends up being a clobbering store.  This means
982/// that the store *may* provide bits used by the load but we can't be sure
983/// because the pointers don't mustalias.  Check this case to see if there is
984/// anything more we can do before we give up.  This returns -1 if we have to
985/// give up, or a byte number in the stored value of the piece that feeds the
986/// load.
987static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
988                                          const TargetData &TD) {
989  // If the loaded or stored value is an first class array or struct, don't try
990  // to transform them.  We need to be able to bitcast to integer.
991  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
992      isa<StructType>(DepSI->getOperand(0)->getType()) ||
993      isa<ArrayType>(DepSI->getOperand(0)->getType()))
994    return -1;
995
996  int64_t StoreOffset = 0, LoadOffset = 0;
997  Value *StoreBase =
998    GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
999  Value *LoadBase =
1000    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1001  if (StoreBase != LoadBase)
1002    return -1;
1003
1004  // If the load and store are to the exact same address, they should have been
1005  // a must alias.  AA must have gotten confused.
1006  // FIXME: Study to see if/when this happens.
1007  if (LoadOffset == StoreOffset) {
1008#if 0
1009    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1010    << "Base       = " << *StoreBase << "\n"
1011    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1012    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1013    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1014    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1015    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1016    << *L->getParent();
1017#endif
1018    return -1;
1019  }
1020
1021  // If the load and store don't overlap at all, the store doesn't provide
1022  // anything to the load.  In this case, they really don't alias at all, AA
1023  // must have gotten confused.
1024  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1025  // remove this check, as it is duplicated with what we have below.
1026  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1027  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
1028
1029  if ((StoreSize & 7) | (LoadSize & 7))
1030    return -1;
1031  StoreSize >>= 3;  // Convert to bytes.
1032  LoadSize >>= 3;
1033
1034
1035  bool isAAFailure = false;
1036  if (StoreOffset < LoadOffset) {
1037    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1038  } else {
1039    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1040  }
1041  if (isAAFailure) {
1042#if 0
1043    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1044    << "Base       = " << *StoreBase << "\n"
1045    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1046    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1047    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1048    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1049    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1050    << *L->getParent();
1051#endif
1052    return -1;
1053  }
1054
1055  // If the Load isn't completely contained within the stored bits, we don't
1056  // have all the bits to feed it.  We could do something crazy in the future
1057  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1058  // valuable.
1059  if (StoreOffset > LoadOffset ||
1060      StoreOffset+StoreSize < LoadOffset+LoadSize)
1061    return -1;
1062
1063  // Okay, we can do this transformation.  Return the number of bytes into the
1064  // store that the load is.
1065  return LoadOffset-StoreOffset;
1066}
1067
1068
1069/// GetStoreValueForLoad - This function is called when we have a
1070/// memdep query of a load that ends up being a clobbering store.  This means
1071/// that the store *may* provide bits used by the load but we can't be sure
1072/// because the pointers don't mustalias.  Check this case to see if there is
1073/// anything more we can do before we give up.
1074static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1075                                   const Type *LoadTy,
1076                                   Instruction *InsertPt, const TargetData &TD){
1077  LLVMContext &Ctx = SrcVal->getType()->getContext();
1078
1079  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1080  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1081
1082
1083  // Compute which bits of the stored value are being used by the load.  Convert
1084  // to an integer type to start with.
1085  if (isa<PointerType>(SrcVal->getType()))
1086    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1087  if (!isa<IntegerType>(SrcVal->getType()))
1088    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1089                             "tmp", InsertPt);
1090
1091  // Shift the bits to the least significant depending on endianness.
1092  unsigned ShiftAmt;
1093  if (TD.isLittleEndian()) {
1094    ShiftAmt = Offset*8;
1095  } else {
1096    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1097  }
1098
1099  if (ShiftAmt)
1100    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1101                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1102
1103  if (LoadSize != StoreSize)
1104    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1105                           "tmp", InsertPt);
1106
1107  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1108}
1109
1110struct AvailableValueInBlock {
1111  /// BB - The basic block in question.
1112  BasicBlock *BB;
1113  /// V - The value that is live out of the block.
1114  Value *V;
1115  /// Offset - The byte offset in V that is interesting for the load query.
1116  unsigned Offset;
1117
1118  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1119                                   unsigned Offset = 0) {
1120    AvailableValueInBlock Res;
1121    Res.BB = BB;
1122    Res.V = V;
1123    Res.Offset = Offset;
1124    return Res;
1125  }
1126};
1127
1128/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1129/// construct SSA form, allowing us to eliminate LI.  This returns the value
1130/// that should be used at LI's definition site.
1131static Value *ConstructSSAForLoadSet(LoadInst *LI,
1132                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1133                                     const TargetData *TD,
1134                                     AliasAnalysis *AA) {
1135  SmallVector<PHINode*, 8> NewPHIs;
1136  SSAUpdater SSAUpdate(&NewPHIs);
1137  SSAUpdate.Initialize(LI);
1138
1139  const Type *LoadTy = LI->getType();
1140
1141  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1142    BasicBlock *BB = ValuesPerBlock[i].BB;
1143    Value *AvailableVal = ValuesPerBlock[i].V;
1144    unsigned Offset = ValuesPerBlock[i].Offset;
1145
1146    if (SSAUpdate.HasValueForBlock(BB))
1147      continue;
1148
1149    if (AvailableVal->getType() != LoadTy) {
1150      assert(TD && "Need target data to handle type mismatch case");
1151      AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1152                                          BB->getTerminator(), *TD);
1153
1154      if (Offset) {
1155        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1156              << *ValuesPerBlock[i].V << '\n'
1157              << *AvailableVal << '\n' << "\n\n\n");
1158      }
1159
1160
1161      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1162            << *ValuesPerBlock[i].V << '\n'
1163            << *AvailableVal << '\n' << "\n\n\n");
1164    }
1165
1166    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1167  }
1168
1169  // Perform PHI construction.
1170  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1171
1172  // If new PHI nodes were created, notify alias analysis.
1173  if (isa<PointerType>(V->getType()))
1174    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1175      AA->copyValue(LI, NewPHIs[i]);
1176
1177  return V;
1178}
1179
1180/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1181/// non-local by performing PHI construction.
1182bool GVN::processNonLocalLoad(LoadInst *LI,
1183                              SmallVectorImpl<Instruction*> &toErase) {
1184  // Find the non-local dependencies of the load.
1185  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1186  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1187                                   Deps);
1188  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1189  //             << Deps.size() << *LI << '\n');
1190
1191  // If we had to process more than one hundred blocks to find the
1192  // dependencies, this load isn't worth worrying about.  Optimizing
1193  // it will be too expensive.
1194  if (Deps.size() > 100)
1195    return false;
1196
1197  // If we had a phi translation failure, we'll have a single entry which is a
1198  // clobber in the current block.  Reject this early.
1199  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1200    DEBUG(
1201      errs() << "GVN: non-local load ";
1202      WriteAsOperand(errs(), LI);
1203      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1204    );
1205    return false;
1206  }
1207
1208  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1209  // where we have a value available in repl, also keep track of whether we see
1210  // dependencies that produce an unknown value for the load (such as a call
1211  // that could potentially clobber the load).
1212  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1213  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1214
1215  const TargetData *TD = 0;
1216
1217  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1218    BasicBlock *DepBB = Deps[i].first;
1219    MemDepResult DepInfo = Deps[i].second;
1220
1221    if (DepInfo.isClobber()) {
1222      // If the dependence is to a store that writes to a superset of the bits
1223      // read by the load, we can extract the bits we need for the load from the
1224      // stored value.
1225      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1226        if (TD == 0)
1227          TD = getAnalysisIfAvailable<TargetData>();
1228        if (TD) {
1229          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1230          if (Offset != -1) {
1231            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1232                                                           DepSI->getOperand(0),
1233                                                                Offset));
1234            continue;
1235          }
1236        }
1237      }
1238
1239      // FIXME: Handle memset/memcpy.
1240      UnavailableBlocks.push_back(DepBB);
1241      continue;
1242    }
1243
1244    Instruction *DepInst = DepInfo.getInst();
1245
1246    // Loading the allocation -> undef.
1247    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1248      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1249                                             UndefValue::get(LI->getType())));
1250      continue;
1251    }
1252
1253    // Loading immediately after lifetime begin or end -> undef.
1254    if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1255      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1256          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1257        ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1258                                             UndefValue::get(LI->getType())));
1259      }
1260    }
1261
1262    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1263      // Reject loads and stores that are to the same address but are of
1264      // different types if we have to.
1265      if (S->getOperand(0)->getType() != LI->getType()) {
1266        if (TD == 0)
1267          TD = getAnalysisIfAvailable<TargetData>();
1268
1269        // If the stored value is larger or equal to the loaded value, we can
1270        // reuse it.
1271        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1272                                                        LI->getType(), *TD)) {
1273          UnavailableBlocks.push_back(DepBB);
1274          continue;
1275        }
1276      }
1277
1278      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1279                                                          S->getOperand(0)));
1280      continue;
1281    }
1282
1283    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1284      // If the types mismatch and we can't handle it, reject reuse of the load.
1285      if (LD->getType() != LI->getType()) {
1286        if (TD == 0)
1287          TD = getAnalysisIfAvailable<TargetData>();
1288
1289        // If the stored value is larger or equal to the loaded value, we can
1290        // reuse it.
1291        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1292          UnavailableBlocks.push_back(DepBB);
1293          continue;
1294        }
1295      }
1296      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1297      continue;
1298    }
1299
1300    UnavailableBlocks.push_back(DepBB);
1301    continue;
1302  }
1303
1304  // If we have no predecessors that produce a known value for this load, exit
1305  // early.
1306  if (ValuesPerBlock.empty()) return false;
1307
1308  // If all of the instructions we depend on produce a known value for this
1309  // load, then it is fully redundant and we can use PHI insertion to compute
1310  // its value.  Insert PHIs and remove the fully redundant value now.
1311  if (UnavailableBlocks.empty()) {
1312    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1313
1314    // Perform PHI construction.
1315    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1316                                      VN.getAliasAnalysis());
1317    LI->replaceAllUsesWith(V);
1318
1319    if (isa<PHINode>(V))
1320      V->takeName(LI);
1321    if (isa<PointerType>(V->getType()))
1322      MD->invalidateCachedPointerInfo(V);
1323    toErase.push_back(LI);
1324    NumGVNLoad++;
1325    return true;
1326  }
1327
1328  if (!EnablePRE || !EnableLoadPRE)
1329    return false;
1330
1331  // Okay, we have *some* definitions of the value.  This means that the value
1332  // is available in some of our (transitive) predecessors.  Lets think about
1333  // doing PRE of this load.  This will involve inserting a new load into the
1334  // predecessor when it's not available.  We could do this in general, but
1335  // prefer to not increase code size.  As such, we only do this when we know
1336  // that we only have to insert *one* load (which means we're basically moving
1337  // the load, not inserting a new one).
1338
1339  SmallPtrSet<BasicBlock *, 4> Blockers;
1340  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1341    Blockers.insert(UnavailableBlocks[i]);
1342
1343  // Lets find first basic block with more than one predecessor.  Walk backwards
1344  // through predecessors if needed.
1345  BasicBlock *LoadBB = LI->getParent();
1346  BasicBlock *TmpBB = LoadBB;
1347
1348  bool isSinglePred = false;
1349  bool allSingleSucc = true;
1350  while (TmpBB->getSinglePredecessor()) {
1351    isSinglePred = true;
1352    TmpBB = TmpBB->getSinglePredecessor();
1353    if (!TmpBB) // If haven't found any, bail now.
1354      return false;
1355    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1356      return false;
1357    if (Blockers.count(TmpBB))
1358      return false;
1359    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1360      allSingleSucc = false;
1361  }
1362
1363  assert(TmpBB);
1364  LoadBB = TmpBB;
1365
1366  // If we have a repl set with LI itself in it, this means we have a loop where
1367  // at least one of the values is LI.  Since this means that we won't be able
1368  // to eliminate LI even if we insert uses in the other predecessors, we will
1369  // end up increasing code size.  Reject this by scanning for LI.
1370  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1371    if (ValuesPerBlock[i].V == LI)
1372      return false;
1373
1374  if (isSinglePred) {
1375    bool isHot = false;
1376    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1377      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
1378        // "Hot" Instruction is in some loop (because it dominates its dep.
1379        // instruction).
1380        if (DT->dominates(LI, I)) {
1381          isHot = true;
1382          break;
1383        }
1384
1385    // We are interested only in "hot" instructions. We don't want to do any
1386    // mis-optimizations here.
1387    if (!isHot)
1388      return false;
1389  }
1390
1391  // Okay, we have some hope :).  Check to see if the loaded value is fully
1392  // available in all but one predecessor.
1393  // FIXME: If we could restructure the CFG, we could make a common pred with
1394  // all the preds that don't have an available LI and insert a new load into
1395  // that one block.
1396  BasicBlock *UnavailablePred = 0;
1397
1398  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1399  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1400    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1401  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1402    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1403
1404  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1405       PI != E; ++PI) {
1406    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1407      continue;
1408
1409    // If this load is not available in multiple predecessors, reject it.
1410    if (UnavailablePred && UnavailablePred != *PI)
1411      return false;
1412    UnavailablePred = *PI;
1413  }
1414
1415  assert(UnavailablePred != 0 &&
1416         "Fully available value should be eliminated above!");
1417
1418  // If the loaded pointer is PHI node defined in this block, do PHI translation
1419  // to get its value in the predecessor.
1420  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1421
1422  // Make sure the value is live in the predecessor.  If it was defined by a
1423  // non-PHI instruction in this block, we don't know how to recompute it above.
1424  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1425    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1426      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1427                   << *LPInst << '\n' << *LI << "\n");
1428      return false;
1429    }
1430
1431  // We don't currently handle critical edges :(
1432  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1433    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1434                 << UnavailablePred->getName() << "': " << *LI << '\n');
1435    return false;
1436  }
1437
1438  // Make sure it is valid to move this load here.  We have to watch out for:
1439  //  @1 = getelementptr (i8* p, ...
1440  //  test p and branch if == 0
1441  //  load @1
1442  // It is valid to have the getelementptr before the test, even if p can be 0,
1443  // as getelementptr only does address arithmetic.
1444  // If we are not pushing the value through any multiple-successor blocks
1445  // we do not have this case.  Otherwise, check that the load is safe to
1446  // put anywhere; this can be improved, but should be conservatively safe.
1447  if (!allSingleSucc &&
1448      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1449    return false;
1450
1451  // Okay, we can eliminate this load by inserting a reload in the predecessor
1452  // and using PHI construction to get the value in the other predecessors, do
1453  // it.
1454  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1455
1456  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1457                                LI->getAlignment(),
1458                                UnavailablePred->getTerminator());
1459
1460  // Add the newly created load.
1461  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1462
1463  // Perform PHI construction.
1464  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1465                                    VN.getAliasAnalysis());
1466  LI->replaceAllUsesWith(V);
1467  if (isa<PHINode>(V))
1468    V->takeName(LI);
1469  if (isa<PointerType>(V->getType()))
1470    MD->invalidateCachedPointerInfo(V);
1471  toErase.push_back(LI);
1472  NumPRELoad++;
1473  return true;
1474}
1475
1476/// processLoad - Attempt to eliminate a load, first by eliminating it
1477/// locally, and then attempting non-local elimination if that fails.
1478bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1479  if (L->isVolatile())
1480    return false;
1481
1482  // ... to a pointer that has been loaded from before...
1483  MemDepResult Dep = MD->getDependency(L);
1484
1485  // If the value isn't available, don't do anything!
1486  if (Dep.isClobber()) {
1487    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
1488    // to forward the value if available.
1489    //if (isa<MemIntrinsic>(Dep.getInst()))
1490    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
1491
1492    // Check to see if we have something like this:
1493    //   store i32 123, i32* %P
1494    //   %A = bitcast i32* %P to i8*
1495    //   %B = gep i8* %A, i32 1
1496    //   %C = load i8* %B
1497    //
1498    // We could do that by recognizing if the clobber instructions are obviously
1499    // a common base + constant offset, and if the previous store (or memset)
1500    // completely covers this load.  This sort of thing can happen in bitfield
1501    // access code.
1502    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1503      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1504        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1505        if (Offset != -1) {
1506          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1507                                                 L->getType(), L, *TD);
1508          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
1509                       << *AvailVal << '\n' << *L << "\n\n\n");
1510
1511          // Replace the load!
1512          L->replaceAllUsesWith(AvailVal);
1513          if (isa<PointerType>(AvailVal->getType()))
1514            MD->invalidateCachedPointerInfo(AvailVal);
1515          toErase.push_back(L);
1516          NumGVNLoad++;
1517          return true;
1518        }
1519      }
1520
1521    DEBUG(
1522      // fast print dep, using operator<< on instruction would be too slow
1523      errs() << "GVN: load ";
1524      WriteAsOperand(errs(), L);
1525      Instruction *I = Dep.getInst();
1526      errs() << " is clobbered by " << *I << '\n';
1527    );
1528    return false;
1529  }
1530
1531  // If it is defined in another block, try harder.
1532  if (Dep.isNonLocal())
1533    return processNonLocalLoad(L, toErase);
1534
1535  Instruction *DepInst = Dep.getInst();
1536  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1537    Value *StoredVal = DepSI->getOperand(0);
1538
1539    // The store and load are to a must-aliased pointer, but they may not
1540    // actually have the same type.  See if we know how to reuse the stored
1541    // value (depending on its type).
1542    const TargetData *TD = 0;
1543    if (StoredVal->getType() != L->getType()) {
1544      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1545        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1546                                                   L, *TD);
1547        if (StoredVal == 0)
1548          return false;
1549
1550        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1551                     << '\n' << *L << "\n\n\n");
1552      }
1553      else
1554        return false;
1555    }
1556
1557    // Remove it!
1558    L->replaceAllUsesWith(StoredVal);
1559    if (isa<PointerType>(StoredVal->getType()))
1560      MD->invalidateCachedPointerInfo(StoredVal);
1561    toErase.push_back(L);
1562    NumGVNLoad++;
1563    return true;
1564  }
1565
1566  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1567    Value *AvailableVal = DepLI;
1568
1569    // The loads are of a must-aliased pointer, but they may not actually have
1570    // the same type.  See if we know how to reuse the previously loaded value
1571    // (depending on its type).
1572    const TargetData *TD = 0;
1573    if (DepLI->getType() != L->getType()) {
1574      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1575        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1576        if (AvailableVal == 0)
1577          return false;
1578
1579        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1580                     << "\n" << *L << "\n\n\n");
1581      }
1582      else
1583        return false;
1584    }
1585
1586    // Remove it!
1587    L->replaceAllUsesWith(AvailableVal);
1588    if (isa<PointerType>(DepLI->getType()))
1589      MD->invalidateCachedPointerInfo(DepLI);
1590    toErase.push_back(L);
1591    NumGVNLoad++;
1592    return true;
1593  }
1594
1595  // If this load really doesn't depend on anything, then we must be loading an
1596  // undef value.  This can happen when loading for a fresh allocation with no
1597  // intervening stores, for example.
1598  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1599    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1600    toErase.push_back(L);
1601    NumGVNLoad++;
1602    return true;
1603  }
1604
1605  // If this load occurs either right after a lifetime begin or a lifetime end,
1606  // then the loaded value is undefined.
1607  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1608    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1609        II->getIntrinsicID() == Intrinsic::lifetime_end) {
1610      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1611      toErase.push_back(L);
1612      NumGVNLoad++;
1613      return true;
1614    }
1615  }
1616
1617  return false;
1618}
1619
1620Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1621  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1622  if (I == localAvail.end())
1623    return 0;
1624
1625  ValueNumberScope *Locals = I->second;
1626  while (Locals) {
1627    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1628    if (I != Locals->table.end())
1629      return I->second;
1630    Locals = Locals->parent;
1631  }
1632
1633  return 0;
1634}
1635
1636
1637/// processInstruction - When calculating availability, handle an instruction
1638/// by inserting it into the appropriate sets
1639bool GVN::processInstruction(Instruction *I,
1640                             SmallVectorImpl<Instruction*> &toErase) {
1641  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1642    bool Changed = processLoad(LI, toErase);
1643
1644    if (!Changed) {
1645      unsigned Num = VN.lookup_or_add(LI);
1646      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1647    }
1648
1649    return Changed;
1650  }
1651
1652  uint32_t NextNum = VN.getNextUnusedValueNumber();
1653  unsigned Num = VN.lookup_or_add(I);
1654
1655  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1656    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1657
1658    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1659      return false;
1660
1661    Value *BranchCond = BI->getCondition();
1662    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1663
1664    BasicBlock *TrueSucc = BI->getSuccessor(0);
1665    BasicBlock *FalseSucc = BI->getSuccessor(1);
1666
1667    if (TrueSucc->getSinglePredecessor())
1668      localAvail[TrueSucc]->table[CondVN] =
1669        ConstantInt::getTrue(TrueSucc->getContext());
1670    if (FalseSucc->getSinglePredecessor())
1671      localAvail[FalseSucc]->table[CondVN] =
1672        ConstantInt::getFalse(TrueSucc->getContext());
1673
1674    return false;
1675
1676  // Allocations are always uniquely numbered, so we can save time and memory
1677  // by fast failing them.
1678  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1679    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1680    return false;
1681  }
1682
1683  // Collapse PHI nodes
1684  if (PHINode* p = dyn_cast<PHINode>(I)) {
1685    Value *constVal = CollapsePhi(p);
1686
1687    if (constVal) {
1688      p->replaceAllUsesWith(constVal);
1689      if (isa<PointerType>(constVal->getType()))
1690        MD->invalidateCachedPointerInfo(constVal);
1691      VN.erase(p);
1692
1693      toErase.push_back(p);
1694    } else {
1695      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1696    }
1697
1698  // If the number we were assigned was a brand new VN, then we don't
1699  // need to do a lookup to see if the number already exists
1700  // somewhere in the domtree: it can't!
1701  } else if (Num == NextNum) {
1702    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1703
1704  // Perform fast-path value-number based elimination of values inherited from
1705  // dominators.
1706  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1707    // Remove it!
1708    VN.erase(I);
1709    I->replaceAllUsesWith(repl);
1710    if (isa<PointerType>(repl->getType()))
1711      MD->invalidateCachedPointerInfo(repl);
1712    toErase.push_back(I);
1713    return true;
1714
1715  } else {
1716    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1717  }
1718
1719  return false;
1720}
1721
1722/// runOnFunction - This is the main transformation entry point for a function.
1723bool GVN::runOnFunction(Function& F) {
1724  MD = &getAnalysis<MemoryDependenceAnalysis>();
1725  DT = &getAnalysis<DominatorTree>();
1726  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1727  VN.setMemDep(MD);
1728  VN.setDomTree(DT);
1729
1730  bool Changed = false;
1731  bool ShouldContinue = true;
1732
1733  // Merge unconditional branches, allowing PRE to catch more
1734  // optimization opportunities.
1735  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1736    BasicBlock *BB = FI;
1737    ++FI;
1738    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1739    if (removedBlock) NumGVNBlocks++;
1740
1741    Changed |= removedBlock;
1742  }
1743
1744  unsigned Iteration = 0;
1745
1746  while (ShouldContinue) {
1747    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1748    ShouldContinue = iterateOnFunction(F);
1749    Changed |= ShouldContinue;
1750    ++Iteration;
1751  }
1752
1753  if (EnablePRE) {
1754    bool PREChanged = true;
1755    while (PREChanged) {
1756      PREChanged = performPRE(F);
1757      Changed |= PREChanged;
1758    }
1759  }
1760  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1761  // computations into blocks where they become fully redundant.  Note that
1762  // we can't do this until PRE's critical edge splitting updates memdep.
1763  // Actually, when this happens, we should just fully integrate PRE into GVN.
1764
1765  cleanupGlobalSets();
1766
1767  return Changed;
1768}
1769
1770
1771bool GVN::processBlock(BasicBlock *BB) {
1772  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1773  // incrementing BI before processing an instruction).
1774  SmallVector<Instruction*, 8> toErase;
1775  bool ChangedFunction = false;
1776
1777  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1778       BI != BE;) {
1779    ChangedFunction |= processInstruction(BI, toErase);
1780    if (toErase.empty()) {
1781      ++BI;
1782      continue;
1783    }
1784
1785    // If we need some instructions deleted, do it now.
1786    NumGVNInstr += toErase.size();
1787
1788    // Avoid iterator invalidation.
1789    bool AtStart = BI == BB->begin();
1790    if (!AtStart)
1791      --BI;
1792
1793    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1794         E = toErase.end(); I != E; ++I) {
1795      DEBUG(errs() << "GVN removed: " << **I << '\n');
1796      MD->removeInstruction(*I);
1797      (*I)->eraseFromParent();
1798      DEBUG(verifyRemoved(*I));
1799    }
1800    toErase.clear();
1801
1802    if (AtStart)
1803      BI = BB->begin();
1804    else
1805      ++BI;
1806  }
1807
1808  return ChangedFunction;
1809}
1810
1811/// performPRE - Perform a purely local form of PRE that looks for diamond
1812/// control flow patterns and attempts to perform simple PRE at the join point.
1813bool GVN::performPRE(Function& F) {
1814  bool Changed = false;
1815  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1816  DenseMap<BasicBlock*, Value*> predMap;
1817  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1818       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1819    BasicBlock *CurrentBlock = *DI;
1820
1821    // Nothing to PRE in the entry block.
1822    if (CurrentBlock == &F.getEntryBlock()) continue;
1823
1824    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1825         BE = CurrentBlock->end(); BI != BE; ) {
1826      Instruction *CurInst = BI++;
1827
1828      if (isa<AllocaInst>(CurInst) ||
1829          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1830          CurInst->getType()->isVoidTy() ||
1831          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1832          isa<DbgInfoIntrinsic>(CurInst))
1833        continue;
1834
1835      uint32_t ValNo = VN.lookup(CurInst);
1836
1837      // Look for the predecessors for PRE opportunities.  We're
1838      // only trying to solve the basic diamond case, where
1839      // a value is computed in the successor and one predecessor,
1840      // but not the other.  We also explicitly disallow cases
1841      // where the successor is its own predecessor, because they're
1842      // more complicated to get right.
1843      unsigned NumWith = 0;
1844      unsigned NumWithout = 0;
1845      BasicBlock *PREPred = 0;
1846      predMap.clear();
1847
1848      for (pred_iterator PI = pred_begin(CurrentBlock),
1849           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1850        // We're not interested in PRE where the block is its
1851        // own predecessor, on in blocks with predecessors
1852        // that are not reachable.
1853        if (*PI == CurrentBlock) {
1854          NumWithout = 2;
1855          break;
1856        } else if (!localAvail.count(*PI))  {
1857          NumWithout = 2;
1858          break;
1859        }
1860
1861        DenseMap<uint32_t, Value*>::iterator predV =
1862                                            localAvail[*PI]->table.find(ValNo);
1863        if (predV == localAvail[*PI]->table.end()) {
1864          PREPred = *PI;
1865          NumWithout++;
1866        } else if (predV->second == CurInst) {
1867          NumWithout = 2;
1868        } else {
1869          predMap[*PI] = predV->second;
1870          NumWith++;
1871        }
1872      }
1873
1874      // Don't do PRE when it might increase code size, i.e. when
1875      // we would need to insert instructions in more than one pred.
1876      if (NumWithout != 1 || NumWith == 0)
1877        continue;
1878
1879      // We can't do PRE safely on a critical edge, so instead we schedule
1880      // the edge to be split and perform the PRE the next time we iterate
1881      // on the function.
1882      unsigned SuccNum = 0;
1883      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1884           i != e; ++i)
1885        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1886          SuccNum = i;
1887          break;
1888        }
1889
1890      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1891        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1892        continue;
1893      }
1894
1895      // Instantiate the expression the in predecessor that lacked it.
1896      // Because we are going top-down through the block, all value numbers
1897      // will be available in the predecessor by the time we need them.  Any
1898      // that weren't original present will have been instantiated earlier
1899      // in this loop.
1900      Instruction *PREInstr = CurInst->clone();
1901      bool success = true;
1902      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1903        Value *Op = PREInstr->getOperand(i);
1904        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1905          continue;
1906
1907        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1908          PREInstr->setOperand(i, V);
1909        } else {
1910          success = false;
1911          break;
1912        }
1913      }
1914
1915      // Fail out if we encounter an operand that is not available in
1916      // the PRE predecessor.  This is typically because of loads which
1917      // are not value numbered precisely.
1918      if (!success) {
1919        delete PREInstr;
1920        DEBUG(verifyRemoved(PREInstr));
1921        continue;
1922      }
1923
1924      PREInstr->insertBefore(PREPred->getTerminator());
1925      PREInstr->setName(CurInst->getName() + ".pre");
1926      predMap[PREPred] = PREInstr;
1927      VN.add(PREInstr, ValNo);
1928      NumGVNPRE++;
1929
1930      // Update the availability map to include the new instruction.
1931      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
1932
1933      // Create a PHI to make the value available in this block.
1934      PHINode* Phi = PHINode::Create(CurInst->getType(),
1935                                     CurInst->getName() + ".pre-phi",
1936                                     CurrentBlock->begin());
1937      for (pred_iterator PI = pred_begin(CurrentBlock),
1938           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1939        Phi->addIncoming(predMap[*PI], *PI);
1940
1941      VN.add(Phi, ValNo);
1942      localAvail[CurrentBlock]->table[ValNo] = Phi;
1943
1944      CurInst->replaceAllUsesWith(Phi);
1945      if (isa<PointerType>(Phi->getType()))
1946        MD->invalidateCachedPointerInfo(Phi);
1947      VN.erase(CurInst);
1948
1949      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1950      MD->removeInstruction(CurInst);
1951      CurInst->eraseFromParent();
1952      DEBUG(verifyRemoved(CurInst));
1953      Changed = true;
1954    }
1955  }
1956
1957  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1958       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1959    SplitCriticalEdge(I->first, I->second, this);
1960
1961  return Changed || toSplit.size();
1962}
1963
1964/// iterateOnFunction - Executes one iteration of GVN
1965bool GVN::iterateOnFunction(Function &F) {
1966  cleanupGlobalSets();
1967
1968  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1969       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1970    if (DI->getIDom())
1971      localAvail[DI->getBlock()] =
1972                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1973    else
1974      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1975  }
1976
1977  // Top-down walk of the dominator tree
1978  bool Changed = false;
1979#if 0
1980  // Needed for value numbering with phi construction to work.
1981  ReversePostOrderTraversal<Function*> RPOT(&F);
1982  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1983       RE = RPOT.end(); RI != RE; ++RI)
1984    Changed |= processBlock(*RI);
1985#else
1986  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1987       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1988    Changed |= processBlock(DI->getBlock());
1989#endif
1990
1991  return Changed;
1992}
1993
1994void GVN::cleanupGlobalSets() {
1995  VN.clear();
1996
1997  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1998       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1999    delete I->second;
2000  localAvail.clear();
2001}
2002
2003/// verifyRemoved - Verify that the specified instruction does not occur in our
2004/// internal data structures.
2005void GVN::verifyRemoved(const Instruction *Inst) const {
2006  VN.verifyRemoved(Inst);
2007
2008  // Walk through the value number scope to make sure the instruction isn't
2009  // ferreted away in it.
2010  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2011         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2012    const ValueNumberScope *VNS = I->second;
2013
2014    while (VNS) {
2015      for (DenseMap<uint32_t, Value*>::iterator
2016             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2017        assert(II->second != Inst && "Inst still in value numbering scope!");
2018      }
2019
2020      VNS = VNS->parent;
2021    }
2022  }
2023}
2024