GVN.cpp revision 3f329cb781492e19a72af267cd3b7c2d8307a818
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/SSAUpdater.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/Allocator.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/IRBuilder.h"
44#include "llvm/Support/PatternMatch.h"
45using namespace llvm;
46using namespace PatternMatch;
47
48STATISTIC(NumGVNInstr,  "Number of instructions deleted");
49STATISTIC(NumGVNLoad,   "Number of loads deleted");
50STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
51STATISTIC(NumGVNBlocks, "Number of blocks merged");
52STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
53STATISTIC(NumGVNEqProp, "Number of equalities propagated");
54STATISTIC(NumPRELoad,   "Number of loads PRE'd");
55
56static cl::opt<bool> EnablePRE("enable-pre",
57                               cl::init(true), cl::Hidden);
58static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
59
60//===----------------------------------------------------------------------===//
61//                         ValueTable Class
62//===----------------------------------------------------------------------===//
63
64/// This class holds the mapping between values and value numbers.  It is used
65/// as an efficient mechanism to determine the expression-wise equivalence of
66/// two values.
67namespace {
68  struct Expression {
69    uint32_t opcode;
70    Type *type;
71    SmallVector<uint32_t, 4> varargs;
72
73    Expression(uint32_t o = ~2U) : opcode(o) { }
74
75    bool operator==(const Expression &other) const {
76      if (opcode != other.opcode)
77        return false;
78      if (opcode == ~0U || opcode == ~1U)
79        return true;
80      if (type != other.type)
81        return false;
82      if (varargs != other.varargs)
83        return false;
84      return true;
85    }
86  };
87
88  class ValueTable {
89    DenseMap<Value*, uint32_t> valueNumbering;
90    DenseMap<Expression, uint32_t> expressionNumbering;
91    AliasAnalysis *AA;
92    MemoryDependenceAnalysis *MD;
93    DominatorTree *DT;
94
95    uint32_t nextValueNumber;
96
97    Expression create_expression(Instruction* I);
98    Expression create_extractvalue_expression(ExtractValueInst* EI);
99    uint32_t lookup_or_add_call(CallInst* C);
100  public:
101    ValueTable() : nextValueNumber(1) { }
102    uint32_t lookup_or_add(Value *V);
103    uint32_t lookup(Value *V) const;
104    void add(Value *V, uint32_t num);
105    void clear();
106    void erase(Value *v);
107    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
108    AliasAnalysis *getAliasAnalysis() const { return AA; }
109    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
110    void setDomTree(DominatorTree* D) { DT = D; }
111    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
112    void verifyRemoved(const Value *) const;
113  };
114}
115
116namespace llvm {
117template <> struct DenseMapInfo<Expression> {
118  static inline Expression getEmptyKey() {
119    return ~0U;
120  }
121
122  static inline Expression getTombstoneKey() {
123    return ~1U;
124  }
125
126  static unsigned getHashValue(const Expression e) {
127    unsigned hash = e.opcode;
128
129    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
130            (unsigned)((uintptr_t)e.type >> 9));
131
132    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
133         E = e.varargs.end(); I != E; ++I)
134      hash = *I + hash * 37;
135
136    return hash;
137  }
138  static bool isEqual(const Expression &LHS, const Expression &RHS) {
139    return LHS == RHS;
140  }
141};
142
143}
144
145//===----------------------------------------------------------------------===//
146//                     ValueTable Internal Functions
147//===----------------------------------------------------------------------===//
148
149Expression ValueTable::create_expression(Instruction *I) {
150  Expression e;
151  e.type = I->getType();
152  e.opcode = I->getOpcode();
153  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
154       OI != OE; ++OI)
155    e.varargs.push_back(lookup_or_add(*OI));
156
157  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
158    e.opcode = (C->getOpcode() << 8) | C->getPredicate();
159  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
160    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
161         II != IE; ++II)
162      e.varargs.push_back(*II);
163  }
164
165  return e;
166}
167
168Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
169  assert(EI != 0 && "Not an ExtractValueInst?");
170  Expression e;
171  e.type = EI->getType();
172  e.opcode = 0;
173
174  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
175  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
176    // EI might be an extract from one of our recognised intrinsics. If it
177    // is we'll synthesize a semantically equivalent expression instead on
178    // an extract value expression.
179    switch (I->getIntrinsicID()) {
180      case Intrinsic::sadd_with_overflow:
181      case Intrinsic::uadd_with_overflow:
182        e.opcode = Instruction::Add;
183        break;
184      case Intrinsic::ssub_with_overflow:
185      case Intrinsic::usub_with_overflow:
186        e.opcode = Instruction::Sub;
187        break;
188      case Intrinsic::smul_with_overflow:
189      case Intrinsic::umul_with_overflow:
190        e.opcode = Instruction::Mul;
191        break;
192      default:
193        break;
194    }
195
196    if (e.opcode != 0) {
197      // Intrinsic recognized. Grab its args to finish building the expression.
198      assert(I->getNumArgOperands() == 2 &&
199             "Expect two args for recognised intrinsics.");
200      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
201      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
202      return e;
203    }
204  }
205
206  // Not a recognised intrinsic. Fall back to producing an extract value
207  // expression.
208  e.opcode = EI->getOpcode();
209  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
210       OI != OE; ++OI)
211    e.varargs.push_back(lookup_or_add(*OI));
212
213  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
214         II != IE; ++II)
215    e.varargs.push_back(*II);
216
217  return e;
218}
219
220//===----------------------------------------------------------------------===//
221//                     ValueTable External Functions
222//===----------------------------------------------------------------------===//
223
224/// add - Insert a value into the table with a specified value number.
225void ValueTable::add(Value *V, uint32_t num) {
226  valueNumbering.insert(std::make_pair(V, num));
227}
228
229uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
230  if (AA->doesNotAccessMemory(C)) {
231    Expression exp = create_expression(C);
232    uint32_t& e = expressionNumbering[exp];
233    if (!e) e = nextValueNumber++;
234    valueNumbering[C] = e;
235    return e;
236  } else if (AA->onlyReadsMemory(C)) {
237    Expression exp = create_expression(C);
238    uint32_t& e = expressionNumbering[exp];
239    if (!e) {
240      e = nextValueNumber++;
241      valueNumbering[C] = e;
242      return e;
243    }
244    if (!MD) {
245      e = nextValueNumber++;
246      valueNumbering[C] = e;
247      return e;
248    }
249
250    MemDepResult local_dep = MD->getDependency(C);
251
252    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
253      valueNumbering[C] =  nextValueNumber;
254      return nextValueNumber++;
255    }
256
257    if (local_dep.isDef()) {
258      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
259
260      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
261        valueNumbering[C] = nextValueNumber;
262        return nextValueNumber++;
263      }
264
265      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
266        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
267        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
268        if (c_vn != cd_vn) {
269          valueNumbering[C] = nextValueNumber;
270          return nextValueNumber++;
271        }
272      }
273
274      uint32_t v = lookup_or_add(local_cdep);
275      valueNumbering[C] = v;
276      return v;
277    }
278
279    // Non-local case.
280    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
281      MD->getNonLocalCallDependency(CallSite(C));
282    // FIXME: Move the checking logic to MemDep!
283    CallInst* cdep = 0;
284
285    // Check to see if we have a single dominating call instruction that is
286    // identical to C.
287    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
288      const NonLocalDepEntry *I = &deps[i];
289      if (I->getResult().isNonLocal())
290        continue;
291
292      // We don't handle non-definitions.  If we already have a call, reject
293      // instruction dependencies.
294      if (!I->getResult().isDef() || cdep != 0) {
295        cdep = 0;
296        break;
297      }
298
299      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
300      // FIXME: All duplicated with non-local case.
301      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
302        cdep = NonLocalDepCall;
303        continue;
304      }
305
306      cdep = 0;
307      break;
308    }
309
310    if (!cdep) {
311      valueNumbering[C] = nextValueNumber;
312      return nextValueNumber++;
313    }
314
315    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
316      valueNumbering[C] = nextValueNumber;
317      return nextValueNumber++;
318    }
319    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
320      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
321      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
322      if (c_vn != cd_vn) {
323        valueNumbering[C] = nextValueNumber;
324        return nextValueNumber++;
325      }
326    }
327
328    uint32_t v = lookup_or_add(cdep);
329    valueNumbering[C] = v;
330    return v;
331
332  } else {
333    valueNumbering[C] = nextValueNumber;
334    return nextValueNumber++;
335  }
336}
337
338/// lookup_or_add - Returns the value number for the specified value, assigning
339/// it a new number if it did not have one before.
340uint32_t ValueTable::lookup_or_add(Value *V) {
341  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
342  if (VI != valueNumbering.end())
343    return VI->second;
344
345  if (!isa<Instruction>(V)) {
346    valueNumbering[V] = nextValueNumber;
347    return nextValueNumber++;
348  }
349
350  Instruction* I = cast<Instruction>(V);
351  Expression exp;
352  switch (I->getOpcode()) {
353    case Instruction::Call:
354      return lookup_or_add_call(cast<CallInst>(I));
355    case Instruction::Add:
356    case Instruction::FAdd:
357    case Instruction::Sub:
358    case Instruction::FSub:
359    case Instruction::Mul:
360    case Instruction::FMul:
361    case Instruction::UDiv:
362    case Instruction::SDiv:
363    case Instruction::FDiv:
364    case Instruction::URem:
365    case Instruction::SRem:
366    case Instruction::FRem:
367    case Instruction::Shl:
368    case Instruction::LShr:
369    case Instruction::AShr:
370    case Instruction::And:
371    case Instruction::Or :
372    case Instruction::Xor:
373    case Instruction::ICmp:
374    case Instruction::FCmp:
375    case Instruction::Trunc:
376    case Instruction::ZExt:
377    case Instruction::SExt:
378    case Instruction::FPToUI:
379    case Instruction::FPToSI:
380    case Instruction::UIToFP:
381    case Instruction::SIToFP:
382    case Instruction::FPTrunc:
383    case Instruction::FPExt:
384    case Instruction::PtrToInt:
385    case Instruction::IntToPtr:
386    case Instruction::BitCast:
387    case Instruction::Select:
388    case Instruction::ExtractElement:
389    case Instruction::InsertElement:
390    case Instruction::ShuffleVector:
391    case Instruction::InsertValue:
392    case Instruction::GetElementPtr:
393      exp = create_expression(I);
394      break;
395    case Instruction::ExtractValue:
396      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
397      break;
398    default:
399      valueNumbering[V] = nextValueNumber;
400      return nextValueNumber++;
401  }
402
403  uint32_t& e = expressionNumbering[exp];
404  if (!e) e = nextValueNumber++;
405  valueNumbering[V] = e;
406  return e;
407}
408
409/// lookup - Returns the value number of the specified value. Fails if
410/// the value has not yet been numbered.
411uint32_t ValueTable::lookup(Value *V) const {
412  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
413  assert(VI != valueNumbering.end() && "Value not numbered?");
414  return VI->second;
415}
416
417/// clear - Remove all entries from the ValueTable.
418void ValueTable::clear() {
419  valueNumbering.clear();
420  expressionNumbering.clear();
421  nextValueNumber = 1;
422}
423
424/// erase - Remove a value from the value numbering.
425void ValueTable::erase(Value *V) {
426  valueNumbering.erase(V);
427}
428
429/// verifyRemoved - Verify that the value is removed from all internal data
430/// structures.
431void ValueTable::verifyRemoved(const Value *V) const {
432  for (DenseMap<Value*, uint32_t>::const_iterator
433         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
434    assert(I->first != V && "Inst still occurs in value numbering map!");
435  }
436}
437
438//===----------------------------------------------------------------------===//
439//                                GVN Pass
440//===----------------------------------------------------------------------===//
441
442namespace {
443
444  class GVN : public FunctionPass {
445    bool NoLoads;
446    MemoryDependenceAnalysis *MD;
447    DominatorTree *DT;
448    const TargetData *TD;
449
450    ValueTable VN;
451
452    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
453    /// have that value number.  Use findLeader to query it.
454    struct LeaderTableEntry {
455      Value *Val;
456      BasicBlock *BB;
457      LeaderTableEntry *Next;
458    };
459    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
460    BumpPtrAllocator TableAllocator;
461
462    SmallVector<Instruction*, 8> InstrsToErase;
463  public:
464    static char ID; // Pass identification, replacement for typeid
465    explicit GVN(bool noloads = false)
466        : FunctionPass(ID), NoLoads(noloads), MD(0) {
467      initializeGVNPass(*PassRegistry::getPassRegistry());
468    }
469
470    bool runOnFunction(Function &F);
471
472    /// markInstructionForDeletion - This removes the specified instruction from
473    /// our various maps and marks it for deletion.
474    void markInstructionForDeletion(Instruction *I) {
475      VN.erase(I);
476      InstrsToErase.push_back(I);
477    }
478
479    const TargetData *getTargetData() const { return TD; }
480    DominatorTree &getDominatorTree() const { return *DT; }
481    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
482    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
483  private:
484    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
485    /// its value number.
486    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
487      LeaderTableEntry &Curr = LeaderTable[N];
488      if (!Curr.Val) {
489        Curr.Val = V;
490        Curr.BB = BB;
491        return;
492      }
493
494      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
495      Node->Val = V;
496      Node->BB = BB;
497      Node->Next = Curr.Next;
498      Curr.Next = Node;
499    }
500
501    /// removeFromLeaderTable - Scan the list of values corresponding to a given
502    /// value number, and remove the given value if encountered.
503    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
504      LeaderTableEntry* Prev = 0;
505      LeaderTableEntry* Curr = &LeaderTable[N];
506
507      while (Curr->Val != V || Curr->BB != BB) {
508        Prev = Curr;
509        Curr = Curr->Next;
510      }
511
512      if (Prev) {
513        Prev->Next = Curr->Next;
514      } else {
515        if (!Curr->Next) {
516          Curr->Val = 0;
517          Curr->BB = 0;
518        } else {
519          LeaderTableEntry* Next = Curr->Next;
520          Curr->Val = Next->Val;
521          Curr->BB = Next->BB;
522          Curr->Next = Next->Next;
523        }
524      }
525    }
526
527    // List of critical edges to be split between iterations.
528    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
529
530    // This transformation requires dominator postdominator info
531    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
532      AU.addRequired<DominatorTree>();
533      if (!NoLoads)
534        AU.addRequired<MemoryDependenceAnalysis>();
535      AU.addRequired<AliasAnalysis>();
536
537      AU.addPreserved<DominatorTree>();
538      AU.addPreserved<AliasAnalysis>();
539    }
540
541
542    // Helper fuctions
543    // FIXME: eliminate or document these better
544    bool processLoad(LoadInst *L);
545    bool processInstruction(Instruction *I);
546    bool processNonLocalLoad(LoadInst *L);
547    bool processBlock(BasicBlock *BB);
548    void dump(DenseMap<uint32_t, Value*> &d);
549    bool iterateOnFunction(Function &F);
550    bool performPRE(Function &F);
551    Value *findLeader(BasicBlock *BB, uint32_t num);
552    void cleanupGlobalSets();
553    void verifyRemoved(const Instruction *I) const;
554    bool splitCriticalEdges();
555    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
556                                         BasicBlock *Root);
557    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
558  };
559
560  char GVN::ID = 0;
561}
562
563// createGVNPass - The public interface to this file...
564FunctionPass *llvm::createGVNPass(bool NoLoads) {
565  return new GVN(NoLoads);
566}
567
568INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
569INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
570INITIALIZE_PASS_DEPENDENCY(DominatorTree)
571INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
572INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
573
574void GVN::dump(DenseMap<uint32_t, Value*>& d) {
575  errs() << "{\n";
576  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
577       E = d.end(); I != E; ++I) {
578      errs() << I->first << "\n";
579      I->second->dump();
580  }
581  errs() << "}\n";
582}
583
584/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
585/// we're analyzing is fully available in the specified block.  As we go, keep
586/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
587/// map is actually a tri-state map with the following values:
588///   0) we know the block *is not* fully available.
589///   1) we know the block *is* fully available.
590///   2) we do not know whether the block is fully available or not, but we are
591///      currently speculating that it will be.
592///   3) we are speculating for this block and have used that to speculate for
593///      other blocks.
594static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
595                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
596  // Optimistically assume that the block is fully available and check to see
597  // if we already know about this block in one lookup.
598  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
599    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
600
601  // If the entry already existed for this block, return the precomputed value.
602  if (!IV.second) {
603    // If this is a speculative "available" value, mark it as being used for
604    // speculation of other blocks.
605    if (IV.first->second == 2)
606      IV.first->second = 3;
607    return IV.first->second != 0;
608  }
609
610  // Otherwise, see if it is fully available in all predecessors.
611  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
612
613  // If this block has no predecessors, it isn't live-in here.
614  if (PI == PE)
615    goto SpeculationFailure;
616
617  for (; PI != PE; ++PI)
618    // If the value isn't fully available in one of our predecessors, then it
619    // isn't fully available in this block either.  Undo our previous
620    // optimistic assumption and bail out.
621    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
622      goto SpeculationFailure;
623
624  return true;
625
626// SpeculationFailure - If we get here, we found out that this is not, after
627// all, a fully-available block.  We have a problem if we speculated on this and
628// used the speculation to mark other blocks as available.
629SpeculationFailure:
630  char &BBVal = FullyAvailableBlocks[BB];
631
632  // If we didn't speculate on this, just return with it set to false.
633  if (BBVal == 2) {
634    BBVal = 0;
635    return false;
636  }
637
638  // If we did speculate on this value, we could have blocks set to 1 that are
639  // incorrect.  Walk the (transitive) successors of this block and mark them as
640  // 0 if set to one.
641  SmallVector<BasicBlock*, 32> BBWorklist;
642  BBWorklist.push_back(BB);
643
644  do {
645    BasicBlock *Entry = BBWorklist.pop_back_val();
646    // Note that this sets blocks to 0 (unavailable) if they happen to not
647    // already be in FullyAvailableBlocks.  This is safe.
648    char &EntryVal = FullyAvailableBlocks[Entry];
649    if (EntryVal == 0) continue;  // Already unavailable.
650
651    // Mark as unavailable.
652    EntryVal = 0;
653
654    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
655      BBWorklist.push_back(*I);
656  } while (!BBWorklist.empty());
657
658  return false;
659}
660
661
662/// CanCoerceMustAliasedValueToLoad - Return true if
663/// CoerceAvailableValueToLoadType will succeed.
664static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
665                                            Type *LoadTy,
666                                            const TargetData &TD) {
667  // If the loaded or stored value is an first class array or struct, don't try
668  // to transform them.  We need to be able to bitcast to integer.
669  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
670      StoredVal->getType()->isStructTy() ||
671      StoredVal->getType()->isArrayTy())
672    return false;
673
674  // The store has to be at least as big as the load.
675  if (TD.getTypeSizeInBits(StoredVal->getType()) <
676        TD.getTypeSizeInBits(LoadTy))
677    return false;
678
679  return true;
680}
681
682
683/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
684/// then a load from a must-aliased pointer of a different type, try to coerce
685/// the stored value.  LoadedTy is the type of the load we want to replace and
686/// InsertPt is the place to insert new instructions.
687///
688/// If we can't do it, return null.
689static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
690                                             Type *LoadedTy,
691                                             Instruction *InsertPt,
692                                             const TargetData &TD) {
693  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
694    return 0;
695
696  // If this is already the right type, just return it.
697  Type *StoredValTy = StoredVal->getType();
698
699  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
700  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
701
702  // If the store and reload are the same size, we can always reuse it.
703  if (StoreSize == LoadSize) {
704    // Pointer to Pointer -> use bitcast.
705    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
706      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
707
708    // Convert source pointers to integers, which can be bitcast.
709    if (StoredValTy->isPointerTy()) {
710      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
711      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
712    }
713
714    Type *TypeToCastTo = LoadedTy;
715    if (TypeToCastTo->isPointerTy())
716      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
717
718    if (StoredValTy != TypeToCastTo)
719      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
720
721    // Cast to pointer if the load needs a pointer type.
722    if (LoadedTy->isPointerTy())
723      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
724
725    return StoredVal;
726  }
727
728  // If the loaded value is smaller than the available value, then we can
729  // extract out a piece from it.  If the available value is too small, then we
730  // can't do anything.
731  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
732
733  // Convert source pointers to integers, which can be manipulated.
734  if (StoredValTy->isPointerTy()) {
735    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
736    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
737  }
738
739  // Convert vectors and fp to integer, which can be manipulated.
740  if (!StoredValTy->isIntegerTy()) {
741    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
742    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
743  }
744
745  // If this is a big-endian system, we need to shift the value down to the low
746  // bits so that a truncate will work.
747  if (TD.isBigEndian()) {
748    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
749    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
750  }
751
752  // Truncate the integer to the right size now.
753  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
754  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
755
756  if (LoadedTy == NewIntTy)
757    return StoredVal;
758
759  // If the result is a pointer, inttoptr.
760  if (LoadedTy->isPointerTy())
761    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
762
763  // Otherwise, bitcast.
764  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
765}
766
767/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
768/// memdep query of a load that ends up being a clobbering memory write (store,
769/// memset, memcpy, memmove).  This means that the write *may* provide bits used
770/// by the load but we can't be sure because the pointers don't mustalias.
771///
772/// Check this case to see if there is anything more we can do before we give
773/// up.  This returns -1 if we have to give up, or a byte number in the stored
774/// value of the piece that feeds the load.
775static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
776                                          Value *WritePtr,
777                                          uint64_t WriteSizeInBits,
778                                          const TargetData &TD) {
779  // If the loaded or stored value is an first class array or struct, don't try
780  // to transform them.  We need to be able to bitcast to integer.
781  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
782    return -1;
783
784  int64_t StoreOffset = 0, LoadOffset = 0;
785  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
786  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
787  if (StoreBase != LoadBase)
788    return -1;
789
790  // If the load and store are to the exact same address, they should have been
791  // a must alias.  AA must have gotten confused.
792  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
793  // to a load from the base of the memset.
794#if 0
795  if (LoadOffset == StoreOffset) {
796    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
797    << "Base       = " << *StoreBase << "\n"
798    << "Store Ptr  = " << *WritePtr << "\n"
799    << "Store Offs = " << StoreOffset << "\n"
800    << "Load Ptr   = " << *LoadPtr << "\n";
801    abort();
802  }
803#endif
804
805  // If the load and store don't overlap at all, the store doesn't provide
806  // anything to the load.  In this case, they really don't alias at all, AA
807  // must have gotten confused.
808  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
809
810  if ((WriteSizeInBits & 7) | (LoadSize & 7))
811    return -1;
812  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
813  LoadSize >>= 3;
814
815
816  bool isAAFailure = false;
817  if (StoreOffset < LoadOffset)
818    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
819  else
820    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
821
822  if (isAAFailure) {
823#if 0
824    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
825    << "Base       = " << *StoreBase << "\n"
826    << "Store Ptr  = " << *WritePtr << "\n"
827    << "Store Offs = " << StoreOffset << "\n"
828    << "Load Ptr   = " << *LoadPtr << "\n";
829    abort();
830#endif
831    return -1;
832  }
833
834  // If the Load isn't completely contained within the stored bits, we don't
835  // have all the bits to feed it.  We could do something crazy in the future
836  // (issue a smaller load then merge the bits in) but this seems unlikely to be
837  // valuable.
838  if (StoreOffset > LoadOffset ||
839      StoreOffset+StoreSize < LoadOffset+LoadSize)
840    return -1;
841
842  // Okay, we can do this transformation.  Return the number of bytes into the
843  // store that the load is.
844  return LoadOffset-StoreOffset;
845}
846
847/// AnalyzeLoadFromClobberingStore - This function is called when we have a
848/// memdep query of a load that ends up being a clobbering store.
849static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
850                                          StoreInst *DepSI,
851                                          const TargetData &TD) {
852  // Cannot handle reading from store of first-class aggregate yet.
853  if (DepSI->getValueOperand()->getType()->isStructTy() ||
854      DepSI->getValueOperand()->getType()->isArrayTy())
855    return -1;
856
857  Value *StorePtr = DepSI->getPointerOperand();
858  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
859  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
860                                        StorePtr, StoreSize, TD);
861}
862
863/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
864/// memdep query of a load that ends up being clobbered by another load.  See if
865/// the other load can feed into the second load.
866static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
867                                         LoadInst *DepLI, const TargetData &TD){
868  // Cannot handle reading from store of first-class aggregate yet.
869  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
870    return -1;
871
872  Value *DepPtr = DepLI->getPointerOperand();
873  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
874  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
875  if (R != -1) return R;
876
877  // If we have a load/load clobber an DepLI can be widened to cover this load,
878  // then we should widen it!
879  int64_t LoadOffs = 0;
880  const Value *LoadBase =
881    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
882  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
883
884  unsigned Size = MemoryDependenceAnalysis::
885    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
886  if (Size == 0) return -1;
887
888  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
889}
890
891
892
893static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
894                                            MemIntrinsic *MI,
895                                            const TargetData &TD) {
896  // If the mem operation is a non-constant size, we can't handle it.
897  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
898  if (SizeCst == 0) return -1;
899  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
900
901  // If this is memset, we just need to see if the offset is valid in the size
902  // of the memset..
903  if (MI->getIntrinsicID() == Intrinsic::memset)
904    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
905                                          MemSizeInBits, TD);
906
907  // If we have a memcpy/memmove, the only case we can handle is if this is a
908  // copy from constant memory.  In that case, we can read directly from the
909  // constant memory.
910  MemTransferInst *MTI = cast<MemTransferInst>(MI);
911
912  Constant *Src = dyn_cast<Constant>(MTI->getSource());
913  if (Src == 0) return -1;
914
915  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
916  if (GV == 0 || !GV->isConstant()) return -1;
917
918  // See if the access is within the bounds of the transfer.
919  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
920                                              MI->getDest(), MemSizeInBits, TD);
921  if (Offset == -1)
922    return Offset;
923
924  // Otherwise, see if we can constant fold a load from the constant with the
925  // offset applied as appropriate.
926  Src = ConstantExpr::getBitCast(Src,
927                                 llvm::Type::getInt8PtrTy(Src->getContext()));
928  Constant *OffsetCst =
929    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
930  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
931  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
932  if (ConstantFoldLoadFromConstPtr(Src, &TD))
933    return Offset;
934  return -1;
935}
936
937
938/// GetStoreValueForLoad - This function is called when we have a
939/// memdep query of a load that ends up being a clobbering store.  This means
940/// that the store provides bits used by the load but we the pointers don't
941/// mustalias.  Check this case to see if there is anything more we can do
942/// before we give up.
943static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
944                                   Type *LoadTy,
945                                   Instruction *InsertPt, const TargetData &TD){
946  LLVMContext &Ctx = SrcVal->getType()->getContext();
947
948  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
949  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
950
951  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
952
953  // Compute which bits of the stored value are being used by the load.  Convert
954  // to an integer type to start with.
955  if (SrcVal->getType()->isPointerTy())
956    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
957  if (!SrcVal->getType()->isIntegerTy())
958    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
959
960  // Shift the bits to the least significant depending on endianness.
961  unsigned ShiftAmt;
962  if (TD.isLittleEndian())
963    ShiftAmt = Offset*8;
964  else
965    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
966
967  if (ShiftAmt)
968    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
969
970  if (LoadSize != StoreSize)
971    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
972
973  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
974}
975
976/// GetStoreValueForLoad - This function is called when we have a
977/// memdep query of a load that ends up being a clobbering load.  This means
978/// that the load *may* provide bits used by the load but we can't be sure
979/// because the pointers don't mustalias.  Check this case to see if there is
980/// anything more we can do before we give up.
981static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
982                                  Type *LoadTy, Instruction *InsertPt,
983                                  GVN &gvn) {
984  const TargetData &TD = *gvn.getTargetData();
985  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
986  // widen SrcVal out to a larger load.
987  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
988  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
989  if (Offset+LoadSize > SrcValSize) {
990    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
991    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
992    // If we have a load/load clobber an DepLI can be widened to cover this
993    // load, then we should widen it to the next power of 2 size big enough!
994    unsigned NewLoadSize = Offset+LoadSize;
995    if (!isPowerOf2_32(NewLoadSize))
996      NewLoadSize = NextPowerOf2(NewLoadSize);
997
998    Value *PtrVal = SrcVal->getPointerOperand();
999
1000    // Insert the new load after the old load.  This ensures that subsequent
1001    // memdep queries will find the new load.  We can't easily remove the old
1002    // load completely because it is already in the value numbering table.
1003    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1004    Type *DestPTy =
1005      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1006    DestPTy = PointerType::get(DestPTy,
1007                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1008    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1009    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1010    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1011    NewLoad->takeName(SrcVal);
1012    NewLoad->setAlignment(SrcVal->getAlignment());
1013
1014    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1015    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1016
1017    // Replace uses of the original load with the wider load.  On a big endian
1018    // system, we need to shift down to get the relevant bits.
1019    Value *RV = NewLoad;
1020    if (TD.isBigEndian())
1021      RV = Builder.CreateLShr(RV,
1022                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1023    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1024    SrcVal->replaceAllUsesWith(RV);
1025
1026    // We would like to use gvn.markInstructionForDeletion here, but we can't
1027    // because the load is already memoized into the leader map table that GVN
1028    // tracks.  It is potentially possible to remove the load from the table,
1029    // but then there all of the operations based on it would need to be
1030    // rehashed.  Just leave the dead load around.
1031    gvn.getMemDep().removeInstruction(SrcVal);
1032    SrcVal = NewLoad;
1033  }
1034
1035  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1036}
1037
1038
1039/// GetMemInstValueForLoad - This function is called when we have a
1040/// memdep query of a load that ends up being a clobbering mem intrinsic.
1041static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1042                                     Type *LoadTy, Instruction *InsertPt,
1043                                     const TargetData &TD){
1044  LLVMContext &Ctx = LoadTy->getContext();
1045  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1046
1047  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1048
1049  // We know that this method is only called when the mem transfer fully
1050  // provides the bits for the load.
1051  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1052    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1053    // independently of what the offset is.
1054    Value *Val = MSI->getValue();
1055    if (LoadSize != 1)
1056      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1057
1058    Value *OneElt = Val;
1059
1060    // Splat the value out to the right number of bits.
1061    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1062      // If we can double the number of bytes set, do it.
1063      if (NumBytesSet*2 <= LoadSize) {
1064        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1065        Val = Builder.CreateOr(Val, ShVal);
1066        NumBytesSet <<= 1;
1067        continue;
1068      }
1069
1070      // Otherwise insert one byte at a time.
1071      Value *ShVal = Builder.CreateShl(Val, 1*8);
1072      Val = Builder.CreateOr(OneElt, ShVal);
1073      ++NumBytesSet;
1074    }
1075
1076    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1077  }
1078
1079  // Otherwise, this is a memcpy/memmove from a constant global.
1080  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1081  Constant *Src = cast<Constant>(MTI->getSource());
1082
1083  // Otherwise, see if we can constant fold a load from the constant with the
1084  // offset applied as appropriate.
1085  Src = ConstantExpr::getBitCast(Src,
1086                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1087  Constant *OffsetCst =
1088  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1089  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1090  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1091  return ConstantFoldLoadFromConstPtr(Src, &TD);
1092}
1093
1094namespace {
1095
1096struct AvailableValueInBlock {
1097  /// BB - The basic block in question.
1098  BasicBlock *BB;
1099  enum ValType {
1100    SimpleVal,  // A simple offsetted value that is accessed.
1101    LoadVal,    // A value produced by a load.
1102    MemIntrin   // A memory intrinsic which is loaded from.
1103  };
1104
1105  /// V - The value that is live out of the block.
1106  PointerIntPair<Value *, 2, ValType> Val;
1107
1108  /// Offset - The byte offset in Val that is interesting for the load query.
1109  unsigned Offset;
1110
1111  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1112                                   unsigned Offset = 0) {
1113    AvailableValueInBlock Res;
1114    Res.BB = BB;
1115    Res.Val.setPointer(V);
1116    Res.Val.setInt(SimpleVal);
1117    Res.Offset = Offset;
1118    return Res;
1119  }
1120
1121  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1122                                     unsigned Offset = 0) {
1123    AvailableValueInBlock Res;
1124    Res.BB = BB;
1125    Res.Val.setPointer(MI);
1126    Res.Val.setInt(MemIntrin);
1127    Res.Offset = Offset;
1128    return Res;
1129  }
1130
1131  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1132                                       unsigned Offset = 0) {
1133    AvailableValueInBlock Res;
1134    Res.BB = BB;
1135    Res.Val.setPointer(LI);
1136    Res.Val.setInt(LoadVal);
1137    Res.Offset = Offset;
1138    return Res;
1139  }
1140
1141  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1142  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1143  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1144
1145  Value *getSimpleValue() const {
1146    assert(isSimpleValue() && "Wrong accessor");
1147    return Val.getPointer();
1148  }
1149
1150  LoadInst *getCoercedLoadValue() const {
1151    assert(isCoercedLoadValue() && "Wrong accessor");
1152    return cast<LoadInst>(Val.getPointer());
1153  }
1154
1155  MemIntrinsic *getMemIntrinValue() const {
1156    assert(isMemIntrinValue() && "Wrong accessor");
1157    return cast<MemIntrinsic>(Val.getPointer());
1158  }
1159
1160  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1161  /// defined here to the specified type.  This handles various coercion cases.
1162  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1163    Value *Res;
1164    if (isSimpleValue()) {
1165      Res = getSimpleValue();
1166      if (Res->getType() != LoadTy) {
1167        const TargetData *TD = gvn.getTargetData();
1168        assert(TD && "Need target data to handle type mismatch case");
1169        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1170                                   *TD);
1171
1172        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1173                     << *getSimpleValue() << '\n'
1174                     << *Res << '\n' << "\n\n\n");
1175      }
1176    } else if (isCoercedLoadValue()) {
1177      LoadInst *Load = getCoercedLoadValue();
1178      if (Load->getType() == LoadTy && Offset == 0) {
1179        Res = Load;
1180      } else {
1181        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1182                                  gvn);
1183
1184        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1185                     << *getCoercedLoadValue() << '\n'
1186                     << *Res << '\n' << "\n\n\n");
1187      }
1188    } else {
1189      const TargetData *TD = gvn.getTargetData();
1190      assert(TD && "Need target data to handle type mismatch case");
1191      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1192                                   LoadTy, BB->getTerminator(), *TD);
1193      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1194                   << "  " << *getMemIntrinValue() << '\n'
1195                   << *Res << '\n' << "\n\n\n");
1196    }
1197    return Res;
1198  }
1199};
1200
1201} // end anonymous namespace
1202
1203/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1204/// construct SSA form, allowing us to eliminate LI.  This returns the value
1205/// that should be used at LI's definition site.
1206static Value *ConstructSSAForLoadSet(LoadInst *LI,
1207                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1208                                     GVN &gvn) {
1209  // Check for the fully redundant, dominating load case.  In this case, we can
1210  // just use the dominating value directly.
1211  if (ValuesPerBlock.size() == 1 &&
1212      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1213                                               LI->getParent()))
1214    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1215
1216  // Otherwise, we have to construct SSA form.
1217  SmallVector<PHINode*, 8> NewPHIs;
1218  SSAUpdater SSAUpdate(&NewPHIs);
1219  SSAUpdate.Initialize(LI->getType(), LI->getName());
1220
1221  Type *LoadTy = LI->getType();
1222
1223  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1224    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1225    BasicBlock *BB = AV.BB;
1226
1227    if (SSAUpdate.HasValueForBlock(BB))
1228      continue;
1229
1230    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1231  }
1232
1233  // Perform PHI construction.
1234  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1235
1236  // If new PHI nodes were created, notify alias analysis.
1237  if (V->getType()->isPointerTy()) {
1238    AliasAnalysis *AA = gvn.getAliasAnalysis();
1239
1240    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1241      AA->copyValue(LI, NewPHIs[i]);
1242
1243    // Now that we've copied information to the new PHIs, scan through
1244    // them again and inform alias analysis that we've added potentially
1245    // escaping uses to any values that are operands to these PHIs.
1246    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1247      PHINode *P = NewPHIs[i];
1248      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1249        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1250        AA->addEscapingUse(P->getOperandUse(jj));
1251      }
1252    }
1253  }
1254
1255  return V;
1256}
1257
1258static bool isLifetimeStart(const Instruction *Inst) {
1259  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1260    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1261  return false;
1262}
1263
1264/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1265/// non-local by performing PHI construction.
1266bool GVN::processNonLocalLoad(LoadInst *LI) {
1267  // Find the non-local dependencies of the load.
1268  SmallVector<NonLocalDepResult, 64> Deps;
1269  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1270  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1271  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1272  //             << Deps.size() << *LI << '\n');
1273
1274  // If we had to process more than one hundred blocks to find the
1275  // dependencies, this load isn't worth worrying about.  Optimizing
1276  // it will be too expensive.
1277  if (Deps.size() > 100)
1278    return false;
1279
1280  // If we had a phi translation failure, we'll have a single entry which is a
1281  // clobber in the current block.  Reject this early.
1282  if (Deps.size() == 1 && Deps[0].getResult().isUnknown()) {
1283    DEBUG(
1284      dbgs() << "GVN: non-local load ";
1285      WriteAsOperand(dbgs(), LI);
1286      dbgs() << " has unknown dependencies\n";
1287    );
1288    return false;
1289  }
1290
1291  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1292  // where we have a value available in repl, also keep track of whether we see
1293  // dependencies that produce an unknown value for the load (such as a call
1294  // that could potentially clobber the load).
1295  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1296  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1297
1298  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1299    BasicBlock *DepBB = Deps[i].getBB();
1300    MemDepResult DepInfo = Deps[i].getResult();
1301
1302    if (DepInfo.isUnknown()) {
1303      UnavailableBlocks.push_back(DepBB);
1304      continue;
1305    }
1306
1307    if (DepInfo.isClobber()) {
1308      // The address being loaded in this non-local block may not be the same as
1309      // the pointer operand of the load if PHI translation occurs.  Make sure
1310      // to consider the right address.
1311      Value *Address = Deps[i].getAddress();
1312
1313      // If the dependence is to a store that writes to a superset of the bits
1314      // read by the load, we can extract the bits we need for the load from the
1315      // stored value.
1316      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1317        if (TD && Address) {
1318          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1319                                                      DepSI, *TD);
1320          if (Offset != -1) {
1321            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1322                                                       DepSI->getValueOperand(),
1323                                                                Offset));
1324            continue;
1325          }
1326        }
1327      }
1328
1329      // Check to see if we have something like this:
1330      //    load i32* P
1331      //    load i8* (P+1)
1332      // if we have this, replace the later with an extraction from the former.
1333      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1334        // If this is a clobber and L is the first instruction in its block, then
1335        // we have the first instruction in the entry block.
1336        if (DepLI != LI && Address && TD) {
1337          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1338                                                     LI->getPointerOperand(),
1339                                                     DepLI, *TD);
1340
1341          if (Offset != -1) {
1342            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1343                                                                    Offset));
1344            continue;
1345          }
1346        }
1347      }
1348
1349      // If the clobbering value is a memset/memcpy/memmove, see if we can
1350      // forward a value on from it.
1351      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1352        if (TD && Address) {
1353          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1354                                                        DepMI, *TD);
1355          if (Offset != -1) {
1356            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1357                                                                  Offset));
1358            continue;
1359          }
1360        }
1361      }
1362
1363      UnavailableBlocks.push_back(DepBB);
1364      continue;
1365    }
1366
1367    assert(DepInfo.isDef() && "Expecting def here");
1368
1369    Instruction *DepInst = DepInfo.getInst();
1370
1371    // Loading the allocation -> undef.
1372    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1373        // Loading immediately after lifetime begin -> undef.
1374        isLifetimeStart(DepInst)) {
1375      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1376                                             UndefValue::get(LI->getType())));
1377      continue;
1378    }
1379
1380    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1381      // Reject loads and stores that are to the same address but are of
1382      // different types if we have to.
1383      if (S->getValueOperand()->getType() != LI->getType()) {
1384        // If the stored value is larger or equal to the loaded value, we can
1385        // reuse it.
1386        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1387                                                        LI->getType(), *TD)) {
1388          UnavailableBlocks.push_back(DepBB);
1389          continue;
1390        }
1391      }
1392
1393      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1394                                                         S->getValueOperand()));
1395      continue;
1396    }
1397
1398    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1399      // If the types mismatch and we can't handle it, reject reuse of the load.
1400      if (LD->getType() != LI->getType()) {
1401        // If the stored value is larger or equal to the loaded value, we can
1402        // reuse it.
1403        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1404          UnavailableBlocks.push_back(DepBB);
1405          continue;
1406        }
1407      }
1408      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1409      continue;
1410    }
1411
1412    UnavailableBlocks.push_back(DepBB);
1413    continue;
1414  }
1415
1416  // If we have no predecessors that produce a known value for this load, exit
1417  // early.
1418  if (ValuesPerBlock.empty()) return false;
1419
1420  // If all of the instructions we depend on produce a known value for this
1421  // load, then it is fully redundant and we can use PHI insertion to compute
1422  // its value.  Insert PHIs and remove the fully redundant value now.
1423  if (UnavailableBlocks.empty()) {
1424    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1425
1426    // Perform PHI construction.
1427    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1428    LI->replaceAllUsesWith(V);
1429
1430    if (isa<PHINode>(V))
1431      V->takeName(LI);
1432    if (V->getType()->isPointerTy())
1433      MD->invalidateCachedPointerInfo(V);
1434    markInstructionForDeletion(LI);
1435    ++NumGVNLoad;
1436    return true;
1437  }
1438
1439  if (!EnablePRE || !EnableLoadPRE)
1440    return false;
1441
1442  // Okay, we have *some* definitions of the value.  This means that the value
1443  // is available in some of our (transitive) predecessors.  Lets think about
1444  // doing PRE of this load.  This will involve inserting a new load into the
1445  // predecessor when it's not available.  We could do this in general, but
1446  // prefer to not increase code size.  As such, we only do this when we know
1447  // that we only have to insert *one* load (which means we're basically moving
1448  // the load, not inserting a new one).
1449
1450  SmallPtrSet<BasicBlock *, 4> Blockers;
1451  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1452    Blockers.insert(UnavailableBlocks[i]);
1453
1454  // Let's find the first basic block with more than one predecessor.  Walk
1455  // backwards through predecessors if needed.
1456  BasicBlock *LoadBB = LI->getParent();
1457  BasicBlock *TmpBB = LoadBB;
1458
1459  bool isSinglePred = false;
1460  bool allSingleSucc = true;
1461  while (TmpBB->getSinglePredecessor()) {
1462    isSinglePred = true;
1463    TmpBB = TmpBB->getSinglePredecessor();
1464    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1465      return false;
1466    if (Blockers.count(TmpBB))
1467      return false;
1468
1469    // If any of these blocks has more than one successor (i.e. if the edge we
1470    // just traversed was critical), then there are other paths through this
1471    // block along which the load may not be anticipated.  Hoisting the load
1472    // above this block would be adding the load to execution paths along
1473    // which it was not previously executed.
1474    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1475      return false;
1476  }
1477
1478  assert(TmpBB);
1479  LoadBB = TmpBB;
1480
1481  // FIXME: It is extremely unclear what this loop is doing, other than
1482  // artificially restricting loadpre.
1483  if (isSinglePred) {
1484    bool isHot = false;
1485    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1486      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1487      if (AV.isSimpleValue())
1488        // "Hot" Instruction is in some loop (because it dominates its dep.
1489        // instruction).
1490        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1491          if (DT->dominates(LI, I)) {
1492            isHot = true;
1493            break;
1494          }
1495    }
1496
1497    // We are interested only in "hot" instructions. We don't want to do any
1498    // mis-optimizations here.
1499    if (!isHot)
1500      return false;
1501  }
1502
1503  // Check to see how many predecessors have the loaded value fully
1504  // available.
1505  DenseMap<BasicBlock*, Value*> PredLoads;
1506  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1507  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1508    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1509  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1510    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1511
1512  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1513  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1514       PI != E; ++PI) {
1515    BasicBlock *Pred = *PI;
1516    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1517      continue;
1518    }
1519    PredLoads[Pred] = 0;
1520
1521    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1522      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1523        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1524              << Pred->getName() << "': " << *LI << '\n');
1525        return false;
1526      }
1527
1528      if (LoadBB->isLandingPad()) {
1529        DEBUG(dbgs()
1530              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1531              << Pred->getName() << "': " << *LI << '\n');
1532        return false;
1533      }
1534
1535      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1536      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1537    }
1538  }
1539
1540  if (!NeedToSplit.empty()) {
1541    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1542    return false;
1543  }
1544
1545  // Decide whether PRE is profitable for this load.
1546  unsigned NumUnavailablePreds = PredLoads.size();
1547  assert(NumUnavailablePreds != 0 &&
1548         "Fully available value should be eliminated above!");
1549
1550  // If this load is unavailable in multiple predecessors, reject it.
1551  // FIXME: If we could restructure the CFG, we could make a common pred with
1552  // all the preds that don't have an available LI and insert a new load into
1553  // that one block.
1554  if (NumUnavailablePreds != 1)
1555      return false;
1556
1557  // Check if the load can safely be moved to all the unavailable predecessors.
1558  bool CanDoPRE = true;
1559  SmallVector<Instruction*, 8> NewInsts;
1560  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1561         E = PredLoads.end(); I != E; ++I) {
1562    BasicBlock *UnavailablePred = I->first;
1563
1564    // Do PHI translation to get its value in the predecessor if necessary.  The
1565    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1566
1567    // If all preds have a single successor, then we know it is safe to insert
1568    // the load on the pred (?!?), so we can insert code to materialize the
1569    // pointer if it is not available.
1570    PHITransAddr Address(LI->getPointerOperand(), TD);
1571    Value *LoadPtr = 0;
1572    if (allSingleSucc) {
1573      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1574                                                  *DT, NewInsts);
1575    } else {
1576      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1577      LoadPtr = Address.getAddr();
1578    }
1579
1580    // If we couldn't find or insert a computation of this phi translated value,
1581    // we fail PRE.
1582    if (LoadPtr == 0) {
1583      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1584            << *LI->getPointerOperand() << "\n");
1585      CanDoPRE = false;
1586      break;
1587    }
1588
1589    // Make sure it is valid to move this load here.  We have to watch out for:
1590    //  @1 = getelementptr (i8* p, ...
1591    //  test p and branch if == 0
1592    //  load @1
1593    // It is valid to have the getelementptr before the test, even if p can
1594    // be 0, as getelementptr only does address arithmetic.
1595    // If we are not pushing the value through any multiple-successor blocks
1596    // we do not have this case.  Otherwise, check that the load is safe to
1597    // put anywhere; this can be improved, but should be conservatively safe.
1598    if (!allSingleSucc &&
1599        // FIXME: REEVALUTE THIS.
1600        !isSafeToLoadUnconditionally(LoadPtr,
1601                                     UnavailablePred->getTerminator(),
1602                                     LI->getAlignment(), TD)) {
1603      CanDoPRE = false;
1604      break;
1605    }
1606
1607    I->second = LoadPtr;
1608  }
1609
1610  if (!CanDoPRE) {
1611    while (!NewInsts.empty()) {
1612      Instruction *I = NewInsts.pop_back_val();
1613      if (MD) MD->removeInstruction(I);
1614      I->eraseFromParent();
1615    }
1616    return false;
1617  }
1618
1619  // Okay, we can eliminate this load by inserting a reload in the predecessor
1620  // and using PHI construction to get the value in the other predecessors, do
1621  // it.
1622  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1623  DEBUG(if (!NewInsts.empty())
1624          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1625                 << *NewInsts.back() << '\n');
1626
1627  // Assign value numbers to the new instructions.
1628  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1629    // FIXME: We really _ought_ to insert these value numbers into their
1630    // parent's availability map.  However, in doing so, we risk getting into
1631    // ordering issues.  If a block hasn't been processed yet, we would be
1632    // marking a value as AVAIL-IN, which isn't what we intend.
1633    VN.lookup_or_add(NewInsts[i]);
1634  }
1635
1636  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1637         E = PredLoads.end(); I != E; ++I) {
1638    BasicBlock *UnavailablePred = I->first;
1639    Value *LoadPtr = I->second;
1640
1641    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1642                                        LI->getAlignment(),
1643                                        UnavailablePred->getTerminator());
1644
1645    // Transfer the old load's TBAA tag to the new load.
1646    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1647      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1648
1649    // Transfer DebugLoc.
1650    NewLoad->setDebugLoc(LI->getDebugLoc());
1651
1652    // Add the newly created load.
1653    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1654                                                        NewLoad));
1655    MD->invalidateCachedPointerInfo(LoadPtr);
1656    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1657  }
1658
1659  // Perform PHI construction.
1660  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1661  LI->replaceAllUsesWith(V);
1662  if (isa<PHINode>(V))
1663    V->takeName(LI);
1664  if (V->getType()->isPointerTy())
1665    MD->invalidateCachedPointerInfo(V);
1666  markInstructionForDeletion(LI);
1667  ++NumPRELoad;
1668  return true;
1669}
1670
1671/// processLoad - Attempt to eliminate a load, first by eliminating it
1672/// locally, and then attempting non-local elimination if that fails.
1673bool GVN::processLoad(LoadInst *L) {
1674  if (!MD)
1675    return false;
1676
1677  if (!L->isSimple())
1678    return false;
1679
1680  if (L->use_empty()) {
1681    markInstructionForDeletion(L);
1682    return true;
1683  }
1684
1685  // ... to a pointer that has been loaded from before...
1686  MemDepResult Dep = MD->getDependency(L);
1687
1688  // If we have a clobber and target data is around, see if this is a clobber
1689  // that we can fix up through code synthesis.
1690  if (Dep.isClobber() && TD) {
1691    // Check to see if we have something like this:
1692    //   store i32 123, i32* %P
1693    //   %A = bitcast i32* %P to i8*
1694    //   %B = gep i8* %A, i32 1
1695    //   %C = load i8* %B
1696    //
1697    // We could do that by recognizing if the clobber instructions are obviously
1698    // a common base + constant offset, and if the previous store (or memset)
1699    // completely covers this load.  This sort of thing can happen in bitfield
1700    // access code.
1701    Value *AvailVal = 0;
1702    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1703      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1704                                                  L->getPointerOperand(),
1705                                                  DepSI, *TD);
1706      if (Offset != -1)
1707        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1708                                        L->getType(), L, *TD);
1709    }
1710
1711    // Check to see if we have something like this:
1712    //    load i32* P
1713    //    load i8* (P+1)
1714    // if we have this, replace the later with an extraction from the former.
1715    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1716      // If this is a clobber and L is the first instruction in its block, then
1717      // we have the first instruction in the entry block.
1718      if (DepLI == L)
1719        return false;
1720
1721      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1722                                                 L->getPointerOperand(),
1723                                                 DepLI, *TD);
1724      if (Offset != -1)
1725        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1726    }
1727
1728    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1729    // a value on from it.
1730    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1731      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1732                                                    L->getPointerOperand(),
1733                                                    DepMI, *TD);
1734      if (Offset != -1)
1735        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1736    }
1737
1738    if (AvailVal) {
1739      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1740            << *AvailVal << '\n' << *L << "\n\n\n");
1741
1742      // Replace the load!
1743      L->replaceAllUsesWith(AvailVal);
1744      if (AvailVal->getType()->isPointerTy())
1745        MD->invalidateCachedPointerInfo(AvailVal);
1746      markInstructionForDeletion(L);
1747      ++NumGVNLoad;
1748      return true;
1749    }
1750  }
1751
1752  // If the value isn't available, don't do anything!
1753  if (Dep.isClobber()) {
1754    DEBUG(
1755      // fast print dep, using operator<< on instruction is too slow.
1756      dbgs() << "GVN: load ";
1757      WriteAsOperand(dbgs(), L);
1758      Instruction *I = Dep.getInst();
1759      dbgs() << " is clobbered by " << *I << '\n';
1760    );
1761    return false;
1762  }
1763
1764  if (Dep.isUnknown()) {
1765    DEBUG(
1766      // fast print dep, using operator<< on instruction is too slow.
1767      dbgs() << "GVN: load ";
1768      WriteAsOperand(dbgs(), L);
1769      dbgs() << " has unknown dependence\n";
1770    );
1771    return false;
1772  }
1773
1774  // If it is defined in another block, try harder.
1775  if (Dep.isNonLocal())
1776    return processNonLocalLoad(L);
1777
1778  assert(Dep.isDef() && "Expecting def here");
1779
1780  Instruction *DepInst = Dep.getInst();
1781  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1782    Value *StoredVal = DepSI->getValueOperand();
1783
1784    // The store and load are to a must-aliased pointer, but they may not
1785    // actually have the same type.  See if we know how to reuse the stored
1786    // value (depending on its type).
1787    if (StoredVal->getType() != L->getType()) {
1788      if (TD) {
1789        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1790                                                   L, *TD);
1791        if (StoredVal == 0)
1792          return false;
1793
1794        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1795                     << '\n' << *L << "\n\n\n");
1796      }
1797      else
1798        return false;
1799    }
1800
1801    // Remove it!
1802    L->replaceAllUsesWith(StoredVal);
1803    if (StoredVal->getType()->isPointerTy())
1804      MD->invalidateCachedPointerInfo(StoredVal);
1805    markInstructionForDeletion(L);
1806    ++NumGVNLoad;
1807    return true;
1808  }
1809
1810  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1811    Value *AvailableVal = DepLI;
1812
1813    // The loads are of a must-aliased pointer, but they may not actually have
1814    // the same type.  See if we know how to reuse the previously loaded value
1815    // (depending on its type).
1816    if (DepLI->getType() != L->getType()) {
1817      if (TD) {
1818        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1819                                                      L, *TD);
1820        if (AvailableVal == 0)
1821          return false;
1822
1823        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1824                     << "\n" << *L << "\n\n\n");
1825      }
1826      else
1827        return false;
1828    }
1829
1830    // Remove it!
1831    L->replaceAllUsesWith(AvailableVal);
1832    if (DepLI->getType()->isPointerTy())
1833      MD->invalidateCachedPointerInfo(DepLI);
1834    markInstructionForDeletion(L);
1835    ++NumGVNLoad;
1836    return true;
1837  }
1838
1839  // If this load really doesn't depend on anything, then we must be loading an
1840  // undef value.  This can happen when loading for a fresh allocation with no
1841  // intervening stores, for example.
1842  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1843    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1844    markInstructionForDeletion(L);
1845    ++NumGVNLoad;
1846    return true;
1847  }
1848
1849  // If this load occurs either right after a lifetime begin,
1850  // then the loaded value is undefined.
1851  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1852    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1853      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1854      markInstructionForDeletion(L);
1855      ++NumGVNLoad;
1856      return true;
1857    }
1858  }
1859
1860  return false;
1861}
1862
1863// findLeader - In order to find a leader for a given value number at a
1864// specific basic block, we first obtain the list of all Values for that number,
1865// and then scan the list to find one whose block dominates the block in
1866// question.  This is fast because dominator tree queries consist of only
1867// a few comparisons of DFS numbers.
1868Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1869  LeaderTableEntry Vals = LeaderTable[num];
1870  if (!Vals.Val) return 0;
1871
1872  Value *Val = 0;
1873  if (DT->dominates(Vals.BB, BB)) {
1874    Val = Vals.Val;
1875    if (isa<Constant>(Val)) return Val;
1876  }
1877
1878  LeaderTableEntry* Next = Vals.Next;
1879  while (Next) {
1880    if (DT->dominates(Next->BB, BB)) {
1881      if (isa<Constant>(Next->Val)) return Next->Val;
1882      if (!Val) Val = Next->Val;
1883    }
1884
1885    Next = Next->Next;
1886  }
1887
1888  return Val;
1889}
1890
1891/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1892/// use is dominated by the given basic block.  Returns the number of uses that
1893/// were replaced.
1894unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1895                                          BasicBlock *Root) {
1896  unsigned Count = 0;
1897  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1898       UI != UE; ) {
1899    Instruction *User = cast<Instruction>(*UI);
1900    unsigned OpNum = UI.getOperandNo();
1901    ++UI;
1902
1903    if (DT->dominates(Root, User->getParent())) {
1904      User->setOperand(OpNum, To);
1905      ++Count;
1906    }
1907  }
1908  return Count;
1909}
1910
1911/// propagateEquality - The given values are known to be equal in every block
1912/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1913/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1914bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
1915  if (LHS == RHS) return false;
1916  assert(LHS->getType() == RHS->getType() && "Equal but types differ!");
1917
1918  // Don't try to propagate equalities between constants.
1919  if (isa<Constant>(LHS) && isa<Constant>(RHS))
1920    return false;
1921
1922  // Make sure that any constants are on the right-hand side.  In general the
1923  // best results are obtained by placing the longest lived value on the RHS.
1924  if (isa<Constant>(LHS))
1925    std::swap(LHS, RHS);
1926
1927  // If neither term is constant then bail out.  This is not for correctness,
1928  // it's just that the non-constant case is much less useful: it occurs just
1929  // as often as the constant case but handling it hardly ever results in an
1930  // improvement.
1931  if (!isa<Constant>(RHS))
1932    return false;
1933
1934  // If value numbering later deduces that an instruction in the scope is equal
1935  // to 'LHS' then ensure it will be turned into 'RHS'.
1936  addToLeaderTable(VN.lookup_or_add(LHS), RHS, Root);
1937
1938  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.
1939  unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
1940  bool Changed = NumReplacements > 0;
1941  NumGVNEqProp += NumReplacements;
1942
1943  // Now try to deduce additional equalities from this one.  For example, if the
1944  // known equality was "(A != B)" == "false" then it follows that A and B are
1945  // equal in the scope.  Only boolean equalities with an explicit true or false
1946  // RHS are currently supported.
1947  if (!RHS->getType()->isIntegerTy(1))
1948    // Not a boolean equality - bail out.
1949    return Changed;
1950  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1951  if (!CI)
1952    // RHS neither 'true' nor 'false' - bail out.
1953    return Changed;
1954  // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1955  bool isKnownTrue = CI->isAllOnesValue();
1956  bool isKnownFalse = !isKnownTrue;
1957
1958  // If "A && B" is known true then both A and B are known true.  If "A || B"
1959  // is known false then both A and B are known false.
1960  Value *A, *B;
1961  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1962      (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1963    Changed |= propagateEquality(A, RHS, Root);
1964    Changed |= propagateEquality(B, RHS, Root);
1965    return Changed;
1966  }
1967
1968  // If we are propagating an equality like "(A == B)" == "true" then also
1969  // propagate the equality A == B.
1970  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
1971    // Only equality comparisons are supported.
1972    if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1973        (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) {
1974      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1975      Changed |= propagateEquality(Op0, Op1, Root);
1976    }
1977    return Changed;
1978  }
1979
1980  return Changed;
1981}
1982
1983/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
1984/// true if every path from the entry block to 'Dst' passes via this edge.  In
1985/// particular 'Dst' must not be reachable via another edge from 'Src'.
1986static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
1987                                       DominatorTree *DT) {
1988  // First off, there must not be more than one edge from Src to Dst, there
1989  // should be exactly one.  So keep track of the number of times Src occurs
1990  // as a predecessor of Dst and fail if it's more than once.  Secondly, any
1991  // other predecessors of Dst should be dominated by Dst (see logic below).
1992  bool SawEdgeFromSrc = false;
1993  for (pred_iterator PI = pred_begin(Dst), PE = pred_end(Dst); PI != PE; ++PI) {
1994    BasicBlock *Pred = *PI;
1995    if (Pred == Src) {
1996      // An edge from Src to Dst.
1997      if (SawEdgeFromSrc)
1998        // There are multiple edges from Src to Dst - fail.
1999        return false;
2000      SawEdgeFromSrc = true;
2001      continue;
2002    }
2003    // If the predecessor is not dominated by Dst, then it must be possible to
2004    // reach it either without passing through Src (and thus not via the edge)
2005    // or by passing through Src but taking a different edge out of Src.  Either
2006    // way it is possible to reach Dst without passing via the edge, so fail.
2007    if (!DT->dominates(Dst, *PI))
2008      return false;
2009  }
2010  assert(SawEdgeFromSrc && "No edge between these basic blocks!");
2011
2012  // Every path from the entry block to Dst must at some point pass to Dst from
2013  // a predecessor that is not dominated by Dst.  This predecessor can only be
2014  // Src, since all others are dominated by Dst.  As there is only one edge from
2015  // Src to Dst, the path passes by this edge.
2016  return true;
2017}
2018
2019/// processInstruction - When calculating availability, handle an instruction
2020/// by inserting it into the appropriate sets
2021bool GVN::processInstruction(Instruction *I) {
2022  // Ignore dbg info intrinsics.
2023  if (isa<DbgInfoIntrinsic>(I))
2024    return false;
2025
2026  // If the instruction can be easily simplified then do so now in preference
2027  // to value numbering it.  Value numbering often exposes redundancies, for
2028  // example if it determines that %y is equal to %x then the instruction
2029  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2030  if (Value *V = SimplifyInstruction(I, TD, DT)) {
2031    I->replaceAllUsesWith(V);
2032    if (MD && V->getType()->isPointerTy())
2033      MD->invalidateCachedPointerInfo(V);
2034    markInstructionForDeletion(I);
2035    ++NumGVNSimpl;
2036    return true;
2037  }
2038
2039  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2040    if (processLoad(LI))
2041      return true;
2042
2043    unsigned Num = VN.lookup_or_add(LI);
2044    addToLeaderTable(Num, LI, LI->getParent());
2045    return false;
2046  }
2047
2048  // For conditional branches, we can perform simple conditional propagation on
2049  // the condition value itself.
2050  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2051    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2052      return false;
2053
2054    Value *BranchCond = BI->getCondition();
2055
2056    BasicBlock *TrueSucc = BI->getSuccessor(0);
2057    BasicBlock *FalseSucc = BI->getSuccessor(1);
2058    BasicBlock *Parent = BI->getParent();
2059    bool Changed = false;
2060
2061    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2062      Changed |= propagateEquality(BranchCond,
2063                                   ConstantInt::getTrue(TrueSucc->getContext()),
2064                                   TrueSucc);
2065
2066    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2067      Changed |= propagateEquality(BranchCond,
2068                                   ConstantInt::getFalse(FalseSucc->getContext()),
2069                                   FalseSucc);
2070
2071    return Changed;
2072  }
2073
2074  // For switches, propagate the case values into the case destinations.
2075  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2076    Value *SwitchCond = SI->getCondition();
2077    BasicBlock *Parent = SI->getParent();
2078    bool Changed = false;
2079    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2080      BasicBlock *Dst = SI->getSuccessor(i);
2081      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2082        Changed |= propagateEquality(SwitchCond, SI->getCaseValue(i), Dst);
2083    }
2084    return Changed;
2085  }
2086
2087  // Instructions with void type don't return a value, so there's
2088  // no point in trying to find redudancies in them.
2089  if (I->getType()->isVoidTy()) return false;
2090
2091  uint32_t NextNum = VN.getNextUnusedValueNumber();
2092  unsigned Num = VN.lookup_or_add(I);
2093
2094  // Allocations are always uniquely numbered, so we can save time and memory
2095  // by fast failing them.
2096  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2097    addToLeaderTable(Num, I, I->getParent());
2098    return false;
2099  }
2100
2101  // If the number we were assigned was a brand new VN, then we don't
2102  // need to do a lookup to see if the number already exists
2103  // somewhere in the domtree: it can't!
2104  if (Num == NextNum) {
2105    addToLeaderTable(Num, I, I->getParent());
2106    return false;
2107  }
2108
2109  // Perform fast-path value-number based elimination of values inherited from
2110  // dominators.
2111  Value *repl = findLeader(I->getParent(), Num);
2112  if (repl == 0) {
2113    // Failure, just remember this instance for future use.
2114    addToLeaderTable(Num, I, I->getParent());
2115    return false;
2116  }
2117
2118  // Remove it!
2119  I->replaceAllUsesWith(repl);
2120  if (MD && repl->getType()->isPointerTy())
2121    MD->invalidateCachedPointerInfo(repl);
2122  markInstructionForDeletion(I);
2123  return true;
2124}
2125
2126/// runOnFunction - This is the main transformation entry point for a function.
2127bool GVN::runOnFunction(Function& F) {
2128  if (!NoLoads)
2129    MD = &getAnalysis<MemoryDependenceAnalysis>();
2130  DT = &getAnalysis<DominatorTree>();
2131  TD = getAnalysisIfAvailable<TargetData>();
2132  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2133  VN.setMemDep(MD);
2134  VN.setDomTree(DT);
2135
2136  bool Changed = false;
2137  bool ShouldContinue = true;
2138
2139  // Merge unconditional branches, allowing PRE to catch more
2140  // optimization opportunities.
2141  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2142    BasicBlock *BB = FI++;
2143
2144    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2145    if (removedBlock) ++NumGVNBlocks;
2146
2147    Changed |= removedBlock;
2148  }
2149
2150  unsigned Iteration = 0;
2151  while (ShouldContinue) {
2152    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2153    ShouldContinue = iterateOnFunction(F);
2154    if (splitCriticalEdges())
2155      ShouldContinue = true;
2156    Changed |= ShouldContinue;
2157    ++Iteration;
2158  }
2159
2160  if (EnablePRE) {
2161    bool PREChanged = true;
2162    while (PREChanged) {
2163      PREChanged = performPRE(F);
2164      Changed |= PREChanged;
2165    }
2166  }
2167  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2168  // computations into blocks where they become fully redundant.  Note that
2169  // we can't do this until PRE's critical edge splitting updates memdep.
2170  // Actually, when this happens, we should just fully integrate PRE into GVN.
2171
2172  cleanupGlobalSets();
2173
2174  return Changed;
2175}
2176
2177
2178bool GVN::processBlock(BasicBlock *BB) {
2179  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2180  // (and incrementing BI before processing an instruction).
2181  assert(InstrsToErase.empty() &&
2182         "We expect InstrsToErase to be empty across iterations");
2183  bool ChangedFunction = false;
2184
2185  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2186       BI != BE;) {
2187    ChangedFunction |= processInstruction(BI);
2188    if (InstrsToErase.empty()) {
2189      ++BI;
2190      continue;
2191    }
2192
2193    // If we need some instructions deleted, do it now.
2194    NumGVNInstr += InstrsToErase.size();
2195
2196    // Avoid iterator invalidation.
2197    bool AtStart = BI == BB->begin();
2198    if (!AtStart)
2199      --BI;
2200
2201    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2202         E = InstrsToErase.end(); I != E; ++I) {
2203      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2204      if (MD) MD->removeInstruction(*I);
2205      (*I)->eraseFromParent();
2206      DEBUG(verifyRemoved(*I));
2207    }
2208    InstrsToErase.clear();
2209
2210    if (AtStart)
2211      BI = BB->begin();
2212    else
2213      ++BI;
2214  }
2215
2216  return ChangedFunction;
2217}
2218
2219/// performPRE - Perform a purely local form of PRE that looks for diamond
2220/// control flow patterns and attempts to perform simple PRE at the join point.
2221bool GVN::performPRE(Function &F) {
2222  bool Changed = false;
2223  DenseMap<BasicBlock*, Value*> predMap;
2224  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2225       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2226    BasicBlock *CurrentBlock = *DI;
2227
2228    // Nothing to PRE in the entry block.
2229    if (CurrentBlock == &F.getEntryBlock()) continue;
2230
2231    // Don't perform PRE on a landing pad.
2232    if (CurrentBlock->isLandingPad()) continue;
2233
2234    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2235         BE = CurrentBlock->end(); BI != BE; ) {
2236      Instruction *CurInst = BI++;
2237
2238      if (isa<AllocaInst>(CurInst) ||
2239          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2240          CurInst->getType()->isVoidTy() ||
2241          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2242          isa<DbgInfoIntrinsic>(CurInst))
2243        continue;
2244
2245      // We don't currently value number ANY inline asm calls.
2246      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2247        if (CallI->isInlineAsm())
2248          continue;
2249
2250      uint32_t ValNo = VN.lookup(CurInst);
2251
2252      // Look for the predecessors for PRE opportunities.  We're
2253      // only trying to solve the basic diamond case, where
2254      // a value is computed in the successor and one predecessor,
2255      // but not the other.  We also explicitly disallow cases
2256      // where the successor is its own predecessor, because they're
2257      // more complicated to get right.
2258      unsigned NumWith = 0;
2259      unsigned NumWithout = 0;
2260      BasicBlock *PREPred = 0;
2261      predMap.clear();
2262
2263      for (pred_iterator PI = pred_begin(CurrentBlock),
2264           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2265        BasicBlock *P = *PI;
2266        // We're not interested in PRE where the block is its
2267        // own predecessor, or in blocks with predecessors
2268        // that are not reachable.
2269        if (P == CurrentBlock) {
2270          NumWithout = 2;
2271          break;
2272        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2273          NumWithout = 2;
2274          break;
2275        }
2276
2277        Value* predV = findLeader(P, ValNo);
2278        if (predV == 0) {
2279          PREPred = P;
2280          ++NumWithout;
2281        } else if (predV == CurInst) {
2282          NumWithout = 2;
2283        } else {
2284          predMap[P] = predV;
2285          ++NumWith;
2286        }
2287      }
2288
2289      // Don't do PRE when it might increase code size, i.e. when
2290      // we would need to insert instructions in more than one pred.
2291      if (NumWithout != 1 || NumWith == 0)
2292        continue;
2293
2294      // Don't do PRE across indirect branch.
2295      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2296        continue;
2297
2298      // We can't do PRE safely on a critical edge, so instead we schedule
2299      // the edge to be split and perform the PRE the next time we iterate
2300      // on the function.
2301      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2302      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2303        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2304        continue;
2305      }
2306
2307      // Instantiate the expression in the predecessor that lacked it.
2308      // Because we are going top-down through the block, all value numbers
2309      // will be available in the predecessor by the time we need them.  Any
2310      // that weren't originally present will have been instantiated earlier
2311      // in this loop.
2312      Instruction *PREInstr = CurInst->clone();
2313      bool success = true;
2314      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2315        Value *Op = PREInstr->getOperand(i);
2316        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2317          continue;
2318
2319        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2320          PREInstr->setOperand(i, V);
2321        } else {
2322          success = false;
2323          break;
2324        }
2325      }
2326
2327      // Fail out if we encounter an operand that is not available in
2328      // the PRE predecessor.  This is typically because of loads which
2329      // are not value numbered precisely.
2330      if (!success) {
2331        delete PREInstr;
2332        DEBUG(verifyRemoved(PREInstr));
2333        continue;
2334      }
2335
2336      PREInstr->insertBefore(PREPred->getTerminator());
2337      PREInstr->setName(CurInst->getName() + ".pre");
2338      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2339      predMap[PREPred] = PREInstr;
2340      VN.add(PREInstr, ValNo);
2341      ++NumGVNPRE;
2342
2343      // Update the availability map to include the new instruction.
2344      addToLeaderTable(ValNo, PREInstr, PREPred);
2345
2346      // Create a PHI to make the value available in this block.
2347      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2348      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2349                                     CurInst->getName() + ".pre-phi",
2350                                     CurrentBlock->begin());
2351      for (pred_iterator PI = PB; PI != PE; ++PI) {
2352        BasicBlock *P = *PI;
2353        Phi->addIncoming(predMap[P], P);
2354      }
2355
2356      VN.add(Phi, ValNo);
2357      addToLeaderTable(ValNo, Phi, CurrentBlock);
2358      Phi->setDebugLoc(CurInst->getDebugLoc());
2359      CurInst->replaceAllUsesWith(Phi);
2360      if (Phi->getType()->isPointerTy()) {
2361        // Because we have added a PHI-use of the pointer value, it has now
2362        // "escaped" from alias analysis' perspective.  We need to inform
2363        // AA of this.
2364        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2365             ++ii) {
2366          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2367          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2368        }
2369
2370        if (MD)
2371          MD->invalidateCachedPointerInfo(Phi);
2372      }
2373      VN.erase(CurInst);
2374      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2375
2376      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2377      if (MD) MD->removeInstruction(CurInst);
2378      CurInst->eraseFromParent();
2379      DEBUG(verifyRemoved(CurInst));
2380      Changed = true;
2381    }
2382  }
2383
2384  if (splitCriticalEdges())
2385    Changed = true;
2386
2387  return Changed;
2388}
2389
2390/// splitCriticalEdges - Split critical edges found during the previous
2391/// iteration that may enable further optimization.
2392bool GVN::splitCriticalEdges() {
2393  if (toSplit.empty())
2394    return false;
2395  do {
2396    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2397    SplitCriticalEdge(Edge.first, Edge.second, this);
2398  } while (!toSplit.empty());
2399  if (MD) MD->invalidateCachedPredecessors();
2400  return true;
2401}
2402
2403/// iterateOnFunction - Executes one iteration of GVN
2404bool GVN::iterateOnFunction(Function &F) {
2405  cleanupGlobalSets();
2406
2407  // Top-down walk of the dominator tree
2408  bool Changed = false;
2409#if 0
2410  // Needed for value numbering with phi construction to work.
2411  ReversePostOrderTraversal<Function*> RPOT(&F);
2412  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2413       RE = RPOT.end(); RI != RE; ++RI)
2414    Changed |= processBlock(*RI);
2415#else
2416  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2417       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2418    Changed |= processBlock(DI->getBlock());
2419#endif
2420
2421  return Changed;
2422}
2423
2424void GVN::cleanupGlobalSets() {
2425  VN.clear();
2426  LeaderTable.clear();
2427  TableAllocator.Reset();
2428}
2429
2430/// verifyRemoved - Verify that the specified instruction does not occur in our
2431/// internal data structures.
2432void GVN::verifyRemoved(const Instruction *Inst) const {
2433  VN.verifyRemoved(Inst);
2434
2435  // Walk through the value number scope to make sure the instruction isn't
2436  // ferreted away in it.
2437  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2438       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2439    const LeaderTableEntry *Node = &I->second;
2440    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2441
2442    while (Node->Next) {
2443      Node = Node->Next;
2444      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2445    }
2446  }
2447}
2448