GVN.cpp revision 42c3f554f4d5e505c3e43cdcf722ec82a7a3f6a5
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/MemoryDependenceAnalysis.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include <cstdio>
42using namespace llvm;
43
44STATISTIC(NumGVNInstr,  "Number of instructions deleted");
45STATISTIC(NumGVNLoad,   "Number of loads deleted");
46STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
47STATISTIC(NumGVNBlocks, "Number of blocks merged");
48STATISTIC(NumPRELoad,   "Number of loads PRE'd");
49
50static cl::opt<bool> EnablePRE("enable-pre",
51                               cl::init(true), cl::Hidden);
52static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
53
54//===----------------------------------------------------------------------===//
55//                         ValueTable Class
56//===----------------------------------------------------------------------===//
57
58/// This class holds the mapping between values and value numbers.  It is used
59/// as an efficient mechanism to determine the expression-wise equivalence of
60/// two values.
61namespace {
62  struct VISIBILITY_HIDDEN Expression {
63    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
64                            UDIV, SDIV, FDIV, UREM, SREM,
65                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
66                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
67                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
68                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
69                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
70                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
71                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
72                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
73                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
74                            EMPTY, TOMBSTONE };
75
76    ExpressionOpcode opcode;
77    const Type* type;
78    uint32_t firstVN;
79    uint32_t secondVN;
80    uint32_t thirdVN;
81    SmallVector<uint32_t, 4> varargs;
82    Value* function;
83
84    Expression() { }
85    Expression(ExpressionOpcode o) : opcode(o) { }
86
87    bool operator==(const Expression &other) const {
88      if (opcode != other.opcode)
89        return false;
90      else if (opcode == EMPTY || opcode == TOMBSTONE)
91        return true;
92      else if (type != other.type)
93        return false;
94      else if (function != other.function)
95        return false;
96      else if (firstVN != other.firstVN)
97        return false;
98      else if (secondVN != other.secondVN)
99        return false;
100      else if (thirdVN != other.thirdVN)
101        return false;
102      else {
103        if (varargs.size() != other.varargs.size())
104          return false;
105
106        for (size_t i = 0; i < varargs.size(); ++i)
107          if (varargs[i] != other.varargs[i])
108            return false;
109
110        return true;
111      }
112    }
113
114    bool operator!=(const Expression &other) const {
115      return !(*this == other);
116    }
117  };
118
119  class VISIBILITY_HIDDEN ValueTable {
120    private:
121      DenseMap<Value*, uint32_t> valueNumbering;
122      DenseMap<Expression, uint32_t> expressionNumbering;
123      AliasAnalysis* AA;
124      MemoryDependenceAnalysis* MD;
125      DominatorTree* DT;
126
127      uint32_t nextValueNumber;
128
129      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
130      Expression::ExpressionOpcode getOpcode(CmpInst* C);
131      Expression::ExpressionOpcode getOpcode(CastInst* C);
132      Expression create_expression(BinaryOperator* BO);
133      Expression create_expression(CmpInst* C);
134      Expression create_expression(ShuffleVectorInst* V);
135      Expression create_expression(ExtractElementInst* C);
136      Expression create_expression(InsertElementInst* V);
137      Expression create_expression(SelectInst* V);
138      Expression create_expression(CastInst* C);
139      Expression create_expression(GetElementPtrInst* G);
140      Expression create_expression(CallInst* C);
141      Expression create_expression(Constant* C);
142    public:
143      ValueTable() : nextValueNumber(1) { }
144      uint32_t lookup_or_add(Value* V);
145      uint32_t lookup(Value* V) const;
146      void add(Value* V, uint32_t num);
147      void clear();
148      void erase(Value* v);
149      unsigned size();
150      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
151      AliasAnalysis *getAliasAnalysis() const { return AA; }
152      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
153      void setDomTree(DominatorTree* D) { DT = D; }
154      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
155      void verifyRemoved(const Value *) const;
156  };
157}
158
159namespace llvm {
160template <> struct DenseMapInfo<Expression> {
161  static inline Expression getEmptyKey() {
162    return Expression(Expression::EMPTY);
163  }
164
165  static inline Expression getTombstoneKey() {
166    return Expression(Expression::TOMBSTONE);
167  }
168
169  static unsigned getHashValue(const Expression e) {
170    unsigned hash = e.opcode;
171
172    hash = e.firstVN + hash * 37;
173    hash = e.secondVN + hash * 37;
174    hash = e.thirdVN + hash * 37;
175
176    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
177            (unsigned)((uintptr_t)e.type >> 9)) +
178           hash * 37;
179
180    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
181         E = e.varargs.end(); I != E; ++I)
182      hash = *I + hash * 37;
183
184    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
185            (unsigned)((uintptr_t)e.function >> 9)) +
186           hash * 37;
187
188    return hash;
189  }
190  static bool isEqual(const Expression &LHS, const Expression &RHS) {
191    return LHS == RHS;
192  }
193  static bool isPod() { return true; }
194};
195}
196
197//===----------------------------------------------------------------------===//
198//                     ValueTable Internal Functions
199//===----------------------------------------------------------------------===//
200Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
201  switch(BO->getOpcode()) {
202  default: // THIS SHOULD NEVER HAPPEN
203    assert(0 && "Binary operator with unknown opcode?");
204  case Instruction::Add:  return Expression::ADD;
205  case Instruction::FAdd: return Expression::FADD;
206  case Instruction::Sub:  return Expression::SUB;
207  case Instruction::FSub: return Expression::FSUB;
208  case Instruction::Mul:  return Expression::MUL;
209  case Instruction::FMul: return Expression::FMUL;
210  case Instruction::UDiv: return Expression::UDIV;
211  case Instruction::SDiv: return Expression::SDIV;
212  case Instruction::FDiv: return Expression::FDIV;
213  case Instruction::URem: return Expression::UREM;
214  case Instruction::SRem: return Expression::SREM;
215  case Instruction::FRem: return Expression::FREM;
216  case Instruction::Shl:  return Expression::SHL;
217  case Instruction::LShr: return Expression::LSHR;
218  case Instruction::AShr: return Expression::ASHR;
219  case Instruction::And:  return Expression::AND;
220  case Instruction::Or:   return Expression::OR;
221  case Instruction::Xor:  return Expression::XOR;
222  }
223}
224
225Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
226  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
227    switch (C->getPredicate()) {
228    default:  // THIS SHOULD NEVER HAPPEN
229      assert(0 && "Comparison with unknown predicate?");
230    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
231    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
232    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
233    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
234    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
235    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
236    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
237    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
238    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
239    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
240    }
241  }
242  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
243  switch (C->getPredicate()) {
244  default: // THIS SHOULD NEVER HAPPEN
245    assert(0 && "Comparison with unknown predicate?");
246  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
247  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
248  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
249  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
250  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
251  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
252  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
253  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
254  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
255  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
256  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
257  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
258  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
259  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
260  }
261}
262
263Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
264  switch(C->getOpcode()) {
265  default: // THIS SHOULD NEVER HAPPEN
266    assert(0 && "Cast operator with unknown opcode?");
267  case Instruction::Trunc:    return Expression::TRUNC;
268  case Instruction::ZExt:     return Expression::ZEXT;
269  case Instruction::SExt:     return Expression::SEXT;
270  case Instruction::FPToUI:   return Expression::FPTOUI;
271  case Instruction::FPToSI:   return Expression::FPTOSI;
272  case Instruction::UIToFP:   return Expression::UITOFP;
273  case Instruction::SIToFP:   return Expression::SITOFP;
274  case Instruction::FPTrunc:  return Expression::FPTRUNC;
275  case Instruction::FPExt:    return Expression::FPEXT;
276  case Instruction::PtrToInt: return Expression::PTRTOINT;
277  case Instruction::IntToPtr: return Expression::INTTOPTR;
278  case Instruction::BitCast:  return Expression::BITCAST;
279  }
280}
281
282Expression ValueTable::create_expression(CallInst* C) {
283  Expression e;
284
285  e.type = C->getType();
286  e.firstVN = 0;
287  e.secondVN = 0;
288  e.thirdVN = 0;
289  e.function = C->getCalledFunction();
290  e.opcode = Expression::CALL;
291
292  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
293       I != E; ++I)
294    e.varargs.push_back(lookup_or_add(*I));
295
296  return e;
297}
298
299Expression ValueTable::create_expression(BinaryOperator* BO) {
300  Expression e;
301
302  e.firstVN = lookup_or_add(BO->getOperand(0));
303  e.secondVN = lookup_or_add(BO->getOperand(1));
304  e.thirdVN = 0;
305  e.function = 0;
306  e.type = BO->getType();
307  e.opcode = getOpcode(BO);
308
309  return e;
310}
311
312Expression ValueTable::create_expression(CmpInst* C) {
313  Expression e;
314
315  e.firstVN = lookup_or_add(C->getOperand(0));
316  e.secondVN = lookup_or_add(C->getOperand(1));
317  e.thirdVN = 0;
318  e.function = 0;
319  e.type = C->getType();
320  e.opcode = getOpcode(C);
321
322  return e;
323}
324
325Expression ValueTable::create_expression(CastInst* C) {
326  Expression e;
327
328  e.firstVN = lookup_or_add(C->getOperand(0));
329  e.secondVN = 0;
330  e.thirdVN = 0;
331  e.function = 0;
332  e.type = C->getType();
333  e.opcode = getOpcode(C);
334
335  return e;
336}
337
338Expression ValueTable::create_expression(ShuffleVectorInst* S) {
339  Expression e;
340
341  e.firstVN = lookup_or_add(S->getOperand(0));
342  e.secondVN = lookup_or_add(S->getOperand(1));
343  e.thirdVN = lookup_or_add(S->getOperand(2));
344  e.function = 0;
345  e.type = S->getType();
346  e.opcode = Expression::SHUFFLE;
347
348  return e;
349}
350
351Expression ValueTable::create_expression(ExtractElementInst* E) {
352  Expression e;
353
354  e.firstVN = lookup_or_add(E->getOperand(0));
355  e.secondVN = lookup_or_add(E->getOperand(1));
356  e.thirdVN = 0;
357  e.function = 0;
358  e.type = E->getType();
359  e.opcode = Expression::EXTRACT;
360
361  return e;
362}
363
364Expression ValueTable::create_expression(InsertElementInst* I) {
365  Expression e;
366
367  e.firstVN = lookup_or_add(I->getOperand(0));
368  e.secondVN = lookup_or_add(I->getOperand(1));
369  e.thirdVN = lookup_or_add(I->getOperand(2));
370  e.function = 0;
371  e.type = I->getType();
372  e.opcode = Expression::INSERT;
373
374  return e;
375}
376
377Expression ValueTable::create_expression(SelectInst* I) {
378  Expression e;
379
380  e.firstVN = lookup_or_add(I->getCondition());
381  e.secondVN = lookup_or_add(I->getTrueValue());
382  e.thirdVN = lookup_or_add(I->getFalseValue());
383  e.function = 0;
384  e.type = I->getType();
385  e.opcode = Expression::SELECT;
386
387  return e;
388}
389
390Expression ValueTable::create_expression(GetElementPtrInst* G) {
391  Expression e;
392
393  e.firstVN = lookup_or_add(G->getPointerOperand());
394  e.secondVN = 0;
395  e.thirdVN = 0;
396  e.function = 0;
397  e.type = G->getType();
398  e.opcode = Expression::GEP;
399
400  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
401       I != E; ++I)
402    e.varargs.push_back(lookup_or_add(*I));
403
404  return e;
405}
406
407//===----------------------------------------------------------------------===//
408//                     ValueTable External Functions
409//===----------------------------------------------------------------------===//
410
411/// add - Insert a value into the table with a specified value number.
412void ValueTable::add(Value* V, uint32_t num) {
413  valueNumbering.insert(std::make_pair(V, num));
414}
415
416/// lookup_or_add - Returns the value number for the specified value, assigning
417/// it a new number if it did not have one before.
418uint32_t ValueTable::lookup_or_add(Value* V) {
419  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
420  if (VI != valueNumbering.end())
421    return VI->second;
422
423  if (CallInst* C = dyn_cast<CallInst>(V)) {
424    if (AA->doesNotAccessMemory(C)) {
425      Expression e = create_expression(C);
426
427      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
428      if (EI != expressionNumbering.end()) {
429        valueNumbering.insert(std::make_pair(V, EI->second));
430        return EI->second;
431      } else {
432        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
433        valueNumbering.insert(std::make_pair(V, nextValueNumber));
434
435        return nextValueNumber++;
436      }
437    } else if (AA->onlyReadsMemory(C)) {
438      Expression e = create_expression(C);
439
440      if (expressionNumbering.find(e) == expressionNumbering.end()) {
441        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
442        valueNumbering.insert(std::make_pair(V, nextValueNumber));
443        return nextValueNumber++;
444      }
445
446      MemDepResult local_dep = MD->getDependency(C);
447
448      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
449        valueNumbering.insert(std::make_pair(V, nextValueNumber));
450        return nextValueNumber++;
451      }
452
453      if (local_dep.isDef()) {
454        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
455
456        if (local_cdep->getNumOperands() != C->getNumOperands()) {
457          valueNumbering.insert(std::make_pair(V, nextValueNumber));
458          return nextValueNumber++;
459        }
460
461        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
462          uint32_t c_vn = lookup_or_add(C->getOperand(i));
463          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
464          if (c_vn != cd_vn) {
465            valueNumbering.insert(std::make_pair(V, nextValueNumber));
466            return nextValueNumber++;
467          }
468        }
469
470        uint32_t v = lookup_or_add(local_cdep);
471        valueNumbering.insert(std::make_pair(V, v));
472        return v;
473      }
474
475      // Non-local case.
476      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
477        MD->getNonLocalCallDependency(CallSite(C));
478      // FIXME: call/call dependencies for readonly calls should return def, not
479      // clobber!  Move the checking logic to MemDep!
480      CallInst* cdep = 0;
481
482      // Check to see if we have a single dominating call instruction that is
483      // identical to C.
484      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
485        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
486        // Ignore non-local dependencies.
487        if (I->second.isNonLocal())
488          continue;
489
490        // We don't handle non-depedencies.  If we already have a call, reject
491        // instruction dependencies.
492        if (I->second.isClobber() || cdep != 0) {
493          cdep = 0;
494          break;
495        }
496
497        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
498        // FIXME: All duplicated with non-local case.
499        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
500          cdep = NonLocalDepCall;
501          continue;
502        }
503
504        cdep = 0;
505        break;
506      }
507
508      if (!cdep) {
509        valueNumbering.insert(std::make_pair(V, nextValueNumber));
510        return nextValueNumber++;
511      }
512
513      if (cdep->getNumOperands() != C->getNumOperands()) {
514        valueNumbering.insert(std::make_pair(V, nextValueNumber));
515        return nextValueNumber++;
516      }
517      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
518        uint32_t c_vn = lookup_or_add(C->getOperand(i));
519        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
520        if (c_vn != cd_vn) {
521          valueNumbering.insert(std::make_pair(V, nextValueNumber));
522          return nextValueNumber++;
523        }
524      }
525
526      uint32_t v = lookup_or_add(cdep);
527      valueNumbering.insert(std::make_pair(V, v));
528      return v;
529
530    } else {
531      valueNumbering.insert(std::make_pair(V, nextValueNumber));
532      return nextValueNumber++;
533    }
534  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
535    Expression e = create_expression(BO);
536
537    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
538    if (EI != expressionNumbering.end()) {
539      valueNumbering.insert(std::make_pair(V, EI->second));
540      return EI->second;
541    } else {
542      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
543      valueNumbering.insert(std::make_pair(V, nextValueNumber));
544
545      return nextValueNumber++;
546    }
547  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
548    Expression e = create_expression(C);
549
550    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
551    if (EI != expressionNumbering.end()) {
552      valueNumbering.insert(std::make_pair(V, EI->second));
553      return EI->second;
554    } else {
555      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
556      valueNumbering.insert(std::make_pair(V, nextValueNumber));
557
558      return nextValueNumber++;
559    }
560  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
561    Expression e = create_expression(U);
562
563    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
564    if (EI != expressionNumbering.end()) {
565      valueNumbering.insert(std::make_pair(V, EI->second));
566      return EI->second;
567    } else {
568      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
569      valueNumbering.insert(std::make_pair(V, nextValueNumber));
570
571      return nextValueNumber++;
572    }
573  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
574    Expression e = create_expression(U);
575
576    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
577    if (EI != expressionNumbering.end()) {
578      valueNumbering.insert(std::make_pair(V, EI->second));
579      return EI->second;
580    } else {
581      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
582      valueNumbering.insert(std::make_pair(V, nextValueNumber));
583
584      return nextValueNumber++;
585    }
586  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
587    Expression e = create_expression(U);
588
589    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
590    if (EI != expressionNumbering.end()) {
591      valueNumbering.insert(std::make_pair(V, EI->second));
592      return EI->second;
593    } else {
594      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
595      valueNumbering.insert(std::make_pair(V, nextValueNumber));
596
597      return nextValueNumber++;
598    }
599  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
600    Expression e = create_expression(U);
601
602    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
603    if (EI != expressionNumbering.end()) {
604      valueNumbering.insert(std::make_pair(V, EI->second));
605      return EI->second;
606    } else {
607      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
608      valueNumbering.insert(std::make_pair(V, nextValueNumber));
609
610      return nextValueNumber++;
611    }
612  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
613    Expression e = create_expression(U);
614
615    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
616    if (EI != expressionNumbering.end()) {
617      valueNumbering.insert(std::make_pair(V, EI->second));
618      return EI->second;
619    } else {
620      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
621      valueNumbering.insert(std::make_pair(V, nextValueNumber));
622
623      return nextValueNumber++;
624    }
625  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
626    Expression e = create_expression(U);
627
628    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
629    if (EI != expressionNumbering.end()) {
630      valueNumbering.insert(std::make_pair(V, EI->second));
631      return EI->second;
632    } else {
633      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
634      valueNumbering.insert(std::make_pair(V, nextValueNumber));
635
636      return nextValueNumber++;
637    }
638  } else {
639    valueNumbering.insert(std::make_pair(V, nextValueNumber));
640    return nextValueNumber++;
641  }
642}
643
644/// lookup - Returns the value number of the specified value. Fails if
645/// the value has not yet been numbered.
646uint32_t ValueTable::lookup(Value* V) const {
647  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
648  assert(VI != valueNumbering.end() && "Value not numbered?");
649  return VI->second;
650}
651
652/// clear - Remove all entries from the ValueTable
653void ValueTable::clear() {
654  valueNumbering.clear();
655  expressionNumbering.clear();
656  nextValueNumber = 1;
657}
658
659/// erase - Remove a value from the value numbering
660void ValueTable::erase(Value* V) {
661  valueNumbering.erase(V);
662}
663
664/// verifyRemoved - Verify that the value is removed from all internal data
665/// structures.
666void ValueTable::verifyRemoved(const Value *V) const {
667  for (DenseMap<Value*, uint32_t>::iterator
668         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
669    assert(I->first != V && "Inst still occurs in value numbering map!");
670  }
671}
672
673//===----------------------------------------------------------------------===//
674//                                GVN Pass
675//===----------------------------------------------------------------------===//
676
677namespace {
678  struct VISIBILITY_HIDDEN ValueNumberScope {
679    ValueNumberScope* parent;
680    DenseMap<uint32_t, Value*> table;
681
682    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
683  };
684}
685
686namespace {
687
688  class VISIBILITY_HIDDEN GVN : public FunctionPass {
689    bool runOnFunction(Function &F);
690  public:
691    static char ID; // Pass identification, replacement for typeid
692    GVN() : FunctionPass(&ID) { }
693
694  private:
695    MemoryDependenceAnalysis *MD;
696    DominatorTree *DT;
697
698    ValueTable VN;
699    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
700
701    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
702    PhiMapType phiMap;
703
704
705    // This transformation requires dominator postdominator info
706    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
707      AU.addRequired<DominatorTree>();
708      AU.addRequired<MemoryDependenceAnalysis>();
709      AU.addRequired<AliasAnalysis>();
710
711      AU.addPreserved<DominatorTree>();
712      AU.addPreserved<AliasAnalysis>();
713    }
714
715    // Helper fuctions
716    // FIXME: eliminate or document these better
717    bool processLoad(LoadInst* L,
718                     SmallVectorImpl<Instruction*> &toErase);
719    bool processInstruction(Instruction* I,
720                            SmallVectorImpl<Instruction*> &toErase);
721    bool processNonLocalLoad(LoadInst* L,
722                             SmallVectorImpl<Instruction*> &toErase);
723    bool processBlock(BasicBlock* BB);
724    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
725                            DenseMap<BasicBlock*, Value*> &Phis,
726                            bool top_level = false);
727    void dump(DenseMap<uint32_t, Value*>& d);
728    bool iterateOnFunction(Function &F);
729    Value* CollapsePhi(PHINode* p);
730    bool isSafeReplacement(PHINode* p, Instruction* inst);
731    bool performPRE(Function& F);
732    Value* lookupNumber(BasicBlock* BB, uint32_t num);
733    bool mergeBlockIntoPredecessor(BasicBlock* BB);
734    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
735    void cleanupGlobalSets();
736    void verifyRemoved(const Instruction *I) const;
737  };
738
739  char GVN::ID = 0;
740}
741
742// createGVNPass - The public interface to this file...
743FunctionPass *llvm::createGVNPass() { return new GVN(); }
744
745static RegisterPass<GVN> X("gvn",
746                           "Global Value Numbering");
747
748void GVN::dump(DenseMap<uint32_t, Value*>& d) {
749  printf("{\n");
750  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
751       E = d.end(); I != E; ++I) {
752      printf("%d\n", I->first);
753      I->second->dump();
754  }
755  printf("}\n");
756}
757
758Value* GVN::CollapsePhi(PHINode* p) {
759  Value* constVal = p->hasConstantValue();
760  if (!constVal) return 0;
761
762  Instruction* inst = dyn_cast<Instruction>(constVal);
763  if (!inst)
764    return constVal;
765
766  if (DT->dominates(inst, p))
767    if (isSafeReplacement(p, inst))
768      return inst;
769  return 0;
770}
771
772bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
773  if (!isa<PHINode>(inst))
774    return true;
775
776  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
777       UI != E; ++UI)
778    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
779      if (use_phi->getParent() == inst->getParent())
780        return false;
781
782  return true;
783}
784
785/// GetValueForBlock - Get the value to use within the specified basic block.
786/// available values are in Phis.
787Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
788                             DenseMap<BasicBlock*, Value*> &Phis,
789                             bool top_level) {
790
791  // If we have already computed this value, return the previously computed val.
792  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
793  if (V != Phis.end() && !top_level) return V->second;
794
795  // If the block is unreachable, just return undef, since this path
796  // can't actually occur at runtime.
797  if (!DT->isReachableFromEntry(BB))
798    return Phis[BB] = UndefValue::get(orig->getType());
799
800  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
801    Value *ret = GetValueForBlock(Pred, orig, Phis);
802    Phis[BB] = ret;
803    return ret;
804  }
805
806  // Get the number of predecessors of this block so we can reserve space later.
807  // If there is already a PHI in it, use the #preds from it, otherwise count.
808  // Getting it from the PHI is constant time.
809  unsigned NumPreds;
810  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
811    NumPreds = ExistingPN->getNumIncomingValues();
812  else
813    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
814
815  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
816  // now, then get values to fill in the incoming values for the PHI.
817  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
818                                BB->begin());
819  PN->reserveOperandSpace(NumPreds);
820
821  Phis.insert(std::make_pair(BB, PN));
822
823  // Fill in the incoming values for the block.
824  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
825    Value* val = GetValueForBlock(*PI, orig, Phis);
826    PN->addIncoming(val, *PI);
827  }
828
829  VN.getAliasAnalysis()->copyValue(orig, PN);
830
831  // Attempt to collapse PHI nodes that are trivially redundant
832  Value* v = CollapsePhi(PN);
833  if (!v) {
834    // Cache our phi construction results
835    if (LoadInst* L = dyn_cast<LoadInst>(orig))
836      phiMap[L->getPointerOperand()].insert(PN);
837    else
838      phiMap[orig].insert(PN);
839
840    return PN;
841  }
842
843  PN->replaceAllUsesWith(v);
844  if (isa<PointerType>(v->getType()))
845    MD->invalidateCachedPointerInfo(v);
846
847  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
848       E = Phis.end(); I != E; ++I)
849    if (I->second == PN)
850      I->second = v;
851
852  DEBUG(cerr << "GVN removed: " << *PN);
853  MD->removeInstruction(PN);
854  PN->eraseFromParent();
855  DEBUG(verifyRemoved(PN));
856
857  Phis[BB] = v;
858  return v;
859}
860
861/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
862/// we're analyzing is fully available in the specified block.  As we go, keep
863/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
864/// map is actually a tri-state map with the following values:
865///   0) we know the block *is not* fully available.
866///   1) we know the block *is* fully available.
867///   2) we do not know whether the block is fully available or not, but we are
868///      currently speculating that it will be.
869///   3) we are speculating for this block and have used that to speculate for
870///      other blocks.
871static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
872                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
873  // Optimistically assume that the block is fully available and check to see
874  // if we already know about this block in one lookup.
875  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
876    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
877
878  // If the entry already existed for this block, return the precomputed value.
879  if (!IV.second) {
880    // If this is a speculative "available" value, mark it as being used for
881    // speculation of other blocks.
882    if (IV.first->second == 2)
883      IV.first->second = 3;
884    return IV.first->second != 0;
885  }
886
887  // Otherwise, see if it is fully available in all predecessors.
888  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
889
890  // If this block has no predecessors, it isn't live-in here.
891  if (PI == PE)
892    goto SpeculationFailure;
893
894  for (; PI != PE; ++PI)
895    // If the value isn't fully available in one of our predecessors, then it
896    // isn't fully available in this block either.  Undo our previous
897    // optimistic assumption and bail out.
898    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
899      goto SpeculationFailure;
900
901  return true;
902
903// SpeculationFailure - If we get here, we found out that this is not, after
904// all, a fully-available block.  We have a problem if we speculated on this and
905// used the speculation to mark other blocks as available.
906SpeculationFailure:
907  char &BBVal = FullyAvailableBlocks[BB];
908
909  // If we didn't speculate on this, just return with it set to false.
910  if (BBVal == 2) {
911    BBVal = 0;
912    return false;
913  }
914
915  // If we did speculate on this value, we could have blocks set to 1 that are
916  // incorrect.  Walk the (transitive) successors of this block and mark them as
917  // 0 if set to one.
918  SmallVector<BasicBlock*, 32> BBWorklist;
919  BBWorklist.push_back(BB);
920
921  while (!BBWorklist.empty()) {
922    BasicBlock *Entry = BBWorklist.pop_back_val();
923    // Note that this sets blocks to 0 (unavailable) if they happen to not
924    // already be in FullyAvailableBlocks.  This is safe.
925    char &EntryVal = FullyAvailableBlocks[Entry];
926    if (EntryVal == 0) continue;  // Already unavailable.
927
928    // Mark as unavailable.
929    EntryVal = 0;
930
931    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
932      BBWorklist.push_back(*I);
933  }
934
935  return false;
936}
937
938/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
939/// non-local by performing PHI construction.
940bool GVN::processNonLocalLoad(LoadInst *LI,
941                              SmallVectorImpl<Instruction*> &toErase) {
942  // Find the non-local dependencies of the load.
943  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
944  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
945                                   Deps);
946  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
947
948  // If we had to process more than one hundred blocks to find the
949  // dependencies, this load isn't worth worrying about.  Optimizing
950  // it will be too expensive.
951  if (Deps.size() > 100)
952    return false;
953
954  // If we had a phi translation failure, we'll have a single entry which is a
955  // clobber in the current block.  Reject this early.
956  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
957    DEBUG(
958      DOUT << "GVN: non-local load ";
959      WriteAsOperand(*DOUT.stream(), LI);
960      DOUT << " is clobbered by " << *Deps[0].second.getInst();
961    );
962    return false;
963  }
964
965  // Filter out useless results (non-locals, etc).  Keep track of the blocks
966  // where we have a value available in repl, also keep track of whether we see
967  // dependencies that produce an unknown value for the load (such as a call
968  // that could potentially clobber the load).
969  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
970  SmallVector<BasicBlock*, 16> UnavailableBlocks;
971
972  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
973    BasicBlock *DepBB = Deps[i].first;
974    MemDepResult DepInfo = Deps[i].second;
975
976    if (DepInfo.isClobber()) {
977      UnavailableBlocks.push_back(DepBB);
978      continue;
979    }
980
981    Instruction *DepInst = DepInfo.getInst();
982
983    // Loading the allocation -> undef.
984    if (isa<AllocationInst>(DepInst)) {
985      ValuesPerBlock.push_back(std::make_pair(DepBB,
986                                              UndefValue::get(LI->getType())));
987      continue;
988    }
989
990    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
991      // Reject loads and stores that are to the same address but are of
992      // different types.
993      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
994      // of bitfield access, it would be interesting to optimize for it at some
995      // point.
996      if (S->getOperand(0)->getType() != LI->getType()) {
997        UnavailableBlocks.push_back(DepBB);
998        continue;
999      }
1000
1001      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1002
1003    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1004      if (LD->getType() != LI->getType()) {
1005        UnavailableBlocks.push_back(DepBB);
1006        continue;
1007      }
1008      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1009    } else {
1010      UnavailableBlocks.push_back(DepBB);
1011      continue;
1012    }
1013  }
1014
1015  // If we have no predecessors that produce a known value for this load, exit
1016  // early.
1017  if (ValuesPerBlock.empty()) return false;
1018
1019  // If all of the instructions we depend on produce a known value for this
1020  // load, then it is fully redundant and we can use PHI insertion to compute
1021  // its value.  Insert PHIs and remove the fully redundant value now.
1022  if (UnavailableBlocks.empty()) {
1023    // Use cached PHI construction information from previous runs
1024    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1025    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1026    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1027         I != E; ++I) {
1028      if ((*I)->getParent() == LI->getParent()) {
1029        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1030        LI->replaceAllUsesWith(*I);
1031        if (isa<PointerType>((*I)->getType()))
1032          MD->invalidateCachedPointerInfo(*I);
1033        toErase.push_back(LI);
1034        NumGVNLoad++;
1035        return true;
1036      }
1037
1038      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1039    }
1040
1041    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1042
1043    DenseMap<BasicBlock*, Value*> BlockReplValues;
1044    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1045    // Perform PHI construction.
1046    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1047    LI->replaceAllUsesWith(v);
1048
1049    if (isa<PHINode>(v))
1050      v->takeName(LI);
1051    if (isa<PointerType>(v->getType()))
1052      MD->invalidateCachedPointerInfo(v);
1053    toErase.push_back(LI);
1054    NumGVNLoad++;
1055    return true;
1056  }
1057
1058  if (!EnablePRE || !EnableLoadPRE)
1059    return false;
1060
1061  // Okay, we have *some* definitions of the value.  This means that the value
1062  // is available in some of our (transitive) predecessors.  Lets think about
1063  // doing PRE of this load.  This will involve inserting a new load into the
1064  // predecessor when it's not available.  We could do this in general, but
1065  // prefer to not increase code size.  As such, we only do this when we know
1066  // that we only have to insert *one* load (which means we're basically moving
1067  // the load, not inserting a new one).
1068
1069  SmallPtrSet<BasicBlock *, 4> Blockers;
1070  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1071    Blockers.insert(UnavailableBlocks[i]);
1072
1073  // Lets find first basic block with more than one predecessor.  Walk backwards
1074  // through predecessors if needed.
1075  BasicBlock *LoadBB = LI->getParent();
1076  BasicBlock *TmpBB = LoadBB;
1077
1078  bool isSinglePred = false;
1079  bool allSingleSucc = true;
1080  while (TmpBB->getSinglePredecessor()) {
1081    isSinglePred = true;
1082    TmpBB = TmpBB->getSinglePredecessor();
1083    if (!TmpBB) // If haven't found any, bail now.
1084      return false;
1085    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1086      return false;
1087    if (Blockers.count(TmpBB))
1088      return false;
1089    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1090      allSingleSucc = false;
1091  }
1092
1093  assert(TmpBB);
1094  LoadBB = TmpBB;
1095
1096  // If we have a repl set with LI itself in it, this means we have a loop where
1097  // at least one of the values is LI.  Since this means that we won't be able
1098  // to eliminate LI even if we insert uses in the other predecessors, we will
1099  // end up increasing code size.  Reject this by scanning for LI.
1100  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1101    if (ValuesPerBlock[i].second == LI)
1102      return false;
1103
1104  if (isSinglePred) {
1105    bool isHot = false;
1106    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1107      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1108	// "Hot" Instruction is in some loop (because it dominates its dep.
1109	// instruction).
1110	if (DT->dominates(LI, I)) {
1111	  isHot = true;
1112	  break;
1113	}
1114
1115    // We are interested only in "hot" instructions. We don't want to do any
1116    // mis-optimizations here.
1117    if (!isHot)
1118      return false;
1119  }
1120
1121  // Okay, we have some hope :).  Check to see if the loaded value is fully
1122  // available in all but one predecessor.
1123  // FIXME: If we could restructure the CFG, we could make a common pred with
1124  // all the preds that don't have an available LI and insert a new load into
1125  // that one block.
1126  BasicBlock *UnavailablePred = 0;
1127
1128  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1129  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1130    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1131  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1132    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1133
1134  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1135       PI != E; ++PI) {
1136    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1137      continue;
1138
1139    // If this load is not available in multiple predecessors, reject it.
1140    if (UnavailablePred && UnavailablePred != *PI)
1141      return false;
1142    UnavailablePred = *PI;
1143  }
1144
1145  assert(UnavailablePred != 0 &&
1146         "Fully available value should be eliminated above!");
1147
1148  // If the loaded pointer is PHI node defined in this block, do PHI translation
1149  // to get its value in the predecessor.
1150  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1151
1152  // Make sure the value is live in the predecessor.  If it was defined by a
1153  // non-PHI instruction in this block, we don't know how to recompute it above.
1154  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1155    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1156      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1157                 << *LPInst << *LI << "\n");
1158      return false;
1159    }
1160
1161  // We don't currently handle critical edges :(
1162  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1163    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1164                << UnavailablePred->getName() << "': " << *LI);
1165    return false;
1166  }
1167
1168  // Make sure it is valid to move this load here.  We have to watch out for:
1169  //  @1 = getelementptr (i8* p, ...
1170  //  test p and branch if == 0
1171  //  load @1
1172  // It is valid to have the getelementptr before the test, even if p can be 0,
1173  // as getelementptr only does address arithmetic.
1174  // If we are not pushing the value through any multiple-successor blocks
1175  // we do not have this case.  Otherwise, check that the load is safe to
1176  // put anywhere; this can be improved, but should be conservatively safe.
1177  if (!allSingleSucc &&
1178      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1179    return false;
1180
1181  // Okay, we can eliminate this load by inserting a reload in the predecessor
1182  // and using PHI construction to get the value in the other predecessors, do
1183  // it.
1184  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1185
1186  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1187                                LI->getAlignment(),
1188                                UnavailablePred->getTerminator());
1189
1190  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1191  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1192       I != E; ++I)
1193    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1194
1195  DenseMap<BasicBlock*, Value*> BlockReplValues;
1196  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1197  BlockReplValues[UnavailablePred] = NewLoad;
1198
1199  // Perform PHI construction.
1200  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1201  LI->replaceAllUsesWith(v);
1202  if (isa<PHINode>(v))
1203    v->takeName(LI);
1204  if (isa<PointerType>(v->getType()))
1205    MD->invalidateCachedPointerInfo(v);
1206  toErase.push_back(LI);
1207  NumPRELoad++;
1208  return true;
1209}
1210
1211/// processLoad - Attempt to eliminate a load, first by eliminating it
1212/// locally, and then attempting non-local elimination if that fails.
1213bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1214  if (L->isVolatile())
1215    return false;
1216
1217  Value* pointer = L->getPointerOperand();
1218
1219  // ... to a pointer that has been loaded from before...
1220  MemDepResult dep = MD->getDependency(L);
1221
1222  // If the value isn't available, don't do anything!
1223  if (dep.isClobber()) {
1224    DEBUG(
1225      // fast print dep, using operator<< on instruction would be too slow
1226      DOUT << "GVN: load ";
1227      WriteAsOperand(*DOUT.stream(), L);
1228      Instruction *I = dep.getInst();
1229      DOUT << " is clobbered by " << *I;
1230    );
1231    return false;
1232  }
1233
1234  // If it is defined in another block, try harder.
1235  if (dep.isNonLocal())
1236    return processNonLocalLoad(L, toErase);
1237
1238  Instruction *DepInst = dep.getInst();
1239  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1240    // Only forward substitute stores to loads of the same type.
1241    // FIXME: Could do better!
1242    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1243      return false;
1244
1245    // Remove it!
1246    L->replaceAllUsesWith(DepSI->getOperand(0));
1247    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1248      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1249    toErase.push_back(L);
1250    NumGVNLoad++;
1251    return true;
1252  }
1253
1254  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1255    // Only forward substitute stores to loads of the same type.
1256    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1257    if (DepLI->getType() != L->getType())
1258      return false;
1259
1260    // Remove it!
1261    L->replaceAllUsesWith(DepLI);
1262    if (isa<PointerType>(DepLI->getType()))
1263      MD->invalidateCachedPointerInfo(DepLI);
1264    toErase.push_back(L);
1265    NumGVNLoad++;
1266    return true;
1267  }
1268
1269  // If this load really doesn't depend on anything, then we must be loading an
1270  // undef value.  This can happen when loading for a fresh allocation with no
1271  // intervening stores, for example.
1272  if (isa<AllocationInst>(DepInst)) {
1273    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1274    toErase.push_back(L);
1275    NumGVNLoad++;
1276    return true;
1277  }
1278
1279  return false;
1280}
1281
1282Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1283  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1284  if (I == localAvail.end())
1285    return 0;
1286
1287  ValueNumberScope* locals = I->second;
1288
1289  while (locals) {
1290    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1291    if (I != locals->table.end())
1292      return I->second;
1293    else
1294      locals = locals->parent;
1295  }
1296
1297  return 0;
1298}
1299
1300/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1301/// by inheritance from the dominator fails, see if we can perform phi
1302/// construction to eliminate the redundancy.
1303Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1304  BasicBlock* BaseBlock = orig->getParent();
1305
1306  SmallPtrSet<BasicBlock*, 4> Visited;
1307  SmallVector<BasicBlock*, 8> Stack;
1308  Stack.push_back(BaseBlock);
1309
1310  DenseMap<BasicBlock*, Value*> Results;
1311
1312  // Walk backwards through our predecessors, looking for instances of the
1313  // value number we're looking for.  Instances are recorded in the Results
1314  // map, which is then used to perform phi construction.
1315  while (!Stack.empty()) {
1316    BasicBlock* Current = Stack.back();
1317    Stack.pop_back();
1318
1319    // If we've walked all the way to a proper dominator, then give up. Cases
1320    // where the instance is in the dominator will have been caught by the fast
1321    // path, and any cases that require phi construction further than this are
1322    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1323    // time improvement.
1324    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1325
1326    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1327                                                       localAvail.find(Current);
1328    if (LA == localAvail.end()) return 0;
1329    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1330
1331    if (V != LA->second->table.end()) {
1332      // Found an instance, record it.
1333      Results.insert(std::make_pair(Current, V->second));
1334      continue;
1335    }
1336
1337    // If we reach the beginning of the function, then give up.
1338    if (pred_begin(Current) == pred_end(Current))
1339      return 0;
1340
1341    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1342         PI != PE; ++PI)
1343      if (Visited.insert(*PI))
1344        Stack.push_back(*PI);
1345  }
1346
1347  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1348  if (Results.size() == 0)
1349    return 0;
1350  else
1351    return GetValueForBlock(BaseBlock, orig, Results, true);
1352}
1353
1354/// processInstruction - When calculating availability, handle an instruction
1355/// by inserting it into the appropriate sets
1356bool GVN::processInstruction(Instruction *I,
1357                             SmallVectorImpl<Instruction*> &toErase) {
1358  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1359    bool changed = processLoad(L, toErase);
1360
1361    if (!changed) {
1362      unsigned num = VN.lookup_or_add(L);
1363      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1364    }
1365
1366    return changed;
1367  }
1368
1369  uint32_t nextNum = VN.getNextUnusedValueNumber();
1370  unsigned num = VN.lookup_or_add(I);
1371
1372  if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1373    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1374
1375    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1376      return false;
1377
1378    Value* branchCond = BI->getCondition();
1379    uint32_t condVN = VN.lookup_or_add(branchCond);
1380
1381    BasicBlock* trueSucc = BI->getSuccessor(0);
1382    BasicBlock* falseSucc = BI->getSuccessor(1);
1383
1384    if (trueSucc->getSinglePredecessor())
1385      localAvail[trueSucc]->table[condVN] = ConstantInt::getTrue();
1386    if (falseSucc->getSinglePredecessor())
1387      localAvail[falseSucc]->table[condVN] = ConstantInt::getFalse();
1388
1389    return false;
1390
1391  // Allocations are always uniquely numbered, so we can save time and memory
1392  // by fast failing them.
1393  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1394    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1395    return false;
1396  }
1397
1398  // Collapse PHI nodes
1399  if (PHINode* p = dyn_cast<PHINode>(I)) {
1400    Value* constVal = CollapsePhi(p);
1401
1402    if (constVal) {
1403      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1404           PI != PE; ++PI)
1405        PI->second.erase(p);
1406
1407      p->replaceAllUsesWith(constVal);
1408      if (isa<PointerType>(constVal->getType()))
1409        MD->invalidateCachedPointerInfo(constVal);
1410      VN.erase(p);
1411
1412      toErase.push_back(p);
1413    } else {
1414      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1415    }
1416
1417  // If the number we were assigned was a brand new VN, then we don't
1418  // need to do a lookup to see if the number already exists
1419  // somewhere in the domtree: it can't!
1420  } else if (num == nextNum) {
1421    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1422
1423  // Perform fast-path value-number based elimination of values inherited from
1424  // dominators.
1425  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1426    // Remove it!
1427    VN.erase(I);
1428    I->replaceAllUsesWith(repl);
1429    if (isa<PointerType>(repl->getType()))
1430      MD->invalidateCachedPointerInfo(repl);
1431    toErase.push_back(I);
1432    return true;
1433
1434#if 0
1435  // Perform slow-pathvalue-number based elimination with phi construction.
1436  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1437    // Remove it!
1438    VN.erase(I);
1439    I->replaceAllUsesWith(repl);
1440    if (isa<PointerType>(repl->getType()))
1441      MD->invalidateCachedPointerInfo(repl);
1442    toErase.push_back(I);
1443    return true;
1444#endif
1445  } else {
1446    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1447  }
1448
1449  return false;
1450}
1451
1452/// runOnFunction - This is the main transformation entry point for a function.
1453bool GVN::runOnFunction(Function& F) {
1454  MD = &getAnalysis<MemoryDependenceAnalysis>();
1455  DT = &getAnalysis<DominatorTree>();
1456  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1457  VN.setMemDep(MD);
1458  VN.setDomTree(DT);
1459
1460  bool changed = false;
1461  bool shouldContinue = true;
1462
1463  // Merge unconditional branches, allowing PRE to catch more
1464  // optimization opportunities.
1465  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1466    BasicBlock* BB = FI;
1467    ++FI;
1468    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1469    if (removedBlock) NumGVNBlocks++;
1470
1471    changed |= removedBlock;
1472  }
1473
1474  unsigned Iteration = 0;
1475
1476  while (shouldContinue) {
1477    DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1478    shouldContinue = iterateOnFunction(F);
1479    changed |= shouldContinue;
1480    ++Iteration;
1481  }
1482
1483  if (EnablePRE) {
1484    bool PREChanged = true;
1485    while (PREChanged) {
1486      PREChanged = performPRE(F);
1487      changed |= PREChanged;
1488    }
1489  }
1490  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1491  // computations into blocks where they become fully redundant.  Note that
1492  // we can't do this until PRE's critical edge splitting updates memdep.
1493  // Actually, when this happens, we should just fully integrate PRE into GVN.
1494
1495  cleanupGlobalSets();
1496
1497  return changed;
1498}
1499
1500
1501bool GVN::processBlock(BasicBlock* BB) {
1502  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1503  // incrementing BI before processing an instruction).
1504  SmallVector<Instruction*, 8> toErase;
1505  bool changed_function = false;
1506
1507  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1508       BI != BE;) {
1509    changed_function |= processInstruction(BI, toErase);
1510    if (toErase.empty()) {
1511      ++BI;
1512      continue;
1513    }
1514
1515    // If we need some instructions deleted, do it now.
1516    NumGVNInstr += toErase.size();
1517
1518    // Avoid iterator invalidation.
1519    bool AtStart = BI == BB->begin();
1520    if (!AtStart)
1521      --BI;
1522
1523    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1524         E = toErase.end(); I != E; ++I) {
1525      DEBUG(cerr << "GVN removed: " << **I);
1526      MD->removeInstruction(*I);
1527      (*I)->eraseFromParent();
1528      DEBUG(verifyRemoved(*I));
1529    }
1530    toErase.clear();
1531
1532    if (AtStart)
1533      BI = BB->begin();
1534    else
1535      ++BI;
1536  }
1537
1538  return changed_function;
1539}
1540
1541/// performPRE - Perform a purely local form of PRE that looks for diamond
1542/// control flow patterns and attempts to perform simple PRE at the join point.
1543bool GVN::performPRE(Function& F) {
1544  bool Changed = false;
1545  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1546  DenseMap<BasicBlock*, Value*> predMap;
1547  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1548       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1549    BasicBlock* CurrentBlock = *DI;
1550
1551    // Nothing to PRE in the entry block.
1552    if (CurrentBlock == &F.getEntryBlock()) continue;
1553
1554    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1555         BE = CurrentBlock->end(); BI != BE; ) {
1556      Instruction *CurInst = BI++;
1557
1558      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1559          isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
1560          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1561          isa<DbgInfoIntrinsic>(CurInst))
1562        continue;
1563
1564      uint32_t valno = VN.lookup(CurInst);
1565
1566      // Look for the predecessors for PRE opportunities.  We're
1567      // only trying to solve the basic diamond case, where
1568      // a value is computed in the successor and one predecessor,
1569      // but not the other.  We also explicitly disallow cases
1570      // where the successor is its own predecessor, because they're
1571      // more complicated to get right.
1572      unsigned numWith = 0;
1573      unsigned numWithout = 0;
1574      BasicBlock* PREPred = 0;
1575      predMap.clear();
1576
1577      for (pred_iterator PI = pred_begin(CurrentBlock),
1578           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1579        // We're not interested in PRE where the block is its
1580        // own predecessor, on in blocks with predecessors
1581        // that are not reachable.
1582        if (*PI == CurrentBlock) {
1583          numWithout = 2;
1584          break;
1585        } else if (!localAvail.count(*PI))  {
1586          numWithout = 2;
1587          break;
1588        }
1589
1590        DenseMap<uint32_t, Value*>::iterator predV =
1591                                            localAvail[*PI]->table.find(valno);
1592        if (predV == localAvail[*PI]->table.end()) {
1593          PREPred = *PI;
1594          numWithout++;
1595        } else if (predV->second == CurInst) {
1596          numWithout = 2;
1597        } else {
1598          predMap[*PI] = predV->second;
1599          numWith++;
1600        }
1601      }
1602
1603      // Don't do PRE when it might increase code size, i.e. when
1604      // we would need to insert instructions in more than one pred.
1605      if (numWithout != 1 || numWith == 0)
1606        continue;
1607
1608      // We can't do PRE safely on a critical edge, so instead we schedule
1609      // the edge to be split and perform the PRE the next time we iterate
1610      // on the function.
1611      unsigned succNum = 0;
1612      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1613           i != e; ++i)
1614        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1615          succNum = i;
1616          break;
1617        }
1618
1619      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1620        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1621        continue;
1622      }
1623
1624      // Instantiate the expression the in predecessor that lacked it.
1625      // Because we are going top-down through the block, all value numbers
1626      // will be available in the predecessor by the time we need them.  Any
1627      // that weren't original present will have been instantiated earlier
1628      // in this loop.
1629      Instruction* PREInstr = CurInst->clone();
1630      bool success = true;
1631      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1632        Value *Op = PREInstr->getOperand(i);
1633        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1634          continue;
1635
1636        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1637          PREInstr->setOperand(i, V);
1638        } else {
1639          success = false;
1640          break;
1641        }
1642      }
1643
1644      // Fail out if we encounter an operand that is not available in
1645      // the PRE predecessor.  This is typically because of loads which
1646      // are not value numbered precisely.
1647      if (!success) {
1648        delete PREInstr;
1649        DEBUG(verifyRemoved(PREInstr));
1650        continue;
1651      }
1652
1653      PREInstr->insertBefore(PREPred->getTerminator());
1654      PREInstr->setName(CurInst->getName() + ".pre");
1655      predMap[PREPred] = PREInstr;
1656      VN.add(PREInstr, valno);
1657      NumGVNPRE++;
1658
1659      // Update the availability map to include the new instruction.
1660      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1661
1662      // Create a PHI to make the value available in this block.
1663      PHINode* Phi = PHINode::Create(CurInst->getType(),
1664                                     CurInst->getName() + ".pre-phi",
1665                                     CurrentBlock->begin());
1666      for (pred_iterator PI = pred_begin(CurrentBlock),
1667           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1668        Phi->addIncoming(predMap[*PI], *PI);
1669
1670      VN.add(Phi, valno);
1671      localAvail[CurrentBlock]->table[valno] = Phi;
1672
1673      CurInst->replaceAllUsesWith(Phi);
1674      if (isa<PointerType>(Phi->getType()))
1675        MD->invalidateCachedPointerInfo(Phi);
1676      VN.erase(CurInst);
1677
1678      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1679      MD->removeInstruction(CurInst);
1680      CurInst->eraseFromParent();
1681      DEBUG(verifyRemoved(CurInst));
1682      Changed = true;
1683    }
1684  }
1685
1686  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1687       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1688    SplitCriticalEdge(I->first, I->second, this);
1689
1690  return Changed || toSplit.size();
1691}
1692
1693/// iterateOnFunction - Executes one iteration of GVN
1694bool GVN::iterateOnFunction(Function &F) {
1695  cleanupGlobalSets();
1696
1697  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1698       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1699    if (DI->getIDom())
1700      localAvail[DI->getBlock()] =
1701                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1702    else
1703      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1704  }
1705
1706  // Top-down walk of the dominator tree
1707  bool changed = false;
1708#if 0
1709  // Needed for value numbering with phi construction to work.
1710  ReversePostOrderTraversal<Function*> RPOT(&F);
1711  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1712       RE = RPOT.end(); RI != RE; ++RI)
1713    changed |= processBlock(*RI);
1714#else
1715  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1716       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1717    changed |= processBlock(DI->getBlock());
1718#endif
1719
1720  return changed;
1721}
1722
1723void GVN::cleanupGlobalSets() {
1724  VN.clear();
1725  phiMap.clear();
1726
1727  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1728       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1729    delete I->second;
1730  localAvail.clear();
1731}
1732
1733/// verifyRemoved - Verify that the specified instruction does not occur in our
1734/// internal data structures.
1735void GVN::verifyRemoved(const Instruction *Inst) const {
1736  VN.verifyRemoved(Inst);
1737
1738  // Walk through the PHI map to make sure the instruction isn't hiding in there
1739  // somewhere.
1740  for (PhiMapType::iterator
1741         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1742    assert(I->first != Inst && "Inst is still a key in PHI map!");
1743
1744    for (SmallPtrSet<Instruction*, 4>::iterator
1745           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1746      assert(*II != Inst && "Inst is still a value in PHI map!");
1747    }
1748  }
1749
1750  // Walk through the value number scope to make sure the instruction isn't
1751  // ferreted away in it.
1752  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1753         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1754    const ValueNumberScope *VNS = I->second;
1755
1756    while (VNS) {
1757      for (DenseMap<uint32_t, Value*>::iterator
1758             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1759        assert(II->second != Inst && "Inst still in value numbering scope!");
1760      }
1761
1762      VNS = VNS->parent;
1763    }
1764  }
1765}
1766