GVN.cpp revision 452c58f4c45249b5046f74a165430eedaab5f8f6
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/SSAUpdater.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/Allocator.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/IRBuilder.h"
44using namespace llvm;
45
46STATISTIC(NumGVNInstr,  "Number of instructions deleted");
47STATISTIC(NumGVNLoad,   "Number of loads deleted");
48STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
49STATISTIC(NumGVNBlocks, "Number of blocks merged");
50STATISTIC(NumPRELoad,   "Number of loads PRE'd");
51
52static cl::opt<bool> EnablePRE("enable-pre",
53                               cl::init(true), cl::Hidden);
54static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
55
56//===----------------------------------------------------------------------===//
57//                         ValueTable Class
58//===----------------------------------------------------------------------===//
59
60/// This class holds the mapping between values and value numbers.  It is used
61/// as an efficient mechanism to determine the expression-wise equivalence of
62/// two values.
63namespace {
64  struct Expression {
65    uint32_t opcode;
66    Type *type;
67    SmallVector<uint32_t, 4> varargs;
68
69    Expression(uint32_t o = ~2U) : opcode(o) { }
70
71    bool operator==(const Expression &other) const {
72      if (opcode != other.opcode)
73        return false;
74      if (opcode == ~0U || opcode == ~1U)
75        return true;
76      if (type != other.type)
77        return false;
78      if (varargs != other.varargs)
79        return false;
80      return true;
81    }
82  };
83
84  class ValueTable {
85    DenseMap<Value*, uint32_t> valueNumbering;
86    DenseMap<Expression, uint32_t> expressionNumbering;
87    AliasAnalysis *AA;
88    MemoryDependenceAnalysis *MD;
89    DominatorTree *DT;
90
91    uint32_t nextValueNumber;
92
93    Expression create_expression(Instruction* I);
94    Expression create_extractvalue_expression(ExtractValueInst* EI);
95    uint32_t lookup_or_add_call(CallInst* C);
96  public:
97    ValueTable() : nextValueNumber(1) { }
98    uint32_t lookup_or_add(Value *V);
99    uint32_t lookup(Value *V) const;
100    void add(Value *V, uint32_t num);
101    void clear();
102    void erase(Value *v);
103    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
104    AliasAnalysis *getAliasAnalysis() const { return AA; }
105    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
106    void setDomTree(DominatorTree* D) { DT = D; }
107    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
108    void verifyRemoved(const Value *) const;
109  };
110}
111
112namespace llvm {
113template <> struct DenseMapInfo<Expression> {
114  static inline Expression getEmptyKey() {
115    return ~0U;
116  }
117
118  static inline Expression getTombstoneKey() {
119    return ~1U;
120  }
121
122  static unsigned getHashValue(const Expression e) {
123    unsigned hash = e.opcode;
124
125    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
126            (unsigned)((uintptr_t)e.type >> 9));
127
128    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
129         E = e.varargs.end(); I != E; ++I)
130      hash = *I + hash * 37;
131
132    return hash;
133  }
134  static bool isEqual(const Expression &LHS, const Expression &RHS) {
135    return LHS == RHS;
136  }
137};
138
139}
140
141//===----------------------------------------------------------------------===//
142//                     ValueTable Internal Functions
143//===----------------------------------------------------------------------===//
144
145Expression ValueTable::create_expression(Instruction *I) {
146  Expression e;
147  e.type = I->getType();
148  e.opcode = I->getOpcode();
149  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
150       OI != OE; ++OI)
151    e.varargs.push_back(lookup_or_add(*OI));
152
153  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
154    e.opcode = (C->getOpcode() << 8) | C->getPredicate();
155  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
156    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
157         II != IE; ++II)
158      e.varargs.push_back(*II);
159  }
160
161  return e;
162}
163
164Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
165  assert(EI != 0 && "Not an ExtractValueInst?");
166  Expression e;
167  e.type = EI->getType();
168  e.opcode = 0;
169
170  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
171  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
172    // EI might be an extract from one of our recognised intrinsics. If it
173    // is we'll synthesize a semantically equivalent expression instead on
174    // an extract value expression.
175    switch (I->getIntrinsicID()) {
176      case Intrinsic::sadd_with_overflow:
177      case Intrinsic::uadd_with_overflow:
178        e.opcode = Instruction::Add;
179        break;
180      case Intrinsic::ssub_with_overflow:
181      case Intrinsic::usub_with_overflow:
182        e.opcode = Instruction::Sub;
183        break;
184      case Intrinsic::smul_with_overflow:
185      case Intrinsic::umul_with_overflow:
186        e.opcode = Instruction::Mul;
187        break;
188      default:
189        break;
190    }
191
192    if (e.opcode != 0) {
193      // Intrinsic recognized. Grab its args to finish building the expression.
194      assert(I->getNumArgOperands() == 2 &&
195             "Expect two args for recognised intrinsics.");
196      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
197      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
198      return e;
199    }
200  }
201
202  // Not a recognised intrinsic. Fall back to producing an extract value
203  // expression.
204  e.opcode = EI->getOpcode();
205  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
206       OI != OE; ++OI)
207    e.varargs.push_back(lookup_or_add(*OI));
208
209  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
210         II != IE; ++II)
211    e.varargs.push_back(*II);
212
213  return e;
214}
215
216//===----------------------------------------------------------------------===//
217//                     ValueTable External Functions
218//===----------------------------------------------------------------------===//
219
220/// add - Insert a value into the table with a specified value number.
221void ValueTable::add(Value *V, uint32_t num) {
222  valueNumbering.insert(std::make_pair(V, num));
223}
224
225uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
226  if (AA->doesNotAccessMemory(C)) {
227    Expression exp = create_expression(C);
228    uint32_t& e = expressionNumbering[exp];
229    if (!e) e = nextValueNumber++;
230    valueNumbering[C] = e;
231    return e;
232  } else if (AA->onlyReadsMemory(C)) {
233    Expression exp = create_expression(C);
234    uint32_t& e = expressionNumbering[exp];
235    if (!e) {
236      e = nextValueNumber++;
237      valueNumbering[C] = e;
238      return e;
239    }
240    if (!MD) {
241      e = nextValueNumber++;
242      valueNumbering[C] = e;
243      return e;
244    }
245
246    MemDepResult local_dep = MD->getDependency(C);
247
248    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
249      valueNumbering[C] =  nextValueNumber;
250      return nextValueNumber++;
251    }
252
253    if (local_dep.isDef()) {
254      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
255
256      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
257        valueNumbering[C] = nextValueNumber;
258        return nextValueNumber++;
259      }
260
261      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
262        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
263        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
264        if (c_vn != cd_vn) {
265          valueNumbering[C] = nextValueNumber;
266          return nextValueNumber++;
267        }
268      }
269
270      uint32_t v = lookup_or_add(local_cdep);
271      valueNumbering[C] = v;
272      return v;
273    }
274
275    // Non-local case.
276    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
277      MD->getNonLocalCallDependency(CallSite(C));
278    // FIXME: Move the checking logic to MemDep!
279    CallInst* cdep = 0;
280
281    // Check to see if we have a single dominating call instruction that is
282    // identical to C.
283    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
284      const NonLocalDepEntry *I = &deps[i];
285      if (I->getResult().isNonLocal())
286        continue;
287
288      // We don't handle non-definitions.  If we already have a call, reject
289      // instruction dependencies.
290      if (!I->getResult().isDef() || cdep != 0) {
291        cdep = 0;
292        break;
293      }
294
295      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
296      // FIXME: All duplicated with non-local case.
297      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
298        cdep = NonLocalDepCall;
299        continue;
300      }
301
302      cdep = 0;
303      break;
304    }
305
306    if (!cdep) {
307      valueNumbering[C] = nextValueNumber;
308      return nextValueNumber++;
309    }
310
311    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
312      valueNumbering[C] = nextValueNumber;
313      return nextValueNumber++;
314    }
315    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
316      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
317      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
318      if (c_vn != cd_vn) {
319        valueNumbering[C] = nextValueNumber;
320        return nextValueNumber++;
321      }
322    }
323
324    uint32_t v = lookup_or_add(cdep);
325    valueNumbering[C] = v;
326    return v;
327
328  } else {
329    valueNumbering[C] = nextValueNumber;
330    return nextValueNumber++;
331  }
332}
333
334/// lookup_or_add - Returns the value number for the specified value, assigning
335/// it a new number if it did not have one before.
336uint32_t ValueTable::lookup_or_add(Value *V) {
337  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
338  if (VI != valueNumbering.end())
339    return VI->second;
340
341  if (!isa<Instruction>(V)) {
342    valueNumbering[V] = nextValueNumber;
343    return nextValueNumber++;
344  }
345
346  Instruction* I = cast<Instruction>(V);
347  Expression exp;
348  switch (I->getOpcode()) {
349    case Instruction::Call:
350      return lookup_or_add_call(cast<CallInst>(I));
351    case Instruction::Add:
352    case Instruction::FAdd:
353    case Instruction::Sub:
354    case Instruction::FSub:
355    case Instruction::Mul:
356    case Instruction::FMul:
357    case Instruction::UDiv:
358    case Instruction::SDiv:
359    case Instruction::FDiv:
360    case Instruction::URem:
361    case Instruction::SRem:
362    case Instruction::FRem:
363    case Instruction::Shl:
364    case Instruction::LShr:
365    case Instruction::AShr:
366    case Instruction::And:
367    case Instruction::Or :
368    case Instruction::Xor:
369    case Instruction::ICmp:
370    case Instruction::FCmp:
371    case Instruction::Trunc:
372    case Instruction::ZExt:
373    case Instruction::SExt:
374    case Instruction::FPToUI:
375    case Instruction::FPToSI:
376    case Instruction::UIToFP:
377    case Instruction::SIToFP:
378    case Instruction::FPTrunc:
379    case Instruction::FPExt:
380    case Instruction::PtrToInt:
381    case Instruction::IntToPtr:
382    case Instruction::BitCast:
383    case Instruction::Select:
384    case Instruction::ExtractElement:
385    case Instruction::InsertElement:
386    case Instruction::ShuffleVector:
387    case Instruction::InsertValue:
388    case Instruction::GetElementPtr:
389      exp = create_expression(I);
390      break;
391    case Instruction::ExtractValue:
392      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
393      break;
394    default:
395      valueNumbering[V] = nextValueNumber;
396      return nextValueNumber++;
397  }
398
399  uint32_t& e = expressionNumbering[exp];
400  if (!e) e = nextValueNumber++;
401  valueNumbering[V] = e;
402  return e;
403}
404
405/// lookup - Returns the value number of the specified value. Fails if
406/// the value has not yet been numbered.
407uint32_t ValueTable::lookup(Value *V) const {
408  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
409  assert(VI != valueNumbering.end() && "Value not numbered?");
410  return VI->second;
411}
412
413/// clear - Remove all entries from the ValueTable.
414void ValueTable::clear() {
415  valueNumbering.clear();
416  expressionNumbering.clear();
417  nextValueNumber = 1;
418}
419
420/// erase - Remove a value from the value numbering.
421void ValueTable::erase(Value *V) {
422  valueNumbering.erase(V);
423}
424
425/// verifyRemoved - Verify that the value is removed from all internal data
426/// structures.
427void ValueTable::verifyRemoved(const Value *V) const {
428  for (DenseMap<Value*, uint32_t>::const_iterator
429         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
430    assert(I->first != V && "Inst still occurs in value numbering map!");
431  }
432}
433
434//===----------------------------------------------------------------------===//
435//                                GVN Pass
436//===----------------------------------------------------------------------===//
437
438namespace {
439
440  class GVN : public FunctionPass {
441    bool NoLoads;
442    MemoryDependenceAnalysis *MD;
443    DominatorTree *DT;
444    const TargetData *TD;
445
446    ValueTable VN;
447
448    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
449    /// have that value number.  Use findLeader to query it.
450    struct LeaderTableEntry {
451      Value *Val;
452      BasicBlock *BB;
453      LeaderTableEntry *Next;
454    };
455    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
456    BumpPtrAllocator TableAllocator;
457
458    SmallVector<Instruction*, 8> InstrsToErase;
459  public:
460    static char ID; // Pass identification, replacement for typeid
461    explicit GVN(bool noloads = false)
462        : FunctionPass(ID), NoLoads(noloads), MD(0) {
463      initializeGVNPass(*PassRegistry::getPassRegistry());
464    }
465
466    bool runOnFunction(Function &F);
467
468    /// markInstructionForDeletion - This removes the specified instruction from
469    /// our various maps and marks it for deletion.
470    void markInstructionForDeletion(Instruction *I) {
471      VN.erase(I);
472      InstrsToErase.push_back(I);
473    }
474
475    const TargetData *getTargetData() const { return TD; }
476    DominatorTree &getDominatorTree() const { return *DT; }
477    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
478    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
479  private:
480    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
481    /// its value number.
482    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
483      LeaderTableEntry &Curr = LeaderTable[N];
484      if (!Curr.Val) {
485        Curr.Val = V;
486        Curr.BB = BB;
487        return;
488      }
489
490      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
491      Node->Val = V;
492      Node->BB = BB;
493      Node->Next = Curr.Next;
494      Curr.Next = Node;
495    }
496
497    /// removeFromLeaderTable - Scan the list of values corresponding to a given
498    /// value number, and remove the given value if encountered.
499    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
500      LeaderTableEntry* Prev = 0;
501      LeaderTableEntry* Curr = &LeaderTable[N];
502
503      while (Curr->Val != V || Curr->BB != BB) {
504        Prev = Curr;
505        Curr = Curr->Next;
506      }
507
508      if (Prev) {
509        Prev->Next = Curr->Next;
510      } else {
511        if (!Curr->Next) {
512          Curr->Val = 0;
513          Curr->BB = 0;
514        } else {
515          LeaderTableEntry* Next = Curr->Next;
516          Curr->Val = Next->Val;
517          Curr->BB = Next->BB;
518          Curr->Next = Next->Next;
519        }
520      }
521    }
522
523    // List of critical edges to be split between iterations.
524    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
525
526    // This transformation requires dominator postdominator info
527    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
528      AU.addRequired<DominatorTree>();
529      if (!NoLoads)
530        AU.addRequired<MemoryDependenceAnalysis>();
531      AU.addRequired<AliasAnalysis>();
532
533      AU.addPreserved<DominatorTree>();
534      AU.addPreserved<AliasAnalysis>();
535    }
536
537
538    // Helper fuctions
539    // FIXME: eliminate or document these better
540    bool processLoad(LoadInst *L);
541    bool processInstruction(Instruction *I);
542    bool processNonLocalLoad(LoadInst *L);
543    bool processBlock(BasicBlock *BB);
544    void dump(DenseMap<uint32_t, Value*> &d);
545    bool iterateOnFunction(Function &F);
546    bool performPRE(Function &F);
547    Value *findLeader(BasicBlock *BB, uint32_t num);
548    void cleanupGlobalSets();
549    void verifyRemoved(const Instruction *I) const;
550    bool splitCriticalEdges();
551  };
552
553  char GVN::ID = 0;
554}
555
556// createGVNPass - The public interface to this file...
557FunctionPass *llvm::createGVNPass(bool NoLoads) {
558  return new GVN(NoLoads);
559}
560
561INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
562INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
563INITIALIZE_PASS_DEPENDENCY(DominatorTree)
564INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
565INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
566
567void GVN::dump(DenseMap<uint32_t, Value*>& d) {
568  errs() << "{\n";
569  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
570       E = d.end(); I != E; ++I) {
571      errs() << I->first << "\n";
572      I->second->dump();
573  }
574  errs() << "}\n";
575}
576
577/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
578/// we're analyzing is fully available in the specified block.  As we go, keep
579/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
580/// map is actually a tri-state map with the following values:
581///   0) we know the block *is not* fully available.
582///   1) we know the block *is* fully available.
583///   2) we do not know whether the block is fully available or not, but we are
584///      currently speculating that it will be.
585///   3) we are speculating for this block and have used that to speculate for
586///      other blocks.
587static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
588                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
589  // Optimistically assume that the block is fully available and check to see
590  // if we already know about this block in one lookup.
591  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
592    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
593
594  // If the entry already existed for this block, return the precomputed value.
595  if (!IV.second) {
596    // If this is a speculative "available" value, mark it as being used for
597    // speculation of other blocks.
598    if (IV.first->second == 2)
599      IV.first->second = 3;
600    return IV.first->second != 0;
601  }
602
603  // Otherwise, see if it is fully available in all predecessors.
604  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
605
606  // If this block has no predecessors, it isn't live-in here.
607  if (PI == PE)
608    goto SpeculationFailure;
609
610  for (; PI != PE; ++PI)
611    // If the value isn't fully available in one of our predecessors, then it
612    // isn't fully available in this block either.  Undo our previous
613    // optimistic assumption and bail out.
614    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
615      goto SpeculationFailure;
616
617  return true;
618
619// SpeculationFailure - If we get here, we found out that this is not, after
620// all, a fully-available block.  We have a problem if we speculated on this and
621// used the speculation to mark other blocks as available.
622SpeculationFailure:
623  char &BBVal = FullyAvailableBlocks[BB];
624
625  // If we didn't speculate on this, just return with it set to false.
626  if (BBVal == 2) {
627    BBVal = 0;
628    return false;
629  }
630
631  // If we did speculate on this value, we could have blocks set to 1 that are
632  // incorrect.  Walk the (transitive) successors of this block and mark them as
633  // 0 if set to one.
634  SmallVector<BasicBlock*, 32> BBWorklist;
635  BBWorklist.push_back(BB);
636
637  do {
638    BasicBlock *Entry = BBWorklist.pop_back_val();
639    // Note that this sets blocks to 0 (unavailable) if they happen to not
640    // already be in FullyAvailableBlocks.  This is safe.
641    char &EntryVal = FullyAvailableBlocks[Entry];
642    if (EntryVal == 0) continue;  // Already unavailable.
643
644    // Mark as unavailable.
645    EntryVal = 0;
646
647    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
648      BBWorklist.push_back(*I);
649  } while (!BBWorklist.empty());
650
651  return false;
652}
653
654
655/// CanCoerceMustAliasedValueToLoad - Return true if
656/// CoerceAvailableValueToLoadType will succeed.
657static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
658                                            Type *LoadTy,
659                                            const TargetData &TD) {
660  // If the loaded or stored value is an first class array or struct, don't try
661  // to transform them.  We need to be able to bitcast to integer.
662  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
663      StoredVal->getType()->isStructTy() ||
664      StoredVal->getType()->isArrayTy())
665    return false;
666
667  // The store has to be at least as big as the load.
668  if (TD.getTypeSizeInBits(StoredVal->getType()) <
669        TD.getTypeSizeInBits(LoadTy))
670    return false;
671
672  return true;
673}
674
675
676/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
677/// then a load from a must-aliased pointer of a different type, try to coerce
678/// the stored value.  LoadedTy is the type of the load we want to replace and
679/// InsertPt is the place to insert new instructions.
680///
681/// If we can't do it, return null.
682static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
683                                             Type *LoadedTy,
684                                             Instruction *InsertPt,
685                                             const TargetData &TD) {
686  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
687    return 0;
688
689  // If this is already the right type, just return it.
690  Type *StoredValTy = StoredVal->getType();
691
692  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
693  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
694
695  // If the store and reload are the same size, we can always reuse it.
696  if (StoreSize == LoadSize) {
697    // Pointer to Pointer -> use bitcast.
698    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
699      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
700
701    // Convert source pointers to integers, which can be bitcast.
702    if (StoredValTy->isPointerTy()) {
703      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
704      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
705    }
706
707    Type *TypeToCastTo = LoadedTy;
708    if (TypeToCastTo->isPointerTy())
709      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
710
711    if (StoredValTy != TypeToCastTo)
712      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
713
714    // Cast to pointer if the load needs a pointer type.
715    if (LoadedTy->isPointerTy())
716      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
717
718    return StoredVal;
719  }
720
721  // If the loaded value is smaller than the available value, then we can
722  // extract out a piece from it.  If the available value is too small, then we
723  // can't do anything.
724  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
725
726  // Convert source pointers to integers, which can be manipulated.
727  if (StoredValTy->isPointerTy()) {
728    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
729    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
730  }
731
732  // Convert vectors and fp to integer, which can be manipulated.
733  if (!StoredValTy->isIntegerTy()) {
734    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
735    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
736  }
737
738  // If this is a big-endian system, we need to shift the value down to the low
739  // bits so that a truncate will work.
740  if (TD.isBigEndian()) {
741    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
742    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
743  }
744
745  // Truncate the integer to the right size now.
746  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
747  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
748
749  if (LoadedTy == NewIntTy)
750    return StoredVal;
751
752  // If the result is a pointer, inttoptr.
753  if (LoadedTy->isPointerTy())
754    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
755
756  // Otherwise, bitcast.
757  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
758}
759
760/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
761/// memdep query of a load that ends up being a clobbering memory write (store,
762/// memset, memcpy, memmove).  This means that the write *may* provide bits used
763/// by the load but we can't be sure because the pointers don't mustalias.
764///
765/// Check this case to see if there is anything more we can do before we give
766/// up.  This returns -1 if we have to give up, or a byte number in the stored
767/// value of the piece that feeds the load.
768static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
769                                          Value *WritePtr,
770                                          uint64_t WriteSizeInBits,
771                                          const TargetData &TD) {
772  // If the loaded or stored value is an first class array or struct, don't try
773  // to transform them.  We need to be able to bitcast to integer.
774  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
775    return -1;
776
777  int64_t StoreOffset = 0, LoadOffset = 0;
778  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
779  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
780  if (StoreBase != LoadBase)
781    return -1;
782
783  // If the load and store are to the exact same address, they should have been
784  // a must alias.  AA must have gotten confused.
785  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
786  // to a load from the base of the memset.
787#if 0
788  if (LoadOffset == StoreOffset) {
789    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
790    << "Base       = " << *StoreBase << "\n"
791    << "Store Ptr  = " << *WritePtr << "\n"
792    << "Store Offs = " << StoreOffset << "\n"
793    << "Load Ptr   = " << *LoadPtr << "\n";
794    abort();
795  }
796#endif
797
798  // If the load and store don't overlap at all, the store doesn't provide
799  // anything to the load.  In this case, they really don't alias at all, AA
800  // must have gotten confused.
801  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
802
803  if ((WriteSizeInBits & 7) | (LoadSize & 7))
804    return -1;
805  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
806  LoadSize >>= 3;
807
808
809  bool isAAFailure = false;
810  if (StoreOffset < LoadOffset)
811    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
812  else
813    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
814
815  if (isAAFailure) {
816#if 0
817    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
818    << "Base       = " << *StoreBase << "\n"
819    << "Store Ptr  = " << *WritePtr << "\n"
820    << "Store Offs = " << StoreOffset << "\n"
821    << "Load Ptr   = " << *LoadPtr << "\n";
822    abort();
823#endif
824    return -1;
825  }
826
827  // If the Load isn't completely contained within the stored bits, we don't
828  // have all the bits to feed it.  We could do something crazy in the future
829  // (issue a smaller load then merge the bits in) but this seems unlikely to be
830  // valuable.
831  if (StoreOffset > LoadOffset ||
832      StoreOffset+StoreSize < LoadOffset+LoadSize)
833    return -1;
834
835  // Okay, we can do this transformation.  Return the number of bytes into the
836  // store that the load is.
837  return LoadOffset-StoreOffset;
838}
839
840/// AnalyzeLoadFromClobberingStore - This function is called when we have a
841/// memdep query of a load that ends up being a clobbering store.
842static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
843                                          StoreInst *DepSI,
844                                          const TargetData &TD) {
845  // Cannot handle reading from store of first-class aggregate yet.
846  if (DepSI->getValueOperand()->getType()->isStructTy() ||
847      DepSI->getValueOperand()->getType()->isArrayTy())
848    return -1;
849
850  Value *StorePtr = DepSI->getPointerOperand();
851  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
852  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
853                                        StorePtr, StoreSize, TD);
854}
855
856/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
857/// memdep query of a load that ends up being clobbered by another load.  See if
858/// the other load can feed into the second load.
859static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
860                                         LoadInst *DepLI, const TargetData &TD){
861  // Cannot handle reading from store of first-class aggregate yet.
862  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
863    return -1;
864
865  Value *DepPtr = DepLI->getPointerOperand();
866  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
867  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
868  if (R != -1) return R;
869
870  // If we have a load/load clobber an DepLI can be widened to cover this load,
871  // then we should widen it!
872  int64_t LoadOffs = 0;
873  const Value *LoadBase =
874    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
875  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
876
877  unsigned Size = MemoryDependenceAnalysis::
878    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
879  if (Size == 0) return -1;
880
881  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
882}
883
884
885
886static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
887                                            MemIntrinsic *MI,
888                                            const TargetData &TD) {
889  // If the mem operation is a non-constant size, we can't handle it.
890  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
891  if (SizeCst == 0) return -1;
892  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
893
894  // If this is memset, we just need to see if the offset is valid in the size
895  // of the memset..
896  if (MI->getIntrinsicID() == Intrinsic::memset)
897    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
898                                          MemSizeInBits, TD);
899
900  // If we have a memcpy/memmove, the only case we can handle is if this is a
901  // copy from constant memory.  In that case, we can read directly from the
902  // constant memory.
903  MemTransferInst *MTI = cast<MemTransferInst>(MI);
904
905  Constant *Src = dyn_cast<Constant>(MTI->getSource());
906  if (Src == 0) return -1;
907
908  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
909  if (GV == 0 || !GV->isConstant()) return -1;
910
911  // See if the access is within the bounds of the transfer.
912  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
913                                              MI->getDest(), MemSizeInBits, TD);
914  if (Offset == -1)
915    return Offset;
916
917  // Otherwise, see if we can constant fold a load from the constant with the
918  // offset applied as appropriate.
919  Src = ConstantExpr::getBitCast(Src,
920                                 llvm::Type::getInt8PtrTy(Src->getContext()));
921  Constant *OffsetCst =
922    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
923  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
924  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
925  if (ConstantFoldLoadFromConstPtr(Src, &TD))
926    return Offset;
927  return -1;
928}
929
930
931/// GetStoreValueForLoad - This function is called when we have a
932/// memdep query of a load that ends up being a clobbering store.  This means
933/// that the store provides bits used by the load but we the pointers don't
934/// mustalias.  Check this case to see if there is anything more we can do
935/// before we give up.
936static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
937                                   Type *LoadTy,
938                                   Instruction *InsertPt, const TargetData &TD){
939  LLVMContext &Ctx = SrcVal->getType()->getContext();
940
941  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
942  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
943
944  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
945
946  // Compute which bits of the stored value are being used by the load.  Convert
947  // to an integer type to start with.
948  if (SrcVal->getType()->isPointerTy())
949    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
950  if (!SrcVal->getType()->isIntegerTy())
951    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
952
953  // Shift the bits to the least significant depending on endianness.
954  unsigned ShiftAmt;
955  if (TD.isLittleEndian())
956    ShiftAmt = Offset*8;
957  else
958    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
959
960  if (ShiftAmt)
961    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
962
963  if (LoadSize != StoreSize)
964    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
965
966  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
967}
968
969/// GetStoreValueForLoad - This function is called when we have a
970/// memdep query of a load that ends up being a clobbering load.  This means
971/// that the load *may* provide bits used by the load but we can't be sure
972/// because the pointers don't mustalias.  Check this case to see if there is
973/// anything more we can do before we give up.
974static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
975                                  Type *LoadTy, Instruction *InsertPt,
976                                  GVN &gvn) {
977  const TargetData &TD = *gvn.getTargetData();
978  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
979  // widen SrcVal out to a larger load.
980  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
981  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
982  if (Offset+LoadSize > SrcValSize) {
983    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
984    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
985    // If we have a load/load clobber an DepLI can be widened to cover this
986    // load, then we should widen it to the next power of 2 size big enough!
987    unsigned NewLoadSize = Offset+LoadSize;
988    if (!isPowerOf2_32(NewLoadSize))
989      NewLoadSize = NextPowerOf2(NewLoadSize);
990
991    Value *PtrVal = SrcVal->getPointerOperand();
992
993    // Insert the new load after the old load.  This ensures that subsequent
994    // memdep queries will find the new load.  We can't easily remove the old
995    // load completely because it is already in the value numbering table.
996    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
997    Type *DestPTy =
998      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
999    DestPTy = PointerType::get(DestPTy,
1000                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1001    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1002    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1003    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1004    NewLoad->takeName(SrcVal);
1005    NewLoad->setAlignment(SrcVal->getAlignment());
1006
1007    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1008    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1009
1010    // Replace uses of the original load with the wider load.  On a big endian
1011    // system, we need to shift down to get the relevant bits.
1012    Value *RV = NewLoad;
1013    if (TD.isBigEndian())
1014      RV = Builder.CreateLShr(RV,
1015                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1016    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1017    SrcVal->replaceAllUsesWith(RV);
1018
1019    // We would like to use gvn.markInstructionForDeletion here, but we can't
1020    // because the load is already memoized into the leader map table that GVN
1021    // tracks.  It is potentially possible to remove the load from the table,
1022    // but then there all of the operations based on it would need to be
1023    // rehashed.  Just leave the dead load around.
1024    gvn.getMemDep().removeInstruction(SrcVal);
1025    SrcVal = NewLoad;
1026  }
1027
1028  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1029}
1030
1031
1032/// GetMemInstValueForLoad - This function is called when we have a
1033/// memdep query of a load that ends up being a clobbering mem intrinsic.
1034static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1035                                     Type *LoadTy, Instruction *InsertPt,
1036                                     const TargetData &TD){
1037  LLVMContext &Ctx = LoadTy->getContext();
1038  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1039
1040  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1041
1042  // We know that this method is only called when the mem transfer fully
1043  // provides the bits for the load.
1044  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1045    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1046    // independently of what the offset is.
1047    Value *Val = MSI->getValue();
1048    if (LoadSize != 1)
1049      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1050
1051    Value *OneElt = Val;
1052
1053    // Splat the value out to the right number of bits.
1054    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1055      // If we can double the number of bytes set, do it.
1056      if (NumBytesSet*2 <= LoadSize) {
1057        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1058        Val = Builder.CreateOr(Val, ShVal);
1059        NumBytesSet <<= 1;
1060        continue;
1061      }
1062
1063      // Otherwise insert one byte at a time.
1064      Value *ShVal = Builder.CreateShl(Val, 1*8);
1065      Val = Builder.CreateOr(OneElt, ShVal);
1066      ++NumBytesSet;
1067    }
1068
1069    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1070  }
1071
1072  // Otherwise, this is a memcpy/memmove from a constant global.
1073  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1074  Constant *Src = cast<Constant>(MTI->getSource());
1075
1076  // Otherwise, see if we can constant fold a load from the constant with the
1077  // offset applied as appropriate.
1078  Src = ConstantExpr::getBitCast(Src,
1079                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1080  Constant *OffsetCst =
1081  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1082  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1083  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1084  return ConstantFoldLoadFromConstPtr(Src, &TD);
1085}
1086
1087namespace {
1088
1089struct AvailableValueInBlock {
1090  /// BB - The basic block in question.
1091  BasicBlock *BB;
1092  enum ValType {
1093    SimpleVal,  // A simple offsetted value that is accessed.
1094    LoadVal,    // A value produced by a load.
1095    MemIntrin   // A memory intrinsic which is loaded from.
1096  };
1097
1098  /// V - The value that is live out of the block.
1099  PointerIntPair<Value *, 2, ValType> Val;
1100
1101  /// Offset - The byte offset in Val that is interesting for the load query.
1102  unsigned Offset;
1103
1104  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1105                                   unsigned Offset = 0) {
1106    AvailableValueInBlock Res;
1107    Res.BB = BB;
1108    Res.Val.setPointer(V);
1109    Res.Val.setInt(SimpleVal);
1110    Res.Offset = Offset;
1111    return Res;
1112  }
1113
1114  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1115                                     unsigned Offset = 0) {
1116    AvailableValueInBlock Res;
1117    Res.BB = BB;
1118    Res.Val.setPointer(MI);
1119    Res.Val.setInt(MemIntrin);
1120    Res.Offset = Offset;
1121    return Res;
1122  }
1123
1124  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1125                                       unsigned Offset = 0) {
1126    AvailableValueInBlock Res;
1127    Res.BB = BB;
1128    Res.Val.setPointer(LI);
1129    Res.Val.setInt(LoadVal);
1130    Res.Offset = Offset;
1131    return Res;
1132  }
1133
1134  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1135  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1136  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1137
1138  Value *getSimpleValue() const {
1139    assert(isSimpleValue() && "Wrong accessor");
1140    return Val.getPointer();
1141  }
1142
1143  LoadInst *getCoercedLoadValue() const {
1144    assert(isCoercedLoadValue() && "Wrong accessor");
1145    return cast<LoadInst>(Val.getPointer());
1146  }
1147
1148  MemIntrinsic *getMemIntrinValue() const {
1149    assert(isMemIntrinValue() && "Wrong accessor");
1150    return cast<MemIntrinsic>(Val.getPointer());
1151  }
1152
1153  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1154  /// defined here to the specified type.  This handles various coercion cases.
1155  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1156    Value *Res;
1157    if (isSimpleValue()) {
1158      Res = getSimpleValue();
1159      if (Res->getType() != LoadTy) {
1160        const TargetData *TD = gvn.getTargetData();
1161        assert(TD && "Need target data to handle type mismatch case");
1162        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1163                                   *TD);
1164
1165        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1166                     << *getSimpleValue() << '\n'
1167                     << *Res << '\n' << "\n\n\n");
1168      }
1169    } else if (isCoercedLoadValue()) {
1170      LoadInst *Load = getCoercedLoadValue();
1171      if (Load->getType() == LoadTy && Offset == 0) {
1172        Res = Load;
1173      } else {
1174        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1175                                  gvn);
1176
1177        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1178                     << *getCoercedLoadValue() << '\n'
1179                     << *Res << '\n' << "\n\n\n");
1180      }
1181    } else {
1182      const TargetData *TD = gvn.getTargetData();
1183      assert(TD && "Need target data to handle type mismatch case");
1184      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1185                                   LoadTy, BB->getTerminator(), *TD);
1186      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1187                   << "  " << *getMemIntrinValue() << '\n'
1188                   << *Res << '\n' << "\n\n\n");
1189    }
1190    return Res;
1191  }
1192};
1193
1194} // end anonymous namespace
1195
1196/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1197/// construct SSA form, allowing us to eliminate LI.  This returns the value
1198/// that should be used at LI's definition site.
1199static Value *ConstructSSAForLoadSet(LoadInst *LI,
1200                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1201                                     GVN &gvn) {
1202  // Check for the fully redundant, dominating load case.  In this case, we can
1203  // just use the dominating value directly.
1204  if (ValuesPerBlock.size() == 1 &&
1205      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1206                                               LI->getParent()))
1207    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1208
1209  // Otherwise, we have to construct SSA form.
1210  SmallVector<PHINode*, 8> NewPHIs;
1211  SSAUpdater SSAUpdate(&NewPHIs);
1212  SSAUpdate.Initialize(LI->getType(), LI->getName());
1213
1214  Type *LoadTy = LI->getType();
1215
1216  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1217    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1218    BasicBlock *BB = AV.BB;
1219
1220    if (SSAUpdate.HasValueForBlock(BB))
1221      continue;
1222
1223    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1224  }
1225
1226  // Perform PHI construction.
1227  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1228
1229  // If new PHI nodes were created, notify alias analysis.
1230  if (V->getType()->isPointerTy()) {
1231    AliasAnalysis *AA = gvn.getAliasAnalysis();
1232
1233    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1234      AA->copyValue(LI, NewPHIs[i]);
1235
1236    // Now that we've copied information to the new PHIs, scan through
1237    // them again and inform alias analysis that we've added potentially
1238    // escaping uses to any values that are operands to these PHIs.
1239    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1240      PHINode *P = NewPHIs[i];
1241      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1242        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1243        AA->addEscapingUse(P->getOperandUse(jj));
1244      }
1245    }
1246  }
1247
1248  return V;
1249}
1250
1251static bool isLifetimeStart(const Instruction *Inst) {
1252  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1253    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1254  return false;
1255}
1256
1257/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1258/// non-local by performing PHI construction.
1259bool GVN::processNonLocalLoad(LoadInst *LI) {
1260  // Find the non-local dependencies of the load.
1261  SmallVector<NonLocalDepResult, 64> Deps;
1262  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1263  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1264  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1265  //             << Deps.size() << *LI << '\n');
1266
1267  // If we had to process more than one hundred blocks to find the
1268  // dependencies, this load isn't worth worrying about.  Optimizing
1269  // it will be too expensive.
1270  if (Deps.size() > 100)
1271    return false;
1272
1273  // If we had a phi translation failure, we'll have a single entry which is a
1274  // clobber in the current block.  Reject this early.
1275  if (Deps.size() == 1 && Deps[0].getResult().isUnknown()) {
1276    DEBUG(
1277      dbgs() << "GVN: non-local load ";
1278      WriteAsOperand(dbgs(), LI);
1279      dbgs() << " has unknown dependencies\n";
1280    );
1281    return false;
1282  }
1283
1284  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1285  // where we have a value available in repl, also keep track of whether we see
1286  // dependencies that produce an unknown value for the load (such as a call
1287  // that could potentially clobber the load).
1288  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1289  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1290
1291  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1292    BasicBlock *DepBB = Deps[i].getBB();
1293    MemDepResult DepInfo = Deps[i].getResult();
1294
1295    if (DepInfo.isUnknown()) {
1296      UnavailableBlocks.push_back(DepBB);
1297      continue;
1298    }
1299
1300    if (DepInfo.isClobber()) {
1301      // The address being loaded in this non-local block may not be the same as
1302      // the pointer operand of the load if PHI translation occurs.  Make sure
1303      // to consider the right address.
1304      Value *Address = Deps[i].getAddress();
1305
1306      // If the dependence is to a store that writes to a superset of the bits
1307      // read by the load, we can extract the bits we need for the load from the
1308      // stored value.
1309      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1310        if (TD && Address) {
1311          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1312                                                      DepSI, *TD);
1313          if (Offset != -1) {
1314            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1315                                                       DepSI->getValueOperand(),
1316                                                                Offset));
1317            continue;
1318          }
1319        }
1320      }
1321
1322      // Check to see if we have something like this:
1323      //    load i32* P
1324      //    load i8* (P+1)
1325      // if we have this, replace the later with an extraction from the former.
1326      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1327        // If this is a clobber and L is the first instruction in its block, then
1328        // we have the first instruction in the entry block.
1329        if (DepLI != LI && Address && TD) {
1330          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1331                                                     LI->getPointerOperand(),
1332                                                     DepLI, *TD);
1333
1334          if (Offset != -1) {
1335            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1336                                                                    Offset));
1337            continue;
1338          }
1339        }
1340      }
1341
1342      // If the clobbering value is a memset/memcpy/memmove, see if we can
1343      // forward a value on from it.
1344      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1345        if (TD && Address) {
1346          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1347                                                        DepMI, *TD);
1348          if (Offset != -1) {
1349            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1350                                                                  Offset));
1351            continue;
1352          }
1353        }
1354      }
1355
1356      UnavailableBlocks.push_back(DepBB);
1357      continue;
1358    }
1359
1360    assert(DepInfo.isDef() && "Expecting def here");
1361
1362    Instruction *DepInst = DepInfo.getInst();
1363
1364    // Loading the allocation -> undef.
1365    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1366        // Loading immediately after lifetime begin -> undef.
1367        isLifetimeStart(DepInst)) {
1368      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1369                                             UndefValue::get(LI->getType())));
1370      continue;
1371    }
1372
1373    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1374      // Reject loads and stores that are to the same address but are of
1375      // different types if we have to.
1376      if (S->getValueOperand()->getType() != LI->getType()) {
1377        // If the stored value is larger or equal to the loaded value, we can
1378        // reuse it.
1379        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1380                                                        LI->getType(), *TD)) {
1381          UnavailableBlocks.push_back(DepBB);
1382          continue;
1383        }
1384      }
1385
1386      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1387                                                         S->getValueOperand()));
1388      continue;
1389    }
1390
1391    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1392      // If the types mismatch and we can't handle it, reject reuse of the load.
1393      if (LD->getType() != LI->getType()) {
1394        // If the stored value is larger or equal to the loaded value, we can
1395        // reuse it.
1396        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1397          UnavailableBlocks.push_back(DepBB);
1398          continue;
1399        }
1400      }
1401      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1402      continue;
1403    }
1404
1405    UnavailableBlocks.push_back(DepBB);
1406    continue;
1407  }
1408
1409  // If we have no predecessors that produce a known value for this load, exit
1410  // early.
1411  if (ValuesPerBlock.empty()) return false;
1412
1413  // If all of the instructions we depend on produce a known value for this
1414  // load, then it is fully redundant and we can use PHI insertion to compute
1415  // its value.  Insert PHIs and remove the fully redundant value now.
1416  if (UnavailableBlocks.empty()) {
1417    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1418
1419    // Perform PHI construction.
1420    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1421    LI->replaceAllUsesWith(V);
1422
1423    if (isa<PHINode>(V))
1424      V->takeName(LI);
1425    if (V->getType()->isPointerTy())
1426      MD->invalidateCachedPointerInfo(V);
1427    markInstructionForDeletion(LI);
1428    ++NumGVNLoad;
1429    return true;
1430  }
1431
1432  if (!EnablePRE || !EnableLoadPRE)
1433    return false;
1434
1435  // Okay, we have *some* definitions of the value.  This means that the value
1436  // is available in some of our (transitive) predecessors.  Lets think about
1437  // doing PRE of this load.  This will involve inserting a new load into the
1438  // predecessor when it's not available.  We could do this in general, but
1439  // prefer to not increase code size.  As such, we only do this when we know
1440  // that we only have to insert *one* load (which means we're basically moving
1441  // the load, not inserting a new one).
1442
1443  SmallPtrSet<BasicBlock *, 4> Blockers;
1444  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1445    Blockers.insert(UnavailableBlocks[i]);
1446
1447  // Let's find the first basic block with more than one predecessor.  Walk
1448  // backwards through predecessors if needed.
1449  BasicBlock *LoadBB = LI->getParent();
1450  BasicBlock *TmpBB = LoadBB;
1451
1452  bool isSinglePred = false;
1453  bool allSingleSucc = true;
1454  while (TmpBB->getSinglePredecessor()) {
1455    isSinglePred = true;
1456    TmpBB = TmpBB->getSinglePredecessor();
1457    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1458      return false;
1459    if (Blockers.count(TmpBB))
1460      return false;
1461
1462    // If any of these blocks has more than one successor (i.e. if the edge we
1463    // just traversed was critical), then there are other paths through this
1464    // block along which the load may not be anticipated.  Hoisting the load
1465    // above this block would be adding the load to execution paths along
1466    // which it was not previously executed.
1467    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1468      return false;
1469  }
1470
1471  assert(TmpBB);
1472  LoadBB = TmpBB;
1473
1474  // FIXME: It is extremely unclear what this loop is doing, other than
1475  // artificially restricting loadpre.
1476  if (isSinglePred) {
1477    bool isHot = false;
1478    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1479      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1480      if (AV.isSimpleValue())
1481        // "Hot" Instruction is in some loop (because it dominates its dep.
1482        // instruction).
1483        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1484          if (DT->dominates(LI, I)) {
1485            isHot = true;
1486            break;
1487          }
1488    }
1489
1490    // We are interested only in "hot" instructions. We don't want to do any
1491    // mis-optimizations here.
1492    if (!isHot)
1493      return false;
1494  }
1495
1496  // Check to see how many predecessors have the loaded value fully
1497  // available.
1498  DenseMap<BasicBlock*, Value*> PredLoads;
1499  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1500  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1501    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1502  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1503    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1504
1505  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1506  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1507       PI != E; ++PI) {
1508    BasicBlock *Pred = *PI;
1509    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1510      continue;
1511    }
1512    PredLoads[Pred] = 0;
1513
1514    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1515      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1516        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1517              << Pred->getName() << "': " << *LI << '\n');
1518        return false;
1519      }
1520
1521      if (LoadBB->isLandingPad()) {
1522        DEBUG(dbgs()
1523              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1524              << Pred->getName() << "': " << *LI << '\n');
1525        return false;
1526      }
1527
1528      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1529      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1530    }
1531  }
1532
1533  if (!NeedToSplit.empty()) {
1534    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1535    return false;
1536  }
1537
1538  // Decide whether PRE is profitable for this load.
1539  unsigned NumUnavailablePreds = PredLoads.size();
1540  assert(NumUnavailablePreds != 0 &&
1541         "Fully available value should be eliminated above!");
1542
1543  // If this load is unavailable in multiple predecessors, reject it.
1544  // FIXME: If we could restructure the CFG, we could make a common pred with
1545  // all the preds that don't have an available LI and insert a new load into
1546  // that one block.
1547  if (NumUnavailablePreds != 1)
1548      return false;
1549
1550  // Check if the load can safely be moved to all the unavailable predecessors.
1551  bool CanDoPRE = true;
1552  SmallVector<Instruction*, 8> NewInsts;
1553  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1554         E = PredLoads.end(); I != E; ++I) {
1555    BasicBlock *UnavailablePred = I->first;
1556
1557    // Do PHI translation to get its value in the predecessor if necessary.  The
1558    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1559
1560    // If all preds have a single successor, then we know it is safe to insert
1561    // the load on the pred (?!?), so we can insert code to materialize the
1562    // pointer if it is not available.
1563    PHITransAddr Address(LI->getPointerOperand(), TD);
1564    Value *LoadPtr = 0;
1565    if (allSingleSucc) {
1566      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1567                                                  *DT, NewInsts);
1568    } else {
1569      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1570      LoadPtr = Address.getAddr();
1571    }
1572
1573    // If we couldn't find or insert a computation of this phi translated value,
1574    // we fail PRE.
1575    if (LoadPtr == 0) {
1576      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1577            << *LI->getPointerOperand() << "\n");
1578      CanDoPRE = false;
1579      break;
1580    }
1581
1582    // Make sure it is valid to move this load here.  We have to watch out for:
1583    //  @1 = getelementptr (i8* p, ...
1584    //  test p and branch if == 0
1585    //  load @1
1586    // It is valid to have the getelementptr before the test, even if p can
1587    // be 0, as getelementptr only does address arithmetic.
1588    // If we are not pushing the value through any multiple-successor blocks
1589    // we do not have this case.  Otherwise, check that the load is safe to
1590    // put anywhere; this can be improved, but should be conservatively safe.
1591    if (!allSingleSucc &&
1592        // FIXME: REEVALUTE THIS.
1593        !isSafeToLoadUnconditionally(LoadPtr,
1594                                     UnavailablePred->getTerminator(),
1595                                     LI->getAlignment(), TD)) {
1596      CanDoPRE = false;
1597      break;
1598    }
1599
1600    I->second = LoadPtr;
1601  }
1602
1603  if (!CanDoPRE) {
1604    while (!NewInsts.empty()) {
1605      Instruction *I = NewInsts.pop_back_val();
1606      if (MD) MD->removeInstruction(I);
1607      I->eraseFromParent();
1608    }
1609    return false;
1610  }
1611
1612  // Okay, we can eliminate this load by inserting a reload in the predecessor
1613  // and using PHI construction to get the value in the other predecessors, do
1614  // it.
1615  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1616  DEBUG(if (!NewInsts.empty())
1617          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1618                 << *NewInsts.back() << '\n');
1619
1620  // Assign value numbers to the new instructions.
1621  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1622    // FIXME: We really _ought_ to insert these value numbers into their
1623    // parent's availability map.  However, in doing so, we risk getting into
1624    // ordering issues.  If a block hasn't been processed yet, we would be
1625    // marking a value as AVAIL-IN, which isn't what we intend.
1626    VN.lookup_or_add(NewInsts[i]);
1627  }
1628
1629  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1630         E = PredLoads.end(); I != E; ++I) {
1631    BasicBlock *UnavailablePred = I->first;
1632    Value *LoadPtr = I->second;
1633
1634    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1635                                        LI->getAlignment(),
1636                                        UnavailablePred->getTerminator());
1637
1638    // Transfer the old load's TBAA tag to the new load.
1639    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1640      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1641
1642    // Transfer DebugLoc.
1643    NewLoad->setDebugLoc(LI->getDebugLoc());
1644
1645    // Add the newly created load.
1646    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1647                                                        NewLoad));
1648    MD->invalidateCachedPointerInfo(LoadPtr);
1649    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1650  }
1651
1652  // Perform PHI construction.
1653  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1654  LI->replaceAllUsesWith(V);
1655  if (isa<PHINode>(V))
1656    V->takeName(LI);
1657  if (V->getType()->isPointerTy())
1658    MD->invalidateCachedPointerInfo(V);
1659  markInstructionForDeletion(LI);
1660  ++NumPRELoad;
1661  return true;
1662}
1663
1664/// processLoad - Attempt to eliminate a load, first by eliminating it
1665/// locally, and then attempting non-local elimination if that fails.
1666bool GVN::processLoad(LoadInst *L) {
1667  if (!MD)
1668    return false;
1669
1670  if (!L->isSimple())
1671    return false;
1672
1673  if (L->use_empty()) {
1674    markInstructionForDeletion(L);
1675    return true;
1676  }
1677
1678  // ... to a pointer that has been loaded from before...
1679  MemDepResult Dep = MD->getDependency(L);
1680
1681  // If we have a clobber and target data is around, see if this is a clobber
1682  // that we can fix up through code synthesis.
1683  if (Dep.isClobber() && TD) {
1684    // Check to see if we have something like this:
1685    //   store i32 123, i32* %P
1686    //   %A = bitcast i32* %P to i8*
1687    //   %B = gep i8* %A, i32 1
1688    //   %C = load i8* %B
1689    //
1690    // We could do that by recognizing if the clobber instructions are obviously
1691    // a common base + constant offset, and if the previous store (or memset)
1692    // completely covers this load.  This sort of thing can happen in bitfield
1693    // access code.
1694    Value *AvailVal = 0;
1695    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1696      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1697                                                  L->getPointerOperand(),
1698                                                  DepSI, *TD);
1699      if (Offset != -1)
1700        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1701                                        L->getType(), L, *TD);
1702    }
1703
1704    // Check to see if we have something like this:
1705    //    load i32* P
1706    //    load i8* (P+1)
1707    // if we have this, replace the later with an extraction from the former.
1708    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1709      // If this is a clobber and L is the first instruction in its block, then
1710      // we have the first instruction in the entry block.
1711      if (DepLI == L)
1712        return false;
1713
1714      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1715                                                 L->getPointerOperand(),
1716                                                 DepLI, *TD);
1717      if (Offset != -1)
1718        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1719    }
1720
1721    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1722    // a value on from it.
1723    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1724      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1725                                                    L->getPointerOperand(),
1726                                                    DepMI, *TD);
1727      if (Offset != -1)
1728        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1729    }
1730
1731    if (AvailVal) {
1732      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1733            << *AvailVal << '\n' << *L << "\n\n\n");
1734
1735      // Replace the load!
1736      L->replaceAllUsesWith(AvailVal);
1737      if (AvailVal->getType()->isPointerTy())
1738        MD->invalidateCachedPointerInfo(AvailVal);
1739      markInstructionForDeletion(L);
1740      ++NumGVNLoad;
1741      return true;
1742    }
1743  }
1744
1745  // If the value isn't available, don't do anything!
1746  if (Dep.isClobber()) {
1747    DEBUG(
1748      // fast print dep, using operator<< on instruction is too slow.
1749      dbgs() << "GVN: load ";
1750      WriteAsOperand(dbgs(), L);
1751      Instruction *I = Dep.getInst();
1752      dbgs() << " is clobbered by " << *I << '\n';
1753    );
1754    return false;
1755  }
1756
1757  if (Dep.isUnknown()) {
1758    DEBUG(
1759      // fast print dep, using operator<< on instruction is too slow.
1760      dbgs() << "GVN: load ";
1761      WriteAsOperand(dbgs(), L);
1762      dbgs() << " has unknown dependence\n";
1763    );
1764    return false;
1765  }
1766
1767  // If it is defined in another block, try harder.
1768  if (Dep.isNonLocal())
1769    return processNonLocalLoad(L);
1770
1771  assert(Dep.isDef() && "Expecting def here");
1772
1773  Instruction *DepInst = Dep.getInst();
1774  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1775    Value *StoredVal = DepSI->getValueOperand();
1776
1777    // The store and load are to a must-aliased pointer, but they may not
1778    // actually have the same type.  See if we know how to reuse the stored
1779    // value (depending on its type).
1780    if (StoredVal->getType() != L->getType()) {
1781      if (TD) {
1782        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1783                                                   L, *TD);
1784        if (StoredVal == 0)
1785          return false;
1786
1787        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1788                     << '\n' << *L << "\n\n\n");
1789      }
1790      else
1791        return false;
1792    }
1793
1794    // Remove it!
1795    L->replaceAllUsesWith(StoredVal);
1796    if (StoredVal->getType()->isPointerTy())
1797      MD->invalidateCachedPointerInfo(StoredVal);
1798    markInstructionForDeletion(L);
1799    ++NumGVNLoad;
1800    return true;
1801  }
1802
1803  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1804    Value *AvailableVal = DepLI;
1805
1806    // The loads are of a must-aliased pointer, but they may not actually have
1807    // the same type.  See if we know how to reuse the previously loaded value
1808    // (depending on its type).
1809    if (DepLI->getType() != L->getType()) {
1810      if (TD) {
1811        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1812                                                      L, *TD);
1813        if (AvailableVal == 0)
1814          return false;
1815
1816        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1817                     << "\n" << *L << "\n\n\n");
1818      }
1819      else
1820        return false;
1821    }
1822
1823    // Remove it!
1824    L->replaceAllUsesWith(AvailableVal);
1825    if (DepLI->getType()->isPointerTy())
1826      MD->invalidateCachedPointerInfo(DepLI);
1827    markInstructionForDeletion(L);
1828    ++NumGVNLoad;
1829    return true;
1830  }
1831
1832  // If this load really doesn't depend on anything, then we must be loading an
1833  // undef value.  This can happen when loading for a fresh allocation with no
1834  // intervening stores, for example.
1835  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1836    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1837    markInstructionForDeletion(L);
1838    ++NumGVNLoad;
1839    return true;
1840  }
1841
1842  // If this load occurs either right after a lifetime begin,
1843  // then the loaded value is undefined.
1844  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1845    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1846      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1847      markInstructionForDeletion(L);
1848      ++NumGVNLoad;
1849      return true;
1850    }
1851  }
1852
1853  return false;
1854}
1855
1856// findLeader - In order to find a leader for a given value number at a
1857// specific basic block, we first obtain the list of all Values for that number,
1858// and then scan the list to find one whose block dominates the block in
1859// question.  This is fast because dominator tree queries consist of only
1860// a few comparisons of DFS numbers.
1861Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1862  LeaderTableEntry Vals = LeaderTable[num];
1863  if (!Vals.Val) return 0;
1864
1865  Value *Val = 0;
1866  if (DT->dominates(Vals.BB, BB)) {
1867    Val = Vals.Val;
1868    if (isa<Constant>(Val)) return Val;
1869  }
1870
1871  LeaderTableEntry* Next = Vals.Next;
1872  while (Next) {
1873    if (DT->dominates(Next->BB, BB)) {
1874      if (isa<Constant>(Next->Val)) return Next->Val;
1875      if (!Val) Val = Next->Val;
1876    }
1877
1878    Next = Next->Next;
1879  }
1880
1881  return Val;
1882}
1883
1884
1885/// processInstruction - When calculating availability, handle an instruction
1886/// by inserting it into the appropriate sets
1887bool GVN::processInstruction(Instruction *I) {
1888  // Ignore dbg info intrinsics.
1889  if (isa<DbgInfoIntrinsic>(I))
1890    return false;
1891
1892  // If the instruction can be easily simplified then do so now in preference
1893  // to value numbering it.  Value numbering often exposes redundancies, for
1894  // example if it determines that %y is equal to %x then the instruction
1895  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1896  if (Value *V = SimplifyInstruction(I, TD, DT)) {
1897    I->replaceAllUsesWith(V);
1898    if (MD && V->getType()->isPointerTy())
1899      MD->invalidateCachedPointerInfo(V);
1900    markInstructionForDeletion(I);
1901    return true;
1902  }
1903
1904  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1905    if (processLoad(LI))
1906      return true;
1907
1908    unsigned Num = VN.lookup_or_add(LI);
1909    addToLeaderTable(Num, LI, LI->getParent());
1910    return false;
1911  }
1912
1913  // For conditions branches, we can perform simple conditional propagation on
1914  // the condition value itself.
1915  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1916    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1917      return false;
1918
1919    Value *BranchCond = BI->getCondition();
1920    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1921
1922    BasicBlock *TrueSucc = BI->getSuccessor(0);
1923    BasicBlock *FalseSucc = BI->getSuccessor(1);
1924    BasicBlock *Parent = BI->getParent();
1925
1926    // If the true and false branches are to the same basic block then the
1927    // branch gives no information about the condition.  Eliminating this
1928    // here simplifies the rest of the logic.
1929    if (TrueSucc == FalseSucc)
1930      return false;
1931
1932    // If the true block can be reached without executing the true edge then we
1933    // can't say anything about the value of the condition there.
1934    for (pred_iterator PI = pred_begin(TrueSucc), PE = pred_end(TrueSucc);
1935         PI != PE; ++PI)
1936      if (*PI != Parent && !DT->dominates(TrueSucc, *PI)) {
1937        TrueSucc = 0;
1938        break;
1939      }
1940
1941    // If the false block can be reached without executing the false edge then
1942    // we can't say anything about the value of the condition there.
1943    for (pred_iterator PI = pred_begin(FalseSucc), PE = pred_end(FalseSucc);
1944         PI != PE; ++PI)
1945      if (*PI != Parent && !DT->dominates(FalseSucc, *PI)) {
1946        FalseSucc = 0;
1947        break;
1948      }
1949
1950    if (TrueSucc)
1951      addToLeaderTable(CondVN,
1952                   ConstantInt::getTrue(TrueSucc->getContext()),
1953                   TrueSucc);
1954    if (FalseSucc)
1955      addToLeaderTable(CondVN,
1956                   ConstantInt::getFalse(FalseSucc->getContext()),
1957                   FalseSucc);
1958
1959    return false;
1960  }
1961
1962  // Instructions with void type don't return a value, so there's
1963  // no point in trying to find redudancies in them.
1964  if (I->getType()->isVoidTy()) return false;
1965
1966  uint32_t NextNum = VN.getNextUnusedValueNumber();
1967  unsigned Num = VN.lookup_or_add(I);
1968
1969  // Allocations are always uniquely numbered, so we can save time and memory
1970  // by fast failing them.
1971  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1972    addToLeaderTable(Num, I, I->getParent());
1973    return false;
1974  }
1975
1976  // If the number we were assigned was a brand new VN, then we don't
1977  // need to do a lookup to see if the number already exists
1978  // somewhere in the domtree: it can't!
1979  if (Num == NextNum) {
1980    addToLeaderTable(Num, I, I->getParent());
1981    return false;
1982  }
1983
1984  // Perform fast-path value-number based elimination of values inherited from
1985  // dominators.
1986  Value *repl = findLeader(I->getParent(), Num);
1987  if (repl == 0) {
1988    // Failure, just remember this instance for future use.
1989    addToLeaderTable(Num, I, I->getParent());
1990    return false;
1991  }
1992
1993  // Remove it!
1994  I->replaceAllUsesWith(repl);
1995  if (MD && repl->getType()->isPointerTy())
1996    MD->invalidateCachedPointerInfo(repl);
1997  markInstructionForDeletion(I);
1998  return true;
1999}
2000
2001/// runOnFunction - This is the main transformation entry point for a function.
2002bool GVN::runOnFunction(Function& F) {
2003  if (!NoLoads)
2004    MD = &getAnalysis<MemoryDependenceAnalysis>();
2005  DT = &getAnalysis<DominatorTree>();
2006  TD = getAnalysisIfAvailable<TargetData>();
2007  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2008  VN.setMemDep(MD);
2009  VN.setDomTree(DT);
2010
2011  bool Changed = false;
2012  bool ShouldContinue = true;
2013
2014  // Merge unconditional branches, allowing PRE to catch more
2015  // optimization opportunities.
2016  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2017    BasicBlock *BB = FI++;
2018
2019    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2020    if (removedBlock) ++NumGVNBlocks;
2021
2022    Changed |= removedBlock;
2023  }
2024
2025  unsigned Iteration = 0;
2026  while (ShouldContinue) {
2027    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2028    ShouldContinue = iterateOnFunction(F);
2029    if (splitCriticalEdges())
2030      ShouldContinue = true;
2031    Changed |= ShouldContinue;
2032    ++Iteration;
2033  }
2034
2035  if (EnablePRE) {
2036    bool PREChanged = true;
2037    while (PREChanged) {
2038      PREChanged = performPRE(F);
2039      Changed |= PREChanged;
2040    }
2041  }
2042  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2043  // computations into blocks where they become fully redundant.  Note that
2044  // we can't do this until PRE's critical edge splitting updates memdep.
2045  // Actually, when this happens, we should just fully integrate PRE into GVN.
2046
2047  cleanupGlobalSets();
2048
2049  return Changed;
2050}
2051
2052
2053bool GVN::processBlock(BasicBlock *BB) {
2054  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2055  // (and incrementing BI before processing an instruction).
2056  assert(InstrsToErase.empty() &&
2057         "We expect InstrsToErase to be empty across iterations");
2058  bool ChangedFunction = false;
2059
2060  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2061       BI != BE;) {
2062    ChangedFunction |= processInstruction(BI);
2063    if (InstrsToErase.empty()) {
2064      ++BI;
2065      continue;
2066    }
2067
2068    // If we need some instructions deleted, do it now.
2069    NumGVNInstr += InstrsToErase.size();
2070
2071    // Avoid iterator invalidation.
2072    bool AtStart = BI == BB->begin();
2073    if (!AtStart)
2074      --BI;
2075
2076    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2077         E = InstrsToErase.end(); I != E; ++I) {
2078      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2079      if (MD) MD->removeInstruction(*I);
2080      (*I)->eraseFromParent();
2081      DEBUG(verifyRemoved(*I));
2082    }
2083    InstrsToErase.clear();
2084
2085    if (AtStart)
2086      BI = BB->begin();
2087    else
2088      ++BI;
2089  }
2090
2091  return ChangedFunction;
2092}
2093
2094/// performPRE - Perform a purely local form of PRE that looks for diamond
2095/// control flow patterns and attempts to perform simple PRE at the join point.
2096bool GVN::performPRE(Function &F) {
2097  bool Changed = false;
2098  DenseMap<BasicBlock*, Value*> predMap;
2099  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2100       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2101    BasicBlock *CurrentBlock = *DI;
2102
2103    // Nothing to PRE in the entry block.
2104    if (CurrentBlock == &F.getEntryBlock()) continue;
2105
2106    // Don't perform PRE on a landing pad.
2107    if (CurrentBlock->isLandingPad()) continue;
2108
2109    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2110         BE = CurrentBlock->end(); BI != BE; ) {
2111      Instruction *CurInst = BI++;
2112
2113      if (isa<AllocaInst>(CurInst) ||
2114          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2115          CurInst->getType()->isVoidTy() ||
2116          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2117          isa<DbgInfoIntrinsic>(CurInst))
2118        continue;
2119
2120      // We don't currently value number ANY inline asm calls.
2121      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2122        if (CallI->isInlineAsm())
2123          continue;
2124
2125      uint32_t ValNo = VN.lookup(CurInst);
2126
2127      // Look for the predecessors for PRE opportunities.  We're
2128      // only trying to solve the basic diamond case, where
2129      // a value is computed in the successor and one predecessor,
2130      // but not the other.  We also explicitly disallow cases
2131      // where the successor is its own predecessor, because they're
2132      // more complicated to get right.
2133      unsigned NumWith = 0;
2134      unsigned NumWithout = 0;
2135      BasicBlock *PREPred = 0;
2136      predMap.clear();
2137
2138      for (pred_iterator PI = pred_begin(CurrentBlock),
2139           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2140        BasicBlock *P = *PI;
2141        // We're not interested in PRE where the block is its
2142        // own predecessor, or in blocks with predecessors
2143        // that are not reachable.
2144        if (P == CurrentBlock) {
2145          NumWithout = 2;
2146          break;
2147        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2148          NumWithout = 2;
2149          break;
2150        }
2151
2152        Value* predV = findLeader(P, ValNo);
2153        if (predV == 0) {
2154          PREPred = P;
2155          ++NumWithout;
2156        } else if (predV == CurInst) {
2157          NumWithout = 2;
2158        } else {
2159          predMap[P] = predV;
2160          ++NumWith;
2161        }
2162      }
2163
2164      // Don't do PRE when it might increase code size, i.e. when
2165      // we would need to insert instructions in more than one pred.
2166      if (NumWithout != 1 || NumWith == 0)
2167        continue;
2168
2169      // Don't do PRE across indirect branch.
2170      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2171        continue;
2172
2173      // We can't do PRE safely on a critical edge, so instead we schedule
2174      // the edge to be split and perform the PRE the next time we iterate
2175      // on the function.
2176      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2177      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2178        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2179        continue;
2180      }
2181
2182      // Instantiate the expression in the predecessor that lacked it.
2183      // Because we are going top-down through the block, all value numbers
2184      // will be available in the predecessor by the time we need them.  Any
2185      // that weren't originally present will have been instantiated earlier
2186      // in this loop.
2187      Instruction *PREInstr = CurInst->clone();
2188      bool success = true;
2189      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2190        Value *Op = PREInstr->getOperand(i);
2191        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2192          continue;
2193
2194        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2195          PREInstr->setOperand(i, V);
2196        } else {
2197          success = false;
2198          break;
2199        }
2200      }
2201
2202      // Fail out if we encounter an operand that is not available in
2203      // the PRE predecessor.  This is typically because of loads which
2204      // are not value numbered precisely.
2205      if (!success) {
2206        delete PREInstr;
2207        DEBUG(verifyRemoved(PREInstr));
2208        continue;
2209      }
2210
2211      PREInstr->insertBefore(PREPred->getTerminator());
2212      PREInstr->setName(CurInst->getName() + ".pre");
2213      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2214      predMap[PREPred] = PREInstr;
2215      VN.add(PREInstr, ValNo);
2216      ++NumGVNPRE;
2217
2218      // Update the availability map to include the new instruction.
2219      addToLeaderTable(ValNo, PREInstr, PREPred);
2220
2221      // Create a PHI to make the value available in this block.
2222      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2223      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2224                                     CurInst->getName() + ".pre-phi",
2225                                     CurrentBlock->begin());
2226      for (pred_iterator PI = PB; PI != PE; ++PI) {
2227        BasicBlock *P = *PI;
2228        Phi->addIncoming(predMap[P], P);
2229      }
2230
2231      VN.add(Phi, ValNo);
2232      addToLeaderTable(ValNo, Phi, CurrentBlock);
2233      Phi->setDebugLoc(CurInst->getDebugLoc());
2234      CurInst->replaceAllUsesWith(Phi);
2235      if (Phi->getType()->isPointerTy()) {
2236        // Because we have added a PHI-use of the pointer value, it has now
2237        // "escaped" from alias analysis' perspective.  We need to inform
2238        // AA of this.
2239        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2240             ++ii) {
2241          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2242          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2243        }
2244
2245        if (MD)
2246          MD->invalidateCachedPointerInfo(Phi);
2247      }
2248      VN.erase(CurInst);
2249      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2250
2251      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2252      if (MD) MD->removeInstruction(CurInst);
2253      CurInst->eraseFromParent();
2254      DEBUG(verifyRemoved(CurInst));
2255      Changed = true;
2256    }
2257  }
2258
2259  if (splitCriticalEdges())
2260    Changed = true;
2261
2262  return Changed;
2263}
2264
2265/// splitCriticalEdges - Split critical edges found during the previous
2266/// iteration that may enable further optimization.
2267bool GVN::splitCriticalEdges() {
2268  if (toSplit.empty())
2269    return false;
2270  do {
2271    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2272    SplitCriticalEdge(Edge.first, Edge.second, this);
2273  } while (!toSplit.empty());
2274  if (MD) MD->invalidateCachedPredecessors();
2275  return true;
2276}
2277
2278/// iterateOnFunction - Executes one iteration of GVN
2279bool GVN::iterateOnFunction(Function &F) {
2280  cleanupGlobalSets();
2281
2282  // Top-down walk of the dominator tree
2283  bool Changed = false;
2284#if 0
2285  // Needed for value numbering with phi construction to work.
2286  ReversePostOrderTraversal<Function*> RPOT(&F);
2287  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2288       RE = RPOT.end(); RI != RE; ++RI)
2289    Changed |= processBlock(*RI);
2290#else
2291  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2292       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2293    Changed |= processBlock(DI->getBlock());
2294#endif
2295
2296  return Changed;
2297}
2298
2299void GVN::cleanupGlobalSets() {
2300  VN.clear();
2301  LeaderTable.clear();
2302  TableAllocator.Reset();
2303}
2304
2305/// verifyRemoved - Verify that the specified instruction does not occur in our
2306/// internal data structures.
2307void GVN::verifyRemoved(const Instruction *Inst) const {
2308  VN.verifyRemoved(Inst);
2309
2310  // Walk through the value number scope to make sure the instruction isn't
2311  // ferreted away in it.
2312  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2313       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2314    const LeaderTableEntry *Node = &I->second;
2315    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2316
2317    while (Node->Next) {
2318      Node = Node->Next;
2319      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2320    }
2321  }
2322}
2323