GVN.cpp revision 4bbf4ee1491637c247e195e19e3e4a8ee5ad72fa
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/Dominators.h"
37#include "llvm/Analysis/MemoryBuiltins.h"
38#include "llvm/Analysis/MemoryDependenceAnalysis.h"
39#include "llvm/Analysis/PHITransAddr.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SSAUpdater.h"
51#include <cstdio>
52using namespace llvm;
53
54STATISTIC(NumGVNInstr,  "Number of instructions deleted");
55STATISTIC(NumGVNLoad,   "Number of loads deleted");
56STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
57STATISTIC(NumGVNBlocks, "Number of blocks merged");
58STATISTIC(NumPRELoad,   "Number of loads PRE'd");
59
60static cl::opt<bool> EnablePRE("enable-pre",
61                               cl::init(true), cl::Hidden);
62static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
63
64//===----------------------------------------------------------------------===//
65//                         ValueTable Class
66//===----------------------------------------------------------------------===//
67
68/// This class holds the mapping between values and value numbers.  It is used
69/// as an efficient mechanism to determine the expression-wise equivalence of
70/// two values.
71namespace {
72  struct Expression {
73    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
74                            UDIV, SDIV, FDIV, UREM, SREM,
75                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
76                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
77                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
78                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
79                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
80                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
81                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
82                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
83                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
84                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
85
86    ExpressionOpcode opcode;
87    const Type* type;
88    SmallVector<uint32_t, 4> varargs;
89    Value *function;
90
91    Expression() { }
92    Expression(ExpressionOpcode o) : opcode(o) { }
93
94    bool operator==(const Expression &other) const {
95      if (opcode != other.opcode)
96        return false;
97      else if (opcode == EMPTY || opcode == TOMBSTONE)
98        return true;
99      else if (type != other.type)
100        return false;
101      else if (function != other.function)
102        return false;
103      else {
104        if (varargs.size() != other.varargs.size())
105          return false;
106
107        for (size_t i = 0; i < varargs.size(); ++i)
108          if (varargs[i] != other.varargs[i])
109            return false;
110
111        return true;
112      }
113    }
114
115    bool operator!=(const Expression &other) const {
116      return !(*this == other);
117    }
118  };
119
120  class ValueTable {
121    private:
122      DenseMap<Value*, uint32_t> valueNumbering;
123      DenseMap<Expression, uint32_t> expressionNumbering;
124      AliasAnalysis* AA;
125      MemoryDependenceAnalysis* MD;
126      DominatorTree* DT;
127
128      uint32_t nextValueNumber;
129
130      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
131      Expression::ExpressionOpcode getOpcode(CmpInst* C);
132      Expression::ExpressionOpcode getOpcode(CastInst* C);
133      Expression create_expression(BinaryOperator* BO);
134      Expression create_expression(CmpInst* C);
135      Expression create_expression(ShuffleVectorInst* V);
136      Expression create_expression(ExtractElementInst* C);
137      Expression create_expression(InsertElementInst* V);
138      Expression create_expression(SelectInst* V);
139      Expression create_expression(CastInst* C);
140      Expression create_expression(GetElementPtrInst* G);
141      Expression create_expression(CallInst* C);
142      Expression create_expression(Constant* C);
143      Expression create_expression(ExtractValueInst* C);
144      Expression create_expression(InsertValueInst* C);
145
146      uint32_t lookup_or_add_call(CallInst* C);
147    public:
148      ValueTable() : nextValueNumber(1) { }
149      uint32_t lookup_or_add(Value *V);
150      uint32_t lookup(Value *V) const;
151      void add(Value *V, uint32_t num);
152      void clear();
153      void erase(Value *v);
154      unsigned size();
155      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
156      AliasAnalysis *getAliasAnalysis() const { return AA; }
157      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
158      void setDomTree(DominatorTree* D) { DT = D; }
159      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
160      void verifyRemoved(const Value *) const;
161  };
162}
163
164namespace llvm {
165template <> struct DenseMapInfo<Expression> {
166  static inline Expression getEmptyKey() {
167    return Expression(Expression::EMPTY);
168  }
169
170  static inline Expression getTombstoneKey() {
171    return Expression(Expression::TOMBSTONE);
172  }
173
174  static unsigned getHashValue(const Expression e) {
175    unsigned hash = e.opcode;
176
177    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
178            (unsigned)((uintptr_t)e.type >> 9));
179
180    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
181         E = e.varargs.end(); I != E; ++I)
182      hash = *I + hash * 37;
183
184    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
185            (unsigned)((uintptr_t)e.function >> 9)) +
186           hash * 37;
187
188    return hash;
189  }
190  static bool isEqual(const Expression &LHS, const Expression &RHS) {
191    return LHS == RHS;
192  }
193};
194
195template <>
196struct isPodLike<Expression> { static const bool value = true; };
197
198}
199
200//===----------------------------------------------------------------------===//
201//                     ValueTable Internal Functions
202//===----------------------------------------------------------------------===//
203Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
204  switch(BO->getOpcode()) {
205  default: // THIS SHOULD NEVER HAPPEN
206    llvm_unreachable("Binary operator with unknown opcode?");
207  case Instruction::Add:  return Expression::ADD;
208  case Instruction::FAdd: return Expression::FADD;
209  case Instruction::Sub:  return Expression::SUB;
210  case Instruction::FSub: return Expression::FSUB;
211  case Instruction::Mul:  return Expression::MUL;
212  case Instruction::FMul: return Expression::FMUL;
213  case Instruction::UDiv: return Expression::UDIV;
214  case Instruction::SDiv: return Expression::SDIV;
215  case Instruction::FDiv: return Expression::FDIV;
216  case Instruction::URem: return Expression::UREM;
217  case Instruction::SRem: return Expression::SREM;
218  case Instruction::FRem: return Expression::FREM;
219  case Instruction::Shl:  return Expression::SHL;
220  case Instruction::LShr: return Expression::LSHR;
221  case Instruction::AShr: return Expression::ASHR;
222  case Instruction::And:  return Expression::AND;
223  case Instruction::Or:   return Expression::OR;
224  case Instruction::Xor:  return Expression::XOR;
225  }
226}
227
228Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
229  if (isa<ICmpInst>(C)) {
230    switch (C->getPredicate()) {
231    default:  // THIS SHOULD NEVER HAPPEN
232      llvm_unreachable("Comparison with unknown predicate?");
233    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
234    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
235    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
236    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
237    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
238    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
239    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
240    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
241    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
242    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
243    }
244  } else {
245    switch (C->getPredicate()) {
246    default: // THIS SHOULD NEVER HAPPEN
247      llvm_unreachable("Comparison with unknown predicate?");
248    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
249    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
250    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
251    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
252    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
253    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
254    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
255    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
256    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
257    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
258    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
259    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
260    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
261    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
262    }
263  }
264}
265
266Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
267  switch(C->getOpcode()) {
268  default: // THIS SHOULD NEVER HAPPEN
269    llvm_unreachable("Cast operator with unknown opcode?");
270  case Instruction::Trunc:    return Expression::TRUNC;
271  case Instruction::ZExt:     return Expression::ZEXT;
272  case Instruction::SExt:     return Expression::SEXT;
273  case Instruction::FPToUI:   return Expression::FPTOUI;
274  case Instruction::FPToSI:   return Expression::FPTOSI;
275  case Instruction::UIToFP:   return Expression::UITOFP;
276  case Instruction::SIToFP:   return Expression::SITOFP;
277  case Instruction::FPTrunc:  return Expression::FPTRUNC;
278  case Instruction::FPExt:    return Expression::FPEXT;
279  case Instruction::PtrToInt: return Expression::PTRTOINT;
280  case Instruction::IntToPtr: return Expression::INTTOPTR;
281  case Instruction::BitCast:  return Expression::BITCAST;
282  }
283}
284
285Expression ValueTable::create_expression(CallInst* C) {
286  Expression e;
287
288  e.type = C->getType();
289  e.function = C->getCalledFunction();
290  e.opcode = Expression::CALL;
291
292  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
293       I != E; ++I)
294    e.varargs.push_back(lookup_or_add(*I));
295
296  return e;
297}
298
299Expression ValueTable::create_expression(BinaryOperator* BO) {
300  Expression e;
301  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
302  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
303  e.function = 0;
304  e.type = BO->getType();
305  e.opcode = getOpcode(BO);
306
307  return e;
308}
309
310Expression ValueTable::create_expression(CmpInst* C) {
311  Expression e;
312
313  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
314  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
315  e.function = 0;
316  e.type = C->getType();
317  e.opcode = getOpcode(C);
318
319  return e;
320}
321
322Expression ValueTable::create_expression(CastInst* C) {
323  Expression e;
324
325  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
326  e.function = 0;
327  e.type = C->getType();
328  e.opcode = getOpcode(C);
329
330  return e;
331}
332
333Expression ValueTable::create_expression(ShuffleVectorInst* S) {
334  Expression e;
335
336  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
337  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
338  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
339  e.function = 0;
340  e.type = S->getType();
341  e.opcode = Expression::SHUFFLE;
342
343  return e;
344}
345
346Expression ValueTable::create_expression(ExtractElementInst* E) {
347  Expression e;
348
349  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
350  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
351  e.function = 0;
352  e.type = E->getType();
353  e.opcode = Expression::EXTRACT;
354
355  return e;
356}
357
358Expression ValueTable::create_expression(InsertElementInst* I) {
359  Expression e;
360
361  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
362  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
363  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
364  e.function = 0;
365  e.type = I->getType();
366  e.opcode = Expression::INSERT;
367
368  return e;
369}
370
371Expression ValueTable::create_expression(SelectInst* I) {
372  Expression e;
373
374  e.varargs.push_back(lookup_or_add(I->getCondition()));
375  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
376  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
377  e.function = 0;
378  e.type = I->getType();
379  e.opcode = Expression::SELECT;
380
381  return e;
382}
383
384Expression ValueTable::create_expression(GetElementPtrInst* G) {
385  Expression e;
386
387  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
388  e.function = 0;
389  e.type = G->getType();
390  e.opcode = Expression::GEP;
391
392  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
393       I != E; ++I)
394    e.varargs.push_back(lookup_or_add(*I));
395
396  return e;
397}
398
399Expression ValueTable::create_expression(ExtractValueInst* E) {
400  Expression e;
401
402  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
403  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
404       II != IE; ++II)
405    e.varargs.push_back(*II);
406  e.function = 0;
407  e.type = E->getType();
408  e.opcode = Expression::EXTRACTVALUE;
409
410  return e;
411}
412
413Expression ValueTable::create_expression(InsertValueInst* E) {
414  Expression e;
415
416  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
417  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
418  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
419       II != IE; ++II)
420    e.varargs.push_back(*II);
421  e.function = 0;
422  e.type = E->getType();
423  e.opcode = Expression::INSERTVALUE;
424
425  return e;
426}
427
428//===----------------------------------------------------------------------===//
429//                     ValueTable External Functions
430//===----------------------------------------------------------------------===//
431
432/// add - Insert a value into the table with a specified value number.
433void ValueTable::add(Value *V, uint32_t num) {
434  valueNumbering.insert(std::make_pair(V, num));
435}
436
437uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
438  if (AA->doesNotAccessMemory(C)) {
439    Expression exp = create_expression(C);
440    uint32_t& e = expressionNumbering[exp];
441    if (!e) e = nextValueNumber++;
442    valueNumbering[C] = e;
443    return e;
444  } else if (AA->onlyReadsMemory(C)) {
445    Expression exp = create_expression(C);
446    uint32_t& e = expressionNumbering[exp];
447    if (!e) {
448      e = nextValueNumber++;
449      valueNumbering[C] = e;
450      return e;
451    }
452    if (!MD) {
453      e = nextValueNumber++;
454      valueNumbering[C] = e;
455      return e;
456    }
457
458    MemDepResult local_dep = MD->getDependency(C);
459
460    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
461      valueNumbering[C] =  nextValueNumber;
462      return nextValueNumber++;
463    }
464
465    if (local_dep.isDef()) {
466      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
467
468      if (local_cdep->getNumOperands() != C->getNumOperands()) {
469        valueNumbering[C] = nextValueNumber;
470        return nextValueNumber++;
471      }
472
473      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
474        uint32_t c_vn = lookup_or_add(C->getOperand(i));
475        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
476        if (c_vn != cd_vn) {
477          valueNumbering[C] = nextValueNumber;
478          return nextValueNumber++;
479        }
480      }
481
482      uint32_t v = lookup_or_add(local_cdep);
483      valueNumbering[C] = v;
484      return v;
485    }
486
487    // Non-local case.
488    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
489      MD->getNonLocalCallDependency(CallSite(C));
490    // FIXME: call/call dependencies for readonly calls should return def, not
491    // clobber!  Move the checking logic to MemDep!
492    CallInst* cdep = 0;
493
494    // Check to see if we have a single dominating call instruction that is
495    // identical to C.
496    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
497      const NonLocalDepEntry *I = &deps[i];
498      // Ignore non-local dependencies.
499      if (I->getResult().isNonLocal())
500        continue;
501
502      // We don't handle non-depedencies.  If we already have a call, reject
503      // instruction dependencies.
504      if (I->getResult().isClobber() || cdep != 0) {
505        cdep = 0;
506        break;
507      }
508
509      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
510      // FIXME: All duplicated with non-local case.
511      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
512        cdep = NonLocalDepCall;
513        continue;
514      }
515
516      cdep = 0;
517      break;
518    }
519
520    if (!cdep) {
521      valueNumbering[C] = nextValueNumber;
522      return nextValueNumber++;
523    }
524
525    if (cdep->getNumOperands() != C->getNumOperands()) {
526      valueNumbering[C] = nextValueNumber;
527      return nextValueNumber++;
528    }
529    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
530      uint32_t c_vn = lookup_or_add(C->getOperand(i));
531      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
532      if (c_vn != cd_vn) {
533        valueNumbering[C] = nextValueNumber;
534        return nextValueNumber++;
535      }
536    }
537
538    uint32_t v = lookup_or_add(cdep);
539    valueNumbering[C] = v;
540    return v;
541
542  } else {
543    valueNumbering[C] = nextValueNumber;
544    return nextValueNumber++;
545  }
546}
547
548/// lookup_or_add - Returns the value number for the specified value, assigning
549/// it a new number if it did not have one before.
550uint32_t ValueTable::lookup_or_add(Value *V) {
551  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
552  if (VI != valueNumbering.end())
553    return VI->second;
554
555  if (!isa<Instruction>(V)) {
556    valueNumbering[V] = nextValueNumber;
557    return nextValueNumber++;
558  }
559
560  Instruction* I = cast<Instruction>(V);
561  Expression exp;
562  switch (I->getOpcode()) {
563    case Instruction::Call:
564      return lookup_or_add_call(cast<CallInst>(I));
565    case Instruction::Add:
566    case Instruction::FAdd:
567    case Instruction::Sub:
568    case Instruction::FSub:
569    case Instruction::Mul:
570    case Instruction::FMul:
571    case Instruction::UDiv:
572    case Instruction::SDiv:
573    case Instruction::FDiv:
574    case Instruction::URem:
575    case Instruction::SRem:
576    case Instruction::FRem:
577    case Instruction::Shl:
578    case Instruction::LShr:
579    case Instruction::AShr:
580    case Instruction::And:
581    case Instruction::Or :
582    case Instruction::Xor:
583      exp = create_expression(cast<BinaryOperator>(I));
584      break;
585    case Instruction::ICmp:
586    case Instruction::FCmp:
587      exp = create_expression(cast<CmpInst>(I));
588      break;
589    case Instruction::Trunc:
590    case Instruction::ZExt:
591    case Instruction::SExt:
592    case Instruction::FPToUI:
593    case Instruction::FPToSI:
594    case Instruction::UIToFP:
595    case Instruction::SIToFP:
596    case Instruction::FPTrunc:
597    case Instruction::FPExt:
598    case Instruction::PtrToInt:
599    case Instruction::IntToPtr:
600    case Instruction::BitCast:
601      exp = create_expression(cast<CastInst>(I));
602      break;
603    case Instruction::Select:
604      exp = create_expression(cast<SelectInst>(I));
605      break;
606    case Instruction::ExtractElement:
607      exp = create_expression(cast<ExtractElementInst>(I));
608      break;
609    case Instruction::InsertElement:
610      exp = create_expression(cast<InsertElementInst>(I));
611      break;
612    case Instruction::ShuffleVector:
613      exp = create_expression(cast<ShuffleVectorInst>(I));
614      break;
615    case Instruction::ExtractValue:
616      exp = create_expression(cast<ExtractValueInst>(I));
617      break;
618    case Instruction::InsertValue:
619      exp = create_expression(cast<InsertValueInst>(I));
620      break;
621    case Instruction::GetElementPtr:
622      exp = create_expression(cast<GetElementPtrInst>(I));
623      break;
624    default:
625      valueNumbering[V] = nextValueNumber;
626      return nextValueNumber++;
627  }
628
629  uint32_t& e = expressionNumbering[exp];
630  if (!e) e = nextValueNumber++;
631  valueNumbering[V] = e;
632  return e;
633}
634
635/// lookup - Returns the value number of the specified value. Fails if
636/// the value has not yet been numbered.
637uint32_t ValueTable::lookup(Value *V) const {
638  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
639  assert(VI != valueNumbering.end() && "Value not numbered?");
640  return VI->second;
641}
642
643/// clear - Remove all entries from the ValueTable
644void ValueTable::clear() {
645  valueNumbering.clear();
646  expressionNumbering.clear();
647  nextValueNumber = 1;
648}
649
650/// erase - Remove a value from the value numbering
651void ValueTable::erase(Value *V) {
652  valueNumbering.erase(V);
653}
654
655/// verifyRemoved - Verify that the value is removed from all internal data
656/// structures.
657void ValueTable::verifyRemoved(const Value *V) const {
658  for (DenseMap<Value*, uint32_t>::const_iterator
659         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
660    assert(I->first != V && "Inst still occurs in value numbering map!");
661  }
662}
663
664//===----------------------------------------------------------------------===//
665//                                GVN Pass
666//===----------------------------------------------------------------------===//
667
668namespace {
669  struct ValueNumberScope {
670    ValueNumberScope* parent;
671    DenseMap<uint32_t, Value*> table;
672
673    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
674  };
675}
676
677namespace {
678
679  class GVN : public FunctionPass {
680    bool runOnFunction(Function &F);
681  public:
682    static char ID; // Pass identification, replacement for typeid
683    explicit GVN(bool nopre = false, bool noloads = false)
684      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
685
686  private:
687    bool NoPRE;
688    bool NoLoads;
689    MemoryDependenceAnalysis *MD;
690    DominatorTree *DT;
691
692    ValueTable VN;
693    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
694
695    // This transformation requires dominator postdominator info
696    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
697      AU.addRequired<DominatorTree>();
698      if (!NoLoads)
699        AU.addRequired<MemoryDependenceAnalysis>();
700      AU.addRequired<AliasAnalysis>();
701
702      AU.addPreserved<DominatorTree>();
703      AU.addPreserved<AliasAnalysis>();
704    }
705
706    // Helper fuctions
707    // FIXME: eliminate or document these better
708    bool processLoad(LoadInst* L,
709                     SmallVectorImpl<Instruction*> &toErase);
710    bool processInstruction(Instruction *I,
711                            SmallVectorImpl<Instruction*> &toErase);
712    bool processNonLocalLoad(LoadInst* L,
713                             SmallVectorImpl<Instruction*> &toErase);
714    bool processBlock(BasicBlock *BB);
715    void dump(DenseMap<uint32_t, Value*>& d);
716    bool iterateOnFunction(Function &F);
717    Value *CollapsePhi(PHINode* p);
718    bool performPRE(Function& F);
719    Value *lookupNumber(BasicBlock *BB, uint32_t num);
720    void cleanupGlobalSets();
721    void verifyRemoved(const Instruction *I) const;
722  };
723
724  char GVN::ID = 0;
725}
726
727// createGVNPass - The public interface to this file...
728FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
729  return new GVN(NoPRE, NoLoads);
730}
731
732static RegisterPass<GVN> X("gvn",
733                           "Global Value Numbering");
734
735void GVN::dump(DenseMap<uint32_t, Value*>& d) {
736  printf("{\n");
737  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
738       E = d.end(); I != E; ++I) {
739      printf("%d\n", I->first);
740      I->second->dump();
741  }
742  printf("}\n");
743}
744
745static bool isSafeReplacement(PHINode* p, Instruction *inst) {
746  if (!isa<PHINode>(inst))
747    return true;
748
749  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
750       UI != E; ++UI)
751    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
752      if (use_phi->getParent() == inst->getParent())
753        return false;
754
755  return true;
756}
757
758Value *GVN::CollapsePhi(PHINode *PN) {
759  Value *ConstVal = PN->hasConstantValue(DT);
760  if (!ConstVal) return 0;
761
762  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
763  if (!Inst)
764    return ConstVal;
765
766  if (DT->dominates(Inst, PN))
767    if (isSafeReplacement(PN, Inst))
768      return Inst;
769  return 0;
770}
771
772/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
773/// we're analyzing is fully available in the specified block.  As we go, keep
774/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
775/// map is actually a tri-state map with the following values:
776///   0) we know the block *is not* fully available.
777///   1) we know the block *is* fully available.
778///   2) we do not know whether the block is fully available or not, but we are
779///      currently speculating that it will be.
780///   3) we are speculating for this block and have used that to speculate for
781///      other blocks.
782static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
783                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
784  // Optimistically assume that the block is fully available and check to see
785  // if we already know about this block in one lookup.
786  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
787    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
788
789  // If the entry already existed for this block, return the precomputed value.
790  if (!IV.second) {
791    // If this is a speculative "available" value, mark it as being used for
792    // speculation of other blocks.
793    if (IV.first->second == 2)
794      IV.first->second = 3;
795    return IV.first->second != 0;
796  }
797
798  // Otherwise, see if it is fully available in all predecessors.
799  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
800
801  // If this block has no predecessors, it isn't live-in here.
802  if (PI == PE)
803    goto SpeculationFailure;
804
805  for (; PI != PE; ++PI)
806    // If the value isn't fully available in one of our predecessors, then it
807    // isn't fully available in this block either.  Undo our previous
808    // optimistic assumption and bail out.
809    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
810      goto SpeculationFailure;
811
812  return true;
813
814// SpeculationFailure - If we get here, we found out that this is not, after
815// all, a fully-available block.  We have a problem if we speculated on this and
816// used the speculation to mark other blocks as available.
817SpeculationFailure:
818  char &BBVal = FullyAvailableBlocks[BB];
819
820  // If we didn't speculate on this, just return with it set to false.
821  if (BBVal == 2) {
822    BBVal = 0;
823    return false;
824  }
825
826  // If we did speculate on this value, we could have blocks set to 1 that are
827  // incorrect.  Walk the (transitive) successors of this block and mark them as
828  // 0 if set to one.
829  SmallVector<BasicBlock*, 32> BBWorklist;
830  BBWorklist.push_back(BB);
831
832  while (!BBWorklist.empty()) {
833    BasicBlock *Entry = BBWorklist.pop_back_val();
834    // Note that this sets blocks to 0 (unavailable) if they happen to not
835    // already be in FullyAvailableBlocks.  This is safe.
836    char &EntryVal = FullyAvailableBlocks[Entry];
837    if (EntryVal == 0) continue;  // Already unavailable.
838
839    // Mark as unavailable.
840    EntryVal = 0;
841
842    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
843      BBWorklist.push_back(*I);
844  }
845
846  return false;
847}
848
849
850/// CanCoerceMustAliasedValueToLoad - Return true if
851/// CoerceAvailableValueToLoadType will succeed.
852static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
853                                            const Type *LoadTy,
854                                            const TargetData &TD) {
855  // If the loaded or stored value is an first class array or struct, don't try
856  // to transform them.  We need to be able to bitcast to integer.
857  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
858      isa<StructType>(StoredVal->getType()) ||
859      isa<ArrayType>(StoredVal->getType()))
860    return false;
861
862  // The store has to be at least as big as the load.
863  if (TD.getTypeSizeInBits(StoredVal->getType()) <
864        TD.getTypeSizeInBits(LoadTy))
865    return false;
866
867  return true;
868}
869
870
871/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
872/// then a load from a must-aliased pointer of a different type, try to coerce
873/// the stored value.  LoadedTy is the type of the load we want to replace and
874/// InsertPt is the place to insert new instructions.
875///
876/// If we can't do it, return null.
877static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
878                                             const Type *LoadedTy,
879                                             Instruction *InsertPt,
880                                             const TargetData &TD) {
881  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
882    return 0;
883
884  const Type *StoredValTy = StoredVal->getType();
885
886  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
887  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
888
889  // If the store and reload are the same size, we can always reuse it.
890  if (StoreSize == LoadSize) {
891    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
892      // Pointer to Pointer -> use bitcast.
893      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
894    }
895
896    // Convert source pointers to integers, which can be bitcast.
897    if (isa<PointerType>(StoredValTy)) {
898      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
899      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
900    }
901
902    const Type *TypeToCastTo = LoadedTy;
903    if (isa<PointerType>(TypeToCastTo))
904      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
905
906    if (StoredValTy != TypeToCastTo)
907      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
908
909    // Cast to pointer if the load needs a pointer type.
910    if (isa<PointerType>(LoadedTy))
911      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
912
913    return StoredVal;
914  }
915
916  // If the loaded value is smaller than the available value, then we can
917  // extract out a piece from it.  If the available value is too small, then we
918  // can't do anything.
919  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
920
921  // Convert source pointers to integers, which can be manipulated.
922  if (isa<PointerType>(StoredValTy)) {
923    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
924    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
925  }
926
927  // Convert vectors and fp to integer, which can be manipulated.
928  if (!isa<IntegerType>(StoredValTy)) {
929    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
930    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
931  }
932
933  // If this is a big-endian system, we need to shift the value down to the low
934  // bits so that a truncate will work.
935  if (TD.isBigEndian()) {
936    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
937    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
938  }
939
940  // Truncate the integer to the right size now.
941  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
942  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
943
944  if (LoadedTy == NewIntTy)
945    return StoredVal;
946
947  // If the result is a pointer, inttoptr.
948  if (isa<PointerType>(LoadedTy))
949    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
950
951  // Otherwise, bitcast.
952  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
953}
954
955/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
956/// be expressed as a base pointer plus a constant offset.  Return the base and
957/// offset to the caller.
958static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
959                                        const TargetData &TD) {
960  Operator *PtrOp = dyn_cast<Operator>(Ptr);
961  if (PtrOp == 0) return Ptr;
962
963  // Just look through bitcasts.
964  if (PtrOp->getOpcode() == Instruction::BitCast)
965    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
966
967  // If this is a GEP with constant indices, we can look through it.
968  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
969  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
970
971  gep_type_iterator GTI = gep_type_begin(GEP);
972  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
973       ++I, ++GTI) {
974    ConstantInt *OpC = cast<ConstantInt>(*I);
975    if (OpC->isZero()) continue;
976
977    // Handle a struct and array indices which add their offset to the pointer.
978    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
979      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
980    } else {
981      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
982      Offset += OpC->getSExtValue()*Size;
983    }
984  }
985
986  // Re-sign extend from the pointer size if needed to get overflow edge cases
987  // right.
988  unsigned PtrSize = TD.getPointerSizeInBits();
989  if (PtrSize < 64)
990    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
991
992  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
993}
994
995
996/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
997/// memdep query of a load that ends up being a clobbering memory write (store,
998/// memset, memcpy, memmove).  This means that the write *may* provide bits used
999/// by the load but we can't be sure because the pointers don't mustalias.
1000///
1001/// Check this case to see if there is anything more we can do before we give
1002/// up.  This returns -1 if we have to give up, or a byte number in the stored
1003/// value of the piece that feeds the load.
1004static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
1005                                          Value *WritePtr,
1006                                          uint64_t WriteSizeInBits,
1007                                          const TargetData &TD) {
1008  // If the loaded or stored value is an first class array or struct, don't try
1009  // to transform them.  We need to be able to bitcast to integer.
1010  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy))
1011    return -1;
1012
1013  int64_t StoreOffset = 0, LoadOffset = 0;
1014  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1015  Value *LoadBase =
1016    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1017  if (StoreBase != LoadBase)
1018    return -1;
1019
1020  // If the load and store are to the exact same address, they should have been
1021  // a must alias.  AA must have gotten confused.
1022  // FIXME: Study to see if/when this happens.
1023  if (LoadOffset == StoreOffset) {
1024#if 0
1025    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1026    << "Base       = " << *StoreBase << "\n"
1027    << "Store Ptr  = " << *WritePtr << "\n"
1028    << "Store Offs = " << StoreOffset << "\n"
1029    << "Load Ptr   = " << *LoadPtr << "\n";
1030    abort();
1031#endif
1032    return -1;
1033  }
1034
1035  // If the load and store don't overlap at all, the store doesn't provide
1036  // anything to the load.  In this case, they really don't alias at all, AA
1037  // must have gotten confused.
1038  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1039  // remove this check, as it is duplicated with what we have below.
1040  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1041
1042  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1043    return -1;
1044  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1045  LoadSize >>= 3;
1046
1047
1048  bool isAAFailure = false;
1049  if (StoreOffset < LoadOffset) {
1050    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1051  } else {
1052    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1053  }
1054  if (isAAFailure) {
1055#if 0
1056    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1057    << "Base       = " << *StoreBase << "\n"
1058    << "Store Ptr  = " << *WritePtr << "\n"
1059    << "Store Offs = " << StoreOffset << "\n"
1060    << "Load Ptr   = " << *LoadPtr << "\n";
1061    abort();
1062#endif
1063    return -1;
1064  }
1065
1066  // If the Load isn't completely contained within the stored bits, we don't
1067  // have all the bits to feed it.  We could do something crazy in the future
1068  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1069  // valuable.
1070  if (StoreOffset > LoadOffset ||
1071      StoreOffset+StoreSize < LoadOffset+LoadSize)
1072    return -1;
1073
1074  // Okay, we can do this transformation.  Return the number of bytes into the
1075  // store that the load is.
1076  return LoadOffset-StoreOffset;
1077}
1078
1079/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1080/// memdep query of a load that ends up being a clobbering store.
1081static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1082                                          StoreInst *DepSI,
1083                                          const TargetData &TD) {
1084  // Cannot handle reading from store of first-class aggregate yet.
1085  if (isa<StructType>(DepSI->getOperand(0)->getType()) ||
1086      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1087    return -1;
1088
1089  Value *StorePtr = DepSI->getPointerOperand();
1090  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1091  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1092                                        StorePtr, StoreSize, TD);
1093}
1094
1095static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1096                                            MemIntrinsic *MI,
1097                                            const TargetData &TD) {
1098  // If the mem operation is a non-constant size, we can't handle it.
1099  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1100  if (SizeCst == 0) return -1;
1101  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1102
1103  // If this is memset, we just need to see if the offset is valid in the size
1104  // of the memset..
1105  if (MI->getIntrinsicID() == Intrinsic::memset)
1106    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1107                                          MemSizeInBits, TD);
1108
1109  // If we have a memcpy/memmove, the only case we can handle is if this is a
1110  // copy from constant memory.  In that case, we can read directly from the
1111  // constant memory.
1112  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1113
1114  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1115  if (Src == 0) return -1;
1116
1117  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1118  if (GV == 0 || !GV->isConstant()) return -1;
1119
1120  // See if the access is within the bounds of the transfer.
1121  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1122                                              MI->getDest(), MemSizeInBits, TD);
1123  if (Offset == -1)
1124    return Offset;
1125
1126  // Otherwise, see if we can constant fold a load from the constant with the
1127  // offset applied as appropriate.
1128  Src = ConstantExpr::getBitCast(Src,
1129                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1130  Constant *OffsetCst =
1131    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1132  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1133  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1134  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1135    return Offset;
1136  return -1;
1137}
1138
1139
1140/// GetStoreValueForLoad - This function is called when we have a
1141/// memdep query of a load that ends up being a clobbering store.  This means
1142/// that the store *may* provide bits used by the load but we can't be sure
1143/// because the pointers don't mustalias.  Check this case to see if there is
1144/// anything more we can do before we give up.
1145static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1146                                   const Type *LoadTy,
1147                                   Instruction *InsertPt, const TargetData &TD){
1148  LLVMContext &Ctx = SrcVal->getType()->getContext();
1149
1150  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1151  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1152
1153  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1154
1155  // Compute which bits of the stored value are being used by the load.  Convert
1156  // to an integer type to start with.
1157  if (isa<PointerType>(SrcVal->getType()))
1158    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1159  if (!isa<IntegerType>(SrcVal->getType()))
1160    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1161                                   "tmp");
1162
1163  // Shift the bits to the least significant depending on endianness.
1164  unsigned ShiftAmt;
1165  if (TD.isLittleEndian())
1166    ShiftAmt = Offset*8;
1167  else
1168    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1169
1170  if (ShiftAmt)
1171    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1172
1173  if (LoadSize != StoreSize)
1174    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1175                                 "tmp");
1176
1177  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1178}
1179
1180/// GetMemInstValueForLoad - This function is called when we have a
1181/// memdep query of a load that ends up being a clobbering mem intrinsic.
1182static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1183                                     const Type *LoadTy, Instruction *InsertPt,
1184                                     const TargetData &TD){
1185  LLVMContext &Ctx = LoadTy->getContext();
1186  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1187
1188  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1189
1190  // We know that this method is only called when the mem transfer fully
1191  // provides the bits for the load.
1192  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1193    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1194    // independently of what the offset is.
1195    Value *Val = MSI->getValue();
1196    if (LoadSize != 1)
1197      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1198
1199    Value *OneElt = Val;
1200
1201    // Splat the value out to the right number of bits.
1202    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1203      // If we can double the number of bytes set, do it.
1204      if (NumBytesSet*2 <= LoadSize) {
1205        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1206        Val = Builder.CreateOr(Val, ShVal);
1207        NumBytesSet <<= 1;
1208        continue;
1209      }
1210
1211      // Otherwise insert one byte at a time.
1212      Value *ShVal = Builder.CreateShl(Val, 1*8);
1213      Val = Builder.CreateOr(OneElt, ShVal);
1214      ++NumBytesSet;
1215    }
1216
1217    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1218  }
1219
1220  // Otherwise, this is a memcpy/memmove from a constant global.
1221  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1222  Constant *Src = cast<Constant>(MTI->getSource());
1223
1224  // Otherwise, see if we can constant fold a load from the constant with the
1225  // offset applied as appropriate.
1226  Src = ConstantExpr::getBitCast(Src,
1227                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1228  Constant *OffsetCst =
1229  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1230  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1231  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1232  return ConstantFoldLoadFromConstPtr(Src, &TD);
1233}
1234
1235
1236
1237struct AvailableValueInBlock {
1238  /// BB - The basic block in question.
1239  BasicBlock *BB;
1240  enum ValType {
1241    SimpleVal,  // A simple offsetted value that is accessed.
1242    MemIntrin   // A memory intrinsic which is loaded from.
1243  };
1244
1245  /// V - The value that is live out of the block.
1246  PointerIntPair<Value *, 1, ValType> Val;
1247
1248  /// Offset - The byte offset in Val that is interesting for the load query.
1249  unsigned Offset;
1250
1251  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1252                                   unsigned Offset = 0) {
1253    AvailableValueInBlock Res;
1254    Res.BB = BB;
1255    Res.Val.setPointer(V);
1256    Res.Val.setInt(SimpleVal);
1257    Res.Offset = Offset;
1258    return Res;
1259  }
1260
1261  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1262                                     unsigned Offset = 0) {
1263    AvailableValueInBlock Res;
1264    Res.BB = BB;
1265    Res.Val.setPointer(MI);
1266    Res.Val.setInt(MemIntrin);
1267    Res.Offset = Offset;
1268    return Res;
1269  }
1270
1271  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1272  Value *getSimpleValue() const {
1273    assert(isSimpleValue() && "Wrong accessor");
1274    return Val.getPointer();
1275  }
1276
1277  MemIntrinsic *getMemIntrinValue() const {
1278    assert(!isSimpleValue() && "Wrong accessor");
1279    return cast<MemIntrinsic>(Val.getPointer());
1280  }
1281};
1282
1283/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1284/// construct SSA form, allowing us to eliminate LI.  This returns the value
1285/// that should be used at LI's definition site.
1286static Value *ConstructSSAForLoadSet(LoadInst *LI,
1287                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1288                                     const TargetData *TD,
1289                                     AliasAnalysis *AA) {
1290  SmallVector<PHINode*, 8> NewPHIs;
1291  SSAUpdater SSAUpdate(&NewPHIs);
1292  SSAUpdate.Initialize(LI);
1293
1294  const Type *LoadTy = LI->getType();
1295
1296  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1297    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1298    BasicBlock *BB = AV.BB;
1299
1300    if (SSAUpdate.HasValueForBlock(BB))
1301      continue;
1302
1303    unsigned Offset = AV.Offset;
1304
1305    Value *AvailableVal;
1306    if (AV.isSimpleValue()) {
1307      AvailableVal = AV.getSimpleValue();
1308      if (AvailableVal->getType() != LoadTy) {
1309        assert(TD && "Need target data to handle type mismatch case");
1310        AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1311                                            BB->getTerminator(), *TD);
1312
1313        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1314              << *AV.getSimpleValue() << '\n'
1315              << *AvailableVal << '\n' << "\n\n\n");
1316      }
1317    } else {
1318      AvailableVal = GetMemInstValueForLoad(AV.getMemIntrinValue(), Offset,
1319                                            LoadTy, BB->getTerminator(), *TD);
1320      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1321            << "  " << *AV.getMemIntrinValue() << '\n'
1322            << *AvailableVal << '\n' << "\n\n\n");
1323    }
1324    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1325  }
1326
1327  // Perform PHI construction.
1328  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1329
1330  // If new PHI nodes were created, notify alias analysis.
1331  if (isa<PointerType>(V->getType()))
1332    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1333      AA->copyValue(LI, NewPHIs[i]);
1334
1335  return V;
1336}
1337
1338static bool isLifetimeStart(Instruction *Inst) {
1339  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1340    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1341  return false;
1342}
1343
1344/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1345/// non-local by performing PHI construction.
1346bool GVN::processNonLocalLoad(LoadInst *LI,
1347                              SmallVectorImpl<Instruction*> &toErase) {
1348  // Find the non-local dependencies of the load.
1349  SmallVector<NonLocalDepEntry, 64> Deps;
1350  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1351                                   Deps);
1352  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1353  //             << Deps.size() << *LI << '\n');
1354
1355  // If we had to process more than one hundred blocks to find the
1356  // dependencies, this load isn't worth worrying about.  Optimizing
1357  // it will be too expensive.
1358  if (Deps.size() > 100)
1359    return false;
1360
1361  // If we had a phi translation failure, we'll have a single entry which is a
1362  // clobber in the current block.  Reject this early.
1363  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1364    DEBUG(
1365      errs() << "GVN: non-local load ";
1366      WriteAsOperand(errs(), LI);
1367      errs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1368    );
1369    return false;
1370  }
1371
1372  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1373  // where we have a value available in repl, also keep track of whether we see
1374  // dependencies that produce an unknown value for the load (such as a call
1375  // that could potentially clobber the load).
1376  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1377  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1378
1379  const TargetData *TD = 0;
1380
1381  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1382    BasicBlock *DepBB = Deps[i].getBB();
1383    MemDepResult DepInfo = Deps[i].getResult();
1384
1385    if (DepInfo.isClobber()) {
1386      // The address being loaded in this non-local block may not be the same as
1387      // the pointer operand of the load if PHI translation occurs.  Make sure
1388      // to consider the right address.
1389      Value *Address = Deps[i].getAddress();
1390
1391      // If the dependence is to a store that writes to a superset of the bits
1392      // read by the load, we can extract the bits we need for the load from the
1393      // stored value.
1394      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1395        if (TD == 0)
1396          TD = getAnalysisIfAvailable<TargetData>();
1397        if (TD && Address) {
1398          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1399                                                      DepSI, *TD);
1400          if (Offset != -1) {
1401            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1402                                                           DepSI->getOperand(0),
1403                                                                Offset));
1404            continue;
1405          }
1406        }
1407      }
1408
1409      // If the clobbering value is a memset/memcpy/memmove, see if we can
1410      // forward a value on from it.
1411      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1412        if (TD == 0)
1413          TD = getAnalysisIfAvailable<TargetData>();
1414        if (TD && Address) {
1415          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1416                                                        DepMI, *TD);
1417          if (Offset != -1) {
1418            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1419                                                                  Offset));
1420            continue;
1421          }
1422        }
1423      }
1424
1425      UnavailableBlocks.push_back(DepBB);
1426      continue;
1427    }
1428
1429    Instruction *DepInst = DepInfo.getInst();
1430
1431    // Loading the allocation -> undef.
1432    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1433        // Loading immediately after lifetime begin -> undef.
1434        isLifetimeStart(DepInst)) {
1435      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1436                                             UndefValue::get(LI->getType())));
1437      continue;
1438    }
1439
1440    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1441      // Reject loads and stores that are to the same address but are of
1442      // different types if we have to.
1443      if (S->getOperand(0)->getType() != LI->getType()) {
1444        if (TD == 0)
1445          TD = getAnalysisIfAvailable<TargetData>();
1446
1447        // If the stored value is larger or equal to the loaded value, we can
1448        // reuse it.
1449        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1450                                                        LI->getType(), *TD)) {
1451          UnavailableBlocks.push_back(DepBB);
1452          continue;
1453        }
1454      }
1455
1456      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1457                                                          S->getOperand(0)));
1458      continue;
1459    }
1460
1461    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1462      // If the types mismatch and we can't handle it, reject reuse of the load.
1463      if (LD->getType() != LI->getType()) {
1464        if (TD == 0)
1465          TD = getAnalysisIfAvailable<TargetData>();
1466
1467        // If the stored value is larger or equal to the loaded value, we can
1468        // reuse it.
1469        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1470          UnavailableBlocks.push_back(DepBB);
1471          continue;
1472        }
1473      }
1474      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1475      continue;
1476    }
1477
1478    UnavailableBlocks.push_back(DepBB);
1479    continue;
1480  }
1481
1482  // If we have no predecessors that produce a known value for this load, exit
1483  // early.
1484  if (ValuesPerBlock.empty()) return false;
1485
1486  // If all of the instructions we depend on produce a known value for this
1487  // load, then it is fully redundant and we can use PHI insertion to compute
1488  // its value.  Insert PHIs and remove the fully redundant value now.
1489  if (UnavailableBlocks.empty()) {
1490    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1491
1492    // Perform PHI construction.
1493    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1494                                      VN.getAliasAnalysis());
1495    LI->replaceAllUsesWith(V);
1496
1497    if (isa<PHINode>(V))
1498      V->takeName(LI);
1499    if (isa<PointerType>(V->getType()))
1500      MD->invalidateCachedPointerInfo(V);
1501    toErase.push_back(LI);
1502    NumGVNLoad++;
1503    return true;
1504  }
1505
1506  if (!EnablePRE || !EnableLoadPRE)
1507    return false;
1508
1509  // Okay, we have *some* definitions of the value.  This means that the value
1510  // is available in some of our (transitive) predecessors.  Lets think about
1511  // doing PRE of this load.  This will involve inserting a new load into the
1512  // predecessor when it's not available.  We could do this in general, but
1513  // prefer to not increase code size.  As such, we only do this when we know
1514  // that we only have to insert *one* load (which means we're basically moving
1515  // the load, not inserting a new one).
1516
1517  SmallPtrSet<BasicBlock *, 4> Blockers;
1518  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1519    Blockers.insert(UnavailableBlocks[i]);
1520
1521  // Lets find first basic block with more than one predecessor.  Walk backwards
1522  // through predecessors if needed.
1523  BasicBlock *LoadBB = LI->getParent();
1524  BasicBlock *TmpBB = LoadBB;
1525
1526  bool isSinglePred = false;
1527  bool allSingleSucc = true;
1528  while (TmpBB->getSinglePredecessor()) {
1529    isSinglePred = true;
1530    TmpBB = TmpBB->getSinglePredecessor();
1531    if (!TmpBB) // If haven't found any, bail now.
1532      return false;
1533    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1534      return false;
1535    if (Blockers.count(TmpBB))
1536      return false;
1537    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1538      allSingleSucc = false;
1539  }
1540
1541  assert(TmpBB);
1542  LoadBB = TmpBB;
1543
1544  // If we have a repl set with LI itself in it, this means we have a loop where
1545  // at least one of the values is LI.  Since this means that we won't be able
1546  // to eliminate LI even if we insert uses in the other predecessors, we will
1547  // end up increasing code size.  Reject this by scanning for LI.
1548  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1549    if (ValuesPerBlock[i].isSimpleValue() &&
1550        ValuesPerBlock[i].getSimpleValue() == LI)
1551      return false;
1552
1553  // FIXME: It is extremely unclear what this loop is doing, other than
1554  // artificially restricting loadpre.
1555  if (isSinglePred) {
1556    bool isHot = false;
1557    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1558      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1559      if (AV.isSimpleValue())
1560        // "Hot" Instruction is in some loop (because it dominates its dep.
1561        // instruction).
1562        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1563          if (DT->dominates(LI, I)) {
1564            isHot = true;
1565            break;
1566          }
1567    }
1568
1569    // We are interested only in "hot" instructions. We don't want to do any
1570    // mis-optimizations here.
1571    if (!isHot)
1572      return false;
1573  }
1574
1575  // Okay, we have some hope :).  Check to see if the loaded value is fully
1576  // available in all but one predecessor.
1577  // FIXME: If we could restructure the CFG, we could make a common pred with
1578  // all the preds that don't have an available LI and insert a new load into
1579  // that one block.
1580  BasicBlock *UnavailablePred = 0;
1581
1582  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1583  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1584    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1585  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1586    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1587
1588  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1589       PI != E; ++PI) {
1590    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1591      continue;
1592
1593    // If this load is not available in multiple predecessors, reject it.
1594    if (UnavailablePred && UnavailablePred != *PI)
1595      return false;
1596    UnavailablePred = *PI;
1597  }
1598
1599  assert(UnavailablePred != 0 &&
1600         "Fully available value should be eliminated above!");
1601
1602  // We don't currently handle critical edges :(
1603  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1604    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1605                 << UnavailablePred->getName() << "': " << *LI << '\n');
1606    return false;
1607  }
1608
1609  // Do PHI translation to get its value in the predecessor if necessary.  The
1610  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1611  //
1612  SmallVector<Instruction*, 8> NewInsts;
1613
1614  // If all preds have a single successor, then we know it is safe to insert the
1615  // load on the pred (?!?), so we can insert code to materialize the pointer if
1616  // it is not available.
1617  PHITransAddr Address(LI->getOperand(0), TD);
1618  Value *LoadPtr = 0;
1619  if (allSingleSucc) {
1620    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1621                                                *DT, NewInsts);
1622  } else {
1623    Address.PHITranslateValue(LoadBB, UnavailablePred);
1624    LoadPtr = Address.getAddr();
1625
1626    // Make sure the value is live in the predecessor.
1627    if (Instruction *Inst = dyn_cast_or_null<Instruction>(LoadPtr))
1628      if (!DT->dominates(Inst->getParent(), UnavailablePred))
1629        LoadPtr = 0;
1630  }
1631
1632  // If we couldn't find or insert a computation of this phi translated value,
1633  // we fail PRE.
1634  if (LoadPtr == 0) {
1635    assert(NewInsts.empty() && "Shouldn't insert insts on failure");
1636    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1637                 << *LI->getOperand(0) << "\n");
1638    return false;
1639  }
1640
1641  // Assign value numbers to these new instructions.
1642  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1643    // FIXME: We really _ought_ to insert these value numbers into their
1644    // parent's availability map.  However, in doing so, we risk getting into
1645    // ordering issues.  If a block hasn't been processed yet, we would be
1646    // marking a value as AVAIL-IN, which isn't what we intend.
1647    VN.lookup_or_add(NewInsts[i]);
1648  }
1649
1650  // Make sure it is valid to move this load here.  We have to watch out for:
1651  //  @1 = getelementptr (i8* p, ...
1652  //  test p and branch if == 0
1653  //  load @1
1654  // It is valid to have the getelementptr before the test, even if p can be 0,
1655  // as getelementptr only does address arithmetic.
1656  // If we are not pushing the value through any multiple-successor blocks
1657  // we do not have this case.  Otherwise, check that the load is safe to
1658  // put anywhere; this can be improved, but should be conservatively safe.
1659  if (!allSingleSucc &&
1660      // FIXME: REEVALUTE THIS.
1661      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
1662    assert(NewInsts.empty() && "Should not have inserted instructions");
1663    return false;
1664  }
1665
1666  // Okay, we can eliminate this load by inserting a reload in the predecessor
1667  // and using PHI construction to get the value in the other predecessors, do
1668  // it.
1669  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1670  DEBUG(if (!NewInsts.empty())
1671          errs() << "INSERTED " << NewInsts.size() << " INSTS: "
1672                 << *NewInsts.back() << '\n');
1673
1674  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1675                                LI->getAlignment(),
1676                                UnavailablePred->getTerminator());
1677
1678  // Add the newly created load.
1679  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1680
1681  // Perform PHI construction.
1682  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1683                                    VN.getAliasAnalysis());
1684  LI->replaceAllUsesWith(V);
1685  if (isa<PHINode>(V))
1686    V->takeName(LI);
1687  if (isa<PointerType>(V->getType()))
1688    MD->invalidateCachedPointerInfo(V);
1689  toErase.push_back(LI);
1690  NumPRELoad++;
1691  return true;
1692}
1693
1694/// processLoad - Attempt to eliminate a load, first by eliminating it
1695/// locally, and then attempting non-local elimination if that fails.
1696bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1697  if (!MD)
1698    return false;
1699
1700  if (L->isVolatile())
1701    return false;
1702
1703  // ... to a pointer that has been loaded from before...
1704  MemDepResult Dep = MD->getDependency(L);
1705
1706  // If the value isn't available, don't do anything!
1707  if (Dep.isClobber()) {
1708    // Check to see if we have something like this:
1709    //   store i32 123, i32* %P
1710    //   %A = bitcast i32* %P to i8*
1711    //   %B = gep i8* %A, i32 1
1712    //   %C = load i8* %B
1713    //
1714    // We could do that by recognizing if the clobber instructions are obviously
1715    // a common base + constant offset, and if the previous store (or memset)
1716    // completely covers this load.  This sort of thing can happen in bitfield
1717    // access code.
1718    Value *AvailVal = 0;
1719    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1720      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1721        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1722                                                    L->getPointerOperand(),
1723                                                    DepSI, *TD);
1724        if (Offset != -1)
1725          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1726                                          L->getType(), L, *TD);
1727      }
1728
1729    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1730    // a value on from it.
1731    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1732      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1733        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1734                                                      L->getPointerOperand(),
1735                                                      DepMI, *TD);
1736        if (Offset != -1)
1737          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1738      }
1739    }
1740
1741    if (AvailVal) {
1742      DEBUG(errs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1743            << *AvailVal << '\n' << *L << "\n\n\n");
1744
1745      // Replace the load!
1746      L->replaceAllUsesWith(AvailVal);
1747      if (isa<PointerType>(AvailVal->getType()))
1748        MD->invalidateCachedPointerInfo(AvailVal);
1749      toErase.push_back(L);
1750      NumGVNLoad++;
1751      return true;
1752    }
1753
1754    DEBUG(
1755      // fast print dep, using operator<< on instruction would be too slow
1756      errs() << "GVN: load ";
1757      WriteAsOperand(errs(), L);
1758      Instruction *I = Dep.getInst();
1759      errs() << " is clobbered by " << *I << '\n';
1760    );
1761    return false;
1762  }
1763
1764  // If it is defined in another block, try harder.
1765  if (Dep.isNonLocal())
1766    return processNonLocalLoad(L, toErase);
1767
1768  Instruction *DepInst = Dep.getInst();
1769  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1770    Value *StoredVal = DepSI->getOperand(0);
1771
1772    // The store and load are to a must-aliased pointer, but they may not
1773    // actually have the same type.  See if we know how to reuse the stored
1774    // value (depending on its type).
1775    const TargetData *TD = 0;
1776    if (StoredVal->getType() != L->getType()) {
1777      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1778        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1779                                                   L, *TD);
1780        if (StoredVal == 0)
1781          return false;
1782
1783        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1784                     << '\n' << *L << "\n\n\n");
1785      }
1786      else
1787        return false;
1788    }
1789
1790    // Remove it!
1791    L->replaceAllUsesWith(StoredVal);
1792    if (isa<PointerType>(StoredVal->getType()))
1793      MD->invalidateCachedPointerInfo(StoredVal);
1794    toErase.push_back(L);
1795    NumGVNLoad++;
1796    return true;
1797  }
1798
1799  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1800    Value *AvailableVal = DepLI;
1801
1802    // The loads are of a must-aliased pointer, but they may not actually have
1803    // the same type.  See if we know how to reuse the previously loaded value
1804    // (depending on its type).
1805    const TargetData *TD = 0;
1806    if (DepLI->getType() != L->getType()) {
1807      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1808        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1809        if (AvailableVal == 0)
1810          return false;
1811
1812        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1813                     << "\n" << *L << "\n\n\n");
1814      }
1815      else
1816        return false;
1817    }
1818
1819    // Remove it!
1820    L->replaceAllUsesWith(AvailableVal);
1821    if (isa<PointerType>(DepLI->getType()))
1822      MD->invalidateCachedPointerInfo(DepLI);
1823    toErase.push_back(L);
1824    NumGVNLoad++;
1825    return true;
1826  }
1827
1828  // If this load really doesn't depend on anything, then we must be loading an
1829  // undef value.  This can happen when loading for a fresh allocation with no
1830  // intervening stores, for example.
1831  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1832    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1833    toErase.push_back(L);
1834    NumGVNLoad++;
1835    return true;
1836  }
1837
1838  // If this load occurs either right after a lifetime begin,
1839  // then the loaded value is undefined.
1840  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1841    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1842      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1843      toErase.push_back(L);
1844      NumGVNLoad++;
1845      return true;
1846    }
1847  }
1848
1849  return false;
1850}
1851
1852Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1853  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1854  if (I == localAvail.end())
1855    return 0;
1856
1857  ValueNumberScope *Locals = I->second;
1858  while (Locals) {
1859    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1860    if (I != Locals->table.end())
1861      return I->second;
1862    Locals = Locals->parent;
1863  }
1864
1865  return 0;
1866}
1867
1868
1869/// processInstruction - When calculating availability, handle an instruction
1870/// by inserting it into the appropriate sets
1871bool GVN::processInstruction(Instruction *I,
1872                             SmallVectorImpl<Instruction*> &toErase) {
1873  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1874    bool Changed = processLoad(LI, toErase);
1875
1876    if (!Changed) {
1877      unsigned Num = VN.lookup_or_add(LI);
1878      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1879    }
1880
1881    return Changed;
1882  }
1883
1884  uint32_t NextNum = VN.getNextUnusedValueNumber();
1885  unsigned Num = VN.lookup_or_add(I);
1886
1887  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1888    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1889
1890    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1891      return false;
1892
1893    Value *BranchCond = BI->getCondition();
1894    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1895
1896    BasicBlock *TrueSucc = BI->getSuccessor(0);
1897    BasicBlock *FalseSucc = BI->getSuccessor(1);
1898
1899    if (TrueSucc->getSinglePredecessor())
1900      localAvail[TrueSucc]->table[CondVN] =
1901        ConstantInt::getTrue(TrueSucc->getContext());
1902    if (FalseSucc->getSinglePredecessor())
1903      localAvail[FalseSucc]->table[CondVN] =
1904        ConstantInt::getFalse(TrueSucc->getContext());
1905
1906    return false;
1907
1908  // Allocations are always uniquely numbered, so we can save time and memory
1909  // by fast failing them.
1910  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1911    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1912    return false;
1913  }
1914
1915  // Collapse PHI nodes
1916  if (PHINode* p = dyn_cast<PHINode>(I)) {
1917    Value *constVal = CollapsePhi(p);
1918
1919    if (constVal) {
1920      p->replaceAllUsesWith(constVal);
1921      if (MD && isa<PointerType>(constVal->getType()))
1922        MD->invalidateCachedPointerInfo(constVal);
1923      VN.erase(p);
1924
1925      toErase.push_back(p);
1926    } else {
1927      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1928    }
1929
1930  // If the number we were assigned was a brand new VN, then we don't
1931  // need to do a lookup to see if the number already exists
1932  // somewhere in the domtree: it can't!
1933  } else if (Num == NextNum) {
1934    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1935
1936  // Perform fast-path value-number based elimination of values inherited from
1937  // dominators.
1938  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1939    // Remove it!
1940    VN.erase(I);
1941    I->replaceAllUsesWith(repl);
1942    if (MD && isa<PointerType>(repl->getType()))
1943      MD->invalidateCachedPointerInfo(repl);
1944    toErase.push_back(I);
1945    return true;
1946
1947  } else {
1948    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1949  }
1950
1951  return false;
1952}
1953
1954/// runOnFunction - This is the main transformation entry point for a function.
1955bool GVN::runOnFunction(Function& F) {
1956  if (!NoLoads)
1957    MD = &getAnalysis<MemoryDependenceAnalysis>();
1958  DT = &getAnalysis<DominatorTree>();
1959  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1960  VN.setMemDep(MD);
1961  VN.setDomTree(DT);
1962
1963  bool Changed = false;
1964  bool ShouldContinue = true;
1965
1966  // Merge unconditional branches, allowing PRE to catch more
1967  // optimization opportunities.
1968  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1969    BasicBlock *BB = FI;
1970    ++FI;
1971    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1972    if (removedBlock) NumGVNBlocks++;
1973
1974    Changed |= removedBlock;
1975  }
1976
1977  unsigned Iteration = 0;
1978
1979  while (ShouldContinue) {
1980    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1981    ShouldContinue = iterateOnFunction(F);
1982    Changed |= ShouldContinue;
1983    ++Iteration;
1984  }
1985
1986  if (EnablePRE) {
1987    bool PREChanged = true;
1988    while (PREChanged) {
1989      PREChanged = performPRE(F);
1990      Changed |= PREChanged;
1991    }
1992  }
1993  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1994  // computations into blocks where they become fully redundant.  Note that
1995  // we can't do this until PRE's critical edge splitting updates memdep.
1996  // Actually, when this happens, we should just fully integrate PRE into GVN.
1997
1998  cleanupGlobalSets();
1999
2000  return Changed;
2001}
2002
2003
2004bool GVN::processBlock(BasicBlock *BB) {
2005  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2006  // incrementing BI before processing an instruction).
2007  SmallVector<Instruction*, 8> toErase;
2008  bool ChangedFunction = false;
2009
2010  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2011       BI != BE;) {
2012    ChangedFunction |= processInstruction(BI, toErase);
2013    if (toErase.empty()) {
2014      ++BI;
2015      continue;
2016    }
2017
2018    // If we need some instructions deleted, do it now.
2019    NumGVNInstr += toErase.size();
2020
2021    // Avoid iterator invalidation.
2022    bool AtStart = BI == BB->begin();
2023    if (!AtStart)
2024      --BI;
2025
2026    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2027         E = toErase.end(); I != E; ++I) {
2028      DEBUG(errs() << "GVN removed: " << **I << '\n');
2029      if (MD) MD->removeInstruction(*I);
2030      (*I)->eraseFromParent();
2031      DEBUG(verifyRemoved(*I));
2032    }
2033    toErase.clear();
2034
2035    if (AtStart)
2036      BI = BB->begin();
2037    else
2038      ++BI;
2039  }
2040
2041  return ChangedFunction;
2042}
2043
2044/// performPRE - Perform a purely local form of PRE that looks for diamond
2045/// control flow patterns and attempts to perform simple PRE at the join point.
2046bool GVN::performPRE(Function &F) {
2047  bool Changed = false;
2048  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
2049  DenseMap<BasicBlock*, Value*> predMap;
2050  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2051       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2052    BasicBlock *CurrentBlock = *DI;
2053
2054    // Nothing to PRE in the entry block.
2055    if (CurrentBlock == &F.getEntryBlock()) continue;
2056
2057    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2058         BE = CurrentBlock->end(); BI != BE; ) {
2059      Instruction *CurInst = BI++;
2060
2061      if (isa<AllocaInst>(CurInst) ||
2062          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2063          CurInst->getType()->isVoidTy() ||
2064          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2065          isa<DbgInfoIntrinsic>(CurInst))
2066        continue;
2067
2068      uint32_t ValNo = VN.lookup(CurInst);
2069
2070      // Look for the predecessors for PRE opportunities.  We're
2071      // only trying to solve the basic diamond case, where
2072      // a value is computed in the successor and one predecessor,
2073      // but not the other.  We also explicitly disallow cases
2074      // where the successor is its own predecessor, because they're
2075      // more complicated to get right.
2076      unsigned NumWith = 0;
2077      unsigned NumWithout = 0;
2078      BasicBlock *PREPred = 0;
2079      predMap.clear();
2080
2081      for (pred_iterator PI = pred_begin(CurrentBlock),
2082           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2083        // We're not interested in PRE where the block is its
2084        // own predecessor, on in blocks with predecessors
2085        // that are not reachable.
2086        if (*PI == CurrentBlock) {
2087          NumWithout = 2;
2088          break;
2089        } else if (!localAvail.count(*PI))  {
2090          NumWithout = 2;
2091          break;
2092        }
2093
2094        DenseMap<uint32_t, Value*>::iterator predV =
2095                                            localAvail[*PI]->table.find(ValNo);
2096        if (predV == localAvail[*PI]->table.end()) {
2097          PREPred = *PI;
2098          NumWithout++;
2099        } else if (predV->second == CurInst) {
2100          NumWithout = 2;
2101        } else {
2102          predMap[*PI] = predV->second;
2103          NumWith++;
2104        }
2105      }
2106
2107      // Don't do PRE when it might increase code size, i.e. when
2108      // we would need to insert instructions in more than one pred.
2109      if (NumWithout != 1 || NumWith == 0)
2110        continue;
2111
2112      // Don't do PRE across indirect branch.
2113      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2114        continue;
2115
2116      // We can't do PRE safely on a critical edge, so instead we schedule
2117      // the edge to be split and perform the PRE the next time we iterate
2118      // on the function.
2119      unsigned SuccNum = 0;
2120      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2121           i != e; ++i)
2122        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2123          SuccNum = i;
2124          break;
2125        }
2126
2127      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2128        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2129        continue;
2130      }
2131
2132      // Instantiate the expression the in predecessor that lacked it.
2133      // Because we are going top-down through the block, all value numbers
2134      // will be available in the predecessor by the time we need them.  Any
2135      // that weren't original present will have been instantiated earlier
2136      // in this loop.
2137      Instruction *PREInstr = CurInst->clone();
2138      bool success = true;
2139      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2140        Value *Op = PREInstr->getOperand(i);
2141        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2142          continue;
2143
2144        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2145          PREInstr->setOperand(i, V);
2146        } else {
2147          success = false;
2148          break;
2149        }
2150      }
2151
2152      // Fail out if we encounter an operand that is not available in
2153      // the PRE predecessor.  This is typically because of loads which
2154      // are not value numbered precisely.
2155      if (!success) {
2156        delete PREInstr;
2157        DEBUG(verifyRemoved(PREInstr));
2158        continue;
2159      }
2160
2161      PREInstr->insertBefore(PREPred->getTerminator());
2162      PREInstr->setName(CurInst->getName() + ".pre");
2163      predMap[PREPred] = PREInstr;
2164      VN.add(PREInstr, ValNo);
2165      NumGVNPRE++;
2166
2167      // Update the availability map to include the new instruction.
2168      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2169
2170      // Create a PHI to make the value available in this block.
2171      PHINode* Phi = PHINode::Create(CurInst->getType(),
2172                                     CurInst->getName() + ".pre-phi",
2173                                     CurrentBlock->begin());
2174      for (pred_iterator PI = pred_begin(CurrentBlock),
2175           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2176        Phi->addIncoming(predMap[*PI], *PI);
2177
2178      VN.add(Phi, ValNo);
2179      localAvail[CurrentBlock]->table[ValNo] = Phi;
2180
2181      CurInst->replaceAllUsesWith(Phi);
2182      if (MD && isa<PointerType>(Phi->getType()))
2183        MD->invalidateCachedPointerInfo(Phi);
2184      VN.erase(CurInst);
2185
2186      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2187      if (MD) MD->removeInstruction(CurInst);
2188      CurInst->eraseFromParent();
2189      DEBUG(verifyRemoved(CurInst));
2190      Changed = true;
2191    }
2192  }
2193
2194  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2195       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2196    SplitCriticalEdge(I->first, I->second, this);
2197
2198  return Changed || toSplit.size();
2199}
2200
2201/// iterateOnFunction - Executes one iteration of GVN
2202bool GVN::iterateOnFunction(Function &F) {
2203  cleanupGlobalSets();
2204
2205  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2206       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2207    if (DI->getIDom())
2208      localAvail[DI->getBlock()] =
2209                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2210    else
2211      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2212  }
2213
2214  // Top-down walk of the dominator tree
2215  bool Changed = false;
2216#if 0
2217  // Needed for value numbering with phi construction to work.
2218  ReversePostOrderTraversal<Function*> RPOT(&F);
2219  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2220       RE = RPOT.end(); RI != RE; ++RI)
2221    Changed |= processBlock(*RI);
2222#else
2223  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2224       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2225    Changed |= processBlock(DI->getBlock());
2226#endif
2227
2228  return Changed;
2229}
2230
2231void GVN::cleanupGlobalSets() {
2232  VN.clear();
2233
2234  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2235       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2236    delete I->second;
2237  localAvail.clear();
2238}
2239
2240/// verifyRemoved - Verify that the specified instruction does not occur in our
2241/// internal data structures.
2242void GVN::verifyRemoved(const Instruction *Inst) const {
2243  VN.verifyRemoved(Inst);
2244
2245  // Walk through the value number scope to make sure the instruction isn't
2246  // ferreted away in it.
2247  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2248         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2249    const ValueNumberScope *VNS = I->second;
2250
2251    while (VNS) {
2252      for (DenseMap<uint32_t, Value*>::const_iterator
2253             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2254        assert(II->second != Inst && "Inst still in value numbering scope!");
2255      }
2256
2257      VNS = VNS->parent;
2258    }
2259  }
2260}
2261