GVN.cpp revision 4c724006256032e827177afeae04ea62436796e7
1//===- GVN.cpp - Eliminate redundant values and loads ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself, it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/MemoryDependenceAnalysis.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include <cstdio>
40using namespace llvm;
41
42STATISTIC(NumGVNInstr, "Number of instructions deleted");
43STATISTIC(NumGVNLoad, "Number of loads deleted");
44STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
45STATISTIC(NumGVNBlocks, "Number of blocks merged");
46
47static cl::opt<bool> EnablePRE("enable-pre",
48                               cl::init(true), cl::Hidden);
49
50//===----------------------------------------------------------------------===//
51//                         ValueTable Class
52//===----------------------------------------------------------------------===//
53
54/// This class holds the mapping between values and value numbers.  It is used
55/// as an efficient mechanism to determine the expression-wise equivalence of
56/// two values.
57namespace {
58  struct VISIBILITY_HIDDEN Expression {
59    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
60                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
61                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
62                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
63                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
64                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
65                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
66                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
67                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
68                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
69                            EMPTY, TOMBSTONE };
70
71    ExpressionOpcode opcode;
72    const Type* type;
73    uint32_t firstVN;
74    uint32_t secondVN;
75    uint32_t thirdVN;
76    SmallVector<uint32_t, 4> varargs;
77    Value* function;
78
79    Expression() { }
80    Expression(ExpressionOpcode o) : opcode(o) { }
81
82    bool operator==(const Expression &other) const {
83      if (opcode != other.opcode)
84        return false;
85      else if (opcode == EMPTY || opcode == TOMBSTONE)
86        return true;
87      else if (type != other.type)
88        return false;
89      else if (function != other.function)
90        return false;
91      else if (firstVN != other.firstVN)
92        return false;
93      else if (secondVN != other.secondVN)
94        return false;
95      else if (thirdVN != other.thirdVN)
96        return false;
97      else {
98        if (varargs.size() != other.varargs.size())
99          return false;
100
101        for (size_t i = 0; i < varargs.size(); ++i)
102          if (varargs[i] != other.varargs[i])
103            return false;
104
105        return true;
106      }
107    }
108
109    bool operator!=(const Expression &other) const {
110      if (opcode != other.opcode)
111        return true;
112      else if (opcode == EMPTY || opcode == TOMBSTONE)
113        return false;
114      else if (type != other.type)
115        return true;
116      else if (function != other.function)
117        return true;
118      else if (firstVN != other.firstVN)
119        return true;
120      else if (secondVN != other.secondVN)
121        return true;
122      else if (thirdVN != other.thirdVN)
123        return true;
124      else {
125        if (varargs.size() != other.varargs.size())
126          return true;
127
128        for (size_t i = 0; i < varargs.size(); ++i)
129          if (varargs[i] != other.varargs[i])
130            return true;
131
132          return false;
133      }
134    }
135  };
136
137  class VISIBILITY_HIDDEN ValueTable {
138    private:
139      DenseMap<Value*, uint32_t> valueNumbering;
140      DenseMap<Expression, uint32_t> expressionNumbering;
141      AliasAnalysis* AA;
142      MemoryDependenceAnalysis* MD;
143      DominatorTree* DT;
144
145      uint32_t nextValueNumber;
146
147      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
148      Expression::ExpressionOpcode getOpcode(CmpInst* C);
149      Expression::ExpressionOpcode getOpcode(CastInst* C);
150      Expression create_expression(BinaryOperator* BO);
151      Expression create_expression(CmpInst* C);
152      Expression create_expression(ShuffleVectorInst* V);
153      Expression create_expression(ExtractElementInst* C);
154      Expression create_expression(InsertElementInst* V);
155      Expression create_expression(SelectInst* V);
156      Expression create_expression(CastInst* C);
157      Expression create_expression(GetElementPtrInst* G);
158      Expression create_expression(CallInst* C);
159      Expression create_expression(Constant* C);
160    public:
161      ValueTable() : nextValueNumber(1) { }
162      uint32_t lookup_or_add(Value* V);
163      uint32_t lookup(Value* V) const;
164      void add(Value* V, uint32_t num);
165      void clear();
166      void erase(Value* v);
167      unsigned size();
168      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
169      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
170      void setDomTree(DominatorTree* D) { DT = D; }
171      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
172  };
173}
174
175namespace llvm {
176template <> struct DenseMapInfo<Expression> {
177  static inline Expression getEmptyKey() {
178    return Expression(Expression::EMPTY);
179  }
180
181  static inline Expression getTombstoneKey() {
182    return Expression(Expression::TOMBSTONE);
183  }
184
185  static unsigned getHashValue(const Expression e) {
186    unsigned hash = e.opcode;
187
188    hash = e.firstVN + hash * 37;
189    hash = e.secondVN + hash * 37;
190    hash = e.thirdVN + hash * 37;
191
192    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
193            (unsigned)((uintptr_t)e.type >> 9)) +
194           hash * 37;
195
196    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
197         E = e.varargs.end(); I != E; ++I)
198      hash = *I + hash * 37;
199
200    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
201            (unsigned)((uintptr_t)e.function >> 9)) +
202           hash * 37;
203
204    return hash;
205  }
206  static bool isEqual(const Expression &LHS, const Expression &RHS) {
207    return LHS == RHS;
208  }
209  static bool isPod() { return true; }
210};
211}
212
213//===----------------------------------------------------------------------===//
214//                     ValueTable Internal Functions
215//===----------------------------------------------------------------------===//
216Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
217  switch(BO->getOpcode()) {
218  default: // THIS SHOULD NEVER HAPPEN
219    assert(0 && "Binary operator with unknown opcode?");
220  case Instruction::Add:  return Expression::ADD;
221  case Instruction::Sub:  return Expression::SUB;
222  case Instruction::Mul:  return Expression::MUL;
223  case Instruction::UDiv: return Expression::UDIV;
224  case Instruction::SDiv: return Expression::SDIV;
225  case Instruction::FDiv: return Expression::FDIV;
226  case Instruction::URem: return Expression::UREM;
227  case Instruction::SRem: return Expression::SREM;
228  case Instruction::FRem: return Expression::FREM;
229  case Instruction::Shl:  return Expression::SHL;
230  case Instruction::LShr: return Expression::LSHR;
231  case Instruction::AShr: return Expression::ASHR;
232  case Instruction::And:  return Expression::AND;
233  case Instruction::Or:   return Expression::OR;
234  case Instruction::Xor:  return Expression::XOR;
235  }
236}
237
238Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
239  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
240    switch (C->getPredicate()) {
241    default:  // THIS SHOULD NEVER HAPPEN
242      assert(0 && "Comparison with unknown predicate?");
243    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
244    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
245    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
246    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
247    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
248    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
249    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
250    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
251    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
252    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
253    }
254  }
255  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
256  switch (C->getPredicate()) {
257  default: // THIS SHOULD NEVER HAPPEN
258    assert(0 && "Comparison with unknown predicate?");
259  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
260  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
261  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
262  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
263  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
264  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
265  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
266  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
267  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
268  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
269  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
270  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
271  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
272  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
273  }
274}
275
276Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
277  switch(C->getOpcode()) {
278  default: // THIS SHOULD NEVER HAPPEN
279    assert(0 && "Cast operator with unknown opcode?");
280  case Instruction::Trunc:    return Expression::TRUNC;
281  case Instruction::ZExt:     return Expression::ZEXT;
282  case Instruction::SExt:     return Expression::SEXT;
283  case Instruction::FPToUI:   return Expression::FPTOUI;
284  case Instruction::FPToSI:   return Expression::FPTOSI;
285  case Instruction::UIToFP:   return Expression::UITOFP;
286  case Instruction::SIToFP:   return Expression::SITOFP;
287  case Instruction::FPTrunc:  return Expression::FPTRUNC;
288  case Instruction::FPExt:    return Expression::FPEXT;
289  case Instruction::PtrToInt: return Expression::PTRTOINT;
290  case Instruction::IntToPtr: return Expression::INTTOPTR;
291  case Instruction::BitCast:  return Expression::BITCAST;
292  }
293}
294
295Expression ValueTable::create_expression(CallInst* C) {
296  Expression e;
297
298  e.type = C->getType();
299  e.firstVN = 0;
300  e.secondVN = 0;
301  e.thirdVN = 0;
302  e.function = C->getCalledFunction();
303  e.opcode = Expression::CALL;
304
305  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
306       I != E; ++I)
307    e.varargs.push_back(lookup_or_add(*I));
308
309  return e;
310}
311
312Expression ValueTable::create_expression(BinaryOperator* BO) {
313  Expression e;
314
315  e.firstVN = lookup_or_add(BO->getOperand(0));
316  e.secondVN = lookup_or_add(BO->getOperand(1));
317  e.thirdVN = 0;
318  e.function = 0;
319  e.type = BO->getType();
320  e.opcode = getOpcode(BO);
321
322  return e;
323}
324
325Expression ValueTable::create_expression(CmpInst* C) {
326  Expression e;
327
328  e.firstVN = lookup_or_add(C->getOperand(0));
329  e.secondVN = lookup_or_add(C->getOperand(1));
330  e.thirdVN = 0;
331  e.function = 0;
332  e.type = C->getType();
333  e.opcode = getOpcode(C);
334
335  return e;
336}
337
338Expression ValueTable::create_expression(CastInst* C) {
339  Expression e;
340
341  e.firstVN = lookup_or_add(C->getOperand(0));
342  e.secondVN = 0;
343  e.thirdVN = 0;
344  e.function = 0;
345  e.type = C->getType();
346  e.opcode = getOpcode(C);
347
348  return e;
349}
350
351Expression ValueTable::create_expression(ShuffleVectorInst* S) {
352  Expression e;
353
354  e.firstVN = lookup_or_add(S->getOperand(0));
355  e.secondVN = lookup_or_add(S->getOperand(1));
356  e.thirdVN = lookup_or_add(S->getOperand(2));
357  e.function = 0;
358  e.type = S->getType();
359  e.opcode = Expression::SHUFFLE;
360
361  return e;
362}
363
364Expression ValueTable::create_expression(ExtractElementInst* E) {
365  Expression e;
366
367  e.firstVN = lookup_or_add(E->getOperand(0));
368  e.secondVN = lookup_or_add(E->getOperand(1));
369  e.thirdVN = 0;
370  e.function = 0;
371  e.type = E->getType();
372  e.opcode = Expression::EXTRACT;
373
374  return e;
375}
376
377Expression ValueTable::create_expression(InsertElementInst* I) {
378  Expression e;
379
380  e.firstVN = lookup_or_add(I->getOperand(0));
381  e.secondVN = lookup_or_add(I->getOperand(1));
382  e.thirdVN = lookup_or_add(I->getOperand(2));
383  e.function = 0;
384  e.type = I->getType();
385  e.opcode = Expression::INSERT;
386
387  return e;
388}
389
390Expression ValueTable::create_expression(SelectInst* I) {
391  Expression e;
392
393  e.firstVN = lookup_or_add(I->getCondition());
394  e.secondVN = lookup_or_add(I->getTrueValue());
395  e.thirdVN = lookup_or_add(I->getFalseValue());
396  e.function = 0;
397  e.type = I->getType();
398  e.opcode = Expression::SELECT;
399
400  return e;
401}
402
403Expression ValueTable::create_expression(GetElementPtrInst* G) {
404  Expression e;
405
406  e.firstVN = lookup_or_add(G->getPointerOperand());
407  e.secondVN = 0;
408  e.thirdVN = 0;
409  e.function = 0;
410  e.type = G->getType();
411  e.opcode = Expression::GEP;
412
413  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
414       I != E; ++I)
415    e.varargs.push_back(lookup_or_add(*I));
416
417  return e;
418}
419
420//===----------------------------------------------------------------------===//
421//                     ValueTable External Functions
422//===----------------------------------------------------------------------===//
423
424/// add - Insert a value into the table with a specified value number.
425void ValueTable::add(Value* V, uint32_t num) {
426  valueNumbering.insert(std::make_pair(V, num));
427}
428
429/// lookup_or_add - Returns the value number for the specified value, assigning
430/// it a new number if it did not have one before.
431uint32_t ValueTable::lookup_or_add(Value* V) {
432  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
433  if (VI != valueNumbering.end())
434    return VI->second;
435
436  if (CallInst* C = dyn_cast<CallInst>(V)) {
437    if (AA->doesNotAccessMemory(C)) {
438      Expression e = create_expression(C);
439
440      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
441      if (EI != expressionNumbering.end()) {
442        valueNumbering.insert(std::make_pair(V, EI->second));
443        return EI->second;
444      } else {
445        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
446        valueNumbering.insert(std::make_pair(V, nextValueNumber));
447
448        return nextValueNumber++;
449      }
450    } else if (AA->onlyReadsMemory(C)) {
451      Expression e = create_expression(C);
452
453      if (expressionNumbering.find(e) == expressionNumbering.end()) {
454        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
455        valueNumbering.insert(std::make_pair(V, nextValueNumber));
456        return nextValueNumber++;
457      }
458
459      MemDepResult local_dep = MD->getDependency(C);
460
461      if (local_dep.isNone()) {
462        valueNumbering.insert(std::make_pair(V, nextValueNumber));
463        return nextValueNumber++;
464      } else if (Instruction *LocalDepInst = local_dep.getInst()) {
465        // FIXME: INDENT PROPERLY!
466        if (!isa<CallInst>(LocalDepInst)) {
467          valueNumbering.insert(std::make_pair(V, nextValueNumber));
468          return nextValueNumber++;
469        }
470
471        CallInst* local_cdep = cast<CallInst>(LocalDepInst);
472
473        // FIXME: INDENT PROPERLY.
474        if (local_cdep->getCalledFunction() != C->getCalledFunction() ||
475            local_cdep->getNumOperands() != C->getNumOperands()) {
476          valueNumbering.insert(std::make_pair(V, nextValueNumber));
477          return nextValueNumber++;
478        } else if (!C->getCalledFunction()) {
479          valueNumbering.insert(std::make_pair(V, nextValueNumber));
480          return nextValueNumber++;
481        } else {
482          for (unsigned i = 1; i < C->getNumOperands(); ++i) {
483            uint32_t c_vn = lookup_or_add(C->getOperand(i));
484            uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
485            if (c_vn != cd_vn) {
486              valueNumbering.insert(std::make_pair(V, nextValueNumber));
487              return nextValueNumber++;
488            }
489          }
490
491          uint32_t v = lookup_or_add(local_cdep);
492          valueNumbering.insert(std::make_pair(V, v));
493          return v;
494        }
495      }
496
497
498      DenseMap<BasicBlock*, MemDepResult> deps;
499      MD->getNonLocalDependency(C, deps);
500      CallInst* cdep = 0;
501
502      for (DenseMap<BasicBlock*, MemDepResult>
503             ::iterator I = deps.begin(), E = deps.end(); I != E; ++I) {
504        if (I->second.isNone()) {
505          valueNumbering.insert(std::make_pair(V, nextValueNumber));
506
507          return nextValueNumber++;
508        } else if (Instruction *NonLocalDepInst = I->second.getInst()) {
509          // FIXME: INDENT PROPERLY
510          // FIXME: All duplicated with non-local case.
511          if (DT->properlyDominates(I->first, C->getParent())) {
512            if (CallInst* CD = dyn_cast<CallInst>(NonLocalDepInst))
513              cdep = CD;
514            else {
515              valueNumbering.insert(std::make_pair(V, nextValueNumber));
516              return nextValueNumber++;
517            }
518          } else {
519            valueNumbering.insert(std::make_pair(V, nextValueNumber));
520            return nextValueNumber++;
521          }
522        }
523      }
524
525      if (!cdep) {
526        valueNumbering.insert(std::make_pair(V, nextValueNumber));
527        return nextValueNumber++;
528      }
529
530      if (cdep->getCalledFunction() != C->getCalledFunction() ||
531          cdep->getNumOperands() != C->getNumOperands()) {
532        valueNumbering.insert(std::make_pair(V, nextValueNumber));
533        return nextValueNumber++;
534      } else if (!C->getCalledFunction()) {
535        valueNumbering.insert(std::make_pair(V, nextValueNumber));
536        return nextValueNumber++;
537      } else {
538        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
539          uint32_t c_vn = lookup_or_add(C->getOperand(i));
540          uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
541          if (c_vn != cd_vn) {
542            valueNumbering.insert(std::make_pair(V, nextValueNumber));
543            return nextValueNumber++;
544          }
545        }
546
547        uint32_t v = lookup_or_add(cdep);
548        valueNumbering.insert(std::make_pair(V, v));
549        return v;
550      }
551
552    } else {
553      valueNumbering.insert(std::make_pair(V, nextValueNumber));
554      return nextValueNumber++;
555    }
556  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
557    Expression e = create_expression(BO);
558
559    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
560    if (EI != expressionNumbering.end()) {
561      valueNumbering.insert(std::make_pair(V, EI->second));
562      return EI->second;
563    } else {
564      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
565      valueNumbering.insert(std::make_pair(V, nextValueNumber));
566
567      return nextValueNumber++;
568    }
569  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
570    Expression e = create_expression(C);
571
572    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
573    if (EI != expressionNumbering.end()) {
574      valueNumbering.insert(std::make_pair(V, EI->second));
575      return EI->second;
576    } else {
577      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
578      valueNumbering.insert(std::make_pair(V, nextValueNumber));
579
580      return nextValueNumber++;
581    }
582  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
583    Expression e = create_expression(U);
584
585    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
586    if (EI != expressionNumbering.end()) {
587      valueNumbering.insert(std::make_pair(V, EI->second));
588      return EI->second;
589    } else {
590      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
591      valueNumbering.insert(std::make_pair(V, nextValueNumber));
592
593      return nextValueNumber++;
594    }
595  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
596    Expression e = create_expression(U);
597
598    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
599    if (EI != expressionNumbering.end()) {
600      valueNumbering.insert(std::make_pair(V, EI->second));
601      return EI->second;
602    } else {
603      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
604      valueNumbering.insert(std::make_pair(V, nextValueNumber));
605
606      return nextValueNumber++;
607    }
608  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
609    Expression e = create_expression(U);
610
611    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
612    if (EI != expressionNumbering.end()) {
613      valueNumbering.insert(std::make_pair(V, EI->second));
614      return EI->second;
615    } else {
616      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
617      valueNumbering.insert(std::make_pair(V, nextValueNumber));
618
619      return nextValueNumber++;
620    }
621  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
622    Expression e = create_expression(U);
623
624    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
625    if (EI != expressionNumbering.end()) {
626      valueNumbering.insert(std::make_pair(V, EI->second));
627      return EI->second;
628    } else {
629      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
630      valueNumbering.insert(std::make_pair(V, nextValueNumber));
631
632      return nextValueNumber++;
633    }
634  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
635    Expression e = create_expression(U);
636
637    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
638    if (EI != expressionNumbering.end()) {
639      valueNumbering.insert(std::make_pair(V, EI->second));
640      return EI->second;
641    } else {
642      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
643      valueNumbering.insert(std::make_pair(V, nextValueNumber));
644
645      return nextValueNumber++;
646    }
647  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
648    Expression e = create_expression(U);
649
650    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
651    if (EI != expressionNumbering.end()) {
652      valueNumbering.insert(std::make_pair(V, EI->second));
653      return EI->second;
654    } else {
655      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
656      valueNumbering.insert(std::make_pair(V, nextValueNumber));
657
658      return nextValueNumber++;
659    }
660  } else {
661    valueNumbering.insert(std::make_pair(V, nextValueNumber));
662    return nextValueNumber++;
663  }
664}
665
666/// lookup - Returns the value number of the specified value. Fails if
667/// the value has not yet been numbered.
668uint32_t ValueTable::lookup(Value* V) const {
669  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
670  assert(VI != valueNumbering.end() && "Value not numbered?");
671  return VI->second;
672}
673
674/// clear - Remove all entries from the ValueTable
675void ValueTable::clear() {
676  valueNumbering.clear();
677  expressionNumbering.clear();
678  nextValueNumber = 1;
679}
680
681/// erase - Remove a value from the value numbering
682void ValueTable::erase(Value* V) {
683  valueNumbering.erase(V);
684}
685
686//===----------------------------------------------------------------------===//
687//                         GVN Pass
688//===----------------------------------------------------------------------===//
689
690namespace {
691  struct VISIBILITY_HIDDEN ValueNumberScope {
692    ValueNumberScope* parent;
693    DenseMap<uint32_t, Value*> table;
694
695    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
696  };
697}
698
699namespace {
700
701  class VISIBILITY_HIDDEN GVN : public FunctionPass {
702    bool runOnFunction(Function &F);
703  public:
704    static char ID; // Pass identification, replacement for typeid
705    GVN() : FunctionPass(&ID) { }
706
707  private:
708    ValueTable VN;
709    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
710
711    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
712    PhiMapType phiMap;
713
714
715    // This transformation requires dominator postdominator info
716    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
717      AU.addRequired<DominatorTree>();
718      AU.addRequired<MemoryDependenceAnalysis>();
719      AU.addRequired<AliasAnalysis>();
720
721      AU.addPreserved<DominatorTree>();
722      AU.addPreserved<AliasAnalysis>();
723    }
724
725    // Helper fuctions
726    // FIXME: eliminate or document these better
727    bool processLoad(LoadInst* L,
728                     DenseMap<Value*, LoadInst*> &lastLoad,
729                     SmallVectorImpl<Instruction*> &toErase);
730    bool processInstruction(Instruction* I,
731                            DenseMap<Value*, LoadInst*>& lastSeenLoad,
732                            SmallVectorImpl<Instruction*> &toErase);
733    bool processNonLocalLoad(LoadInst* L,
734                             SmallVectorImpl<Instruction*> &toErase);
735    bool processBlock(DomTreeNode* DTN);
736    Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
737                            DenseMap<BasicBlock*, Value*> &Phis,
738                            bool top_level = false);
739    void dump(DenseMap<uint32_t, Value*>& d);
740    bool iterateOnFunction(Function &F);
741    Value* CollapsePhi(PHINode* p);
742    bool isSafeReplacement(PHINode* p, Instruction* inst);
743    bool performPRE(Function& F);
744    Value* lookupNumber(BasicBlock* BB, uint32_t num);
745    bool mergeBlockIntoPredecessor(BasicBlock* BB);
746    void cleanupGlobalSets();
747  };
748
749  char GVN::ID = 0;
750}
751
752// createGVNPass - The public interface to this file...
753FunctionPass *llvm::createGVNPass() { return new GVN(); }
754
755static RegisterPass<GVN> X("gvn",
756                           "Global Value Numbering");
757
758void GVN::dump(DenseMap<uint32_t, Value*>& d) {
759  printf("{\n");
760  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
761       E = d.end(); I != E; ++I) {
762      printf("%d\n", I->first);
763      I->second->dump();
764  }
765  printf("}\n");
766}
767
768Value* GVN::CollapsePhi(PHINode* p) {
769  DominatorTree &DT = getAnalysis<DominatorTree>();
770  Value* constVal = p->hasConstantValue();
771
772  if (!constVal) return 0;
773
774  Instruction* inst = dyn_cast<Instruction>(constVal);
775  if (!inst)
776    return constVal;
777
778  if (DT.dominates(inst, p))
779    if (isSafeReplacement(p, inst))
780      return inst;
781  return 0;
782}
783
784bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
785  if (!isa<PHINode>(inst))
786    return true;
787
788  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
789       UI != E; ++UI)
790    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
791      if (use_phi->getParent() == inst->getParent())
792        return false;
793
794  return true;
795}
796
797/// GetValueForBlock - Get the value to use within the specified basic block.
798/// available values are in Phis.
799Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
800                             DenseMap<BasicBlock*, Value*> &Phis,
801                             bool top_level) {
802
803  // If we have already computed this value, return the previously computed val.
804  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
805  if (V != Phis.end() && !top_level) return V->second;
806
807  // If the block is unreachable, just return undef, since this path
808  // can't actually occur at runtime.
809  if (!getAnalysis<DominatorTree>().isReachableFromEntry(BB))
810    return Phis[BB] = UndefValue::get(orig->getType());
811
812  BasicBlock* singlePred = BB->getSinglePredecessor();
813  if (singlePred) {
814    Value *ret = GetValueForBlock(singlePred, orig, Phis);
815    Phis[BB] = ret;
816    return ret;
817  }
818
819  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
820  // now, then get values to fill in the incoming values for the PHI.
821  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
822                                BB->begin());
823  PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
824
825  if (Phis.count(BB) == 0)
826    Phis.insert(std::make_pair(BB, PN));
827
828  // Fill in the incoming values for the block.
829  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
830    Value* val = GetValueForBlock(*PI, orig, Phis);
831    PN->addIncoming(val, *PI);
832  }
833
834  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
835  AA.copyValue(orig, PN);
836
837  // Attempt to collapse PHI nodes that are trivially redundant
838  Value* v = CollapsePhi(PN);
839  if (!v) {
840    // Cache our phi construction results
841    phiMap[orig->getPointerOperand()].insert(PN);
842    return PN;
843  }
844
845  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
846
847  MD.removeInstruction(PN);
848  PN->replaceAllUsesWith(v);
849
850  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
851       E = Phis.end(); I != E; ++I)
852    if (I->second == PN)
853      I->second = v;
854
855  PN->eraseFromParent();
856
857  Phis[BB] = v;
858  return v;
859}
860
861/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
862/// non-local by performing PHI construction.
863bool GVN::processNonLocalLoad(LoadInst* L,
864                              SmallVectorImpl<Instruction*> &toErase) {
865  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
866
867  // Find the non-local dependencies of the load
868  DenseMap<BasicBlock*, MemDepResult> deps;
869  MD.getNonLocalDependency(L, deps);
870
871  // If we had to process more than one hundred blocks to find the
872  // dependencies, this load isn't worth worrying about.  Optimizing
873  // it will be too expensive.
874  if (deps.size() > 100)
875    return false;
876
877  DenseMap<BasicBlock*, Value*> repl;
878
879  // Filter out useless results (non-locals, etc)
880  for (DenseMap<BasicBlock*, MemDepResult>::iterator I = deps.begin(),
881       E = deps.end(); I != E; ++I) {
882    if (I->second.isNone())
883      return false;
884
885    if (I->second.isNonLocal())
886      continue;
887
888    if (StoreInst* S = dyn_cast<StoreInst>(I->second.getInst())) {
889      if (S->getPointerOperand() != L->getPointerOperand())
890        return false;
891      repl[I->first] = S->getOperand(0);
892    } else if (LoadInst* LD = dyn_cast<LoadInst>(I->second.getInst())) {
893      if (LD->getPointerOperand() != L->getPointerOperand())
894        return false;
895      repl[I->first] = LD;
896    } else {
897      return false;
898    }
899  }
900
901  // Use cached PHI construction information from previous runs
902  SmallPtrSet<Instruction*, 4>& p = phiMap[L->getPointerOperand()];
903  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
904       I != E; ++I) {
905    if ((*I)->getParent() == L->getParent()) {
906      MD.removeInstruction(L);
907      L->replaceAllUsesWith(*I);
908      toErase.push_back(L);
909      NumGVNLoad++;
910      return true;
911    }
912
913    repl.insert(std::make_pair((*I)->getParent(), *I));
914  }
915
916  // Perform PHI construction
917  SmallPtrSet<BasicBlock*, 4> visited;
918  Value* v = GetValueForBlock(L->getParent(), L, repl, true);
919
920  MD.removeInstruction(L);
921  L->replaceAllUsesWith(v);
922  toErase.push_back(L);
923  NumGVNLoad++;
924
925  return true;
926}
927
928/// processLoad - Attempt to eliminate a load, first by eliminating it
929/// locally, and then attempting non-local elimination if that fails.
930bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
931                      SmallVectorImpl<Instruction*> &toErase) {
932  if (L->isVolatile()) {
933    lastLoad[L->getPointerOperand()] = L;
934    return false;
935  }
936
937  Value* pointer = L->getPointerOperand();
938  LoadInst*& last = lastLoad[pointer];
939
940  // ... to a pointer that has been loaded from before...
941  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
942  bool removedNonLocal = false;
943  MemDepResult dep = MD.getDependency(L);
944  if (dep.isNonLocal() &&
945      L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
946    removedNonLocal = processNonLocalLoad(L, toErase);
947
948    if (!removedNonLocal)
949      last = L;
950
951    return removedNonLocal;
952  }
953
954
955  bool deletedLoad = false;
956
957  // Walk up the dependency chain until we either find
958  // a dependency we can use, or we can't walk any further
959  while (Instruction *DepInst = dep.getInst()) {
960    // ... that depends on a store ...
961    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
962      if (S->getPointerOperand() == pointer) {
963        // Remove it!
964        MD.removeInstruction(L);
965
966        L->replaceAllUsesWith(S->getOperand(0));
967        toErase.push_back(L);
968        deletedLoad = true;
969        NumGVNLoad++;
970      }
971
972      // Whether we removed it or not, we can't
973      // go any further
974      break;
975    } else if (!isa<LoadInst>(DepInst)) {
976      // Only want to handle loads below.
977      break;
978    } else if (!last) {
979      // If we don't depend on a store, and we haven't
980      // been loaded before, bail.
981      break;
982    } else if (DepInst == last) {
983      // Remove it!
984      MD.removeInstruction(L);
985
986      L->replaceAllUsesWith(last);
987      toErase.push_back(L);
988      deletedLoad = true;
989      NumGVNLoad++;
990
991      break;
992    } else {
993      dep = MD.getDependency(L, DepInst);
994    }
995  }
996
997  if (AllocationInst *DepAI = dyn_cast_or_null<AllocationInst>(dep.getInst())) {
998    // Check that this load is actually from the
999    // allocation we found
1000    if (L->getOperand(0)->getUnderlyingObject() == DepAI) {
1001      // If this load depends directly on an allocation, there isn't
1002      // anything stored there; therefore, we can optimize this load
1003      // to undef.
1004      MD.removeInstruction(L);
1005
1006      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1007      toErase.push_back(L);
1008      deletedLoad = true;
1009      NumGVNLoad++;
1010    }
1011  }
1012
1013  if (!deletedLoad)
1014    last = L;
1015
1016  return deletedLoad;
1017}
1018
1019Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1020  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1021  if (I == localAvail.end())
1022    return 0;
1023
1024  ValueNumberScope* locals = I->second;
1025
1026  while (locals) {
1027    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1028    if (I != locals->table.end())
1029      return I->second;
1030    else
1031      locals = locals->parent;
1032  }
1033
1034  return 0;
1035}
1036
1037/// processInstruction - When calculating availability, handle an instruction
1038/// by inserting it into the appropriate sets
1039bool GVN::processInstruction(Instruction *I,
1040                             DenseMap<Value*, LoadInst*> &lastSeenLoad,
1041                             SmallVectorImpl<Instruction*> &toErase) {
1042  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1043    bool changed = processLoad(L, lastSeenLoad, toErase);
1044
1045    if (!changed) {
1046      unsigned num = VN.lookup_or_add(L);
1047      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1048    }
1049
1050    return changed;
1051  }
1052
1053  uint32_t nextNum = VN.getNextUnusedValueNumber();
1054  unsigned num = VN.lookup_or_add(I);
1055
1056  // Allocations are always uniquely numbered, so we can save time and memory
1057  // by fast failing them.
1058  if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1059    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1060    return false;
1061  }
1062
1063  // Collapse PHI nodes
1064  if (PHINode* p = dyn_cast<PHINode>(I)) {
1065    Value* constVal = CollapsePhi(p);
1066
1067    if (constVal) {
1068      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1069           PI != PE; ++PI)
1070        if (PI->second.count(p))
1071          PI->second.erase(p);
1072
1073      p->replaceAllUsesWith(constVal);
1074      toErase.push_back(p);
1075    } else {
1076      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1077    }
1078
1079  // If the number we were assigned was a brand new VN, then we don't
1080  // need to do a lookup to see if the number already exists
1081  // somewhere in the domtree: it can't!
1082  } else if (num == nextNum) {
1083    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1084
1085  // Perform value-number based elimination
1086  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1087    // Remove it!
1088    MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
1089    MD.removeInstruction(I);
1090
1091    VN.erase(I);
1092    I->replaceAllUsesWith(repl);
1093    toErase.push_back(I);
1094    return true;
1095  } else {
1096    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1097  }
1098
1099  return false;
1100}
1101
1102// GVN::runOnFunction - This is the main transformation entry point for a
1103// function.
1104//
1105bool GVN::runOnFunction(Function& F) {
1106  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1107  VN.setMemDep(&getAnalysis<MemoryDependenceAnalysis>());
1108  VN.setDomTree(&getAnalysis<DominatorTree>());
1109
1110  bool changed = false;
1111  bool shouldContinue = true;
1112
1113  // Merge unconditional branches, allowing PRE to catch more
1114  // optimization opportunities.
1115  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1116    BasicBlock* BB = FI;
1117    ++FI;
1118    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1119    if (removedBlock) NumGVNBlocks++;
1120
1121    changed |= removedBlock;
1122  }
1123
1124  while (shouldContinue) {
1125    shouldContinue = iterateOnFunction(F);
1126    changed |= shouldContinue;
1127  }
1128
1129  if (EnablePRE) {
1130    bool PREChanged = true;
1131    while (PREChanged) {
1132      PREChanged = performPRE(F);
1133      changed |= PREChanged;
1134    }
1135  }
1136
1137  cleanupGlobalSets();
1138
1139  return changed;
1140}
1141
1142
1143bool GVN::processBlock(DomTreeNode* DTN) {
1144  BasicBlock* BB = DTN->getBlock();
1145
1146  SmallVector<Instruction*, 8> toErase;
1147  DenseMap<Value*, LoadInst*> lastSeenLoad;
1148  bool changed_function = false;
1149
1150  if (DTN->getIDom())
1151    localAvail[BB] =
1152                  new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
1153  else
1154    localAvail[BB] = new ValueNumberScope(0);
1155
1156  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1157       BI != BE;) {
1158    changed_function |= processInstruction(BI, lastSeenLoad, toErase);
1159    if (toErase.empty()) {
1160      ++BI;
1161      continue;
1162    }
1163
1164    // If we need some instructions deleted, do it now.
1165    NumGVNInstr += toErase.size();
1166
1167    // Avoid iterator invalidation.
1168    bool AtStart = BI == BB->begin();
1169    if (!AtStart)
1170      --BI;
1171
1172    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1173         E = toErase.end(); I != E; ++I)
1174      (*I)->eraseFromParent();
1175
1176    if (AtStart)
1177      BI = BB->begin();
1178    else
1179      ++BI;
1180
1181    toErase.clear();
1182  }
1183
1184  return changed_function;
1185}
1186
1187/// performPRE - Perform a purely local form of PRE that looks for diamond
1188/// control flow patterns and attempts to perform simple PRE at the join point.
1189bool GVN::performPRE(Function& F) {
1190  bool changed = false;
1191  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1192  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1193       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1194    BasicBlock* CurrentBlock = *DI;
1195
1196    // Nothing to PRE in the entry block.
1197    if (CurrentBlock == &F.getEntryBlock()) continue;
1198
1199    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1200         BE = CurrentBlock->end(); BI != BE; ) {
1201      if (isa<AllocationInst>(BI) || isa<TerminatorInst>(BI) ||
1202          isa<PHINode>(BI) || BI->mayReadFromMemory() ||
1203          BI->mayWriteToMemory()) {
1204        BI++;
1205        continue;
1206      }
1207
1208      uint32_t valno = VN.lookup(BI);
1209
1210      // Look for the predecessors for PRE opportunities.  We're
1211      // only trying to solve the basic diamond case, where
1212      // a value is computed in the successor and one predecessor,
1213      // but not the other.  We also explicitly disallow cases
1214      // where the successor is its own predecessor, because they're
1215      // more complicated to get right.
1216      unsigned numWith = 0;
1217      unsigned numWithout = 0;
1218      BasicBlock* PREPred = 0;
1219      DenseMap<BasicBlock*, Value*> predMap;
1220      for (pred_iterator PI = pred_begin(CurrentBlock),
1221           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1222        // We're not interested in PRE where the block is its
1223        // own predecessor, on in blocks with predecessors
1224        // that are not reachable.
1225        if (*PI == CurrentBlock) {
1226          numWithout = 2;
1227          break;
1228        } else if (!localAvail.count(*PI))  {
1229          numWithout = 2;
1230          break;
1231        }
1232
1233        DenseMap<uint32_t, Value*>::iterator predV =
1234                                            localAvail[*PI]->table.find(valno);
1235        if (predV == localAvail[*PI]->table.end()) {
1236          PREPred = *PI;
1237          numWithout++;
1238        } else if (predV->second == BI) {
1239          numWithout = 2;
1240        } else {
1241          predMap[*PI] = predV->second;
1242          numWith++;
1243        }
1244      }
1245
1246      // Don't do PRE when it might increase code size, i.e. when
1247      // we would need to insert instructions in more than one pred.
1248      if (numWithout != 1 || numWith == 0) {
1249        BI++;
1250        continue;
1251      }
1252
1253      // We can't do PRE safely on a critical edge, so instead we schedule
1254      // the edge to be split and perform the PRE the next time we iterate
1255      // on the function.
1256      unsigned succNum = 0;
1257      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1258           i != e; ++i)
1259        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1260          succNum = i;
1261          break;
1262        }
1263
1264      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1265        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1266        changed = true;
1267        BI++;
1268        continue;
1269      }
1270
1271      // Instantiate the expression the in predecessor that lacked it.
1272      // Because we are going top-down through the block, all value numbers
1273      // will be available in the predecessor by the time we need them.  Any
1274      // that weren't original present will have been instantiated earlier
1275      // in this loop.
1276      Instruction* PREInstr = BI->clone();
1277      bool success = true;
1278      for (unsigned i = 0; i < BI->getNumOperands(); ++i) {
1279        Value* op = BI->getOperand(i);
1280        if (isa<Argument>(op) || isa<Constant>(op) || isa<GlobalValue>(op))
1281          PREInstr->setOperand(i, op);
1282        else {
1283          Value* V = lookupNumber(PREPred, VN.lookup(op));
1284          if (!V) {
1285            success = false;
1286            break;
1287          } else
1288            PREInstr->setOperand(i, V);
1289        }
1290      }
1291
1292      // Fail out if we encounter an operand that is not available in
1293      // the PRE predecessor.  This is typically because of loads which
1294      // are not value numbered precisely.
1295      if (!success) {
1296        delete PREInstr;
1297        BI++;
1298        continue;
1299      }
1300
1301      PREInstr->insertBefore(PREPred->getTerminator());
1302      PREInstr->setName(BI->getName() + ".pre");
1303      predMap[PREPred] = PREInstr;
1304      VN.add(PREInstr, valno);
1305      NumGVNPRE++;
1306
1307      // Update the availability map to include the new instruction.
1308      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1309
1310      // Create a PHI to make the value available in this block.
1311      PHINode* Phi = PHINode::Create(BI->getType(),
1312                                     BI->getName() + ".pre-phi",
1313                                     CurrentBlock->begin());
1314      for (pred_iterator PI = pred_begin(CurrentBlock),
1315           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1316        Phi->addIncoming(predMap[*PI], *PI);
1317
1318      VN.add(Phi, valno);
1319      localAvail[CurrentBlock]->table[valno] = Phi;
1320
1321      BI->replaceAllUsesWith(Phi);
1322      VN.erase(BI);
1323
1324      Instruction* erase = BI;
1325      BI++;
1326      erase->eraseFromParent();
1327
1328      changed = true;
1329    }
1330  }
1331
1332  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1333       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1334    SplitCriticalEdge(I->first, I->second, this);
1335
1336  return changed || toSplit.size();
1337}
1338
1339// iterateOnFunction - Executes one iteration of GVN
1340bool GVN::iterateOnFunction(Function &F) {
1341  DominatorTree &DT = getAnalysis<DominatorTree>();
1342
1343  cleanupGlobalSets();
1344
1345  // Top-down walk of the dominator tree
1346  bool changed = false;
1347  for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
1348       DE = df_end(DT.getRootNode()); DI != DE; ++DI)
1349    changed |= processBlock(*DI);
1350
1351  return changed;
1352}
1353
1354void GVN::cleanupGlobalSets() {
1355  VN.clear();
1356  phiMap.clear();
1357
1358  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1359       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1360    delete I->second;
1361  localAvail.clear();
1362}
1363