GVN.cpp revision 4fbd14e80e11ec3ec9f240919e4a4a0186620c0c
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/MallocHelper.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include <cstdio>
48using namespace llvm;
49
50STATISTIC(NumGVNInstr,  "Number of instructions deleted");
51STATISTIC(NumGVNLoad,   "Number of loads deleted");
52STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
53STATISTIC(NumGVNBlocks, "Number of blocks merged");
54STATISTIC(NumPRELoad,   "Number of loads PRE'd");
55
56static cl::opt<bool> EnablePRE("enable-pre",
57                               cl::init(true), cl::Hidden);
58static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
59
60//===----------------------------------------------------------------------===//
61//                         ValueTable Class
62//===----------------------------------------------------------------------===//
63
64/// This class holds the mapping between values and value numbers.  It is used
65/// as an efficient mechanism to determine the expression-wise equivalence of
66/// two values.
67namespace {
68  struct Expression {
69    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
70                            UDIV, SDIV, FDIV, UREM, SREM,
71                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
72                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
73                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
74                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
75                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
76                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
77                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
78                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
79                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
80                            EMPTY, TOMBSTONE };
81
82    ExpressionOpcode opcode;
83    const Type* type;
84    uint32_t firstVN;
85    uint32_t secondVN;
86    uint32_t thirdVN;
87    SmallVector<uint32_t, 4> varargs;
88    Value *function;
89
90    Expression() { }
91    Expression(ExpressionOpcode o) : opcode(o) { }
92
93    bool operator==(const Expression &other) const {
94      if (opcode != other.opcode)
95        return false;
96      else if (opcode == EMPTY || opcode == TOMBSTONE)
97        return true;
98      else if (type != other.type)
99        return false;
100      else if (function != other.function)
101        return false;
102      else if (firstVN != other.firstVN)
103        return false;
104      else if (secondVN != other.secondVN)
105        return false;
106      else if (thirdVN != other.thirdVN)
107        return false;
108      else {
109        if (varargs.size() != other.varargs.size())
110          return false;
111
112        for (size_t i = 0; i < varargs.size(); ++i)
113          if (varargs[i] != other.varargs[i])
114            return false;
115
116        return true;
117      }
118    }
119
120    bool operator!=(const Expression &other) const {
121      return !(*this == other);
122    }
123  };
124
125  class ValueTable {
126    private:
127      DenseMap<Value*, uint32_t> valueNumbering;
128      DenseMap<Expression, uint32_t> expressionNumbering;
129      AliasAnalysis* AA;
130      MemoryDependenceAnalysis* MD;
131      DominatorTree* DT;
132
133      uint32_t nextValueNumber;
134
135      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
136      Expression::ExpressionOpcode getOpcode(CmpInst* C);
137      Expression::ExpressionOpcode getOpcode(CastInst* C);
138      Expression create_expression(BinaryOperator* BO);
139      Expression create_expression(CmpInst* C);
140      Expression create_expression(ShuffleVectorInst* V);
141      Expression create_expression(ExtractElementInst* C);
142      Expression create_expression(InsertElementInst* V);
143      Expression create_expression(SelectInst* V);
144      Expression create_expression(CastInst* C);
145      Expression create_expression(GetElementPtrInst* G);
146      Expression create_expression(CallInst* C);
147      Expression create_expression(Constant* C);
148    public:
149      ValueTable() : nextValueNumber(1) { }
150      uint32_t lookup_or_add(Value *V);
151      uint32_t lookup(Value *V) const;
152      void add(Value *V, uint32_t num);
153      void clear();
154      void erase(Value *v);
155      unsigned size();
156      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
157      AliasAnalysis *getAliasAnalysis() const { return AA; }
158      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
159      void setDomTree(DominatorTree* D) { DT = D; }
160      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
161      void verifyRemoved(const Value *) const;
162  };
163}
164
165namespace llvm {
166template <> struct DenseMapInfo<Expression> {
167  static inline Expression getEmptyKey() {
168    return Expression(Expression::EMPTY);
169  }
170
171  static inline Expression getTombstoneKey() {
172    return Expression(Expression::TOMBSTONE);
173  }
174
175  static unsigned getHashValue(const Expression e) {
176    unsigned hash = e.opcode;
177
178    hash = e.firstVN + hash * 37;
179    hash = e.secondVN + hash * 37;
180    hash = e.thirdVN + hash * 37;
181
182    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
183            (unsigned)((uintptr_t)e.type >> 9)) +
184           hash * 37;
185
186    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
187         E = e.varargs.end(); I != E; ++I)
188      hash = *I + hash * 37;
189
190    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
191            (unsigned)((uintptr_t)e.function >> 9)) +
192           hash * 37;
193
194    return hash;
195  }
196  static bool isEqual(const Expression &LHS, const Expression &RHS) {
197    return LHS == RHS;
198  }
199  static bool isPod() { return true; }
200};
201}
202
203//===----------------------------------------------------------------------===//
204//                     ValueTable Internal Functions
205//===----------------------------------------------------------------------===//
206Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
207  switch(BO->getOpcode()) {
208  default: // THIS SHOULD NEVER HAPPEN
209    llvm_unreachable("Binary operator with unknown opcode?");
210  case Instruction::Add:  return Expression::ADD;
211  case Instruction::FAdd: return Expression::FADD;
212  case Instruction::Sub:  return Expression::SUB;
213  case Instruction::FSub: return Expression::FSUB;
214  case Instruction::Mul:  return Expression::MUL;
215  case Instruction::FMul: return Expression::FMUL;
216  case Instruction::UDiv: return Expression::UDIV;
217  case Instruction::SDiv: return Expression::SDIV;
218  case Instruction::FDiv: return Expression::FDIV;
219  case Instruction::URem: return Expression::UREM;
220  case Instruction::SRem: return Expression::SREM;
221  case Instruction::FRem: return Expression::FREM;
222  case Instruction::Shl:  return Expression::SHL;
223  case Instruction::LShr: return Expression::LSHR;
224  case Instruction::AShr: return Expression::ASHR;
225  case Instruction::And:  return Expression::AND;
226  case Instruction::Or:   return Expression::OR;
227  case Instruction::Xor:  return Expression::XOR;
228  }
229}
230
231Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
232  if (isa<ICmpInst>(C)) {
233    switch (C->getPredicate()) {
234    default:  // THIS SHOULD NEVER HAPPEN
235      llvm_unreachable("Comparison with unknown predicate?");
236    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
237    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
238    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
239    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
240    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
241    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
242    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
243    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
244    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
245    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
246    }
247  } else {
248    switch (C->getPredicate()) {
249    default: // THIS SHOULD NEVER HAPPEN
250      llvm_unreachable("Comparison with unknown predicate?");
251    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
252    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
253    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
254    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
255    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
256    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
257    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
258    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
259    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
260    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
261    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
262    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
263    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
264    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
265    }
266  }
267}
268
269Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
270  switch(C->getOpcode()) {
271  default: // THIS SHOULD NEVER HAPPEN
272    llvm_unreachable("Cast operator with unknown opcode?");
273  case Instruction::Trunc:    return Expression::TRUNC;
274  case Instruction::ZExt:     return Expression::ZEXT;
275  case Instruction::SExt:     return Expression::SEXT;
276  case Instruction::FPToUI:   return Expression::FPTOUI;
277  case Instruction::FPToSI:   return Expression::FPTOSI;
278  case Instruction::UIToFP:   return Expression::UITOFP;
279  case Instruction::SIToFP:   return Expression::SITOFP;
280  case Instruction::FPTrunc:  return Expression::FPTRUNC;
281  case Instruction::FPExt:    return Expression::FPEXT;
282  case Instruction::PtrToInt: return Expression::PTRTOINT;
283  case Instruction::IntToPtr: return Expression::INTTOPTR;
284  case Instruction::BitCast:  return Expression::BITCAST;
285  }
286}
287
288Expression ValueTable::create_expression(CallInst* C) {
289  Expression e;
290
291  e.type = C->getType();
292  e.firstVN = 0;
293  e.secondVN = 0;
294  e.thirdVN = 0;
295  e.function = C->getCalledFunction();
296  e.opcode = Expression::CALL;
297
298  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
299       I != E; ++I)
300    e.varargs.push_back(lookup_or_add(*I));
301
302  return e;
303}
304
305Expression ValueTable::create_expression(BinaryOperator* BO) {
306  Expression e;
307
308  e.firstVN = lookup_or_add(BO->getOperand(0));
309  e.secondVN = lookup_or_add(BO->getOperand(1));
310  e.thirdVN = 0;
311  e.function = 0;
312  e.type = BO->getType();
313  e.opcode = getOpcode(BO);
314
315  return e;
316}
317
318Expression ValueTable::create_expression(CmpInst* C) {
319  Expression e;
320
321  e.firstVN = lookup_or_add(C->getOperand(0));
322  e.secondVN = lookup_or_add(C->getOperand(1));
323  e.thirdVN = 0;
324  e.function = 0;
325  e.type = C->getType();
326  e.opcode = getOpcode(C);
327
328  return e;
329}
330
331Expression ValueTable::create_expression(CastInst* C) {
332  Expression e;
333
334  e.firstVN = lookup_or_add(C->getOperand(0));
335  e.secondVN = 0;
336  e.thirdVN = 0;
337  e.function = 0;
338  e.type = C->getType();
339  e.opcode = getOpcode(C);
340
341  return e;
342}
343
344Expression ValueTable::create_expression(ShuffleVectorInst* S) {
345  Expression e;
346
347  e.firstVN = lookup_or_add(S->getOperand(0));
348  e.secondVN = lookup_or_add(S->getOperand(1));
349  e.thirdVN = lookup_or_add(S->getOperand(2));
350  e.function = 0;
351  e.type = S->getType();
352  e.opcode = Expression::SHUFFLE;
353
354  return e;
355}
356
357Expression ValueTable::create_expression(ExtractElementInst* E) {
358  Expression e;
359
360  e.firstVN = lookup_or_add(E->getOperand(0));
361  e.secondVN = lookup_or_add(E->getOperand(1));
362  e.thirdVN = 0;
363  e.function = 0;
364  e.type = E->getType();
365  e.opcode = Expression::EXTRACT;
366
367  return e;
368}
369
370Expression ValueTable::create_expression(InsertElementInst* I) {
371  Expression e;
372
373  e.firstVN = lookup_or_add(I->getOperand(0));
374  e.secondVN = lookup_or_add(I->getOperand(1));
375  e.thirdVN = lookup_or_add(I->getOperand(2));
376  e.function = 0;
377  e.type = I->getType();
378  e.opcode = Expression::INSERT;
379
380  return e;
381}
382
383Expression ValueTable::create_expression(SelectInst* I) {
384  Expression e;
385
386  e.firstVN = lookup_or_add(I->getCondition());
387  e.secondVN = lookup_or_add(I->getTrueValue());
388  e.thirdVN = lookup_or_add(I->getFalseValue());
389  e.function = 0;
390  e.type = I->getType();
391  e.opcode = Expression::SELECT;
392
393  return e;
394}
395
396Expression ValueTable::create_expression(GetElementPtrInst* G) {
397  Expression e;
398
399  e.firstVN = lookup_or_add(G->getPointerOperand());
400  e.secondVN = 0;
401  e.thirdVN = 0;
402  e.function = 0;
403  e.type = G->getType();
404  e.opcode = Expression::GEP;
405
406  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
407       I != E; ++I)
408    e.varargs.push_back(lookup_or_add(*I));
409
410  return e;
411}
412
413//===----------------------------------------------------------------------===//
414//                     ValueTable External Functions
415//===----------------------------------------------------------------------===//
416
417/// add - Insert a value into the table with a specified value number.
418void ValueTable::add(Value *V, uint32_t num) {
419  valueNumbering.insert(std::make_pair(V, num));
420}
421
422/// lookup_or_add - Returns the value number for the specified value, assigning
423/// it a new number if it did not have one before.
424uint32_t ValueTable::lookup_or_add(Value *V) {
425  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
426  if (VI != valueNumbering.end())
427    return VI->second;
428
429  if (CallInst* C = dyn_cast<CallInst>(V)) {
430    if (AA->doesNotAccessMemory(C)) {
431      Expression e = create_expression(C);
432
433      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
434      if (EI != expressionNumbering.end()) {
435        valueNumbering.insert(std::make_pair(V, EI->second));
436        return EI->second;
437      } else {
438        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
439        valueNumbering.insert(std::make_pair(V, nextValueNumber));
440
441        return nextValueNumber++;
442      }
443    } else if (AA->onlyReadsMemory(C)) {
444      Expression e = create_expression(C);
445
446      if (expressionNumbering.find(e) == expressionNumbering.end()) {
447        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
448        valueNumbering.insert(std::make_pair(V, nextValueNumber));
449        return nextValueNumber++;
450      }
451
452      MemDepResult local_dep = MD->getDependency(C);
453
454      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
455        valueNumbering.insert(std::make_pair(V, nextValueNumber));
456        return nextValueNumber++;
457      }
458
459      if (local_dep.isDef()) {
460        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
461
462        if (local_cdep->getNumOperands() != C->getNumOperands()) {
463          valueNumbering.insert(std::make_pair(V, nextValueNumber));
464          return nextValueNumber++;
465        }
466
467        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
468          uint32_t c_vn = lookup_or_add(C->getOperand(i));
469          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
470          if (c_vn != cd_vn) {
471            valueNumbering.insert(std::make_pair(V, nextValueNumber));
472            return nextValueNumber++;
473          }
474        }
475
476        uint32_t v = lookup_or_add(local_cdep);
477        valueNumbering.insert(std::make_pair(V, v));
478        return v;
479      }
480
481      // Non-local case.
482      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
483        MD->getNonLocalCallDependency(CallSite(C));
484      // FIXME: call/call dependencies for readonly calls should return def, not
485      // clobber!  Move the checking logic to MemDep!
486      CallInst* cdep = 0;
487
488      // Check to see if we have a single dominating call instruction that is
489      // identical to C.
490      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
491        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
492        // Ignore non-local dependencies.
493        if (I->second.isNonLocal())
494          continue;
495
496        // We don't handle non-depedencies.  If we already have a call, reject
497        // instruction dependencies.
498        if (I->second.isClobber() || cdep != 0) {
499          cdep = 0;
500          break;
501        }
502
503        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
504        // FIXME: All duplicated with non-local case.
505        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
506          cdep = NonLocalDepCall;
507          continue;
508        }
509
510        cdep = 0;
511        break;
512      }
513
514      if (!cdep) {
515        valueNumbering.insert(std::make_pair(V, nextValueNumber));
516        return nextValueNumber++;
517      }
518
519      if (cdep->getNumOperands() != C->getNumOperands()) {
520        valueNumbering.insert(std::make_pair(V, nextValueNumber));
521        return nextValueNumber++;
522      }
523      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
524        uint32_t c_vn = lookup_or_add(C->getOperand(i));
525        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
526        if (c_vn != cd_vn) {
527          valueNumbering.insert(std::make_pair(V, nextValueNumber));
528          return nextValueNumber++;
529        }
530      }
531
532      uint32_t v = lookup_or_add(cdep);
533      valueNumbering.insert(std::make_pair(V, v));
534      return v;
535
536    } else {
537      valueNumbering.insert(std::make_pair(V, nextValueNumber));
538      return nextValueNumber++;
539    }
540  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
541    Expression e = create_expression(BO);
542
543    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
544    if (EI != expressionNumbering.end()) {
545      valueNumbering.insert(std::make_pair(V, EI->second));
546      return EI->second;
547    } else {
548      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
549      valueNumbering.insert(std::make_pair(V, nextValueNumber));
550
551      return nextValueNumber++;
552    }
553  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
554    Expression e = create_expression(C);
555
556    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
557    if (EI != expressionNumbering.end()) {
558      valueNumbering.insert(std::make_pair(V, EI->second));
559      return EI->second;
560    } else {
561      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
562      valueNumbering.insert(std::make_pair(V, nextValueNumber));
563
564      return nextValueNumber++;
565    }
566  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
567    Expression e = create_expression(U);
568
569    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
570    if (EI != expressionNumbering.end()) {
571      valueNumbering.insert(std::make_pair(V, EI->second));
572      return EI->second;
573    } else {
574      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
575      valueNumbering.insert(std::make_pair(V, nextValueNumber));
576
577      return nextValueNumber++;
578    }
579  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
580    Expression e = create_expression(U);
581
582    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
583    if (EI != expressionNumbering.end()) {
584      valueNumbering.insert(std::make_pair(V, EI->second));
585      return EI->second;
586    } else {
587      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
588      valueNumbering.insert(std::make_pair(V, nextValueNumber));
589
590      return nextValueNumber++;
591    }
592  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
593    Expression e = create_expression(U);
594
595    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
596    if (EI != expressionNumbering.end()) {
597      valueNumbering.insert(std::make_pair(V, EI->second));
598      return EI->second;
599    } else {
600      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
601      valueNumbering.insert(std::make_pair(V, nextValueNumber));
602
603      return nextValueNumber++;
604    }
605  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
606    Expression e = create_expression(U);
607
608    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
609    if (EI != expressionNumbering.end()) {
610      valueNumbering.insert(std::make_pair(V, EI->second));
611      return EI->second;
612    } else {
613      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
614      valueNumbering.insert(std::make_pair(V, nextValueNumber));
615
616      return nextValueNumber++;
617    }
618  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
619    Expression e = create_expression(U);
620
621    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
622    if (EI != expressionNumbering.end()) {
623      valueNumbering.insert(std::make_pair(V, EI->second));
624      return EI->second;
625    } else {
626      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
627      valueNumbering.insert(std::make_pair(V, nextValueNumber));
628
629      return nextValueNumber++;
630    }
631  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
632    Expression e = create_expression(U);
633
634    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
635    if (EI != expressionNumbering.end()) {
636      valueNumbering.insert(std::make_pair(V, EI->second));
637      return EI->second;
638    } else {
639      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
640      valueNumbering.insert(std::make_pair(V, nextValueNumber));
641
642      return nextValueNumber++;
643    }
644  } else {
645    valueNumbering.insert(std::make_pair(V, nextValueNumber));
646    return nextValueNumber++;
647  }
648}
649
650/// lookup - Returns the value number of the specified value. Fails if
651/// the value has not yet been numbered.
652uint32_t ValueTable::lookup(Value *V) const {
653  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
654  assert(VI != valueNumbering.end() && "Value not numbered?");
655  return VI->second;
656}
657
658/// clear - Remove all entries from the ValueTable
659void ValueTable::clear() {
660  valueNumbering.clear();
661  expressionNumbering.clear();
662  nextValueNumber = 1;
663}
664
665/// erase - Remove a value from the value numbering
666void ValueTable::erase(Value *V) {
667  valueNumbering.erase(V);
668}
669
670/// verifyRemoved - Verify that the value is removed from all internal data
671/// structures.
672void ValueTable::verifyRemoved(const Value *V) const {
673  for (DenseMap<Value*, uint32_t>::iterator
674         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
675    assert(I->first != V && "Inst still occurs in value numbering map!");
676  }
677}
678
679//===----------------------------------------------------------------------===//
680//                                GVN Pass
681//===----------------------------------------------------------------------===//
682
683namespace {
684  struct ValueNumberScope {
685    ValueNumberScope* parent;
686    DenseMap<uint32_t, Value*> table;
687
688    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
689  };
690}
691
692namespace {
693
694  class GVN : public FunctionPass {
695    bool runOnFunction(Function &F);
696  public:
697    static char ID; // Pass identification, replacement for typeid
698    GVN() : FunctionPass(&ID) { }
699
700  private:
701    MemoryDependenceAnalysis *MD;
702    DominatorTree *DT;
703
704    ValueTable VN;
705    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
706
707    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
708    PhiMapType phiMap;
709
710
711    // This transformation requires dominator postdominator info
712    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
713      AU.addRequired<DominatorTree>();
714      AU.addRequired<MemoryDependenceAnalysis>();
715      AU.addRequired<AliasAnalysis>();
716
717      AU.addPreserved<DominatorTree>();
718      AU.addPreserved<AliasAnalysis>();
719    }
720
721    // Helper fuctions
722    // FIXME: eliminate or document these better
723    bool processLoad(LoadInst* L,
724                     SmallVectorImpl<Instruction*> &toErase);
725    bool processInstruction(Instruction *I,
726                            SmallVectorImpl<Instruction*> &toErase);
727    bool processNonLocalLoad(LoadInst* L,
728                             SmallVectorImpl<Instruction*> &toErase);
729    bool processBlock(BasicBlock *BB);
730    Value *GetValueForBlock(BasicBlock *BB, Instruction *orig,
731                            DenseMap<BasicBlock*, Value*> &Phis,
732                            bool top_level = false);
733    void dump(DenseMap<uint32_t, Value*>& d);
734    bool iterateOnFunction(Function &F);
735    Value *CollapsePhi(PHINode* p);
736    bool performPRE(Function& F);
737    Value *lookupNumber(BasicBlock *BB, uint32_t num);
738    Value *AttemptRedundancyElimination(Instruction *orig, unsigned valno);
739    void cleanupGlobalSets();
740    void verifyRemoved(const Instruction *I) const;
741  };
742
743  char GVN::ID = 0;
744}
745
746// createGVNPass - The public interface to this file...
747FunctionPass *llvm::createGVNPass() { return new GVN(); }
748
749static RegisterPass<GVN> X("gvn",
750                           "Global Value Numbering");
751
752void GVN::dump(DenseMap<uint32_t, Value*>& d) {
753  printf("{\n");
754  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
755       E = d.end(); I != E; ++I) {
756      printf("%d\n", I->first);
757      I->second->dump();
758  }
759  printf("}\n");
760}
761
762static bool isSafeReplacement(PHINode* p, Instruction *inst) {
763  if (!isa<PHINode>(inst))
764    return true;
765
766  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
767       UI != E; ++UI)
768    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
769      if (use_phi->getParent() == inst->getParent())
770        return false;
771
772  return true;
773}
774
775Value *GVN::CollapsePhi(PHINode *PN) {
776  Value *ConstVal = PN->hasConstantValue(DT);
777  if (!ConstVal) return 0;
778
779  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
780  if (!Inst)
781    return ConstVal;
782
783  if (DT->dominates(Inst, PN))
784    if (isSafeReplacement(PN, Inst))
785      return Inst;
786  return 0;
787}
788
789/// GetValueForBlock - Get the value to use within the specified basic block.
790/// available values are in Phis.
791Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction *Orig,
792                             DenseMap<BasicBlock*, Value*> &Phis,
793                             bool TopLevel) {
794
795  // If we have already computed this value, return the previously computed val.
796  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
797  if (V != Phis.end() && !TopLevel) return V->second;
798
799  // If the block is unreachable, just return undef, since this path
800  // can't actually occur at runtime.
801  if (!DT->isReachableFromEntry(BB))
802    return Phis[BB] = UndefValue::get(Orig->getType());
803
804  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
805    Value *ret = GetValueForBlock(Pred, Orig, Phis);
806    Phis[BB] = ret;
807    return ret;
808  }
809
810  // Get the number of predecessors of this block so we can reserve space later.
811  // If there is already a PHI in it, use the #preds from it, otherwise count.
812  // Getting it from the PHI is constant time.
813  unsigned NumPreds;
814  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
815    NumPreds = ExistingPN->getNumIncomingValues();
816  else
817    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
818
819  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
820  // now, then get values to fill in the incoming values for the PHI.
821  PHINode *PN = PHINode::Create(Orig->getType(), Orig->getName()+".rle",
822                                BB->begin());
823  PN->reserveOperandSpace(NumPreds);
824
825  Phis.insert(std::make_pair(BB, PN));
826
827  // Fill in the incoming values for the block.
828  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
829    Value *val = GetValueForBlock(*PI, Orig, Phis);
830    PN->addIncoming(val, *PI);
831  }
832
833  VN.getAliasAnalysis()->copyValue(Orig, PN);
834
835  // Attempt to collapse PHI nodes that are trivially redundant
836  Value *v = CollapsePhi(PN);
837  if (!v) {
838    // Cache our phi construction results
839    if (LoadInst* L = dyn_cast<LoadInst>(Orig))
840      phiMap[L->getPointerOperand()].insert(PN);
841    else
842      phiMap[Orig].insert(PN);
843
844    return PN;
845  }
846
847  PN->replaceAllUsesWith(v);
848  if (isa<PointerType>(v->getType()))
849    MD->invalidateCachedPointerInfo(v);
850
851  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
852       E = Phis.end(); I != E; ++I)
853    if (I->second == PN)
854      I->second = v;
855
856  DEBUG(errs() << "GVN removed: " << *PN << '\n');
857  MD->removeInstruction(PN);
858  PN->eraseFromParent();
859  DEBUG(verifyRemoved(PN));
860
861  Phis[BB] = v;
862  return v;
863}
864
865/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
866/// we're analyzing is fully available in the specified block.  As we go, keep
867/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
868/// map is actually a tri-state map with the following values:
869///   0) we know the block *is not* fully available.
870///   1) we know the block *is* fully available.
871///   2) we do not know whether the block is fully available or not, but we are
872///      currently speculating that it will be.
873///   3) we are speculating for this block and have used that to speculate for
874///      other blocks.
875static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
876                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
877  // Optimistically assume that the block is fully available and check to see
878  // if we already know about this block in one lookup.
879  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
880    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
881
882  // If the entry already existed for this block, return the precomputed value.
883  if (!IV.second) {
884    // If this is a speculative "available" value, mark it as being used for
885    // speculation of other blocks.
886    if (IV.first->second == 2)
887      IV.first->second = 3;
888    return IV.first->second != 0;
889  }
890
891  // Otherwise, see if it is fully available in all predecessors.
892  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
893
894  // If this block has no predecessors, it isn't live-in here.
895  if (PI == PE)
896    goto SpeculationFailure;
897
898  for (; PI != PE; ++PI)
899    // If the value isn't fully available in one of our predecessors, then it
900    // isn't fully available in this block either.  Undo our previous
901    // optimistic assumption and bail out.
902    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
903      goto SpeculationFailure;
904
905  return true;
906
907// SpeculationFailure - If we get here, we found out that this is not, after
908// all, a fully-available block.  We have a problem if we speculated on this and
909// used the speculation to mark other blocks as available.
910SpeculationFailure:
911  char &BBVal = FullyAvailableBlocks[BB];
912
913  // If we didn't speculate on this, just return with it set to false.
914  if (BBVal == 2) {
915    BBVal = 0;
916    return false;
917  }
918
919  // If we did speculate on this value, we could have blocks set to 1 that are
920  // incorrect.  Walk the (transitive) successors of this block and mark them as
921  // 0 if set to one.
922  SmallVector<BasicBlock*, 32> BBWorklist;
923  BBWorklist.push_back(BB);
924
925  while (!BBWorklist.empty()) {
926    BasicBlock *Entry = BBWorklist.pop_back_val();
927    // Note that this sets blocks to 0 (unavailable) if they happen to not
928    // already be in FullyAvailableBlocks.  This is safe.
929    char &EntryVal = FullyAvailableBlocks[Entry];
930    if (EntryVal == 0) continue;  // Already unavailable.
931
932    // Mark as unavailable.
933    EntryVal = 0;
934
935    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
936      BBWorklist.push_back(*I);
937  }
938
939  return false;
940}
941
942
943/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
944/// then a load from a must-aliased pointer of a different type, try to coerce
945/// the stored value.  LoadedTy is the type of the load we want to replace and
946/// InsertPt is the place to insert new instructions.
947///
948/// If we can't do it, return null.
949static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
950                                             const Type *LoadedTy,
951                                             Instruction *InsertPt,
952                                             const TargetData &TD) {
953  const Type *StoredValTy = StoredVal->getType();
954
955  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
956  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
957
958  // If the store and reload are the same size, we can always reuse it.
959  if (StoreSize == LoadSize) {
960    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
961      // Pointer to Pointer -> use bitcast.
962      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
963    }
964
965    // Convert source pointers to integers, which can be bitcast.
966    if (isa<PointerType>(StoredValTy)) {
967      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
968      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
969    }
970
971    const Type *TypeToCastTo = LoadedTy;
972    if (isa<PointerType>(TypeToCastTo))
973      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
974
975    if (StoredValTy != TypeToCastTo)
976      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
977
978    // Cast to pointer if the load needs a pointer type.
979    if (isa<PointerType>(LoadedTy))
980      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
981
982    return StoredVal;
983  }
984
985  // If the loaded value is smaller than the available value, then we can
986  // extract out a piece from it.  If the available value is too small, then we
987  // can't do anything.
988  if (StoreSize < LoadSize)
989    return 0;
990
991  // Convert source pointers to integers, which can be manipulated.
992  if (isa<PointerType>(StoredValTy)) {
993    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
994    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
995  }
996
997  // Convert vectors and fp to integer, which can be manipulated.
998  if (!isa<IntegerType>(StoredValTy)) {
999    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
1000    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
1001  }
1002
1003  // If this is a big-endian system, we need to shift the value down to the low
1004  // bits so that a truncate will work.
1005  if (TD.isBigEndian()) {
1006    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
1007    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
1008  }
1009
1010  // Truncate the integer to the right size now.
1011  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
1012  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
1013
1014  if (LoadedTy == NewIntTy)
1015    return StoredVal;
1016
1017  // If the result is a pointer, inttoptr.
1018  if (isa<PointerType>(LoadedTy))
1019    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
1020
1021  // Otherwise, bitcast.
1022  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
1023}
1024
1025/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
1026/// be expressed as a base pointer plus a constant offset.  Return the base and
1027/// offset to the caller.
1028static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1029                                        const TargetData &TD) {
1030  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1031  if (PtrOp == 0) return Ptr;
1032
1033  // Just look through bitcasts.
1034  if (PtrOp->getOpcode() == Instruction::BitCast)
1035    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1036
1037  // If this is a GEP with constant indices, we can look through it.
1038  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1039  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1040
1041  gep_type_iterator GTI = gep_type_begin(GEP);
1042  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1043       ++I, ++GTI) {
1044    ConstantInt *OpC = cast<ConstantInt>(*I);
1045    if (OpC->isZero()) continue;
1046
1047    // Handle a struct and array indices which add their offset to the pointer.
1048    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1049      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1050    } else {
1051      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1052      Offset += OpC->getSExtValue()*Size;
1053    }
1054  }
1055
1056  // Re-sign extend from the pointer size if needed to get overflow edge cases
1057  // right.
1058  unsigned PtrSize = TD.getPointerSizeInBits();
1059  if (PtrSize < 64)
1060    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1061
1062  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1063}
1064
1065
1066/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1067/// memdep query of a load that ends up being a clobbering store.  This means
1068/// that the store *may* provide bits used by the load but we can't be sure
1069/// because the pointers don't mustalias.  Check this case to see if there is
1070/// anything more we can do before we give up.  This returns -1 if we have to
1071/// give up, or a byte number in the stored value of the piece that feeds the
1072/// load.
1073static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
1074                                          const TargetData &TD) {
1075  int64_t StoreOffset = 0, LoadOffset = 0;
1076  Value *StoreBase =
1077    GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
1078  Value *LoadBase =
1079    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1080  if (StoreBase != LoadBase)
1081    return -1;
1082
1083  // If the load and store are to the exact same address, they should have been
1084  // a must alias.  AA must have gotten confused.
1085  // FIXME: Study to see if/when this happens.
1086  if (LoadOffset == StoreOffset) {
1087#if 0
1088    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1089    << "Base       = " << *StoreBase << "\n"
1090    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1091    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1092    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1093    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1094    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1095    << *L->getParent();
1096#endif
1097    return -1;
1098  }
1099
1100  // If the load and store don't overlap at all, the store doesn't provide
1101  // anything to the load.  In this case, they really don't alias at all, AA
1102  // must have gotten confused.
1103  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1104  // remove this check, as it is duplicated with what we have below.
1105  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1106  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
1107
1108  if ((StoreSize & 7) | (LoadSize & 7))
1109    return -1;
1110  StoreSize >>= 3;  // Convert to bytes.
1111  LoadSize >>= 3;
1112
1113
1114  bool isAAFailure = false;
1115  if (StoreOffset < LoadOffset) {
1116    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1117  } else {
1118    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1119  }
1120  if (isAAFailure) {
1121#if 0
1122    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1123    << "Base       = " << *StoreBase << "\n"
1124    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1125    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1126    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1127    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1128    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1129    << *L->getParent();
1130#endif
1131    return -1;
1132  }
1133
1134  // If the Load isn't completely contained within the stored bits, we don't
1135  // have all the bits to feed it.  We could do something crazy in the future
1136  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1137  // valuable.
1138  if (StoreOffset > LoadOffset ||
1139      StoreOffset+StoreSize < LoadOffset+LoadSize)
1140    return -1;
1141
1142  // Okay, we can do this transformation.  Return the number of bytes into the
1143  // store that the load is.
1144  return LoadOffset-StoreOffset;
1145}
1146
1147
1148/// GetStoreValueForLoad - This function is called when we have a
1149/// memdep query of a load that ends up being a clobbering store.  This means
1150/// that the store *may* provide bits used by the load but we can't be sure
1151/// because the pointers don't mustalias.  Check this case to see if there is
1152/// anything more we can do before we give up.
1153static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1154                                   const Type *LoadTy,
1155                                   Instruction *InsertPt, const TargetData &TD){
1156  LLVMContext &Ctx = SrcVal->getType()->getContext();
1157
1158  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1159  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1160
1161
1162  // Compute which bits of the stored value are being used by the load.  Convert
1163  // to an integer type to start with.
1164  if (isa<PointerType>(SrcVal->getType()))
1165    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1166  if (!isa<IntegerType>(SrcVal->getType()))
1167    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1168                             "tmp", InsertPt);
1169
1170  // Shift the bits to the least significant depending on endianness.
1171  unsigned ShiftAmt;
1172  if (TD.isLittleEndian()) {
1173    ShiftAmt = Offset*8;
1174  } else {
1175    ShiftAmt = StoreSize-LoadSize-Offset;
1176  }
1177
1178  if (ShiftAmt)
1179    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1180                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1181
1182  if (LoadSize != StoreSize)
1183    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1184                           "tmp", InsertPt);
1185
1186  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1187}
1188
1189struct AvailableValueInBlock {
1190  /// BB - The basic block in question.
1191  BasicBlock *BB;
1192  /// V - The value that is live out of the block.
1193  Value *V;
1194  /// Offset - The byte offset in V that is interesting for the load query.
1195  unsigned Offset;
1196
1197  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1198                                   unsigned Offset = 0) {
1199    AvailableValueInBlock Res;
1200    Res.BB = BB;
1201    Res.V = V;
1202    Res.Offset = Offset;
1203    return Res;
1204  }
1205};
1206
1207/// GetAvailableBlockValues - Given the ValuesPerBlock list, convert all of the
1208/// available values to values of the expected LoadTy in their blocks and insert
1209/// the new values into BlockReplValues.
1210static void
1211GetAvailableBlockValues(DenseMap<BasicBlock*, Value*> &BlockReplValues,
1212                  const SmallVector<AvailableValueInBlock, 16> &ValuesPerBlock,
1213                        const Type *LoadTy,
1214                        const TargetData *TD) {
1215
1216  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1217    BasicBlock *BB = ValuesPerBlock[i].BB;
1218    Value *AvailableVal = ValuesPerBlock[i].V;
1219    unsigned Offset = ValuesPerBlock[i].Offset;
1220
1221    Value *&BlockEntry = BlockReplValues[BB];
1222    if (BlockEntry) continue;
1223
1224    if (AvailableVal->getType() != LoadTy) {
1225      assert(TD && "Need target data to handle type mismatch case");
1226      AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1227                                          BB->getTerminator(), *TD);
1228
1229      if (Offset) {
1230        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1231            << *ValuesPerBlock[i].V << '\n'
1232            << *AvailableVal << '\n' << "\n\n\n");
1233      }
1234
1235
1236      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1237                   << *ValuesPerBlock[i].V << '\n'
1238                   << *AvailableVal << '\n' << "\n\n\n");
1239    }
1240    BlockEntry = AvailableVal;
1241  }
1242}
1243
1244/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1245/// non-local by performing PHI construction.
1246bool GVN::processNonLocalLoad(LoadInst *LI,
1247                              SmallVectorImpl<Instruction*> &toErase) {
1248  // Find the non-local dependencies of the load.
1249  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1250  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1251                                   Deps);
1252  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1253  //             << Deps.size() << *LI << '\n');
1254
1255  // If we had to process more than one hundred blocks to find the
1256  // dependencies, this load isn't worth worrying about.  Optimizing
1257  // it will be too expensive.
1258  if (Deps.size() > 100)
1259    return false;
1260
1261  // If we had a phi translation failure, we'll have a single entry which is a
1262  // clobber in the current block.  Reject this early.
1263  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1264    DEBUG(
1265      errs() << "GVN: non-local load ";
1266      WriteAsOperand(errs(), LI);
1267      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1268    );
1269    return false;
1270  }
1271
1272  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1273  // where we have a value available in repl, also keep track of whether we see
1274  // dependencies that produce an unknown value for the load (such as a call
1275  // that could potentially clobber the load).
1276  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1277  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1278
1279  const TargetData *TD = 0;
1280
1281  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1282    BasicBlock *DepBB = Deps[i].first;
1283    MemDepResult DepInfo = Deps[i].second;
1284
1285    if (DepInfo.isClobber()) {
1286      // If the dependence is to a store that writes to a superset of the bits
1287      // read by the load, we can extract the bits we need for the load from the
1288      // stored value.
1289      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1290        if (TD == 0)
1291          TD = getAnalysisIfAvailable<TargetData>();
1292        if (TD) {
1293          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1294          if (Offset != -1) {
1295            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1296                                                           DepSI->getOperand(0),
1297                                                                Offset));
1298            continue;
1299          }
1300        }
1301      }
1302
1303      // FIXME: Handle memset/memcpy.
1304      UnavailableBlocks.push_back(DepBB);
1305      continue;
1306    }
1307
1308    Instruction *DepInst = DepInfo.getInst();
1309
1310    // Loading the allocation -> undef.
1311    if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1312      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1313                                             UndefValue::get(LI->getType())));
1314      continue;
1315    }
1316
1317    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1318      // Reject loads and stores that are to the same address but are of
1319      // different types if we have to.
1320      if (S->getOperand(0)->getType() != LI->getType()) {
1321        if (TD == 0)
1322          TD = getAnalysisIfAvailable<TargetData>();
1323
1324        // If the stored value is larger or equal to the loaded value, we can
1325        // reuse it.
1326        if (TD == 0 ||
1327            TD->getTypeSizeInBits(S->getOperand(0)->getType()) <
1328              TD->getTypeSizeInBits(LI->getType())) {
1329          UnavailableBlocks.push_back(DepBB);
1330          continue;
1331        }
1332      }
1333
1334      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1335                                                          S->getOperand(0)));
1336      continue;
1337    }
1338
1339    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1340      // If the types mismatch and we can't handle it, reject reuse of the load.
1341      if (LD->getType() != LI->getType()) {
1342        if (TD == 0)
1343          TD = getAnalysisIfAvailable<TargetData>();
1344
1345        // If the stored value is larger or equal to the loaded value, we can
1346        // reuse it.
1347        if (TD == 0 ||
1348            TD->getTypeSizeInBits(LD->getType()) <
1349               TD->getTypeSizeInBits(LI->getType())) {
1350          UnavailableBlocks.push_back(DepBB);
1351          continue;
1352        }
1353      }
1354      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1355      continue;
1356    }
1357
1358    UnavailableBlocks.push_back(DepBB);
1359    continue;
1360  }
1361
1362  // If we have no predecessors that produce a known value for this load, exit
1363  // early.
1364  if (ValuesPerBlock.empty()) return false;
1365
1366  // If all of the instructions we depend on produce a known value for this
1367  // load, then it is fully redundant and we can use PHI insertion to compute
1368  // its value.  Insert PHIs and remove the fully redundant value now.
1369  if (UnavailableBlocks.empty()) {
1370    // Use cached PHI construction information from previous runs
1371    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1372    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1373    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1374         I != E; ++I) {
1375      if ((*I)->getParent() == LI->getParent()) {
1376        DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
1377        LI->replaceAllUsesWith(*I);
1378        if (isa<PointerType>((*I)->getType()))
1379          MD->invalidateCachedPointerInfo(*I);
1380        toErase.push_back(LI);
1381        NumGVNLoad++;
1382        return true;
1383      }
1384
1385      ValuesPerBlock.push_back(AvailableValueInBlock::get((*I)->getParent(),
1386                                                          *I));
1387    }
1388
1389    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1390
1391    // Convert the block information to a map, and insert coersions as needed.
1392    DenseMap<BasicBlock*, Value*> BlockReplValues;
1393    GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1394
1395    // Perform PHI construction.
1396    Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1397    LI->replaceAllUsesWith(V);
1398
1399    if (isa<PHINode>(V))
1400      V->takeName(LI);
1401    if (isa<PointerType>(V->getType()))
1402      MD->invalidateCachedPointerInfo(V);
1403    toErase.push_back(LI);
1404    NumGVNLoad++;
1405    return true;
1406  }
1407
1408  if (!EnablePRE || !EnableLoadPRE)
1409    return false;
1410
1411  // Okay, we have *some* definitions of the value.  This means that the value
1412  // is available in some of our (transitive) predecessors.  Lets think about
1413  // doing PRE of this load.  This will involve inserting a new load into the
1414  // predecessor when it's not available.  We could do this in general, but
1415  // prefer to not increase code size.  As such, we only do this when we know
1416  // that we only have to insert *one* load (which means we're basically moving
1417  // the load, not inserting a new one).
1418
1419  SmallPtrSet<BasicBlock *, 4> Blockers;
1420  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1421    Blockers.insert(UnavailableBlocks[i]);
1422
1423  // Lets find first basic block with more than one predecessor.  Walk backwards
1424  // through predecessors if needed.
1425  BasicBlock *LoadBB = LI->getParent();
1426  BasicBlock *TmpBB = LoadBB;
1427
1428  bool isSinglePred = false;
1429  bool allSingleSucc = true;
1430  while (TmpBB->getSinglePredecessor()) {
1431    isSinglePred = true;
1432    TmpBB = TmpBB->getSinglePredecessor();
1433    if (!TmpBB) // If haven't found any, bail now.
1434      return false;
1435    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1436      return false;
1437    if (Blockers.count(TmpBB))
1438      return false;
1439    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1440      allSingleSucc = false;
1441  }
1442
1443  assert(TmpBB);
1444  LoadBB = TmpBB;
1445
1446  // If we have a repl set with LI itself in it, this means we have a loop where
1447  // at least one of the values is LI.  Since this means that we won't be able
1448  // to eliminate LI even if we insert uses in the other predecessors, we will
1449  // end up increasing code size.  Reject this by scanning for LI.
1450  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1451    if (ValuesPerBlock[i].V == LI)
1452      return false;
1453
1454  if (isSinglePred) {
1455    bool isHot = false;
1456    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1457      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
1458        // "Hot" Instruction is in some loop (because it dominates its dep.
1459        // instruction).
1460        if (DT->dominates(LI, I)) {
1461          isHot = true;
1462          break;
1463        }
1464
1465    // We are interested only in "hot" instructions. We don't want to do any
1466    // mis-optimizations here.
1467    if (!isHot)
1468      return false;
1469  }
1470
1471  // Okay, we have some hope :).  Check to see if the loaded value is fully
1472  // available in all but one predecessor.
1473  // FIXME: If we could restructure the CFG, we could make a common pred with
1474  // all the preds that don't have an available LI and insert a new load into
1475  // that one block.
1476  BasicBlock *UnavailablePred = 0;
1477
1478  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1479  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1480    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1481  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1482    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1483
1484  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1485       PI != E; ++PI) {
1486    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1487      continue;
1488
1489    // If this load is not available in multiple predecessors, reject it.
1490    if (UnavailablePred && UnavailablePred != *PI)
1491      return false;
1492    UnavailablePred = *PI;
1493  }
1494
1495  assert(UnavailablePred != 0 &&
1496         "Fully available value should be eliminated above!");
1497
1498  // If the loaded pointer is PHI node defined in this block, do PHI translation
1499  // to get its value in the predecessor.
1500  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1501
1502  // Make sure the value is live in the predecessor.  If it was defined by a
1503  // non-PHI instruction in this block, we don't know how to recompute it above.
1504  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1505    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1506      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1507                   << *LPInst << '\n' << *LI << "\n");
1508      return false;
1509    }
1510
1511  // We don't currently handle critical edges :(
1512  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1513    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1514                 << UnavailablePred->getName() << "': " << *LI << '\n');
1515    return false;
1516  }
1517
1518  // Make sure it is valid to move this load here.  We have to watch out for:
1519  //  @1 = getelementptr (i8* p, ...
1520  //  test p and branch if == 0
1521  //  load @1
1522  // It is valid to have the getelementptr before the test, even if p can be 0,
1523  // as getelementptr only does address arithmetic.
1524  // If we are not pushing the value through any multiple-successor blocks
1525  // we do not have this case.  Otherwise, check that the load is safe to
1526  // put anywhere; this can be improved, but should be conservatively safe.
1527  if (!allSingleSucc &&
1528      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1529    return false;
1530
1531  // Okay, we can eliminate this load by inserting a reload in the predecessor
1532  // and using PHI construction to get the value in the other predecessors, do
1533  // it.
1534  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1535
1536  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1537                                LI->getAlignment(),
1538                                UnavailablePred->getTerminator());
1539
1540  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1541  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1542       I != E; ++I)
1543    ValuesPerBlock.push_back(AvailableValueInBlock::get((*I)->getParent(), *I));
1544
1545  DenseMap<BasicBlock*, Value*> BlockReplValues;
1546  GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1547  BlockReplValues[UnavailablePred] = NewLoad;
1548
1549  // Perform PHI construction.
1550  Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1551  LI->replaceAllUsesWith(V);
1552  if (isa<PHINode>(V))
1553    V->takeName(LI);
1554  if (isa<PointerType>(V->getType()))
1555    MD->invalidateCachedPointerInfo(V);
1556  toErase.push_back(LI);
1557  NumPRELoad++;
1558  return true;
1559}
1560
1561/// processLoad - Attempt to eliminate a load, first by eliminating it
1562/// locally, and then attempting non-local elimination if that fails.
1563bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1564  if (L->isVolatile())
1565    return false;
1566
1567  // ... to a pointer that has been loaded from before...
1568  MemDepResult Dep = MD->getDependency(L);
1569
1570  // If the value isn't available, don't do anything!
1571  if (Dep.isClobber()) {
1572    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
1573    // to forward the value if available.
1574    //if (isa<MemIntrinsic>(Dep.getInst()))
1575    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
1576
1577    // Check to see if we have something like this:
1578    //   store i32 123, i32* %P
1579    //   %A = bitcast i32* %P to i8*
1580    //   %B = gep i8* %A, i32 1
1581    //   %C = load i8* %B
1582    //
1583    // We could do that by recognizing if the clobber instructions are obviously
1584    // a common base + constant offset, and if the previous store (or memset)
1585    // completely covers this load.  This sort of thing can happen in bitfield
1586    // access code.
1587    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1588      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1589        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1590        if (Offset != -1) {
1591          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1592                                                 L->getType(), L, *TD);
1593          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
1594                       << *AvailVal << '\n' << *L << "\n\n\n");
1595
1596          // Replace the load!
1597          L->replaceAllUsesWith(AvailVal);
1598          if (isa<PointerType>(AvailVal->getType()))
1599            MD->invalidateCachedPointerInfo(AvailVal);
1600          toErase.push_back(L);
1601          NumGVNLoad++;
1602          return true;
1603        }
1604      }
1605
1606    DEBUG(
1607      // fast print dep, using operator<< on instruction would be too slow
1608      errs() << "GVN: load ";
1609      WriteAsOperand(errs(), L);
1610      Instruction *I = Dep.getInst();
1611      errs() << " is clobbered by " << *I << '\n';
1612    );
1613    return false;
1614  }
1615
1616  // If it is defined in another block, try harder.
1617  if (Dep.isNonLocal())
1618    return processNonLocalLoad(L, toErase);
1619
1620  Instruction *DepInst = Dep.getInst();
1621  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1622    Value *StoredVal = DepSI->getOperand(0);
1623
1624    // The store and load are to a must-aliased pointer, but they may not
1625    // actually have the same type.  See if we know how to reuse the stored
1626    // value (depending on its type).
1627    const TargetData *TD = 0;
1628    if (StoredVal->getType() != L->getType() &&
1629        (TD = getAnalysisIfAvailable<TargetData>())) {
1630      StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), L, *TD);
1631      if (StoredVal == 0)
1632        return false;
1633
1634      DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1635                   << '\n' << *L << "\n\n\n");
1636    }
1637
1638    // Remove it!
1639    L->replaceAllUsesWith(StoredVal);
1640    if (isa<PointerType>(StoredVal->getType()))
1641      MD->invalidateCachedPointerInfo(StoredVal);
1642    toErase.push_back(L);
1643    NumGVNLoad++;
1644    return true;
1645  }
1646
1647  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1648    Value *AvailableVal = DepLI;
1649
1650    // The loads are of a must-aliased pointer, but they may not actually have
1651    // the same type.  See if we know how to reuse the previously loaded value
1652    // (depending on its type).
1653    const TargetData *TD = 0;
1654    if (DepLI->getType() != L->getType() &&
1655        (TD = getAnalysisIfAvailable<TargetData>())) {
1656      AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L, *TD);
1657      if (AvailableVal == 0)
1658        return false;
1659
1660      DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1661                   << "\n" << *L << "\n\n\n");
1662    }
1663
1664    // Remove it!
1665    L->replaceAllUsesWith(AvailableVal);
1666    if (isa<PointerType>(DepLI->getType()))
1667      MD->invalidateCachedPointerInfo(DepLI);
1668    toErase.push_back(L);
1669    NumGVNLoad++;
1670    return true;
1671  }
1672
1673  // If this load really doesn't depend on anything, then we must be loading an
1674  // undef value.  This can happen when loading for a fresh allocation with no
1675  // intervening stores, for example.
1676  if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1677    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1678    toErase.push_back(L);
1679    NumGVNLoad++;
1680    return true;
1681  }
1682
1683  return false;
1684}
1685
1686Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1687  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1688  if (I == localAvail.end())
1689    return 0;
1690
1691  ValueNumberScope *Locals = I->second;
1692  while (Locals) {
1693    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1694    if (I != Locals->table.end())
1695      return I->second;
1696    Locals = Locals->parent;
1697  }
1698
1699  return 0;
1700}
1701
1702/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1703/// by inheritance from the dominator fails, see if we can perform phi
1704/// construction to eliminate the redundancy.
1705Value *GVN::AttemptRedundancyElimination(Instruction *orig, unsigned valno) {
1706  BasicBlock *BaseBlock = orig->getParent();
1707
1708  SmallPtrSet<BasicBlock*, 4> Visited;
1709  SmallVector<BasicBlock*, 8> Stack;
1710  Stack.push_back(BaseBlock);
1711
1712  DenseMap<BasicBlock*, Value*> Results;
1713
1714  // Walk backwards through our predecessors, looking for instances of the
1715  // value number we're looking for.  Instances are recorded in the Results
1716  // map, which is then used to perform phi construction.
1717  while (!Stack.empty()) {
1718    BasicBlock *Current = Stack.back();
1719    Stack.pop_back();
1720
1721    // If we've walked all the way to a proper dominator, then give up. Cases
1722    // where the instance is in the dominator will have been caught by the fast
1723    // path, and any cases that require phi construction further than this are
1724    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1725    // time improvement.
1726    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1727
1728    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1729                                                       localAvail.find(Current);
1730    if (LA == localAvail.end()) return 0;
1731    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1732
1733    if (V != LA->second->table.end()) {
1734      // Found an instance, record it.
1735      Results.insert(std::make_pair(Current, V->second));
1736      continue;
1737    }
1738
1739    // If we reach the beginning of the function, then give up.
1740    if (pred_begin(Current) == pred_end(Current))
1741      return 0;
1742
1743    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1744         PI != PE; ++PI)
1745      if (Visited.insert(*PI))
1746        Stack.push_back(*PI);
1747  }
1748
1749  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1750  if (Results.size() == 0)
1751    return 0;
1752  else
1753    return GetValueForBlock(BaseBlock, orig, Results, true);
1754}
1755
1756/// processInstruction - When calculating availability, handle an instruction
1757/// by inserting it into the appropriate sets
1758bool GVN::processInstruction(Instruction *I,
1759                             SmallVectorImpl<Instruction*> &toErase) {
1760  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1761    bool Changed = processLoad(LI, toErase);
1762
1763    if (!Changed) {
1764      unsigned Num = VN.lookup_or_add(LI);
1765      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1766    }
1767
1768    return Changed;
1769  }
1770
1771  uint32_t NextNum = VN.getNextUnusedValueNumber();
1772  unsigned Num = VN.lookup_or_add(I);
1773
1774  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1775    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1776
1777    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1778      return false;
1779
1780    Value *BranchCond = BI->getCondition();
1781    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1782
1783    BasicBlock *TrueSucc = BI->getSuccessor(0);
1784    BasicBlock *FalseSucc = BI->getSuccessor(1);
1785
1786    if (TrueSucc->getSinglePredecessor())
1787      localAvail[TrueSucc]->table[CondVN] =
1788        ConstantInt::getTrue(TrueSucc->getContext());
1789    if (FalseSucc->getSinglePredecessor())
1790      localAvail[FalseSucc]->table[CondVN] =
1791        ConstantInt::getFalse(TrueSucc->getContext());
1792
1793    return false;
1794
1795  // Allocations are always uniquely numbered, so we can save time and memory
1796  // by fast failing them.
1797  } else if (isa<AllocationInst>(I) || isMalloc(I) || isa<TerminatorInst>(I)) {
1798    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1799    return false;
1800  }
1801
1802  // Collapse PHI nodes
1803  if (PHINode* p = dyn_cast<PHINode>(I)) {
1804    Value *constVal = CollapsePhi(p);
1805
1806    if (constVal) {
1807      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1808           PI != PE; ++PI)
1809        PI->second.erase(p);
1810
1811      p->replaceAllUsesWith(constVal);
1812      if (isa<PointerType>(constVal->getType()))
1813        MD->invalidateCachedPointerInfo(constVal);
1814      VN.erase(p);
1815
1816      toErase.push_back(p);
1817    } else {
1818      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1819    }
1820
1821  // If the number we were assigned was a brand new VN, then we don't
1822  // need to do a lookup to see if the number already exists
1823  // somewhere in the domtree: it can't!
1824  } else if (Num == NextNum) {
1825    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1826
1827  // Perform fast-path value-number based elimination of values inherited from
1828  // dominators.
1829  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1830    // Remove it!
1831    VN.erase(I);
1832    I->replaceAllUsesWith(repl);
1833    if (isa<PointerType>(repl->getType()))
1834      MD->invalidateCachedPointerInfo(repl);
1835    toErase.push_back(I);
1836    return true;
1837
1838#if 0
1839  // Perform slow-pathvalue-number based elimination with phi construction.
1840  } else if (Value *repl = AttemptRedundancyElimination(I, Num)) {
1841    // Remove it!
1842    VN.erase(I);
1843    I->replaceAllUsesWith(repl);
1844    if (isa<PointerType>(repl->getType()))
1845      MD->invalidateCachedPointerInfo(repl);
1846    toErase.push_back(I);
1847    return true;
1848#endif
1849  } else {
1850    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1851  }
1852
1853  return false;
1854}
1855
1856/// runOnFunction - This is the main transformation entry point for a function.
1857bool GVN::runOnFunction(Function& F) {
1858  MD = &getAnalysis<MemoryDependenceAnalysis>();
1859  DT = &getAnalysis<DominatorTree>();
1860  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1861  VN.setMemDep(MD);
1862  VN.setDomTree(DT);
1863
1864  bool Changed = false;
1865  bool ShouldContinue = true;
1866
1867  // Merge unconditional branches, allowing PRE to catch more
1868  // optimization opportunities.
1869  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1870    BasicBlock *BB = FI;
1871    ++FI;
1872    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1873    if (removedBlock) NumGVNBlocks++;
1874
1875    Changed |= removedBlock;
1876  }
1877
1878  unsigned Iteration = 0;
1879
1880  while (ShouldContinue) {
1881    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1882    ShouldContinue = iterateOnFunction(F);
1883    Changed |= ShouldContinue;
1884    ++Iteration;
1885  }
1886
1887  if (EnablePRE) {
1888    bool PREChanged = true;
1889    while (PREChanged) {
1890      PREChanged = performPRE(F);
1891      Changed |= PREChanged;
1892    }
1893  }
1894  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1895  // computations into blocks where they become fully redundant.  Note that
1896  // we can't do this until PRE's critical edge splitting updates memdep.
1897  // Actually, when this happens, we should just fully integrate PRE into GVN.
1898
1899  cleanupGlobalSets();
1900
1901  return Changed;
1902}
1903
1904
1905bool GVN::processBlock(BasicBlock *BB) {
1906  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1907  // incrementing BI before processing an instruction).
1908  SmallVector<Instruction*, 8> toErase;
1909  bool ChangedFunction = false;
1910
1911  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1912       BI != BE;) {
1913    ChangedFunction |= processInstruction(BI, toErase);
1914    if (toErase.empty()) {
1915      ++BI;
1916      continue;
1917    }
1918
1919    // If we need some instructions deleted, do it now.
1920    NumGVNInstr += toErase.size();
1921
1922    // Avoid iterator invalidation.
1923    bool AtStart = BI == BB->begin();
1924    if (!AtStart)
1925      --BI;
1926
1927    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1928         E = toErase.end(); I != E; ++I) {
1929      DEBUG(errs() << "GVN removed: " << **I << '\n');
1930      MD->removeInstruction(*I);
1931      (*I)->eraseFromParent();
1932      DEBUG(verifyRemoved(*I));
1933    }
1934    toErase.clear();
1935
1936    if (AtStart)
1937      BI = BB->begin();
1938    else
1939      ++BI;
1940  }
1941
1942  return ChangedFunction;
1943}
1944
1945/// performPRE - Perform a purely local form of PRE that looks for diamond
1946/// control flow patterns and attempts to perform simple PRE at the join point.
1947bool GVN::performPRE(Function& F) {
1948  bool Changed = false;
1949  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1950  DenseMap<BasicBlock*, Value*> predMap;
1951  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1952       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1953    BasicBlock *CurrentBlock = *DI;
1954
1955    // Nothing to PRE in the entry block.
1956    if (CurrentBlock == &F.getEntryBlock()) continue;
1957
1958    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1959         BE = CurrentBlock->end(); BI != BE; ) {
1960      Instruction *CurInst = BI++;
1961
1962      if (isa<AllocationInst>(CurInst) || isMalloc(CurInst) ||
1963          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1964          (CurInst->getType() == Type::getVoidTy(F.getContext())) ||
1965          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1966          isa<DbgInfoIntrinsic>(CurInst))
1967        continue;
1968
1969      uint32_t ValNo = VN.lookup(CurInst);
1970
1971      // Look for the predecessors for PRE opportunities.  We're
1972      // only trying to solve the basic diamond case, where
1973      // a value is computed in the successor and one predecessor,
1974      // but not the other.  We also explicitly disallow cases
1975      // where the successor is its own predecessor, because they're
1976      // more complicated to get right.
1977      unsigned NumWith = 0;
1978      unsigned NumWithout = 0;
1979      BasicBlock *PREPred = 0;
1980      predMap.clear();
1981
1982      for (pred_iterator PI = pred_begin(CurrentBlock),
1983           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1984        // We're not interested in PRE where the block is its
1985        // own predecessor, on in blocks with predecessors
1986        // that are not reachable.
1987        if (*PI == CurrentBlock) {
1988          NumWithout = 2;
1989          break;
1990        } else if (!localAvail.count(*PI))  {
1991          NumWithout = 2;
1992          break;
1993        }
1994
1995        DenseMap<uint32_t, Value*>::iterator predV =
1996                                            localAvail[*PI]->table.find(ValNo);
1997        if (predV == localAvail[*PI]->table.end()) {
1998          PREPred = *PI;
1999          NumWithout++;
2000        } else if (predV->second == CurInst) {
2001          NumWithout = 2;
2002        } else {
2003          predMap[*PI] = predV->second;
2004          NumWith++;
2005        }
2006      }
2007
2008      // Don't do PRE when it might increase code size, i.e. when
2009      // we would need to insert instructions in more than one pred.
2010      if (NumWithout != 1 || NumWith == 0)
2011        continue;
2012
2013      // We can't do PRE safely on a critical edge, so instead we schedule
2014      // the edge to be split and perform the PRE the next time we iterate
2015      // on the function.
2016      unsigned SuccNum = 0;
2017      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2018           i != e; ++i)
2019        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2020          SuccNum = i;
2021          break;
2022        }
2023
2024      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2025        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2026        continue;
2027      }
2028
2029      // Instantiate the expression the in predecessor that lacked it.
2030      // Because we are going top-down through the block, all value numbers
2031      // will be available in the predecessor by the time we need them.  Any
2032      // that weren't original present will have been instantiated earlier
2033      // in this loop.
2034      Instruction *PREInstr = CurInst->clone(CurInst->getContext());
2035      bool success = true;
2036      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2037        Value *Op = PREInstr->getOperand(i);
2038        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2039          continue;
2040
2041        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2042          PREInstr->setOperand(i, V);
2043        } else {
2044          success = false;
2045          break;
2046        }
2047      }
2048
2049      // Fail out if we encounter an operand that is not available in
2050      // the PRE predecessor.  This is typically because of loads which
2051      // are not value numbered precisely.
2052      if (!success) {
2053        delete PREInstr;
2054        DEBUG(verifyRemoved(PREInstr));
2055        continue;
2056      }
2057
2058      PREInstr->insertBefore(PREPred->getTerminator());
2059      PREInstr->setName(CurInst->getName() + ".pre");
2060      predMap[PREPred] = PREInstr;
2061      VN.add(PREInstr, ValNo);
2062      NumGVNPRE++;
2063
2064      // Update the availability map to include the new instruction.
2065      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2066
2067      // Create a PHI to make the value available in this block.
2068      PHINode* Phi = PHINode::Create(CurInst->getType(),
2069                                     CurInst->getName() + ".pre-phi",
2070                                     CurrentBlock->begin());
2071      for (pred_iterator PI = pred_begin(CurrentBlock),
2072           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2073        Phi->addIncoming(predMap[*PI], *PI);
2074
2075      VN.add(Phi, ValNo);
2076      localAvail[CurrentBlock]->table[ValNo] = Phi;
2077
2078      CurInst->replaceAllUsesWith(Phi);
2079      if (isa<PointerType>(Phi->getType()))
2080        MD->invalidateCachedPointerInfo(Phi);
2081      VN.erase(CurInst);
2082
2083      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2084      MD->removeInstruction(CurInst);
2085      CurInst->eraseFromParent();
2086      DEBUG(verifyRemoved(CurInst));
2087      Changed = true;
2088    }
2089  }
2090
2091  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2092       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2093    SplitCriticalEdge(I->first, I->second, this);
2094
2095  return Changed || toSplit.size();
2096}
2097
2098/// iterateOnFunction - Executes one iteration of GVN
2099bool GVN::iterateOnFunction(Function &F) {
2100  cleanupGlobalSets();
2101
2102  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2103       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2104    if (DI->getIDom())
2105      localAvail[DI->getBlock()] =
2106                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2107    else
2108      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2109  }
2110
2111  // Top-down walk of the dominator tree
2112  bool Changed = false;
2113#if 0
2114  // Needed for value numbering with phi construction to work.
2115  ReversePostOrderTraversal<Function*> RPOT(&F);
2116  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2117       RE = RPOT.end(); RI != RE; ++RI)
2118    Changed |= processBlock(*RI);
2119#else
2120  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2121       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2122    Changed |= processBlock(DI->getBlock());
2123#endif
2124
2125  return Changed;
2126}
2127
2128void GVN::cleanupGlobalSets() {
2129  VN.clear();
2130  phiMap.clear();
2131
2132  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2133       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2134    delete I->second;
2135  localAvail.clear();
2136}
2137
2138/// verifyRemoved - Verify that the specified instruction does not occur in our
2139/// internal data structures.
2140void GVN::verifyRemoved(const Instruction *Inst) const {
2141  VN.verifyRemoved(Inst);
2142
2143  // Walk through the PHI map to make sure the instruction isn't hiding in there
2144  // somewhere.
2145  for (PhiMapType::iterator
2146         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
2147    assert(I->first != Inst && "Inst is still a key in PHI map!");
2148
2149    for (SmallPtrSet<Instruction*, 4>::iterator
2150           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
2151      assert(*II != Inst && "Inst is still a value in PHI map!");
2152    }
2153  }
2154
2155  // Walk through the value number scope to make sure the instruction isn't
2156  // ferreted away in it.
2157  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2158         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2159    const ValueNumberScope *VNS = I->second;
2160
2161    while (VNS) {
2162      for (DenseMap<uint32_t, Value*>::iterator
2163             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2164        assert(II->second != Inst && "Inst still in value numbering scope!");
2165      }
2166
2167      VNS = VNS->parent;
2168    }
2169  }
2170}
2171