GVN.cpp revision 556dd3a9a9068337a84e3ba32253a10cd1ab67dc
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/Hashing.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/Dominators.h"
28#include "llvm/Analysis/InstructionSimplify.h"
29#include "llvm/Analysis/Loads.h"
30#include "llvm/Analysis/MemoryBuiltins.h"
31#include "llvm/Analysis/MemoryDependenceAnalysis.h"
32#include "llvm/Analysis/PHITransAddr.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Assembly/Writer.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/IRBuilder.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/Metadata.h"
41#include "llvm/Support/Allocator.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/PatternMatch.h"
45#include "llvm/Target/TargetLibraryInfo.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48using namespace llvm;
49using namespace PatternMatch;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
56STATISTIC(NumGVNEqProp, "Number of equalities propagated");
57STATISTIC(NumPRELoad,   "Number of loads PRE'd");
58
59static cl::opt<bool> EnablePRE("enable-pre",
60                               cl::init(true), cl::Hidden);
61static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
62
63// Maximum allowed recursion depth.
64static cl::opt<uint32_t>
65MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
66                cl::desc("Max recurse depth (default = 1000)"));
67
68//===----------------------------------------------------------------------===//
69//                         ValueTable Class
70//===----------------------------------------------------------------------===//
71
72/// This class holds the mapping between values and value numbers.  It is used
73/// as an efficient mechanism to determine the expression-wise equivalence of
74/// two values.
75namespace {
76  struct Expression {
77    uint32_t opcode;
78    Type *type;
79    SmallVector<uint32_t, 4> varargs;
80
81    Expression(uint32_t o = ~2U) : opcode(o) { }
82
83    bool operator==(const Expression &other) const {
84      if (opcode != other.opcode)
85        return false;
86      if (opcode == ~0U || opcode == ~1U)
87        return true;
88      if (type != other.type)
89        return false;
90      if (varargs != other.varargs)
91        return false;
92      return true;
93    }
94
95    friend hash_code hash_value(const Expression &Value) {
96      return hash_combine(Value.opcode, Value.type,
97                          hash_combine_range(Value.varargs.begin(),
98                                             Value.varargs.end()));
99    }
100  };
101
102  class ValueTable {
103    DenseMap<Value*, uint32_t> valueNumbering;
104    DenseMap<Expression, uint32_t> expressionNumbering;
105    AliasAnalysis *AA;
106    MemoryDependenceAnalysis *MD;
107    DominatorTree *DT;
108
109    uint32_t nextValueNumber;
110
111    Expression create_expression(Instruction* I);
112    Expression create_cmp_expression(unsigned Opcode,
113                                     CmpInst::Predicate Predicate,
114                                     Value *LHS, Value *RHS);
115    Expression create_extractvalue_expression(ExtractValueInst* EI);
116    uint32_t lookup_or_add_call(CallInst* C);
117  public:
118    ValueTable() : nextValueNumber(1) { }
119    uint32_t lookup_or_add(Value *V);
120    uint32_t lookup(Value *V) const;
121    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
122                               Value *LHS, Value *RHS);
123    void add(Value *V, uint32_t num);
124    void clear();
125    void erase(Value *v);
126    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
127    AliasAnalysis *getAliasAnalysis() const { return AA; }
128    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
129    void setDomTree(DominatorTree* D) { DT = D; }
130    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
131    void verifyRemoved(const Value *) const;
132  };
133}
134
135namespace llvm {
136template <> struct DenseMapInfo<Expression> {
137  static inline Expression getEmptyKey() {
138    return ~0U;
139  }
140
141  static inline Expression getTombstoneKey() {
142    return ~1U;
143  }
144
145  static unsigned getHashValue(const Expression e) {
146    using llvm::hash_value;
147    return static_cast<unsigned>(hash_value(e));
148  }
149  static bool isEqual(const Expression &LHS, const Expression &RHS) {
150    return LHS == RHS;
151  }
152};
153
154}
155
156//===----------------------------------------------------------------------===//
157//                     ValueTable Internal Functions
158//===----------------------------------------------------------------------===//
159
160Expression ValueTable::create_expression(Instruction *I) {
161  Expression e;
162  e.type = I->getType();
163  e.opcode = I->getOpcode();
164  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
165       OI != OE; ++OI)
166    e.varargs.push_back(lookup_or_add(*OI));
167  if (I->isCommutative()) {
168    // Ensure that commutative instructions that only differ by a permutation
169    // of their operands get the same value number by sorting the operand value
170    // numbers.  Since all commutative instructions have two operands it is more
171    // efficient to sort by hand rather than using, say, std::sort.
172    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
173    if (e.varargs[0] > e.varargs[1])
174      std::swap(e.varargs[0], e.varargs[1]);
175  }
176
177  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
178    // Sort the operand value numbers so x<y and y>x get the same value number.
179    CmpInst::Predicate Predicate = C->getPredicate();
180    if (e.varargs[0] > e.varargs[1]) {
181      std::swap(e.varargs[0], e.varargs[1]);
182      Predicate = CmpInst::getSwappedPredicate(Predicate);
183    }
184    e.opcode = (C->getOpcode() << 8) | Predicate;
185  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
186    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
187         II != IE; ++II)
188      e.varargs.push_back(*II);
189  }
190
191  return e;
192}
193
194Expression ValueTable::create_cmp_expression(unsigned Opcode,
195                                             CmpInst::Predicate Predicate,
196                                             Value *LHS, Value *RHS) {
197  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
198         "Not a comparison!");
199  Expression e;
200  e.type = CmpInst::makeCmpResultType(LHS->getType());
201  e.varargs.push_back(lookup_or_add(LHS));
202  e.varargs.push_back(lookup_or_add(RHS));
203
204  // Sort the operand value numbers so x<y and y>x get the same value number.
205  if (e.varargs[0] > e.varargs[1]) {
206    std::swap(e.varargs[0], e.varargs[1]);
207    Predicate = CmpInst::getSwappedPredicate(Predicate);
208  }
209  e.opcode = (Opcode << 8) | Predicate;
210  return e;
211}
212
213Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
214  assert(EI != 0 && "Not an ExtractValueInst?");
215  Expression e;
216  e.type = EI->getType();
217  e.opcode = 0;
218
219  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
220  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
221    // EI might be an extract from one of our recognised intrinsics. If it
222    // is we'll synthesize a semantically equivalent expression instead on
223    // an extract value expression.
224    switch (I->getIntrinsicID()) {
225      case Intrinsic::sadd_with_overflow:
226      case Intrinsic::uadd_with_overflow:
227        e.opcode = Instruction::Add;
228        break;
229      case Intrinsic::ssub_with_overflow:
230      case Intrinsic::usub_with_overflow:
231        e.opcode = Instruction::Sub;
232        break;
233      case Intrinsic::smul_with_overflow:
234      case Intrinsic::umul_with_overflow:
235        e.opcode = Instruction::Mul;
236        break;
237      default:
238        break;
239    }
240
241    if (e.opcode != 0) {
242      // Intrinsic recognized. Grab its args to finish building the expression.
243      assert(I->getNumArgOperands() == 2 &&
244             "Expect two args for recognised intrinsics.");
245      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
246      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
247      return e;
248    }
249  }
250
251  // Not a recognised intrinsic. Fall back to producing an extract value
252  // expression.
253  e.opcode = EI->getOpcode();
254  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
255       OI != OE; ++OI)
256    e.varargs.push_back(lookup_or_add(*OI));
257
258  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
259         II != IE; ++II)
260    e.varargs.push_back(*II);
261
262  return e;
263}
264
265//===----------------------------------------------------------------------===//
266//                     ValueTable External Functions
267//===----------------------------------------------------------------------===//
268
269/// add - Insert a value into the table with a specified value number.
270void ValueTable::add(Value *V, uint32_t num) {
271  valueNumbering.insert(std::make_pair(V, num));
272}
273
274uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
275  if (AA->doesNotAccessMemory(C)) {
276    Expression exp = create_expression(C);
277    uint32_t &e = expressionNumbering[exp];
278    if (!e) e = nextValueNumber++;
279    valueNumbering[C] = e;
280    return e;
281  } else if (AA->onlyReadsMemory(C)) {
282    Expression exp = create_expression(C);
283    uint32_t &e = expressionNumbering[exp];
284    if (!e) {
285      e = nextValueNumber++;
286      valueNumbering[C] = e;
287      return e;
288    }
289    if (!MD) {
290      e = nextValueNumber++;
291      valueNumbering[C] = e;
292      return e;
293    }
294
295    MemDepResult local_dep = MD->getDependency(C);
296
297    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
298      valueNumbering[C] =  nextValueNumber;
299      return nextValueNumber++;
300    }
301
302    if (local_dep.isDef()) {
303      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
304
305      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
306        valueNumbering[C] = nextValueNumber;
307        return nextValueNumber++;
308      }
309
310      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
311        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
312        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
313        if (c_vn != cd_vn) {
314          valueNumbering[C] = nextValueNumber;
315          return nextValueNumber++;
316        }
317      }
318
319      uint32_t v = lookup_or_add(local_cdep);
320      valueNumbering[C] = v;
321      return v;
322    }
323
324    // Non-local case.
325    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
326      MD->getNonLocalCallDependency(CallSite(C));
327    // FIXME: Move the checking logic to MemDep!
328    CallInst* cdep = 0;
329
330    // Check to see if we have a single dominating call instruction that is
331    // identical to C.
332    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
333      const NonLocalDepEntry *I = &deps[i];
334      if (I->getResult().isNonLocal())
335        continue;
336
337      // We don't handle non-definitions.  If we already have a call, reject
338      // instruction dependencies.
339      if (!I->getResult().isDef() || cdep != 0) {
340        cdep = 0;
341        break;
342      }
343
344      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
345      // FIXME: All duplicated with non-local case.
346      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
347        cdep = NonLocalDepCall;
348        continue;
349      }
350
351      cdep = 0;
352      break;
353    }
354
355    if (!cdep) {
356      valueNumbering[C] = nextValueNumber;
357      return nextValueNumber++;
358    }
359
360    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
361      valueNumbering[C] = nextValueNumber;
362      return nextValueNumber++;
363    }
364    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
365      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
366      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
367      if (c_vn != cd_vn) {
368        valueNumbering[C] = nextValueNumber;
369        return nextValueNumber++;
370      }
371    }
372
373    uint32_t v = lookup_or_add(cdep);
374    valueNumbering[C] = v;
375    return v;
376
377  } else {
378    valueNumbering[C] = nextValueNumber;
379    return nextValueNumber++;
380  }
381}
382
383/// lookup_or_add - Returns the value number for the specified value, assigning
384/// it a new number if it did not have one before.
385uint32_t ValueTable::lookup_or_add(Value *V) {
386  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
387  if (VI != valueNumbering.end())
388    return VI->second;
389
390  if (!isa<Instruction>(V)) {
391    valueNumbering[V] = nextValueNumber;
392    return nextValueNumber++;
393  }
394
395  Instruction* I = cast<Instruction>(V);
396  Expression exp;
397  switch (I->getOpcode()) {
398    case Instruction::Call:
399      return lookup_or_add_call(cast<CallInst>(I));
400    case Instruction::Add:
401    case Instruction::FAdd:
402    case Instruction::Sub:
403    case Instruction::FSub:
404    case Instruction::Mul:
405    case Instruction::FMul:
406    case Instruction::UDiv:
407    case Instruction::SDiv:
408    case Instruction::FDiv:
409    case Instruction::URem:
410    case Instruction::SRem:
411    case Instruction::FRem:
412    case Instruction::Shl:
413    case Instruction::LShr:
414    case Instruction::AShr:
415    case Instruction::And:
416    case Instruction::Or:
417    case Instruction::Xor:
418    case Instruction::ICmp:
419    case Instruction::FCmp:
420    case Instruction::Trunc:
421    case Instruction::ZExt:
422    case Instruction::SExt:
423    case Instruction::FPToUI:
424    case Instruction::FPToSI:
425    case Instruction::UIToFP:
426    case Instruction::SIToFP:
427    case Instruction::FPTrunc:
428    case Instruction::FPExt:
429    case Instruction::PtrToInt:
430    case Instruction::IntToPtr:
431    case Instruction::BitCast:
432    case Instruction::Select:
433    case Instruction::ExtractElement:
434    case Instruction::InsertElement:
435    case Instruction::ShuffleVector:
436    case Instruction::InsertValue:
437    case Instruction::GetElementPtr:
438      exp = create_expression(I);
439      break;
440    case Instruction::ExtractValue:
441      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
442      break;
443    default:
444      valueNumbering[V] = nextValueNumber;
445      return nextValueNumber++;
446  }
447
448  uint32_t& e = expressionNumbering[exp];
449  if (!e) e = nextValueNumber++;
450  valueNumbering[V] = e;
451  return e;
452}
453
454/// lookup - Returns the value number of the specified value. Fails if
455/// the value has not yet been numbered.
456uint32_t ValueTable::lookup(Value *V) const {
457  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
458  assert(VI != valueNumbering.end() && "Value not numbered?");
459  return VI->second;
460}
461
462/// lookup_or_add_cmp - Returns the value number of the given comparison,
463/// assigning it a new number if it did not have one before.  Useful when
464/// we deduced the result of a comparison, but don't immediately have an
465/// instruction realizing that comparison to hand.
466uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
467                                       CmpInst::Predicate Predicate,
468                                       Value *LHS, Value *RHS) {
469  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
470  uint32_t& e = expressionNumbering[exp];
471  if (!e) e = nextValueNumber++;
472  return e;
473}
474
475/// clear - Remove all entries from the ValueTable.
476void ValueTable::clear() {
477  valueNumbering.clear();
478  expressionNumbering.clear();
479  nextValueNumber = 1;
480}
481
482/// erase - Remove a value from the value numbering.
483void ValueTable::erase(Value *V) {
484  valueNumbering.erase(V);
485}
486
487/// verifyRemoved - Verify that the value is removed from all internal data
488/// structures.
489void ValueTable::verifyRemoved(const Value *V) const {
490  for (DenseMap<Value*, uint32_t>::const_iterator
491         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
492    assert(I->first != V && "Inst still occurs in value numbering map!");
493  }
494}
495
496//===----------------------------------------------------------------------===//
497//                                GVN Pass
498//===----------------------------------------------------------------------===//
499
500namespace {
501
502  class GVN : public FunctionPass {
503    bool NoLoads;
504    MemoryDependenceAnalysis *MD;
505    DominatorTree *DT;
506    const DataLayout *TD;
507    const TargetLibraryInfo *TLI;
508
509    ValueTable VN;
510
511    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
512    /// have that value number.  Use findLeader to query it.
513    struct LeaderTableEntry {
514      Value *Val;
515      const BasicBlock *BB;
516      LeaderTableEntry *Next;
517    };
518    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
519    BumpPtrAllocator TableAllocator;
520
521    SmallVector<Instruction*, 8> InstrsToErase;
522  public:
523    static char ID; // Pass identification, replacement for typeid
524    explicit GVN(bool noloads = false)
525        : FunctionPass(ID), NoLoads(noloads), MD(0) {
526      initializeGVNPass(*PassRegistry::getPassRegistry());
527    }
528
529    bool runOnFunction(Function &F);
530
531    /// markInstructionForDeletion - This removes the specified instruction from
532    /// our various maps and marks it for deletion.
533    void markInstructionForDeletion(Instruction *I) {
534      VN.erase(I);
535      InstrsToErase.push_back(I);
536    }
537
538    const DataLayout *getDataLayout() const { return TD; }
539    DominatorTree &getDominatorTree() const { return *DT; }
540    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
541    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
542  private:
543    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
544    /// its value number.
545    void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
546      LeaderTableEntry &Curr = LeaderTable[N];
547      if (!Curr.Val) {
548        Curr.Val = V;
549        Curr.BB = BB;
550        return;
551      }
552
553      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
554      Node->Val = V;
555      Node->BB = BB;
556      Node->Next = Curr.Next;
557      Curr.Next = Node;
558    }
559
560    /// removeFromLeaderTable - Scan the list of values corresponding to a given
561    /// value number, and remove the given instruction if encountered.
562    void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
563      LeaderTableEntry* Prev = 0;
564      LeaderTableEntry* Curr = &LeaderTable[N];
565
566      while (Curr->Val != I || Curr->BB != BB) {
567        Prev = Curr;
568        Curr = Curr->Next;
569      }
570
571      if (Prev) {
572        Prev->Next = Curr->Next;
573      } else {
574        if (!Curr->Next) {
575          Curr->Val = 0;
576          Curr->BB = 0;
577        } else {
578          LeaderTableEntry* Next = Curr->Next;
579          Curr->Val = Next->Val;
580          Curr->BB = Next->BB;
581          Curr->Next = Next->Next;
582        }
583      }
584    }
585
586    // List of critical edges to be split between iterations.
587    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
588
589    // This transformation requires dominator postdominator info
590    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
591      AU.addRequired<DominatorTree>();
592      AU.addRequired<TargetLibraryInfo>();
593      if (!NoLoads)
594        AU.addRequired<MemoryDependenceAnalysis>();
595      AU.addRequired<AliasAnalysis>();
596
597      AU.addPreserved<DominatorTree>();
598      AU.addPreserved<AliasAnalysis>();
599    }
600
601
602    // Helper fuctions
603    // FIXME: eliminate or document these better
604    bool processLoad(LoadInst *L);
605    bool processInstruction(Instruction *I);
606    bool processNonLocalLoad(LoadInst *L);
607    bool processBlock(BasicBlock *BB);
608    void dump(DenseMap<uint32_t, Value*> &d);
609    bool iterateOnFunction(Function &F);
610    bool performPRE(Function &F);
611    Value *findLeader(const BasicBlock *BB, uint32_t num);
612    void cleanupGlobalSets();
613    void verifyRemoved(const Instruction *I) const;
614    bool splitCriticalEdges();
615    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
616                                         const BasicBlockEdge &Root);
617    bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
618  };
619
620  char GVN::ID = 0;
621}
622
623// createGVNPass - The public interface to this file...
624FunctionPass *llvm::createGVNPass(bool NoLoads) {
625  return new GVN(NoLoads);
626}
627
628INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
629INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
630INITIALIZE_PASS_DEPENDENCY(DominatorTree)
631INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
632INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
633INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
634
635#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
636void GVN::dump(DenseMap<uint32_t, Value*>& d) {
637  errs() << "{\n";
638  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
639       E = d.end(); I != E; ++I) {
640      errs() << I->first << "\n";
641      I->second->dump();
642  }
643  errs() << "}\n";
644}
645#endif
646
647/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
648/// we're analyzing is fully available in the specified block.  As we go, keep
649/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
650/// map is actually a tri-state map with the following values:
651///   0) we know the block *is not* fully available.
652///   1) we know the block *is* fully available.
653///   2) we do not know whether the block is fully available or not, but we are
654///      currently speculating that it will be.
655///   3) we are speculating for this block and have used that to speculate for
656///      other blocks.
657static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
658                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
659                            uint32_t RecurseDepth) {
660  if (RecurseDepth > MaxRecurseDepth)
661    return false;
662
663  // Optimistically assume that the block is fully available and check to see
664  // if we already know about this block in one lookup.
665  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
666    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
667
668  // If the entry already existed for this block, return the precomputed value.
669  if (!IV.second) {
670    // If this is a speculative "available" value, mark it as being used for
671    // speculation of other blocks.
672    if (IV.first->second == 2)
673      IV.first->second = 3;
674    return IV.first->second != 0;
675  }
676
677  // Otherwise, see if it is fully available in all predecessors.
678  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
679
680  // If this block has no predecessors, it isn't live-in here.
681  if (PI == PE)
682    goto SpeculationFailure;
683
684  for (; PI != PE; ++PI)
685    // If the value isn't fully available in one of our predecessors, then it
686    // isn't fully available in this block either.  Undo our previous
687    // optimistic assumption and bail out.
688    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
689      goto SpeculationFailure;
690
691  return true;
692
693// SpeculationFailure - If we get here, we found out that this is not, after
694// all, a fully-available block.  We have a problem if we speculated on this and
695// used the speculation to mark other blocks as available.
696SpeculationFailure:
697  char &BBVal = FullyAvailableBlocks[BB];
698
699  // If we didn't speculate on this, just return with it set to false.
700  if (BBVal == 2) {
701    BBVal = 0;
702    return false;
703  }
704
705  // If we did speculate on this value, we could have blocks set to 1 that are
706  // incorrect.  Walk the (transitive) successors of this block and mark them as
707  // 0 if set to one.
708  SmallVector<BasicBlock*, 32> BBWorklist;
709  BBWorklist.push_back(BB);
710
711  do {
712    BasicBlock *Entry = BBWorklist.pop_back_val();
713    // Note that this sets blocks to 0 (unavailable) if they happen to not
714    // already be in FullyAvailableBlocks.  This is safe.
715    char &EntryVal = FullyAvailableBlocks[Entry];
716    if (EntryVal == 0) continue;  // Already unavailable.
717
718    // Mark as unavailable.
719    EntryVal = 0;
720
721    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
722      BBWorklist.push_back(*I);
723  } while (!BBWorklist.empty());
724
725  return false;
726}
727
728
729/// CanCoerceMustAliasedValueToLoad - Return true if
730/// CoerceAvailableValueToLoadType will succeed.
731static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
732                                            Type *LoadTy,
733                                            const DataLayout &TD) {
734  // If the loaded or stored value is an first class array or struct, don't try
735  // to transform them.  We need to be able to bitcast to integer.
736  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
737      StoredVal->getType()->isStructTy() ||
738      StoredVal->getType()->isArrayTy())
739    return false;
740
741  // The store has to be at least as big as the load.
742  if (TD.getTypeSizeInBits(StoredVal->getType()) <
743        TD.getTypeSizeInBits(LoadTy))
744    return false;
745
746  return true;
747}
748
749/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
750/// then a load from a must-aliased pointer of a different type, try to coerce
751/// the stored value.  LoadedTy is the type of the load we want to replace and
752/// InsertPt is the place to insert new instructions.
753///
754/// If we can't do it, return null.
755static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
756                                             Type *LoadedTy,
757                                             Instruction *InsertPt,
758                                             const DataLayout &TD) {
759  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
760    return 0;
761
762  // If this is already the right type, just return it.
763  Type *StoredValTy = StoredVal->getType();
764
765  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
766  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
767
768  // If the store and reload are the same size, we can always reuse it.
769  if (StoreSize == LoadSize) {
770    // Pointer to Pointer -> use bitcast.
771    if (StoredValTy->getScalarType()->isPointerTy() &&
772        LoadedTy->getScalarType()->isPointerTy())
773      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
774
775    // Convert source pointers to integers, which can be bitcast.
776    if (StoredValTy->getScalarType()->isPointerTy()) {
777      StoredValTy = TD.getIntPtrType(StoredValTy);
778      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
779    }
780
781    Type *TypeToCastTo = LoadedTy;
782    if (TypeToCastTo->getScalarType()->isPointerTy())
783      TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
784
785    if (StoredValTy != TypeToCastTo)
786      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
787
788    // Cast to pointer if the load needs a pointer type.
789    if (LoadedTy->getScalarType()->isPointerTy())
790      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
791
792    return StoredVal;
793  }
794
795  // If the loaded value is smaller than the available value, then we can
796  // extract out a piece from it.  If the available value is too small, then we
797  // can't do anything.
798  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
799
800  // Convert source pointers to integers, which can be manipulated.
801  if (StoredValTy->getScalarType()->isPointerTy()) {
802    StoredValTy = TD.getIntPtrType(StoredValTy);
803    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
804  }
805
806  // Convert vectors and fp to integer, which can be manipulated.
807  if (!StoredValTy->isIntegerTy()) {
808    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
809    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
810  }
811
812  // If this is a big-endian system, we need to shift the value down to the low
813  // bits so that a truncate will work.
814  if (TD.isBigEndian()) {
815    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
816    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
817  }
818
819  // Truncate the integer to the right size now.
820  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
821  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
822
823  if (LoadedTy == NewIntTy)
824    return StoredVal;
825
826  // If the result is a pointer, inttoptr.
827  if (LoadedTy->getScalarType()->isPointerTy())
828    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
829
830  // Otherwise, bitcast.
831  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
832}
833
834/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
835/// memdep query of a load that ends up being a clobbering memory write (store,
836/// memset, memcpy, memmove).  This means that the write *may* provide bits used
837/// by the load but we can't be sure because the pointers don't mustalias.
838///
839/// Check this case to see if there is anything more we can do before we give
840/// up.  This returns -1 if we have to give up, or a byte number in the stored
841/// value of the piece that feeds the load.
842static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
843                                          Value *WritePtr,
844                                          uint64_t WriteSizeInBits,
845                                          const DataLayout &TD) {
846  // If the loaded or stored value is a first class array or struct, don't try
847  // to transform them.  We need to be able to bitcast to integer.
848  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
849    return -1;
850
851  int64_t StoreOffset = 0, LoadOffset = 0;
852  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
853  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
854  if (StoreBase != LoadBase)
855    return -1;
856
857  // If the load and store are to the exact same address, they should have been
858  // a must alias.  AA must have gotten confused.
859  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
860  // to a load from the base of the memset.
861#if 0
862  if (LoadOffset == StoreOffset) {
863    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
864    << "Base       = " << *StoreBase << "\n"
865    << "Store Ptr  = " << *WritePtr << "\n"
866    << "Store Offs = " << StoreOffset << "\n"
867    << "Load Ptr   = " << *LoadPtr << "\n";
868    abort();
869  }
870#endif
871
872  // If the load and store don't overlap at all, the store doesn't provide
873  // anything to the load.  In this case, they really don't alias at all, AA
874  // must have gotten confused.
875  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
876
877  if ((WriteSizeInBits & 7) | (LoadSize & 7))
878    return -1;
879  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
880  LoadSize >>= 3;
881
882
883  bool isAAFailure = false;
884  if (StoreOffset < LoadOffset)
885    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
886  else
887    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
888
889  if (isAAFailure) {
890#if 0
891    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
892    << "Base       = " << *StoreBase << "\n"
893    << "Store Ptr  = " << *WritePtr << "\n"
894    << "Store Offs = " << StoreOffset << "\n"
895    << "Load Ptr   = " << *LoadPtr << "\n";
896    abort();
897#endif
898    return -1;
899  }
900
901  // If the Load isn't completely contained within the stored bits, we don't
902  // have all the bits to feed it.  We could do something crazy in the future
903  // (issue a smaller load then merge the bits in) but this seems unlikely to be
904  // valuable.
905  if (StoreOffset > LoadOffset ||
906      StoreOffset+StoreSize < LoadOffset+LoadSize)
907    return -1;
908
909  // Okay, we can do this transformation.  Return the number of bytes into the
910  // store that the load is.
911  return LoadOffset-StoreOffset;
912}
913
914/// AnalyzeLoadFromClobberingStore - This function is called when we have a
915/// memdep query of a load that ends up being a clobbering store.
916static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
917                                          StoreInst *DepSI,
918                                          const DataLayout &TD) {
919  // Cannot handle reading from store of first-class aggregate yet.
920  if (DepSI->getValueOperand()->getType()->isStructTy() ||
921      DepSI->getValueOperand()->getType()->isArrayTy())
922    return -1;
923
924  Value *StorePtr = DepSI->getPointerOperand();
925  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
926  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
927                                        StorePtr, StoreSize, TD);
928}
929
930/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
931/// memdep query of a load that ends up being clobbered by another load.  See if
932/// the other load can feed into the second load.
933static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
934                                         LoadInst *DepLI, const DataLayout &TD){
935  // Cannot handle reading from store of first-class aggregate yet.
936  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
937    return -1;
938
939  Value *DepPtr = DepLI->getPointerOperand();
940  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
941  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
942  if (R != -1) return R;
943
944  // If we have a load/load clobber an DepLI can be widened to cover this load,
945  // then we should widen it!
946  int64_t LoadOffs = 0;
947  const Value *LoadBase =
948    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
949  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
950
951  unsigned Size = MemoryDependenceAnalysis::
952    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
953  if (Size == 0) return -1;
954
955  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
956}
957
958
959
960static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
961                                            MemIntrinsic *MI,
962                                            const DataLayout &TD) {
963  // If the mem operation is a non-constant size, we can't handle it.
964  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
965  if (SizeCst == 0) return -1;
966  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
967
968  // If this is memset, we just need to see if the offset is valid in the size
969  // of the memset..
970  if (MI->getIntrinsicID() == Intrinsic::memset)
971    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
972                                          MemSizeInBits, TD);
973
974  // If we have a memcpy/memmove, the only case we can handle is if this is a
975  // copy from constant memory.  In that case, we can read directly from the
976  // constant memory.
977  MemTransferInst *MTI = cast<MemTransferInst>(MI);
978
979  Constant *Src = dyn_cast<Constant>(MTI->getSource());
980  if (Src == 0) return -1;
981
982  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
983  if (GV == 0 || !GV->isConstant()) return -1;
984
985  // See if the access is within the bounds of the transfer.
986  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
987                                              MI->getDest(), MemSizeInBits, TD);
988  if (Offset == -1)
989    return Offset;
990
991  // Otherwise, see if we can constant fold a load from the constant with the
992  // offset applied as appropriate.
993  Src = ConstantExpr::getBitCast(Src,
994                                 llvm::Type::getInt8PtrTy(Src->getContext()));
995  Constant *OffsetCst =
996    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
997  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
998  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
999  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1000    return Offset;
1001  return -1;
1002}
1003
1004
1005/// GetStoreValueForLoad - This function is called when we have a
1006/// memdep query of a load that ends up being a clobbering store.  This means
1007/// that the store provides bits used by the load but we the pointers don't
1008/// mustalias.  Check this case to see if there is anything more we can do
1009/// before we give up.
1010static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1011                                   Type *LoadTy,
1012                                   Instruction *InsertPt, const DataLayout &TD){
1013  LLVMContext &Ctx = SrcVal->getType()->getContext();
1014
1015  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1016  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1017
1018  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1019
1020  // Compute which bits of the stored value are being used by the load.  Convert
1021  // to an integer type to start with.
1022  if (SrcVal->getType()->getScalarType()->isPointerTy())
1023    SrcVal = Builder.CreatePtrToInt(SrcVal,
1024        TD.getIntPtrType(SrcVal->getType()));
1025  if (!SrcVal->getType()->isIntegerTy())
1026    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1027
1028  // Shift the bits to the least significant depending on endianness.
1029  unsigned ShiftAmt;
1030  if (TD.isLittleEndian())
1031    ShiftAmt = Offset*8;
1032  else
1033    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1034
1035  if (ShiftAmt)
1036    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1037
1038  if (LoadSize != StoreSize)
1039    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1040
1041  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1042}
1043
1044/// GetLoadValueForLoad - This function is called when we have a
1045/// memdep query of a load that ends up being a clobbering load.  This means
1046/// that the load *may* provide bits used by the load but we can't be sure
1047/// because the pointers don't mustalias.  Check this case to see if there is
1048/// anything more we can do before we give up.
1049static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1050                                  Type *LoadTy, Instruction *InsertPt,
1051                                  GVN &gvn) {
1052  const DataLayout &TD = *gvn.getDataLayout();
1053  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1054  // widen SrcVal out to a larger load.
1055  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1056  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1057  if (Offset+LoadSize > SrcValSize) {
1058    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1059    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1060    // If we have a load/load clobber an DepLI can be widened to cover this
1061    // load, then we should widen it to the next power of 2 size big enough!
1062    unsigned NewLoadSize = Offset+LoadSize;
1063    if (!isPowerOf2_32(NewLoadSize))
1064      NewLoadSize = NextPowerOf2(NewLoadSize);
1065
1066    Value *PtrVal = SrcVal->getPointerOperand();
1067
1068    // Insert the new load after the old load.  This ensures that subsequent
1069    // memdep queries will find the new load.  We can't easily remove the old
1070    // load completely because it is already in the value numbering table.
1071    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1072    Type *DestPTy =
1073      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1074    DestPTy = PointerType::get(DestPTy,
1075                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1076    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1077    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1078    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1079    NewLoad->takeName(SrcVal);
1080    NewLoad->setAlignment(SrcVal->getAlignment());
1081
1082    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1083    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1084
1085    // Replace uses of the original load with the wider load.  On a big endian
1086    // system, we need to shift down to get the relevant bits.
1087    Value *RV = NewLoad;
1088    if (TD.isBigEndian())
1089      RV = Builder.CreateLShr(RV,
1090                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1091    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1092    SrcVal->replaceAllUsesWith(RV);
1093
1094    // We would like to use gvn.markInstructionForDeletion here, but we can't
1095    // because the load is already memoized into the leader map table that GVN
1096    // tracks.  It is potentially possible to remove the load from the table,
1097    // but then there all of the operations based on it would need to be
1098    // rehashed.  Just leave the dead load around.
1099    gvn.getMemDep().removeInstruction(SrcVal);
1100    SrcVal = NewLoad;
1101  }
1102
1103  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1104}
1105
1106
1107/// GetMemInstValueForLoad - This function is called when we have a
1108/// memdep query of a load that ends up being a clobbering mem intrinsic.
1109static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1110                                     Type *LoadTy, Instruction *InsertPt,
1111                                     const DataLayout &TD){
1112  LLVMContext &Ctx = LoadTy->getContext();
1113  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1114
1115  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1116
1117  // We know that this method is only called when the mem transfer fully
1118  // provides the bits for the load.
1119  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1120    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1121    // independently of what the offset is.
1122    Value *Val = MSI->getValue();
1123    if (LoadSize != 1)
1124      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1125
1126    Value *OneElt = Val;
1127
1128    // Splat the value out to the right number of bits.
1129    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1130      // If we can double the number of bytes set, do it.
1131      if (NumBytesSet*2 <= LoadSize) {
1132        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1133        Val = Builder.CreateOr(Val, ShVal);
1134        NumBytesSet <<= 1;
1135        continue;
1136      }
1137
1138      // Otherwise insert one byte at a time.
1139      Value *ShVal = Builder.CreateShl(Val, 1*8);
1140      Val = Builder.CreateOr(OneElt, ShVal);
1141      ++NumBytesSet;
1142    }
1143
1144    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1145  }
1146
1147  // Otherwise, this is a memcpy/memmove from a constant global.
1148  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1149  Constant *Src = cast<Constant>(MTI->getSource());
1150
1151  // Otherwise, see if we can constant fold a load from the constant with the
1152  // offset applied as appropriate.
1153  Src = ConstantExpr::getBitCast(Src,
1154                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1155  Constant *OffsetCst =
1156  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1157  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1158  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1159  return ConstantFoldLoadFromConstPtr(Src, &TD);
1160}
1161
1162namespace {
1163
1164struct AvailableValueInBlock {
1165  /// BB - The basic block in question.
1166  BasicBlock *BB;
1167  enum ValType {
1168    SimpleVal,  // A simple offsetted value that is accessed.
1169    LoadVal,    // A value produced by a load.
1170    MemIntrin   // A memory intrinsic which is loaded from.
1171  };
1172
1173  /// V - The value that is live out of the block.
1174  PointerIntPair<Value *, 2, ValType> Val;
1175
1176  /// Offset - The byte offset in Val that is interesting for the load query.
1177  unsigned Offset;
1178
1179  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1180                                   unsigned Offset = 0) {
1181    AvailableValueInBlock Res;
1182    Res.BB = BB;
1183    Res.Val.setPointer(V);
1184    Res.Val.setInt(SimpleVal);
1185    Res.Offset = Offset;
1186    return Res;
1187  }
1188
1189  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1190                                     unsigned Offset = 0) {
1191    AvailableValueInBlock Res;
1192    Res.BB = BB;
1193    Res.Val.setPointer(MI);
1194    Res.Val.setInt(MemIntrin);
1195    Res.Offset = Offset;
1196    return Res;
1197  }
1198
1199  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1200                                       unsigned Offset = 0) {
1201    AvailableValueInBlock Res;
1202    Res.BB = BB;
1203    Res.Val.setPointer(LI);
1204    Res.Val.setInt(LoadVal);
1205    Res.Offset = Offset;
1206    return Res;
1207  }
1208
1209  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1210  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1211  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1212
1213  Value *getSimpleValue() const {
1214    assert(isSimpleValue() && "Wrong accessor");
1215    return Val.getPointer();
1216  }
1217
1218  LoadInst *getCoercedLoadValue() const {
1219    assert(isCoercedLoadValue() && "Wrong accessor");
1220    return cast<LoadInst>(Val.getPointer());
1221  }
1222
1223  MemIntrinsic *getMemIntrinValue() const {
1224    assert(isMemIntrinValue() && "Wrong accessor");
1225    return cast<MemIntrinsic>(Val.getPointer());
1226  }
1227
1228  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1229  /// defined here to the specified type.  This handles various coercion cases.
1230  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1231    Value *Res;
1232    if (isSimpleValue()) {
1233      Res = getSimpleValue();
1234      if (Res->getType() != LoadTy) {
1235        const DataLayout *TD = gvn.getDataLayout();
1236        assert(TD && "Need target data to handle type mismatch case");
1237        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1238                                   *TD);
1239
1240        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1241                     << *getSimpleValue() << '\n'
1242                     << *Res << '\n' << "\n\n\n");
1243      }
1244    } else if (isCoercedLoadValue()) {
1245      LoadInst *Load = getCoercedLoadValue();
1246      if (Load->getType() == LoadTy && Offset == 0) {
1247        Res = Load;
1248      } else {
1249        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1250                                  gvn);
1251
1252        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1253                     << *getCoercedLoadValue() << '\n'
1254                     << *Res << '\n' << "\n\n\n");
1255      }
1256    } else {
1257      const DataLayout *TD = gvn.getDataLayout();
1258      assert(TD && "Need target data to handle type mismatch case");
1259      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1260                                   LoadTy, BB->getTerminator(), *TD);
1261      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1262                   << "  " << *getMemIntrinValue() << '\n'
1263                   << *Res << '\n' << "\n\n\n");
1264    }
1265    return Res;
1266  }
1267};
1268
1269} // end anonymous namespace
1270
1271/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1272/// construct SSA form, allowing us to eliminate LI.  This returns the value
1273/// that should be used at LI's definition site.
1274static Value *ConstructSSAForLoadSet(LoadInst *LI,
1275                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1276                                     GVN &gvn) {
1277  // Check for the fully redundant, dominating load case.  In this case, we can
1278  // just use the dominating value directly.
1279  if (ValuesPerBlock.size() == 1 &&
1280      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1281                                               LI->getParent()))
1282    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1283
1284  // Otherwise, we have to construct SSA form.
1285  SmallVector<PHINode*, 8> NewPHIs;
1286  SSAUpdater SSAUpdate(&NewPHIs);
1287  SSAUpdate.Initialize(LI->getType(), LI->getName());
1288
1289  Type *LoadTy = LI->getType();
1290
1291  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1292    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1293    BasicBlock *BB = AV.BB;
1294
1295    if (SSAUpdate.HasValueForBlock(BB))
1296      continue;
1297
1298    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1299  }
1300
1301  // Perform PHI construction.
1302  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1303
1304  // If new PHI nodes were created, notify alias analysis.
1305  if (V->getType()->getScalarType()->isPointerTy()) {
1306    AliasAnalysis *AA = gvn.getAliasAnalysis();
1307
1308    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1309      AA->copyValue(LI, NewPHIs[i]);
1310
1311    // Now that we've copied information to the new PHIs, scan through
1312    // them again and inform alias analysis that we've added potentially
1313    // escaping uses to any values that are operands to these PHIs.
1314    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1315      PHINode *P = NewPHIs[i];
1316      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1317        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1318        AA->addEscapingUse(P->getOperandUse(jj));
1319      }
1320    }
1321  }
1322
1323  return V;
1324}
1325
1326static bool isLifetimeStart(const Instruction *Inst) {
1327  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1328    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1329  return false;
1330}
1331
1332/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1333/// non-local by performing PHI construction.
1334bool GVN::processNonLocalLoad(LoadInst *LI) {
1335  // Find the non-local dependencies of the load.
1336  SmallVector<NonLocalDepResult, 64> Deps;
1337  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1338  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1339  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1340  //             << Deps.size() << *LI << '\n');
1341
1342  // If we had to process more than one hundred blocks to find the
1343  // dependencies, this load isn't worth worrying about.  Optimizing
1344  // it will be too expensive.
1345  unsigned NumDeps = Deps.size();
1346  if (NumDeps > 100)
1347    return false;
1348
1349  // If we had a phi translation failure, we'll have a single entry which is a
1350  // clobber in the current block.  Reject this early.
1351  if (NumDeps == 1 &&
1352      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1353    DEBUG(
1354      dbgs() << "GVN: non-local load ";
1355      WriteAsOperand(dbgs(), LI);
1356      dbgs() << " has unknown dependencies\n";
1357    );
1358    return false;
1359  }
1360
1361  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1362  // where we have a value available in repl, also keep track of whether we see
1363  // dependencies that produce an unknown value for the load (such as a call
1364  // that could potentially clobber the load).
1365  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1366  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1367
1368  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1369    BasicBlock *DepBB = Deps[i].getBB();
1370    MemDepResult DepInfo = Deps[i].getResult();
1371
1372    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1373      UnavailableBlocks.push_back(DepBB);
1374      continue;
1375    }
1376
1377    if (DepInfo.isClobber()) {
1378      // The address being loaded in this non-local block may not be the same as
1379      // the pointer operand of the load if PHI translation occurs.  Make sure
1380      // to consider the right address.
1381      Value *Address = Deps[i].getAddress();
1382
1383      // If the dependence is to a store that writes to a superset of the bits
1384      // read by the load, we can extract the bits we need for the load from the
1385      // stored value.
1386      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1387        if (TD && Address) {
1388          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1389                                                      DepSI, *TD);
1390          if (Offset != -1) {
1391            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1392                                                       DepSI->getValueOperand(),
1393                                                                Offset));
1394            continue;
1395          }
1396        }
1397      }
1398
1399      // Check to see if we have something like this:
1400      //    load i32* P
1401      //    load i8* (P+1)
1402      // if we have this, replace the later with an extraction from the former.
1403      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1404        // If this is a clobber and L is the first instruction in its block, then
1405        // we have the first instruction in the entry block.
1406        if (DepLI != LI && Address && TD) {
1407          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1408                                                     LI->getPointerOperand(),
1409                                                     DepLI, *TD);
1410
1411          if (Offset != -1) {
1412            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1413                                                                    Offset));
1414            continue;
1415          }
1416        }
1417      }
1418
1419      // If the clobbering value is a memset/memcpy/memmove, see if we can
1420      // forward a value on from it.
1421      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1422        if (TD && Address) {
1423          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1424                                                        DepMI, *TD);
1425          if (Offset != -1) {
1426            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1427                                                                  Offset));
1428            continue;
1429          }
1430        }
1431      }
1432
1433      UnavailableBlocks.push_back(DepBB);
1434      continue;
1435    }
1436
1437    // DepInfo.isDef() here
1438
1439    Instruction *DepInst = DepInfo.getInst();
1440
1441    // Loading the allocation -> undef.
1442    if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1443        // Loading immediately after lifetime begin -> undef.
1444        isLifetimeStart(DepInst)) {
1445      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1446                                             UndefValue::get(LI->getType())));
1447      continue;
1448    }
1449
1450    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1451      // Reject loads and stores that are to the same address but are of
1452      // different types if we have to.
1453      if (S->getValueOperand()->getType() != LI->getType()) {
1454        // If the stored value is larger or equal to the loaded value, we can
1455        // reuse it.
1456        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1457                                                        LI->getType(), *TD)) {
1458          UnavailableBlocks.push_back(DepBB);
1459          continue;
1460        }
1461      }
1462
1463      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1464                                                         S->getValueOperand()));
1465      continue;
1466    }
1467
1468    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1469      // If the types mismatch and we can't handle it, reject reuse of the load.
1470      if (LD->getType() != LI->getType()) {
1471        // If the stored value is larger or equal to the loaded value, we can
1472        // reuse it.
1473        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1474          UnavailableBlocks.push_back(DepBB);
1475          continue;
1476        }
1477      }
1478      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1479      continue;
1480    }
1481
1482    UnavailableBlocks.push_back(DepBB);
1483    continue;
1484  }
1485
1486  // If we have no predecessors that produce a known value for this load, exit
1487  // early.
1488  if (ValuesPerBlock.empty()) return false;
1489
1490  // If all of the instructions we depend on produce a known value for this
1491  // load, then it is fully redundant and we can use PHI insertion to compute
1492  // its value.  Insert PHIs and remove the fully redundant value now.
1493  if (UnavailableBlocks.empty()) {
1494    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1495
1496    // Perform PHI construction.
1497    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1498    LI->replaceAllUsesWith(V);
1499
1500    if (isa<PHINode>(V))
1501      V->takeName(LI);
1502    if (V->getType()->getScalarType()->isPointerTy())
1503      MD->invalidateCachedPointerInfo(V);
1504    markInstructionForDeletion(LI);
1505    ++NumGVNLoad;
1506    return true;
1507  }
1508
1509  if (!EnablePRE || !EnableLoadPRE)
1510    return false;
1511
1512  // Okay, we have *some* definitions of the value.  This means that the value
1513  // is available in some of our (transitive) predecessors.  Lets think about
1514  // doing PRE of this load.  This will involve inserting a new load into the
1515  // predecessor when it's not available.  We could do this in general, but
1516  // prefer to not increase code size.  As such, we only do this when we know
1517  // that we only have to insert *one* load (which means we're basically moving
1518  // the load, not inserting a new one).
1519
1520  SmallPtrSet<BasicBlock *, 4> Blockers;
1521  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1522    Blockers.insert(UnavailableBlocks[i]);
1523
1524  // Let's find the first basic block with more than one predecessor.  Walk
1525  // backwards through predecessors if needed.
1526  BasicBlock *LoadBB = LI->getParent();
1527  BasicBlock *TmpBB = LoadBB;
1528
1529  while (TmpBB->getSinglePredecessor()) {
1530    TmpBB = TmpBB->getSinglePredecessor();
1531    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1532      return false;
1533    if (Blockers.count(TmpBB))
1534      return false;
1535
1536    // If any of these blocks has more than one successor (i.e. if the edge we
1537    // just traversed was critical), then there are other paths through this
1538    // block along which the load may not be anticipated.  Hoisting the load
1539    // above this block would be adding the load to execution paths along
1540    // which it was not previously executed.
1541    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1542      return false;
1543  }
1544
1545  assert(TmpBB);
1546  LoadBB = TmpBB;
1547
1548  // Check to see how many predecessors have the loaded value fully
1549  // available.
1550  DenseMap<BasicBlock*, Value*> PredLoads;
1551  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1552  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1553    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1554  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1555    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1556
1557  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1558  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1559       PI != E; ++PI) {
1560    BasicBlock *Pred = *PI;
1561    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1562      continue;
1563    }
1564    PredLoads[Pred] = 0;
1565
1566    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1567      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1568        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1569              << Pred->getName() << "': " << *LI << '\n');
1570        return false;
1571      }
1572
1573      if (LoadBB->isLandingPad()) {
1574        DEBUG(dbgs()
1575              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1576              << Pred->getName() << "': " << *LI << '\n');
1577        return false;
1578      }
1579
1580      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1581      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1582    }
1583  }
1584
1585  if (!NeedToSplit.empty()) {
1586    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1587    return false;
1588  }
1589
1590  // Decide whether PRE is profitable for this load.
1591  unsigned NumUnavailablePreds = PredLoads.size();
1592  assert(NumUnavailablePreds != 0 &&
1593         "Fully available value should be eliminated above!");
1594
1595  // If this load is unavailable in multiple predecessors, reject it.
1596  // FIXME: If we could restructure the CFG, we could make a common pred with
1597  // all the preds that don't have an available LI and insert a new load into
1598  // that one block.
1599  if (NumUnavailablePreds != 1)
1600      return false;
1601
1602  // Check if the load can safely be moved to all the unavailable predecessors.
1603  bool CanDoPRE = true;
1604  SmallVector<Instruction*, 8> NewInsts;
1605  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1606         E = PredLoads.end(); I != E; ++I) {
1607    BasicBlock *UnavailablePred = I->first;
1608
1609    // Do PHI translation to get its value in the predecessor if necessary.  The
1610    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1611
1612    // If all preds have a single successor, then we know it is safe to insert
1613    // the load on the pred (?!?), so we can insert code to materialize the
1614    // pointer if it is not available.
1615    PHITransAddr Address(LI->getPointerOperand(), TD);
1616    Value *LoadPtr = 0;
1617    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1618                                                *DT, NewInsts);
1619
1620    // If we couldn't find or insert a computation of this phi translated value,
1621    // we fail PRE.
1622    if (LoadPtr == 0) {
1623      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1624            << *LI->getPointerOperand() << "\n");
1625      CanDoPRE = false;
1626      break;
1627    }
1628
1629    I->second = LoadPtr;
1630  }
1631
1632  if (!CanDoPRE) {
1633    while (!NewInsts.empty()) {
1634      Instruction *I = NewInsts.pop_back_val();
1635      if (MD) MD->removeInstruction(I);
1636      I->eraseFromParent();
1637    }
1638    return false;
1639  }
1640
1641  // Okay, we can eliminate this load by inserting a reload in the predecessor
1642  // and using PHI construction to get the value in the other predecessors, do
1643  // it.
1644  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1645  DEBUG(if (!NewInsts.empty())
1646          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1647                 << *NewInsts.back() << '\n');
1648
1649  // Assign value numbers to the new instructions.
1650  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1651    // FIXME: We really _ought_ to insert these value numbers into their
1652    // parent's availability map.  However, in doing so, we risk getting into
1653    // ordering issues.  If a block hasn't been processed yet, we would be
1654    // marking a value as AVAIL-IN, which isn't what we intend.
1655    VN.lookup_or_add(NewInsts[i]);
1656  }
1657
1658  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1659         E = PredLoads.end(); I != E; ++I) {
1660    BasicBlock *UnavailablePred = I->first;
1661    Value *LoadPtr = I->second;
1662
1663    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1664                                        LI->getAlignment(),
1665                                        UnavailablePred->getTerminator());
1666
1667    // Transfer the old load's TBAA tag to the new load.
1668    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1669      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1670
1671    // Transfer DebugLoc.
1672    NewLoad->setDebugLoc(LI->getDebugLoc());
1673
1674    // Add the newly created load.
1675    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1676                                                        NewLoad));
1677    MD->invalidateCachedPointerInfo(LoadPtr);
1678    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1679  }
1680
1681  // Perform PHI construction.
1682  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1683  LI->replaceAllUsesWith(V);
1684  if (isa<PHINode>(V))
1685    V->takeName(LI);
1686  if (V->getType()->getScalarType()->isPointerTy())
1687    MD->invalidateCachedPointerInfo(V);
1688  markInstructionForDeletion(LI);
1689  ++NumPRELoad;
1690  return true;
1691}
1692
1693static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1694  // Patch the replacement so that it is not more restrictive than the value
1695  // being replaced.
1696  BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1697  BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1698  if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1699      isa<OverflowingBinaryOperator>(ReplOp)) {
1700    if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1701      ReplOp->setHasNoSignedWrap(false);
1702    if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1703      ReplOp->setHasNoUnsignedWrap(false);
1704  }
1705  if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1706    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1707    ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1708    for (int i = 0, n = Metadata.size(); i < n; ++i) {
1709      unsigned Kind = Metadata[i].first;
1710      MDNode *IMD = I->getMetadata(Kind);
1711      MDNode *ReplMD = Metadata[i].second;
1712      switch(Kind) {
1713      default:
1714        ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
1715        break;
1716      case LLVMContext::MD_dbg:
1717        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1718      case LLVMContext::MD_tbaa:
1719        ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1720        break;
1721      case LLVMContext::MD_range:
1722        ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1723        break;
1724      case LLVMContext::MD_prof:
1725        llvm_unreachable("MD_prof in a non terminator instruction");
1726        break;
1727      case LLVMContext::MD_fpmath:
1728        ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1729        break;
1730      }
1731    }
1732  }
1733}
1734
1735static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1736  patchReplacementInstruction(I, Repl);
1737  I->replaceAllUsesWith(Repl);
1738}
1739
1740/// processLoad - Attempt to eliminate a load, first by eliminating it
1741/// locally, and then attempting non-local elimination if that fails.
1742bool GVN::processLoad(LoadInst *L) {
1743  if (!MD)
1744    return false;
1745
1746  if (!L->isSimple())
1747    return false;
1748
1749  if (L->use_empty()) {
1750    markInstructionForDeletion(L);
1751    return true;
1752  }
1753
1754  // ... to a pointer that has been loaded from before...
1755  MemDepResult Dep = MD->getDependency(L);
1756
1757  // If we have a clobber and target data is around, see if this is a clobber
1758  // that we can fix up through code synthesis.
1759  if (Dep.isClobber() && TD) {
1760    // Check to see if we have something like this:
1761    //   store i32 123, i32* %P
1762    //   %A = bitcast i32* %P to i8*
1763    //   %B = gep i8* %A, i32 1
1764    //   %C = load i8* %B
1765    //
1766    // We could do that by recognizing if the clobber instructions are obviously
1767    // a common base + constant offset, and if the previous store (or memset)
1768    // completely covers this load.  This sort of thing can happen in bitfield
1769    // access code.
1770    Value *AvailVal = 0;
1771    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1772      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1773                                                  L->getPointerOperand(),
1774                                                  DepSI, *TD);
1775      if (Offset != -1)
1776        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1777                                        L->getType(), L, *TD);
1778    }
1779
1780    // Check to see if we have something like this:
1781    //    load i32* P
1782    //    load i8* (P+1)
1783    // if we have this, replace the later with an extraction from the former.
1784    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1785      // If this is a clobber and L is the first instruction in its block, then
1786      // we have the first instruction in the entry block.
1787      if (DepLI == L)
1788        return false;
1789
1790      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1791                                                 L->getPointerOperand(),
1792                                                 DepLI, *TD);
1793      if (Offset != -1)
1794        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1795    }
1796
1797    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1798    // a value on from it.
1799    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1800      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1801                                                    L->getPointerOperand(),
1802                                                    DepMI, *TD);
1803      if (Offset != -1)
1804        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1805    }
1806
1807    if (AvailVal) {
1808      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1809            << *AvailVal << '\n' << *L << "\n\n\n");
1810
1811      // Replace the load!
1812      L->replaceAllUsesWith(AvailVal);
1813      if (AvailVal->getType()->getScalarType()->isPointerTy())
1814        MD->invalidateCachedPointerInfo(AvailVal);
1815      markInstructionForDeletion(L);
1816      ++NumGVNLoad;
1817      return true;
1818    }
1819  }
1820
1821  // If the value isn't available, don't do anything!
1822  if (Dep.isClobber()) {
1823    DEBUG(
1824      // fast print dep, using operator<< on instruction is too slow.
1825      dbgs() << "GVN: load ";
1826      WriteAsOperand(dbgs(), L);
1827      Instruction *I = Dep.getInst();
1828      dbgs() << " is clobbered by " << *I << '\n';
1829    );
1830    return false;
1831  }
1832
1833  // If it is defined in another block, try harder.
1834  if (Dep.isNonLocal())
1835    return processNonLocalLoad(L);
1836
1837  if (!Dep.isDef()) {
1838    DEBUG(
1839      // fast print dep, using operator<< on instruction is too slow.
1840      dbgs() << "GVN: load ";
1841      WriteAsOperand(dbgs(), L);
1842      dbgs() << " has unknown dependence\n";
1843    );
1844    return false;
1845  }
1846
1847  Instruction *DepInst = Dep.getInst();
1848  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1849    Value *StoredVal = DepSI->getValueOperand();
1850
1851    // The store and load are to a must-aliased pointer, but they may not
1852    // actually have the same type.  See if we know how to reuse the stored
1853    // value (depending on its type).
1854    if (StoredVal->getType() != L->getType()) {
1855      if (TD) {
1856        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1857                                                   L, *TD);
1858        if (StoredVal == 0)
1859          return false;
1860
1861        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1862                     << '\n' << *L << "\n\n\n");
1863      }
1864      else
1865        return false;
1866    }
1867
1868    // Remove it!
1869    L->replaceAllUsesWith(StoredVal);
1870    if (StoredVal->getType()->getScalarType()->isPointerTy())
1871      MD->invalidateCachedPointerInfo(StoredVal);
1872    markInstructionForDeletion(L);
1873    ++NumGVNLoad;
1874    return true;
1875  }
1876
1877  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1878    Value *AvailableVal = DepLI;
1879
1880    // The loads are of a must-aliased pointer, but they may not actually have
1881    // the same type.  See if we know how to reuse the previously loaded value
1882    // (depending on its type).
1883    if (DepLI->getType() != L->getType()) {
1884      if (TD) {
1885        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1886                                                      L, *TD);
1887        if (AvailableVal == 0)
1888          return false;
1889
1890        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1891                     << "\n" << *L << "\n\n\n");
1892      }
1893      else
1894        return false;
1895    }
1896
1897    // Remove it!
1898    patchAndReplaceAllUsesWith(L, AvailableVal);
1899    if (DepLI->getType()->getScalarType()->isPointerTy())
1900      MD->invalidateCachedPointerInfo(DepLI);
1901    markInstructionForDeletion(L);
1902    ++NumGVNLoad;
1903    return true;
1904  }
1905
1906  // If this load really doesn't depend on anything, then we must be loading an
1907  // undef value.  This can happen when loading for a fresh allocation with no
1908  // intervening stores, for example.
1909  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1910    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1911    markInstructionForDeletion(L);
1912    ++NumGVNLoad;
1913    return true;
1914  }
1915
1916  // If this load occurs either right after a lifetime begin,
1917  // then the loaded value is undefined.
1918  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1919    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1920      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1921      markInstructionForDeletion(L);
1922      ++NumGVNLoad;
1923      return true;
1924    }
1925  }
1926
1927  return false;
1928}
1929
1930// findLeader - In order to find a leader for a given value number at a
1931// specific basic block, we first obtain the list of all Values for that number,
1932// and then scan the list to find one whose block dominates the block in
1933// question.  This is fast because dominator tree queries consist of only
1934// a few comparisons of DFS numbers.
1935Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1936  LeaderTableEntry Vals = LeaderTable[num];
1937  if (!Vals.Val) return 0;
1938
1939  Value *Val = 0;
1940  if (DT->dominates(Vals.BB, BB)) {
1941    Val = Vals.Val;
1942    if (isa<Constant>(Val)) return Val;
1943  }
1944
1945  LeaderTableEntry* Next = Vals.Next;
1946  while (Next) {
1947    if (DT->dominates(Next->BB, BB)) {
1948      if (isa<Constant>(Next->Val)) return Next->Val;
1949      if (!Val) Val = Next->Val;
1950    }
1951
1952    Next = Next->Next;
1953  }
1954
1955  return Val;
1956}
1957
1958/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1959/// use is dominated by the given basic block.  Returns the number of uses that
1960/// were replaced.
1961unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1962                                          const BasicBlockEdge &Root) {
1963  unsigned Count = 0;
1964  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1965       UI != UE; ) {
1966    Use &U = (UI++).getUse();
1967
1968    if (DT->dominates(Root, U)) {
1969      U.set(To);
1970      ++Count;
1971    }
1972  }
1973  return Count;
1974}
1975
1976/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
1977/// true if every path from the entry block to 'Dst' passes via this edge.  In
1978/// particular 'Dst' must not be reachable via another edge from 'Src'.
1979static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1980                                       DominatorTree *DT) {
1981  // While in theory it is interesting to consider the case in which Dst has
1982  // more than one predecessor, because Dst might be part of a loop which is
1983  // only reachable from Src, in practice it is pointless since at the time
1984  // GVN runs all such loops have preheaders, which means that Dst will have
1985  // been changed to have only one predecessor, namely Src.
1986  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1987  const BasicBlock *Src = E.getStart();
1988  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
1989  (void)Src;
1990  return Pred != 0;
1991}
1992
1993/// propagateEquality - The given values are known to be equal in every block
1994/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1995/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1996bool GVN::propagateEquality(Value *LHS, Value *RHS,
1997                            const BasicBlockEdge &Root) {
1998  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1999  Worklist.push_back(std::make_pair(LHS, RHS));
2000  bool Changed = false;
2001  // For speed, compute a conservative fast approximation to
2002  // DT->dominates(Root, Root.getEnd());
2003  bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2004
2005  while (!Worklist.empty()) {
2006    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2007    LHS = Item.first; RHS = Item.second;
2008
2009    if (LHS == RHS) continue;
2010    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2011
2012    // Don't try to propagate equalities between constants.
2013    if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2014
2015    // Prefer a constant on the right-hand side, or an Argument if no constants.
2016    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2017      std::swap(LHS, RHS);
2018    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2019
2020    // If there is no obvious reason to prefer the left-hand side over the right-
2021    // hand side, ensure the longest lived term is on the right-hand side, so the
2022    // shortest lived term will be replaced by the longest lived.  This tends to
2023    // expose more simplifications.
2024    uint32_t LVN = VN.lookup_or_add(LHS);
2025    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2026        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2027      // Move the 'oldest' value to the right-hand side, using the value number as
2028      // a proxy for age.
2029      uint32_t RVN = VN.lookup_or_add(RHS);
2030      if (LVN < RVN) {
2031        std::swap(LHS, RHS);
2032        LVN = RVN;
2033      }
2034    }
2035
2036    // If value numbering later sees that an instruction in the scope is equal
2037    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2038    // the invariant that instructions only occur in the leader table for their
2039    // own value number (this is used by removeFromLeaderTable), do not do this
2040    // if RHS is an instruction (if an instruction in the scope is morphed into
2041    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2042    // using the leader table is about compiling faster, not optimizing better).
2043    // The leader table only tracks basic blocks, not edges. Only add to if we
2044    // have the simple case where the edge dominates the end.
2045    if (RootDominatesEnd && !isa<Instruction>(RHS))
2046      addToLeaderTable(LVN, RHS, Root.getEnd());
2047
2048    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2049    // LHS always has at least one use that is not dominated by Root, this will
2050    // never do anything if LHS has only one use.
2051    if (!LHS->hasOneUse()) {
2052      unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2053      Changed |= NumReplacements > 0;
2054      NumGVNEqProp += NumReplacements;
2055    }
2056
2057    // Now try to deduce additional equalities from this one.  For example, if the
2058    // known equality was "(A != B)" == "false" then it follows that A and B are
2059    // equal in the scope.  Only boolean equalities with an explicit true or false
2060    // RHS are currently supported.
2061    if (!RHS->getType()->isIntegerTy(1))
2062      // Not a boolean equality - bail out.
2063      continue;
2064    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2065    if (!CI)
2066      // RHS neither 'true' nor 'false' - bail out.
2067      continue;
2068    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2069    bool isKnownTrue = CI->isAllOnesValue();
2070    bool isKnownFalse = !isKnownTrue;
2071
2072    // If "A && B" is known true then both A and B are known true.  If "A || B"
2073    // is known false then both A and B are known false.
2074    Value *A, *B;
2075    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2076        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2077      Worklist.push_back(std::make_pair(A, RHS));
2078      Worklist.push_back(std::make_pair(B, RHS));
2079      continue;
2080    }
2081
2082    // If we are propagating an equality like "(A == B)" == "true" then also
2083    // propagate the equality A == B.  When propagating a comparison such as
2084    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2085    if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2086      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2087
2088      // If "A == B" is known true, or "A != B" is known false, then replace
2089      // A with B everywhere in the scope.
2090      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2091          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2092        Worklist.push_back(std::make_pair(Op0, Op1));
2093
2094      // If "A >= B" is known true, replace "A < B" with false everywhere.
2095      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2096      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2097      // Since we don't have the instruction "A < B" immediately to hand, work out
2098      // the value number that it would have and use that to find an appropriate
2099      // instruction (if any).
2100      uint32_t NextNum = VN.getNextUnusedValueNumber();
2101      uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2102      // If the number we were assigned was brand new then there is no point in
2103      // looking for an instruction realizing it: there cannot be one!
2104      if (Num < NextNum) {
2105        Value *NotCmp = findLeader(Root.getEnd(), Num);
2106        if (NotCmp && isa<Instruction>(NotCmp)) {
2107          unsigned NumReplacements =
2108            replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2109          Changed |= NumReplacements > 0;
2110          NumGVNEqProp += NumReplacements;
2111        }
2112      }
2113      // Ensure that any instruction in scope that gets the "A < B" value number
2114      // is replaced with false.
2115      // The leader table only tracks basic blocks, not edges. Only add to if we
2116      // have the simple case where the edge dominates the end.
2117      if (RootDominatesEnd)
2118        addToLeaderTable(Num, NotVal, Root.getEnd());
2119
2120      continue;
2121    }
2122  }
2123
2124  return Changed;
2125}
2126
2127/// processInstruction - When calculating availability, handle an instruction
2128/// by inserting it into the appropriate sets
2129bool GVN::processInstruction(Instruction *I) {
2130  // Ignore dbg info intrinsics.
2131  if (isa<DbgInfoIntrinsic>(I))
2132    return false;
2133
2134  // If the instruction can be easily simplified then do so now in preference
2135  // to value numbering it.  Value numbering often exposes redundancies, for
2136  // example if it determines that %y is equal to %x then the instruction
2137  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2138  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2139    I->replaceAllUsesWith(V);
2140    if (MD && V->getType()->getScalarType()->isPointerTy())
2141      MD->invalidateCachedPointerInfo(V);
2142    markInstructionForDeletion(I);
2143    ++NumGVNSimpl;
2144    return true;
2145  }
2146
2147  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2148    if (processLoad(LI))
2149      return true;
2150
2151    unsigned Num = VN.lookup_or_add(LI);
2152    addToLeaderTable(Num, LI, LI->getParent());
2153    return false;
2154  }
2155
2156  // For conditional branches, we can perform simple conditional propagation on
2157  // the condition value itself.
2158  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2159    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2160      return false;
2161
2162    Value *BranchCond = BI->getCondition();
2163
2164    BasicBlock *TrueSucc = BI->getSuccessor(0);
2165    BasicBlock *FalseSucc = BI->getSuccessor(1);
2166    // Avoid multiple edges early.
2167    if (TrueSucc == FalseSucc)
2168      return false;
2169
2170    BasicBlock *Parent = BI->getParent();
2171    bool Changed = false;
2172
2173    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2174    BasicBlockEdge TrueE(Parent, TrueSucc);
2175    Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2176
2177    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2178    BasicBlockEdge FalseE(Parent, FalseSucc);
2179    Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2180
2181    return Changed;
2182  }
2183
2184  // For switches, propagate the case values into the case destinations.
2185  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2186    Value *SwitchCond = SI->getCondition();
2187    BasicBlock *Parent = SI->getParent();
2188    bool Changed = false;
2189
2190    // Remember how many outgoing edges there are to every successor.
2191    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2192    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2193      ++SwitchEdges[SI->getSuccessor(i)];
2194
2195    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2196         i != e; ++i) {
2197      BasicBlock *Dst = i.getCaseSuccessor();
2198      // If there is only a single edge, propagate the case value into it.
2199      if (SwitchEdges.lookup(Dst) == 1) {
2200        BasicBlockEdge E(Parent, Dst);
2201        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2202      }
2203    }
2204    return Changed;
2205  }
2206
2207  // Instructions with void type don't return a value, so there's
2208  // no point in trying to find redundancies in them.
2209  if (I->getType()->isVoidTy()) return false;
2210
2211  uint32_t NextNum = VN.getNextUnusedValueNumber();
2212  unsigned Num = VN.lookup_or_add(I);
2213
2214  // Allocations are always uniquely numbered, so we can save time and memory
2215  // by fast failing them.
2216  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2217    addToLeaderTable(Num, I, I->getParent());
2218    return false;
2219  }
2220
2221  // If the number we were assigned was a brand new VN, then we don't
2222  // need to do a lookup to see if the number already exists
2223  // somewhere in the domtree: it can't!
2224  if (Num >= NextNum) {
2225    addToLeaderTable(Num, I, I->getParent());
2226    return false;
2227  }
2228
2229  // Perform fast-path value-number based elimination of values inherited from
2230  // dominators.
2231  Value *repl = findLeader(I->getParent(), Num);
2232  if (repl == 0) {
2233    // Failure, just remember this instance for future use.
2234    addToLeaderTable(Num, I, I->getParent());
2235    return false;
2236  }
2237
2238  // Remove it!
2239  patchAndReplaceAllUsesWith(I, repl);
2240  if (MD && repl->getType()->getScalarType()->isPointerTy())
2241    MD->invalidateCachedPointerInfo(repl);
2242  markInstructionForDeletion(I);
2243  return true;
2244}
2245
2246/// runOnFunction - This is the main transformation entry point for a function.
2247bool GVN::runOnFunction(Function& F) {
2248  if (!NoLoads)
2249    MD = &getAnalysis<MemoryDependenceAnalysis>();
2250  DT = &getAnalysis<DominatorTree>();
2251  TD = getAnalysisIfAvailable<DataLayout>();
2252  TLI = &getAnalysis<TargetLibraryInfo>();
2253  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2254  VN.setMemDep(MD);
2255  VN.setDomTree(DT);
2256
2257  bool Changed = false;
2258  bool ShouldContinue = true;
2259
2260  // Merge unconditional branches, allowing PRE to catch more
2261  // optimization opportunities.
2262  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2263    BasicBlock *BB = FI++;
2264
2265    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2266    if (removedBlock) ++NumGVNBlocks;
2267
2268    Changed |= removedBlock;
2269  }
2270
2271  unsigned Iteration = 0;
2272  while (ShouldContinue) {
2273    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2274    ShouldContinue = iterateOnFunction(F);
2275    if (splitCriticalEdges())
2276      ShouldContinue = true;
2277    Changed |= ShouldContinue;
2278    ++Iteration;
2279  }
2280
2281  if (EnablePRE) {
2282    bool PREChanged = true;
2283    while (PREChanged) {
2284      PREChanged = performPRE(F);
2285      Changed |= PREChanged;
2286    }
2287  }
2288  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2289  // computations into blocks where they become fully redundant.  Note that
2290  // we can't do this until PRE's critical edge splitting updates memdep.
2291  // Actually, when this happens, we should just fully integrate PRE into GVN.
2292
2293  cleanupGlobalSets();
2294
2295  return Changed;
2296}
2297
2298
2299bool GVN::processBlock(BasicBlock *BB) {
2300  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2301  // (and incrementing BI before processing an instruction).
2302  assert(InstrsToErase.empty() &&
2303         "We expect InstrsToErase to be empty across iterations");
2304  bool ChangedFunction = false;
2305
2306  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2307       BI != BE;) {
2308    ChangedFunction |= processInstruction(BI);
2309    if (InstrsToErase.empty()) {
2310      ++BI;
2311      continue;
2312    }
2313
2314    // If we need some instructions deleted, do it now.
2315    NumGVNInstr += InstrsToErase.size();
2316
2317    // Avoid iterator invalidation.
2318    bool AtStart = BI == BB->begin();
2319    if (!AtStart)
2320      --BI;
2321
2322    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2323         E = InstrsToErase.end(); I != E; ++I) {
2324      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2325      if (MD) MD->removeInstruction(*I);
2326      DEBUG(verifyRemoved(*I));
2327      (*I)->eraseFromParent();
2328    }
2329    InstrsToErase.clear();
2330
2331    if (AtStart)
2332      BI = BB->begin();
2333    else
2334      ++BI;
2335  }
2336
2337  return ChangedFunction;
2338}
2339
2340/// performPRE - Perform a purely local form of PRE that looks for diamond
2341/// control flow patterns and attempts to perform simple PRE at the join point.
2342bool GVN::performPRE(Function &F) {
2343  bool Changed = false;
2344  SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
2345  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2346       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2347    BasicBlock *CurrentBlock = *DI;
2348
2349    // Nothing to PRE in the entry block.
2350    if (CurrentBlock == &F.getEntryBlock()) continue;
2351
2352    // Don't perform PRE on a landing pad.
2353    if (CurrentBlock->isLandingPad()) continue;
2354
2355    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2356         BE = CurrentBlock->end(); BI != BE; ) {
2357      Instruction *CurInst = BI++;
2358
2359      if (isa<AllocaInst>(CurInst) ||
2360          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2361          CurInst->getType()->isVoidTy() ||
2362          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2363          isa<DbgInfoIntrinsic>(CurInst))
2364        continue;
2365
2366      // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2367      // sinking the compare again, and it would force the code generator to
2368      // move the i1 from processor flags or predicate registers into a general
2369      // purpose register.
2370      if (isa<CmpInst>(CurInst))
2371        continue;
2372
2373      // We don't currently value number ANY inline asm calls.
2374      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2375        if (CallI->isInlineAsm())
2376          continue;
2377
2378      uint32_t ValNo = VN.lookup(CurInst);
2379
2380      // Look for the predecessors for PRE opportunities.  We're
2381      // only trying to solve the basic diamond case, where
2382      // a value is computed in the successor and one predecessor,
2383      // but not the other.  We also explicitly disallow cases
2384      // where the successor is its own predecessor, because they're
2385      // more complicated to get right.
2386      unsigned NumWith = 0;
2387      unsigned NumWithout = 0;
2388      BasicBlock *PREPred = 0;
2389      predMap.clear();
2390
2391      for (pred_iterator PI = pred_begin(CurrentBlock),
2392           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2393        BasicBlock *P = *PI;
2394        // We're not interested in PRE where the block is its
2395        // own predecessor, or in blocks with predecessors
2396        // that are not reachable.
2397        if (P == CurrentBlock) {
2398          NumWithout = 2;
2399          break;
2400        } else if (!DT->isReachableFromEntry(P))  {
2401          NumWithout = 2;
2402          break;
2403        }
2404
2405        Value* predV = findLeader(P, ValNo);
2406        if (predV == 0) {
2407          predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
2408          PREPred = P;
2409          ++NumWithout;
2410        } else if (predV == CurInst) {
2411          /* CurInst dominates this predecessor. */
2412          NumWithout = 2;
2413          break;
2414        } else {
2415          predMap.push_back(std::make_pair(predV, P));
2416          ++NumWith;
2417        }
2418      }
2419
2420      // Don't do PRE when it might increase code size, i.e. when
2421      // we would need to insert instructions in more than one pred.
2422      if (NumWithout != 1 || NumWith == 0)
2423        continue;
2424
2425      // Don't do PRE across indirect branch.
2426      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2427        continue;
2428
2429      // We can't do PRE safely on a critical edge, so instead we schedule
2430      // the edge to be split and perform the PRE the next time we iterate
2431      // on the function.
2432      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2433      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2434        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2435        continue;
2436      }
2437
2438      // Instantiate the expression in the predecessor that lacked it.
2439      // Because we are going top-down through the block, all value numbers
2440      // will be available in the predecessor by the time we need them.  Any
2441      // that weren't originally present will have been instantiated earlier
2442      // in this loop.
2443      Instruction *PREInstr = CurInst->clone();
2444      bool success = true;
2445      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2446        Value *Op = PREInstr->getOperand(i);
2447        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2448          continue;
2449
2450        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2451          PREInstr->setOperand(i, V);
2452        } else {
2453          success = false;
2454          break;
2455        }
2456      }
2457
2458      // Fail out if we encounter an operand that is not available in
2459      // the PRE predecessor.  This is typically because of loads which
2460      // are not value numbered precisely.
2461      if (!success) {
2462        DEBUG(verifyRemoved(PREInstr));
2463        delete PREInstr;
2464        continue;
2465      }
2466
2467      PREInstr->insertBefore(PREPred->getTerminator());
2468      PREInstr->setName(CurInst->getName() + ".pre");
2469      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2470      VN.add(PREInstr, ValNo);
2471      ++NumGVNPRE;
2472
2473      // Update the availability map to include the new instruction.
2474      addToLeaderTable(ValNo, PREInstr, PREPred);
2475
2476      // Create a PHI to make the value available in this block.
2477      PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2478                                     CurInst->getName() + ".pre-phi",
2479                                     CurrentBlock->begin());
2480      for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2481        if (Value *V = predMap[i].first)
2482          Phi->addIncoming(V, predMap[i].second);
2483        else
2484          Phi->addIncoming(PREInstr, PREPred);
2485      }
2486
2487      VN.add(Phi, ValNo);
2488      addToLeaderTable(ValNo, Phi, CurrentBlock);
2489      Phi->setDebugLoc(CurInst->getDebugLoc());
2490      CurInst->replaceAllUsesWith(Phi);
2491      if (Phi->getType()->getScalarType()->isPointerTy()) {
2492        // Because we have added a PHI-use of the pointer value, it has now
2493        // "escaped" from alias analysis' perspective.  We need to inform
2494        // AA of this.
2495        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2496             ++ii) {
2497          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2498          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2499        }
2500
2501        if (MD)
2502          MD->invalidateCachedPointerInfo(Phi);
2503      }
2504      VN.erase(CurInst);
2505      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2506
2507      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2508      if (MD) MD->removeInstruction(CurInst);
2509      DEBUG(verifyRemoved(CurInst));
2510      CurInst->eraseFromParent();
2511      Changed = true;
2512    }
2513  }
2514
2515  if (splitCriticalEdges())
2516    Changed = true;
2517
2518  return Changed;
2519}
2520
2521/// splitCriticalEdges - Split critical edges found during the previous
2522/// iteration that may enable further optimization.
2523bool GVN::splitCriticalEdges() {
2524  if (toSplit.empty())
2525    return false;
2526  do {
2527    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2528    SplitCriticalEdge(Edge.first, Edge.second, this);
2529  } while (!toSplit.empty());
2530  if (MD) MD->invalidateCachedPredecessors();
2531  return true;
2532}
2533
2534/// iterateOnFunction - Executes one iteration of GVN
2535bool GVN::iterateOnFunction(Function &F) {
2536  cleanupGlobalSets();
2537
2538  // Top-down walk of the dominator tree
2539  bool Changed = false;
2540#if 0
2541  // Needed for value numbering with phi construction to work.
2542  ReversePostOrderTraversal<Function*> RPOT(&F);
2543  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2544       RE = RPOT.end(); RI != RE; ++RI)
2545    Changed |= processBlock(*RI);
2546#else
2547  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2548       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2549    Changed |= processBlock(DI->getBlock());
2550#endif
2551
2552  return Changed;
2553}
2554
2555void GVN::cleanupGlobalSets() {
2556  VN.clear();
2557  LeaderTable.clear();
2558  TableAllocator.Reset();
2559}
2560
2561/// verifyRemoved - Verify that the specified instruction does not occur in our
2562/// internal data structures.
2563void GVN::verifyRemoved(const Instruction *Inst) const {
2564  VN.verifyRemoved(Inst);
2565
2566  // Walk through the value number scope to make sure the instruction isn't
2567  // ferreted away in it.
2568  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2569       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2570    const LeaderTableEntry *Node = &I->second;
2571    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2572
2573    while (Node->Next) {
2574      Node = Node->Next;
2575      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2576    }
2577  }
2578}
2579