GVN.cpp revision 5583e30818255281dc3b2122ec7207bf68b449ae
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/SSAUpdater.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/DepthFirstIterator.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/Support/Allocator.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/PatternMatch.h"
46using namespace llvm;
47using namespace PatternMatch;
48
49STATISTIC(NumGVNInstr,  "Number of instructions deleted");
50STATISTIC(NumGVNLoad,   "Number of loads deleted");
51STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
52STATISTIC(NumGVNBlocks, "Number of blocks merged");
53STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
54STATISTIC(NumGVNEqProp, "Number of equalities propagated");
55STATISTIC(NumPRELoad,   "Number of loads PRE'd");
56
57static cl::opt<bool> EnablePRE("enable-pre",
58                               cl::init(true), cl::Hidden);
59static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
60
61//===----------------------------------------------------------------------===//
62//                         ValueTable Class
63//===----------------------------------------------------------------------===//
64
65/// This class holds the mapping between values and value numbers.  It is used
66/// as an efficient mechanism to determine the expression-wise equivalence of
67/// two values.
68namespace {
69  struct Expression {
70    uint32_t opcode;
71    Type *type;
72    SmallVector<uint32_t, 4> varargs;
73
74    Expression(uint32_t o = ~2U) : opcode(o) { }
75
76    bool operator==(const Expression &other) const {
77      if (opcode != other.opcode)
78        return false;
79      if (opcode == ~0U || opcode == ~1U)
80        return true;
81      if (type != other.type)
82        return false;
83      if (varargs != other.varargs)
84        return false;
85      return true;
86    }
87  };
88
89  class ValueTable {
90    DenseMap<Value*, uint32_t> valueNumbering;
91    DenseMap<Expression, uint32_t> expressionNumbering;
92    AliasAnalysis *AA;
93    MemoryDependenceAnalysis *MD;
94    DominatorTree *DT;
95
96    uint32_t nextValueNumber;
97
98    Expression create_expression(Instruction* I);
99    Expression create_cmp_expression(unsigned Opcode,
100                                     CmpInst::Predicate Predicate,
101                                     Value *LHS, Value *RHS);
102    Expression create_extractvalue_expression(ExtractValueInst* EI);
103    uint32_t lookup_or_add_call(CallInst* C);
104  public:
105    ValueTable() : nextValueNumber(1) { }
106    uint32_t lookup_or_add(Value *V);
107    uint32_t lookup(Value *V) const;
108    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
109                               Value *LHS, Value *RHS);
110    void add(Value *V, uint32_t num);
111    void clear();
112    void erase(Value *v);
113    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
114    AliasAnalysis *getAliasAnalysis() const { return AA; }
115    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
116    void setDomTree(DominatorTree* D) { DT = D; }
117    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
118    void verifyRemoved(const Value *) const;
119  };
120}
121
122namespace llvm {
123template <> struct DenseMapInfo<Expression> {
124  static inline Expression getEmptyKey() {
125    return ~0U;
126  }
127
128  static inline Expression getTombstoneKey() {
129    return ~1U;
130  }
131
132  static unsigned getHashValue(const Expression e) {
133    unsigned hash = e.opcode;
134
135    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
136            (unsigned)((uintptr_t)e.type >> 9));
137
138    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
139         E = e.varargs.end(); I != E; ++I)
140      hash = *I + hash * 37;
141
142    return hash;
143  }
144  static bool isEqual(const Expression &LHS, const Expression &RHS) {
145    return LHS == RHS;
146  }
147};
148
149}
150
151//===----------------------------------------------------------------------===//
152//                     ValueTable Internal Functions
153//===----------------------------------------------------------------------===//
154
155Expression ValueTable::create_expression(Instruction *I) {
156  Expression e;
157  e.type = I->getType();
158  e.opcode = I->getOpcode();
159  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
160       OI != OE; ++OI)
161    e.varargs.push_back(lookup_or_add(*OI));
162  if (I->isCommutative()) {
163    // Ensure that commutative instructions that only differ by a permutation
164    // of their operands get the same value number by sorting the operand value
165    // numbers.  Since all commutative instructions have two operands it is more
166    // efficient to sort by hand rather than using, say, std::sort.
167    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
168    if (e.varargs[0] > e.varargs[1])
169      std::swap(e.varargs[0], e.varargs[1]);
170  }
171
172  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
173    // Sort the operand value numbers so x<y and y>x get the same value number.
174    CmpInst::Predicate Predicate = C->getPredicate();
175    if (e.varargs[0] > e.varargs[1]) {
176      std::swap(e.varargs[0], e.varargs[1]);
177      Predicate = CmpInst::getSwappedPredicate(Predicate);
178    }
179    e.opcode = (C->getOpcode() << 8) | Predicate;
180  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
181    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
182         II != IE; ++II)
183      e.varargs.push_back(*II);
184  }
185
186  return e;
187}
188
189Expression ValueTable::create_cmp_expression(unsigned Opcode,
190                                             CmpInst::Predicate Predicate,
191                                             Value *LHS, Value *RHS) {
192  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
193         "Not a comparison!");
194  Expression e;
195  e.type = CmpInst::makeCmpResultType(LHS->getType());
196  e.varargs.push_back(lookup_or_add(LHS));
197  e.varargs.push_back(lookup_or_add(RHS));
198
199  // Sort the operand value numbers so x<y and y>x get the same value number.
200  if (e.varargs[0] > e.varargs[1]) {
201    std::swap(e.varargs[0], e.varargs[1]);
202    Predicate = CmpInst::getSwappedPredicate(Predicate);
203  }
204  e.opcode = (Opcode << 8) | Predicate;
205  return e;
206}
207
208Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
209  assert(EI != 0 && "Not an ExtractValueInst?");
210  Expression e;
211  e.type = EI->getType();
212  e.opcode = 0;
213
214  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
215  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
216    // EI might be an extract from one of our recognised intrinsics. If it
217    // is we'll synthesize a semantically equivalent expression instead on
218    // an extract value expression.
219    switch (I->getIntrinsicID()) {
220      case Intrinsic::sadd_with_overflow:
221      case Intrinsic::uadd_with_overflow:
222        e.opcode = Instruction::Add;
223        break;
224      case Intrinsic::ssub_with_overflow:
225      case Intrinsic::usub_with_overflow:
226        e.opcode = Instruction::Sub;
227        break;
228      case Intrinsic::smul_with_overflow:
229      case Intrinsic::umul_with_overflow:
230        e.opcode = Instruction::Mul;
231        break;
232      default:
233        break;
234    }
235
236    if (e.opcode != 0) {
237      // Intrinsic recognized. Grab its args to finish building the expression.
238      assert(I->getNumArgOperands() == 2 &&
239             "Expect two args for recognised intrinsics.");
240      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
241      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
242      return e;
243    }
244  }
245
246  // Not a recognised intrinsic. Fall back to producing an extract value
247  // expression.
248  e.opcode = EI->getOpcode();
249  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
250       OI != OE; ++OI)
251    e.varargs.push_back(lookup_or_add(*OI));
252
253  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
254         II != IE; ++II)
255    e.varargs.push_back(*II);
256
257  return e;
258}
259
260//===----------------------------------------------------------------------===//
261//                     ValueTable External Functions
262//===----------------------------------------------------------------------===//
263
264/// add - Insert a value into the table with a specified value number.
265void ValueTable::add(Value *V, uint32_t num) {
266  valueNumbering.insert(std::make_pair(V, num));
267}
268
269uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
270  if (AA->doesNotAccessMemory(C)) {
271    Expression exp = create_expression(C);
272    uint32_t& e = expressionNumbering[exp];
273    if (!e) e = nextValueNumber++;
274    valueNumbering[C] = e;
275    return e;
276  } else if (AA->onlyReadsMemory(C)) {
277    Expression exp = create_expression(C);
278    uint32_t& e = expressionNumbering[exp];
279    if (!e) {
280      e = nextValueNumber++;
281      valueNumbering[C] = e;
282      return e;
283    }
284    if (!MD) {
285      e = nextValueNumber++;
286      valueNumbering[C] = e;
287      return e;
288    }
289
290    MemDepResult local_dep = MD->getDependency(C);
291
292    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
293      valueNumbering[C] =  nextValueNumber;
294      return nextValueNumber++;
295    }
296
297    if (local_dep.isDef()) {
298      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
299
300      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
301        valueNumbering[C] = nextValueNumber;
302        return nextValueNumber++;
303      }
304
305      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
306        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
307        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
308        if (c_vn != cd_vn) {
309          valueNumbering[C] = nextValueNumber;
310          return nextValueNumber++;
311        }
312      }
313
314      uint32_t v = lookup_or_add(local_cdep);
315      valueNumbering[C] = v;
316      return v;
317    }
318
319    // Non-local case.
320    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
321      MD->getNonLocalCallDependency(CallSite(C));
322    // FIXME: Move the checking logic to MemDep!
323    CallInst* cdep = 0;
324
325    // Check to see if we have a single dominating call instruction that is
326    // identical to C.
327    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
328      const NonLocalDepEntry *I = &deps[i];
329      if (I->getResult().isNonLocal())
330        continue;
331
332      // We don't handle non-definitions.  If we already have a call, reject
333      // instruction dependencies.
334      if (!I->getResult().isDef() || cdep != 0) {
335        cdep = 0;
336        break;
337      }
338
339      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
340      // FIXME: All duplicated with non-local case.
341      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
342        cdep = NonLocalDepCall;
343        continue;
344      }
345
346      cdep = 0;
347      break;
348    }
349
350    if (!cdep) {
351      valueNumbering[C] = nextValueNumber;
352      return nextValueNumber++;
353    }
354
355    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
356      valueNumbering[C] = nextValueNumber;
357      return nextValueNumber++;
358    }
359    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
360      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
361      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
362      if (c_vn != cd_vn) {
363        valueNumbering[C] = nextValueNumber;
364        return nextValueNumber++;
365      }
366    }
367
368    uint32_t v = lookup_or_add(cdep);
369    valueNumbering[C] = v;
370    return v;
371
372  } else {
373    valueNumbering[C] = nextValueNumber;
374    return nextValueNumber++;
375  }
376}
377
378/// lookup_or_add - Returns the value number for the specified value, assigning
379/// it a new number if it did not have one before.
380uint32_t ValueTable::lookup_or_add(Value *V) {
381  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
382  if (VI != valueNumbering.end())
383    return VI->second;
384
385  if (!isa<Instruction>(V)) {
386    valueNumbering[V] = nextValueNumber;
387    return nextValueNumber++;
388  }
389
390  Instruction* I = cast<Instruction>(V);
391  Expression exp;
392  switch (I->getOpcode()) {
393    case Instruction::Call:
394      return lookup_or_add_call(cast<CallInst>(I));
395    case Instruction::Add:
396    case Instruction::FAdd:
397    case Instruction::Sub:
398    case Instruction::FSub:
399    case Instruction::Mul:
400    case Instruction::FMul:
401    case Instruction::UDiv:
402    case Instruction::SDiv:
403    case Instruction::FDiv:
404    case Instruction::URem:
405    case Instruction::SRem:
406    case Instruction::FRem:
407    case Instruction::Shl:
408    case Instruction::LShr:
409    case Instruction::AShr:
410    case Instruction::And:
411    case Instruction::Or :
412    case Instruction::Xor:
413    case Instruction::ICmp:
414    case Instruction::FCmp:
415    case Instruction::Trunc:
416    case Instruction::ZExt:
417    case Instruction::SExt:
418    case Instruction::FPToUI:
419    case Instruction::FPToSI:
420    case Instruction::UIToFP:
421    case Instruction::SIToFP:
422    case Instruction::FPTrunc:
423    case Instruction::FPExt:
424    case Instruction::PtrToInt:
425    case Instruction::IntToPtr:
426    case Instruction::BitCast:
427    case Instruction::Select:
428    case Instruction::ExtractElement:
429    case Instruction::InsertElement:
430    case Instruction::ShuffleVector:
431    case Instruction::InsertValue:
432    case Instruction::GetElementPtr:
433      exp = create_expression(I);
434      break;
435    case Instruction::ExtractValue:
436      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
437      break;
438    default:
439      valueNumbering[V] = nextValueNumber;
440      return nextValueNumber++;
441  }
442
443  uint32_t& e = expressionNumbering[exp];
444  if (!e) e = nextValueNumber++;
445  valueNumbering[V] = e;
446  return e;
447}
448
449/// lookup - Returns the value number of the specified value. Fails if
450/// the value has not yet been numbered.
451uint32_t ValueTable::lookup(Value *V) const {
452  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
453  assert(VI != valueNumbering.end() && "Value not numbered?");
454  return VI->second;
455}
456
457/// lookup_or_add_cmp - Returns the value number of the given comparison,
458/// assigning it a new number if it did not have one before.  Useful when
459/// we deduced the result of a comparison, but don't immediately have an
460/// instruction realizing that comparison to hand.
461uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
462                                       CmpInst::Predicate Predicate,
463                                       Value *LHS, Value *RHS) {
464  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
465  uint32_t& e = expressionNumbering[exp];
466  if (!e) e = nextValueNumber++;
467  return e;
468}
469
470/// clear - Remove all entries from the ValueTable.
471void ValueTable::clear() {
472  valueNumbering.clear();
473  expressionNumbering.clear();
474  nextValueNumber = 1;
475}
476
477/// erase - Remove a value from the value numbering.
478void ValueTable::erase(Value *V) {
479  valueNumbering.erase(V);
480}
481
482/// verifyRemoved - Verify that the value is removed from all internal data
483/// structures.
484void ValueTable::verifyRemoved(const Value *V) const {
485  for (DenseMap<Value*, uint32_t>::const_iterator
486         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
487    assert(I->first != V && "Inst still occurs in value numbering map!");
488  }
489}
490
491//===----------------------------------------------------------------------===//
492//                                GVN Pass
493//===----------------------------------------------------------------------===//
494
495namespace {
496
497  class GVN : public FunctionPass {
498    bool NoLoads;
499    MemoryDependenceAnalysis *MD;
500    DominatorTree *DT;
501    const TargetData *TD;
502    const TargetLibraryInfo *TLI;
503
504    ValueTable VN;
505
506    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
507    /// have that value number.  Use findLeader to query it.
508    struct LeaderTableEntry {
509      Value *Val;
510      BasicBlock *BB;
511      LeaderTableEntry *Next;
512    };
513    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
514    BumpPtrAllocator TableAllocator;
515
516    SmallVector<Instruction*, 8> InstrsToErase;
517  public:
518    static char ID; // Pass identification, replacement for typeid
519    explicit GVN(bool noloads = false)
520        : FunctionPass(ID), NoLoads(noloads), MD(0) {
521      initializeGVNPass(*PassRegistry::getPassRegistry());
522    }
523
524    bool runOnFunction(Function &F);
525
526    /// markInstructionForDeletion - This removes the specified instruction from
527    /// our various maps and marks it for deletion.
528    void markInstructionForDeletion(Instruction *I) {
529      VN.erase(I);
530      InstrsToErase.push_back(I);
531    }
532
533    const TargetData *getTargetData() const { return TD; }
534    DominatorTree &getDominatorTree() const { return *DT; }
535    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
536    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
537  private:
538    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
539    /// its value number.
540    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
541      LeaderTableEntry &Curr = LeaderTable[N];
542      if (!Curr.Val) {
543        Curr.Val = V;
544        Curr.BB = BB;
545        return;
546      }
547
548      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
549      Node->Val = V;
550      Node->BB = BB;
551      Node->Next = Curr.Next;
552      Curr.Next = Node;
553    }
554
555    /// removeFromLeaderTable - Scan the list of values corresponding to a given
556    /// value number, and remove the given value if encountered.
557    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
558      LeaderTableEntry* Prev = 0;
559      LeaderTableEntry* Curr = &LeaderTable[N];
560
561      while (Curr->Val != V || Curr->BB != BB) {
562        Prev = Curr;
563        Curr = Curr->Next;
564      }
565
566      if (Prev) {
567        Prev->Next = Curr->Next;
568      } else {
569        if (!Curr->Next) {
570          Curr->Val = 0;
571          Curr->BB = 0;
572        } else {
573          LeaderTableEntry* Next = Curr->Next;
574          Curr->Val = Next->Val;
575          Curr->BB = Next->BB;
576          Curr->Next = Next->Next;
577        }
578      }
579    }
580
581    // List of critical edges to be split between iterations.
582    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
583
584    // This transformation requires dominator postdominator info
585    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
586      AU.addRequired<DominatorTree>();
587      AU.addRequired<TargetLibraryInfo>();
588      if (!NoLoads)
589        AU.addRequired<MemoryDependenceAnalysis>();
590      AU.addRequired<AliasAnalysis>();
591
592      AU.addPreserved<DominatorTree>();
593      AU.addPreserved<AliasAnalysis>();
594    }
595
596
597    // Helper fuctions
598    // FIXME: eliminate or document these better
599    bool processLoad(LoadInst *L);
600    bool processInstruction(Instruction *I);
601    bool processNonLocalLoad(LoadInst *L);
602    bool processBlock(BasicBlock *BB);
603    void dump(DenseMap<uint32_t, Value*> &d);
604    bool iterateOnFunction(Function &F);
605    bool performPRE(Function &F);
606    Value *findLeader(BasicBlock *BB, uint32_t num);
607    void cleanupGlobalSets();
608    void verifyRemoved(const Instruction *I) const;
609    bool splitCriticalEdges();
610    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
611                                         BasicBlock *Root);
612    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
613  };
614
615  char GVN::ID = 0;
616}
617
618// createGVNPass - The public interface to this file...
619FunctionPass *llvm::createGVNPass(bool NoLoads) {
620  return new GVN(NoLoads);
621}
622
623INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
624INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
625INITIALIZE_PASS_DEPENDENCY(DominatorTree)
626INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
627INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
628INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
629
630void GVN::dump(DenseMap<uint32_t, Value*>& d) {
631  errs() << "{\n";
632  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
633       E = d.end(); I != E; ++I) {
634      errs() << I->first << "\n";
635      I->second->dump();
636  }
637  errs() << "}\n";
638}
639
640/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
641/// we're analyzing is fully available in the specified block.  As we go, keep
642/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
643/// map is actually a tri-state map with the following values:
644///   0) we know the block *is not* fully available.
645///   1) we know the block *is* fully available.
646///   2) we do not know whether the block is fully available or not, but we are
647///      currently speculating that it will be.
648///   3) we are speculating for this block and have used that to speculate for
649///      other blocks.
650static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
651                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
652  // Optimistically assume that the block is fully available and check to see
653  // if we already know about this block in one lookup.
654  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
655    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
656
657  // If the entry already existed for this block, return the precomputed value.
658  if (!IV.second) {
659    // If this is a speculative "available" value, mark it as being used for
660    // speculation of other blocks.
661    if (IV.first->second == 2)
662      IV.first->second = 3;
663    return IV.first->second != 0;
664  }
665
666  // Otherwise, see if it is fully available in all predecessors.
667  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
668
669  // If this block has no predecessors, it isn't live-in here.
670  if (PI == PE)
671    goto SpeculationFailure;
672
673  for (; PI != PE; ++PI)
674    // If the value isn't fully available in one of our predecessors, then it
675    // isn't fully available in this block either.  Undo our previous
676    // optimistic assumption and bail out.
677    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
678      goto SpeculationFailure;
679
680  return true;
681
682// SpeculationFailure - If we get here, we found out that this is not, after
683// all, a fully-available block.  We have a problem if we speculated on this and
684// used the speculation to mark other blocks as available.
685SpeculationFailure:
686  char &BBVal = FullyAvailableBlocks[BB];
687
688  // If we didn't speculate on this, just return with it set to false.
689  if (BBVal == 2) {
690    BBVal = 0;
691    return false;
692  }
693
694  // If we did speculate on this value, we could have blocks set to 1 that are
695  // incorrect.  Walk the (transitive) successors of this block and mark them as
696  // 0 if set to one.
697  SmallVector<BasicBlock*, 32> BBWorklist;
698  BBWorklist.push_back(BB);
699
700  do {
701    BasicBlock *Entry = BBWorklist.pop_back_val();
702    // Note that this sets blocks to 0 (unavailable) if they happen to not
703    // already be in FullyAvailableBlocks.  This is safe.
704    char &EntryVal = FullyAvailableBlocks[Entry];
705    if (EntryVal == 0) continue;  // Already unavailable.
706
707    // Mark as unavailable.
708    EntryVal = 0;
709
710    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
711      BBWorklist.push_back(*I);
712  } while (!BBWorklist.empty());
713
714  return false;
715}
716
717
718/// CanCoerceMustAliasedValueToLoad - Return true if
719/// CoerceAvailableValueToLoadType will succeed.
720static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
721                                            Type *LoadTy,
722                                            const TargetData &TD) {
723  // If the loaded or stored value is an first class array or struct, don't try
724  // to transform them.  We need to be able to bitcast to integer.
725  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
726      StoredVal->getType()->isStructTy() ||
727      StoredVal->getType()->isArrayTy())
728    return false;
729
730  // The store has to be at least as big as the load.
731  if (TD.getTypeSizeInBits(StoredVal->getType()) <
732        TD.getTypeSizeInBits(LoadTy))
733    return false;
734
735  return true;
736}
737
738
739/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
740/// then a load from a must-aliased pointer of a different type, try to coerce
741/// the stored value.  LoadedTy is the type of the load we want to replace and
742/// InsertPt is the place to insert new instructions.
743///
744/// If we can't do it, return null.
745static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
746                                             Type *LoadedTy,
747                                             Instruction *InsertPt,
748                                             const TargetData &TD) {
749  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
750    return 0;
751
752  // If this is already the right type, just return it.
753  Type *StoredValTy = StoredVal->getType();
754
755  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
756  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
757
758  // If the store and reload are the same size, we can always reuse it.
759  if (StoreSize == LoadSize) {
760    // Pointer to Pointer -> use bitcast.
761    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
762      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
763
764    // Convert source pointers to integers, which can be bitcast.
765    if (StoredValTy->isPointerTy()) {
766      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
767      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
768    }
769
770    Type *TypeToCastTo = LoadedTy;
771    if (TypeToCastTo->isPointerTy())
772      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
773
774    if (StoredValTy != TypeToCastTo)
775      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
776
777    // Cast to pointer if the load needs a pointer type.
778    if (LoadedTy->isPointerTy())
779      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
780
781    return StoredVal;
782  }
783
784  // If the loaded value is smaller than the available value, then we can
785  // extract out a piece from it.  If the available value is too small, then we
786  // can't do anything.
787  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
788
789  // Convert source pointers to integers, which can be manipulated.
790  if (StoredValTy->isPointerTy()) {
791    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
792    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
793  }
794
795  // Convert vectors and fp to integer, which can be manipulated.
796  if (!StoredValTy->isIntegerTy()) {
797    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
798    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
799  }
800
801  // If this is a big-endian system, we need to shift the value down to the low
802  // bits so that a truncate will work.
803  if (TD.isBigEndian()) {
804    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
805    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
806  }
807
808  // Truncate the integer to the right size now.
809  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
810  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
811
812  if (LoadedTy == NewIntTy)
813    return StoredVal;
814
815  // If the result is a pointer, inttoptr.
816  if (LoadedTy->isPointerTy())
817    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
818
819  // Otherwise, bitcast.
820  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
821}
822
823/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
824/// memdep query of a load that ends up being a clobbering memory write (store,
825/// memset, memcpy, memmove).  This means that the write *may* provide bits used
826/// by the load but we can't be sure because the pointers don't mustalias.
827///
828/// Check this case to see if there is anything more we can do before we give
829/// up.  This returns -1 if we have to give up, or a byte number in the stored
830/// value of the piece that feeds the load.
831static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
832                                          Value *WritePtr,
833                                          uint64_t WriteSizeInBits,
834                                          const TargetData &TD) {
835  // If the loaded or stored value is a first class array or struct, don't try
836  // to transform them.  We need to be able to bitcast to integer.
837  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
838    return -1;
839
840  int64_t StoreOffset = 0, LoadOffset = 0;
841  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
842  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
843  if (StoreBase != LoadBase)
844    return -1;
845
846  // If the load and store are to the exact same address, they should have been
847  // a must alias.  AA must have gotten confused.
848  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
849  // to a load from the base of the memset.
850#if 0
851  if (LoadOffset == StoreOffset) {
852    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
853    << "Base       = " << *StoreBase << "\n"
854    << "Store Ptr  = " << *WritePtr << "\n"
855    << "Store Offs = " << StoreOffset << "\n"
856    << "Load Ptr   = " << *LoadPtr << "\n";
857    abort();
858  }
859#endif
860
861  // If the load and store don't overlap at all, the store doesn't provide
862  // anything to the load.  In this case, they really don't alias at all, AA
863  // must have gotten confused.
864  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
865
866  if ((WriteSizeInBits & 7) | (LoadSize & 7))
867    return -1;
868  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
869  LoadSize >>= 3;
870
871
872  bool isAAFailure = false;
873  if (StoreOffset < LoadOffset)
874    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
875  else
876    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
877
878  if (isAAFailure) {
879#if 0
880    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
881    << "Base       = " << *StoreBase << "\n"
882    << "Store Ptr  = " << *WritePtr << "\n"
883    << "Store Offs = " << StoreOffset << "\n"
884    << "Load Ptr   = " << *LoadPtr << "\n";
885    abort();
886#endif
887    return -1;
888  }
889
890  // If the Load isn't completely contained within the stored bits, we don't
891  // have all the bits to feed it.  We could do something crazy in the future
892  // (issue a smaller load then merge the bits in) but this seems unlikely to be
893  // valuable.
894  if (StoreOffset > LoadOffset ||
895      StoreOffset+StoreSize < LoadOffset+LoadSize)
896    return -1;
897
898  // Okay, we can do this transformation.  Return the number of bytes into the
899  // store that the load is.
900  return LoadOffset-StoreOffset;
901}
902
903/// AnalyzeLoadFromClobberingStore - This function is called when we have a
904/// memdep query of a load that ends up being a clobbering store.
905static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
906                                          StoreInst *DepSI,
907                                          const TargetData &TD) {
908  // Cannot handle reading from store of first-class aggregate yet.
909  if (DepSI->getValueOperand()->getType()->isStructTy() ||
910      DepSI->getValueOperand()->getType()->isArrayTy())
911    return -1;
912
913  Value *StorePtr = DepSI->getPointerOperand();
914  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
915  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
916                                        StorePtr, StoreSize, TD);
917}
918
919/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
920/// memdep query of a load that ends up being clobbered by another load.  See if
921/// the other load can feed into the second load.
922static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
923                                         LoadInst *DepLI, const TargetData &TD){
924  // Cannot handle reading from store of first-class aggregate yet.
925  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
926    return -1;
927
928  Value *DepPtr = DepLI->getPointerOperand();
929  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
930  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
931  if (R != -1) return R;
932
933  // If we have a load/load clobber an DepLI can be widened to cover this load,
934  // then we should widen it!
935  int64_t LoadOffs = 0;
936  const Value *LoadBase =
937    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
938  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
939
940  unsigned Size = MemoryDependenceAnalysis::
941    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
942  if (Size == 0) return -1;
943
944  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
945}
946
947
948
949static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
950                                            MemIntrinsic *MI,
951                                            const TargetData &TD) {
952  // If the mem operation is a non-constant size, we can't handle it.
953  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
954  if (SizeCst == 0) return -1;
955  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
956
957  // If this is memset, we just need to see if the offset is valid in the size
958  // of the memset..
959  if (MI->getIntrinsicID() == Intrinsic::memset)
960    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
961                                          MemSizeInBits, TD);
962
963  // If we have a memcpy/memmove, the only case we can handle is if this is a
964  // copy from constant memory.  In that case, we can read directly from the
965  // constant memory.
966  MemTransferInst *MTI = cast<MemTransferInst>(MI);
967
968  Constant *Src = dyn_cast<Constant>(MTI->getSource());
969  if (Src == 0) return -1;
970
971  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
972  if (GV == 0 || !GV->isConstant()) return -1;
973
974  // See if the access is within the bounds of the transfer.
975  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
976                                              MI->getDest(), MemSizeInBits, TD);
977  if (Offset == -1)
978    return Offset;
979
980  // Otherwise, see if we can constant fold a load from the constant with the
981  // offset applied as appropriate.
982  Src = ConstantExpr::getBitCast(Src,
983                                 llvm::Type::getInt8PtrTy(Src->getContext()));
984  Constant *OffsetCst =
985    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
986  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
987  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
988  if (ConstantFoldLoadFromConstPtr(Src, &TD))
989    return Offset;
990  return -1;
991}
992
993
994/// GetStoreValueForLoad - This function is called when we have a
995/// memdep query of a load that ends up being a clobbering store.  This means
996/// that the store provides bits used by the load but we the pointers don't
997/// mustalias.  Check this case to see if there is anything more we can do
998/// before we give up.
999static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1000                                   Type *LoadTy,
1001                                   Instruction *InsertPt, const TargetData &TD){
1002  LLVMContext &Ctx = SrcVal->getType()->getContext();
1003
1004  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1005  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1006
1007  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1008
1009  // Compute which bits of the stored value are being used by the load.  Convert
1010  // to an integer type to start with.
1011  if (SrcVal->getType()->isPointerTy())
1012    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
1013  if (!SrcVal->getType()->isIntegerTy())
1014    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1015
1016  // Shift the bits to the least significant depending on endianness.
1017  unsigned ShiftAmt;
1018  if (TD.isLittleEndian())
1019    ShiftAmt = Offset*8;
1020  else
1021    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1022
1023  if (ShiftAmt)
1024    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1025
1026  if (LoadSize != StoreSize)
1027    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1028
1029  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1030}
1031
1032/// GetLoadValueForLoad - This function is called when we have a
1033/// memdep query of a load that ends up being a clobbering load.  This means
1034/// that the load *may* provide bits used by the load but we can't be sure
1035/// because the pointers don't mustalias.  Check this case to see if there is
1036/// anything more we can do before we give up.
1037static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1038                                  Type *LoadTy, Instruction *InsertPt,
1039                                  GVN &gvn) {
1040  const TargetData &TD = *gvn.getTargetData();
1041  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1042  // widen SrcVal out to a larger load.
1043  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1044  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1045  if (Offset+LoadSize > SrcValSize) {
1046    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1047    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1048    // If we have a load/load clobber an DepLI can be widened to cover this
1049    // load, then we should widen it to the next power of 2 size big enough!
1050    unsigned NewLoadSize = Offset+LoadSize;
1051    if (!isPowerOf2_32(NewLoadSize))
1052      NewLoadSize = NextPowerOf2(NewLoadSize);
1053
1054    Value *PtrVal = SrcVal->getPointerOperand();
1055
1056    // Insert the new load after the old load.  This ensures that subsequent
1057    // memdep queries will find the new load.  We can't easily remove the old
1058    // load completely because it is already in the value numbering table.
1059    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1060    Type *DestPTy =
1061      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1062    DestPTy = PointerType::get(DestPTy,
1063                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1064    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1065    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1066    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1067    NewLoad->takeName(SrcVal);
1068    NewLoad->setAlignment(SrcVal->getAlignment());
1069
1070    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1071    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1072
1073    // Replace uses of the original load with the wider load.  On a big endian
1074    // system, we need to shift down to get the relevant bits.
1075    Value *RV = NewLoad;
1076    if (TD.isBigEndian())
1077      RV = Builder.CreateLShr(RV,
1078                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1079    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1080    SrcVal->replaceAllUsesWith(RV);
1081
1082    // We would like to use gvn.markInstructionForDeletion here, but we can't
1083    // because the load is already memoized into the leader map table that GVN
1084    // tracks.  It is potentially possible to remove the load from the table,
1085    // but then there all of the operations based on it would need to be
1086    // rehashed.  Just leave the dead load around.
1087    gvn.getMemDep().removeInstruction(SrcVal);
1088    SrcVal = NewLoad;
1089  }
1090
1091  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1092}
1093
1094
1095/// GetMemInstValueForLoad - This function is called when we have a
1096/// memdep query of a load that ends up being a clobbering mem intrinsic.
1097static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1098                                     Type *LoadTy, Instruction *InsertPt,
1099                                     const TargetData &TD){
1100  LLVMContext &Ctx = LoadTy->getContext();
1101  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1102
1103  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1104
1105  // We know that this method is only called when the mem transfer fully
1106  // provides the bits for the load.
1107  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1108    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1109    // independently of what the offset is.
1110    Value *Val = MSI->getValue();
1111    if (LoadSize != 1)
1112      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1113
1114    Value *OneElt = Val;
1115
1116    // Splat the value out to the right number of bits.
1117    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1118      // If we can double the number of bytes set, do it.
1119      if (NumBytesSet*2 <= LoadSize) {
1120        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1121        Val = Builder.CreateOr(Val, ShVal);
1122        NumBytesSet <<= 1;
1123        continue;
1124      }
1125
1126      // Otherwise insert one byte at a time.
1127      Value *ShVal = Builder.CreateShl(Val, 1*8);
1128      Val = Builder.CreateOr(OneElt, ShVal);
1129      ++NumBytesSet;
1130    }
1131
1132    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1133  }
1134
1135  // Otherwise, this is a memcpy/memmove from a constant global.
1136  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1137  Constant *Src = cast<Constant>(MTI->getSource());
1138
1139  // Otherwise, see if we can constant fold a load from the constant with the
1140  // offset applied as appropriate.
1141  Src = ConstantExpr::getBitCast(Src,
1142                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1143  Constant *OffsetCst =
1144  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1145  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1146  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1147  return ConstantFoldLoadFromConstPtr(Src, &TD);
1148}
1149
1150namespace {
1151
1152struct AvailableValueInBlock {
1153  /// BB - The basic block in question.
1154  BasicBlock *BB;
1155  enum ValType {
1156    SimpleVal,  // A simple offsetted value that is accessed.
1157    LoadVal,    // A value produced by a load.
1158    MemIntrin   // A memory intrinsic which is loaded from.
1159  };
1160
1161  /// V - The value that is live out of the block.
1162  PointerIntPair<Value *, 2, ValType> Val;
1163
1164  /// Offset - The byte offset in Val that is interesting for the load query.
1165  unsigned Offset;
1166
1167  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1168                                   unsigned Offset = 0) {
1169    AvailableValueInBlock Res;
1170    Res.BB = BB;
1171    Res.Val.setPointer(V);
1172    Res.Val.setInt(SimpleVal);
1173    Res.Offset = Offset;
1174    return Res;
1175  }
1176
1177  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1178                                     unsigned Offset = 0) {
1179    AvailableValueInBlock Res;
1180    Res.BB = BB;
1181    Res.Val.setPointer(MI);
1182    Res.Val.setInt(MemIntrin);
1183    Res.Offset = Offset;
1184    return Res;
1185  }
1186
1187  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1188                                       unsigned Offset = 0) {
1189    AvailableValueInBlock Res;
1190    Res.BB = BB;
1191    Res.Val.setPointer(LI);
1192    Res.Val.setInt(LoadVal);
1193    Res.Offset = Offset;
1194    return Res;
1195  }
1196
1197  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1198  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1199  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1200
1201  Value *getSimpleValue() const {
1202    assert(isSimpleValue() && "Wrong accessor");
1203    return Val.getPointer();
1204  }
1205
1206  LoadInst *getCoercedLoadValue() const {
1207    assert(isCoercedLoadValue() && "Wrong accessor");
1208    return cast<LoadInst>(Val.getPointer());
1209  }
1210
1211  MemIntrinsic *getMemIntrinValue() const {
1212    assert(isMemIntrinValue() && "Wrong accessor");
1213    return cast<MemIntrinsic>(Val.getPointer());
1214  }
1215
1216  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1217  /// defined here to the specified type.  This handles various coercion cases.
1218  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1219    Value *Res;
1220    if (isSimpleValue()) {
1221      Res = getSimpleValue();
1222      if (Res->getType() != LoadTy) {
1223        const TargetData *TD = gvn.getTargetData();
1224        assert(TD && "Need target data to handle type mismatch case");
1225        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1226                                   *TD);
1227
1228        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1229                     << *getSimpleValue() << '\n'
1230                     << *Res << '\n' << "\n\n\n");
1231      }
1232    } else if (isCoercedLoadValue()) {
1233      LoadInst *Load = getCoercedLoadValue();
1234      if (Load->getType() == LoadTy && Offset == 0) {
1235        Res = Load;
1236      } else {
1237        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1238                                  gvn);
1239
1240        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1241                     << *getCoercedLoadValue() << '\n'
1242                     << *Res << '\n' << "\n\n\n");
1243      }
1244    } else {
1245      const TargetData *TD = gvn.getTargetData();
1246      assert(TD && "Need target data to handle type mismatch case");
1247      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1248                                   LoadTy, BB->getTerminator(), *TD);
1249      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1250                   << "  " << *getMemIntrinValue() << '\n'
1251                   << *Res << '\n' << "\n\n\n");
1252    }
1253    return Res;
1254  }
1255};
1256
1257} // end anonymous namespace
1258
1259/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1260/// construct SSA form, allowing us to eliminate LI.  This returns the value
1261/// that should be used at LI's definition site.
1262static Value *ConstructSSAForLoadSet(LoadInst *LI,
1263                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1264                                     GVN &gvn) {
1265  // Check for the fully redundant, dominating load case.  In this case, we can
1266  // just use the dominating value directly.
1267  if (ValuesPerBlock.size() == 1 &&
1268      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1269                                               LI->getParent()))
1270    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1271
1272  // Otherwise, we have to construct SSA form.
1273  SmallVector<PHINode*, 8> NewPHIs;
1274  SSAUpdater SSAUpdate(&NewPHIs);
1275  SSAUpdate.Initialize(LI->getType(), LI->getName());
1276
1277  Type *LoadTy = LI->getType();
1278
1279  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1280    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1281    BasicBlock *BB = AV.BB;
1282
1283    if (SSAUpdate.HasValueForBlock(BB))
1284      continue;
1285
1286    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1287  }
1288
1289  // Perform PHI construction.
1290  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1291
1292  // If new PHI nodes were created, notify alias analysis.
1293  if (V->getType()->isPointerTy()) {
1294    AliasAnalysis *AA = gvn.getAliasAnalysis();
1295
1296    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1297      AA->copyValue(LI, NewPHIs[i]);
1298
1299    // Now that we've copied information to the new PHIs, scan through
1300    // them again and inform alias analysis that we've added potentially
1301    // escaping uses to any values that are operands to these PHIs.
1302    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1303      PHINode *P = NewPHIs[i];
1304      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1305        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1306        AA->addEscapingUse(P->getOperandUse(jj));
1307      }
1308    }
1309  }
1310
1311  return V;
1312}
1313
1314static bool isLifetimeStart(const Instruction *Inst) {
1315  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1316    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1317  return false;
1318}
1319
1320/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1321/// non-local by performing PHI construction.
1322bool GVN::processNonLocalLoad(LoadInst *LI) {
1323  // Find the non-local dependencies of the load.
1324  SmallVector<NonLocalDepResult, 64> Deps;
1325  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1326  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1327  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1328  //             << Deps.size() << *LI << '\n');
1329
1330  // If we had to process more than one hundred blocks to find the
1331  // dependencies, this load isn't worth worrying about.  Optimizing
1332  // it will be too expensive.
1333  unsigned NumDeps = Deps.size();
1334  if (NumDeps > 100)
1335    return false;
1336
1337  // If we had a phi translation failure, we'll have a single entry which is a
1338  // clobber in the current block.  Reject this early.
1339  if (NumDeps == 1 &&
1340      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1341    DEBUG(
1342      dbgs() << "GVN: non-local load ";
1343      WriteAsOperand(dbgs(), LI);
1344      dbgs() << " has unknown dependencies\n";
1345    );
1346    return false;
1347  }
1348
1349  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1350  // where we have a value available in repl, also keep track of whether we see
1351  // dependencies that produce an unknown value for the load (such as a call
1352  // that could potentially clobber the load).
1353  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1354  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1355
1356  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1357    BasicBlock *DepBB = Deps[i].getBB();
1358    MemDepResult DepInfo = Deps[i].getResult();
1359
1360    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1361      UnavailableBlocks.push_back(DepBB);
1362      continue;
1363    }
1364
1365    if (DepInfo.isClobber()) {
1366      // The address being loaded in this non-local block may not be the same as
1367      // the pointer operand of the load if PHI translation occurs.  Make sure
1368      // to consider the right address.
1369      Value *Address = Deps[i].getAddress();
1370
1371      // If the dependence is to a store that writes to a superset of the bits
1372      // read by the load, we can extract the bits we need for the load from the
1373      // stored value.
1374      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1375        if (TD && Address) {
1376          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1377                                                      DepSI, *TD);
1378          if (Offset != -1) {
1379            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1380                                                       DepSI->getValueOperand(),
1381                                                                Offset));
1382            continue;
1383          }
1384        }
1385      }
1386
1387      // Check to see if we have something like this:
1388      //    load i32* P
1389      //    load i8* (P+1)
1390      // if we have this, replace the later with an extraction from the former.
1391      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1392        // If this is a clobber and L is the first instruction in its block, then
1393        // we have the first instruction in the entry block.
1394        if (DepLI != LI && Address && TD) {
1395          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1396                                                     LI->getPointerOperand(),
1397                                                     DepLI, *TD);
1398
1399          if (Offset != -1) {
1400            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1401                                                                    Offset));
1402            continue;
1403          }
1404        }
1405      }
1406
1407      // If the clobbering value is a memset/memcpy/memmove, see if we can
1408      // forward a value on from it.
1409      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1410        if (TD && Address) {
1411          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1412                                                        DepMI, *TD);
1413          if (Offset != -1) {
1414            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1415                                                                  Offset));
1416            continue;
1417          }
1418        }
1419      }
1420
1421      UnavailableBlocks.push_back(DepBB);
1422      continue;
1423    }
1424
1425    // DepInfo.isDef() here
1426
1427    Instruction *DepInst = DepInfo.getInst();
1428
1429    // Loading the allocation -> undef.
1430    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1431        // Loading immediately after lifetime begin -> undef.
1432        isLifetimeStart(DepInst)) {
1433      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1434                                             UndefValue::get(LI->getType())));
1435      continue;
1436    }
1437
1438    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1439      // Reject loads and stores that are to the same address but are of
1440      // different types if we have to.
1441      if (S->getValueOperand()->getType() != LI->getType()) {
1442        // If the stored value is larger or equal to the loaded value, we can
1443        // reuse it.
1444        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1445                                                        LI->getType(), *TD)) {
1446          UnavailableBlocks.push_back(DepBB);
1447          continue;
1448        }
1449      }
1450
1451      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1452                                                         S->getValueOperand()));
1453      continue;
1454    }
1455
1456    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1457      // If the types mismatch and we can't handle it, reject reuse of the load.
1458      if (LD->getType() != LI->getType()) {
1459        // If the stored value is larger or equal to the loaded value, we can
1460        // reuse it.
1461        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1462          UnavailableBlocks.push_back(DepBB);
1463          continue;
1464        }
1465      }
1466      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1467      continue;
1468    }
1469
1470    UnavailableBlocks.push_back(DepBB);
1471    continue;
1472  }
1473
1474  // If we have no predecessors that produce a known value for this load, exit
1475  // early.
1476  if (ValuesPerBlock.empty()) return false;
1477
1478  // If all of the instructions we depend on produce a known value for this
1479  // load, then it is fully redundant and we can use PHI insertion to compute
1480  // its value.  Insert PHIs and remove the fully redundant value now.
1481  if (UnavailableBlocks.empty()) {
1482    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1483
1484    // Perform PHI construction.
1485    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1486    LI->replaceAllUsesWith(V);
1487
1488    if (isa<PHINode>(V))
1489      V->takeName(LI);
1490    if (V->getType()->isPointerTy())
1491      MD->invalidateCachedPointerInfo(V);
1492    markInstructionForDeletion(LI);
1493    ++NumGVNLoad;
1494    return true;
1495  }
1496
1497  if (!EnablePRE || !EnableLoadPRE)
1498    return false;
1499
1500  // Okay, we have *some* definitions of the value.  This means that the value
1501  // is available in some of our (transitive) predecessors.  Lets think about
1502  // doing PRE of this load.  This will involve inserting a new load into the
1503  // predecessor when it's not available.  We could do this in general, but
1504  // prefer to not increase code size.  As such, we only do this when we know
1505  // that we only have to insert *one* load (which means we're basically moving
1506  // the load, not inserting a new one).
1507
1508  SmallPtrSet<BasicBlock *, 4> Blockers;
1509  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1510    Blockers.insert(UnavailableBlocks[i]);
1511
1512  // Let's find the first basic block with more than one predecessor.  Walk
1513  // backwards through predecessors if needed.
1514  BasicBlock *LoadBB = LI->getParent();
1515  BasicBlock *TmpBB = LoadBB;
1516
1517  bool isSinglePred = false;
1518  bool allSingleSucc = true;
1519  while (TmpBB->getSinglePredecessor()) {
1520    isSinglePred = true;
1521    TmpBB = TmpBB->getSinglePredecessor();
1522    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1523      return false;
1524    if (Blockers.count(TmpBB))
1525      return false;
1526
1527    // If any of these blocks has more than one successor (i.e. if the edge we
1528    // just traversed was critical), then there are other paths through this
1529    // block along which the load may not be anticipated.  Hoisting the load
1530    // above this block would be adding the load to execution paths along
1531    // which it was not previously executed.
1532    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1533      return false;
1534  }
1535
1536  assert(TmpBB);
1537  LoadBB = TmpBB;
1538
1539  // FIXME: It is extremely unclear what this loop is doing, other than
1540  // artificially restricting loadpre.
1541  if (isSinglePred) {
1542    bool isHot = false;
1543    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1544      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1545      if (AV.isSimpleValue())
1546        // "Hot" Instruction is in some loop (because it dominates its dep.
1547        // instruction).
1548        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1549          if (DT->dominates(LI, I)) {
1550            isHot = true;
1551            break;
1552          }
1553    }
1554
1555    // We are interested only in "hot" instructions. We don't want to do any
1556    // mis-optimizations here.
1557    if (!isHot)
1558      return false;
1559  }
1560
1561  // Check to see how many predecessors have the loaded value fully
1562  // available.
1563  DenseMap<BasicBlock*, Value*> PredLoads;
1564  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1565  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1566    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1567  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1568    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1569
1570  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1571  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1572       PI != E; ++PI) {
1573    BasicBlock *Pred = *PI;
1574    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1575      continue;
1576    }
1577    PredLoads[Pred] = 0;
1578
1579    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1580      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1581        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1582              << Pred->getName() << "': " << *LI << '\n');
1583        return false;
1584      }
1585
1586      if (LoadBB->isLandingPad()) {
1587        DEBUG(dbgs()
1588              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1589              << Pred->getName() << "': " << *LI << '\n');
1590        return false;
1591      }
1592
1593      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1594      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1595    }
1596  }
1597
1598  if (!NeedToSplit.empty()) {
1599    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1600    return false;
1601  }
1602
1603  // Decide whether PRE is profitable for this load.
1604  unsigned NumUnavailablePreds = PredLoads.size();
1605  assert(NumUnavailablePreds != 0 &&
1606         "Fully available value should be eliminated above!");
1607
1608  // If this load is unavailable in multiple predecessors, reject it.
1609  // FIXME: If we could restructure the CFG, we could make a common pred with
1610  // all the preds that don't have an available LI and insert a new load into
1611  // that one block.
1612  if (NumUnavailablePreds != 1)
1613      return false;
1614
1615  // Check if the load can safely be moved to all the unavailable predecessors.
1616  bool CanDoPRE = true;
1617  SmallVector<Instruction*, 8> NewInsts;
1618  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1619         E = PredLoads.end(); I != E; ++I) {
1620    BasicBlock *UnavailablePred = I->first;
1621
1622    // Do PHI translation to get its value in the predecessor if necessary.  The
1623    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1624
1625    // If all preds have a single successor, then we know it is safe to insert
1626    // the load on the pred (?!?), so we can insert code to materialize the
1627    // pointer if it is not available.
1628    PHITransAddr Address(LI->getPointerOperand(), TD);
1629    Value *LoadPtr = 0;
1630    if (allSingleSucc) {
1631      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1632                                                  *DT, NewInsts);
1633    } else {
1634      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1635      LoadPtr = Address.getAddr();
1636    }
1637
1638    // If we couldn't find or insert a computation of this phi translated value,
1639    // we fail PRE.
1640    if (LoadPtr == 0) {
1641      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1642            << *LI->getPointerOperand() << "\n");
1643      CanDoPRE = false;
1644      break;
1645    }
1646
1647    // Make sure it is valid to move this load here.  We have to watch out for:
1648    //  @1 = getelementptr (i8* p, ...
1649    //  test p and branch if == 0
1650    //  load @1
1651    // It is valid to have the getelementptr before the test, even if p can
1652    // be 0, as getelementptr only does address arithmetic.
1653    // If we are not pushing the value through any multiple-successor blocks
1654    // we do not have this case.  Otherwise, check that the load is safe to
1655    // put anywhere; this can be improved, but should be conservatively safe.
1656    if (!allSingleSucc &&
1657        // FIXME: REEVALUTE THIS.
1658        !isSafeToLoadUnconditionally(LoadPtr,
1659                                     UnavailablePred->getTerminator(),
1660                                     LI->getAlignment(), TD)) {
1661      CanDoPRE = false;
1662      break;
1663    }
1664
1665    I->second = LoadPtr;
1666  }
1667
1668  if (!CanDoPRE) {
1669    while (!NewInsts.empty()) {
1670      Instruction *I = NewInsts.pop_back_val();
1671      if (MD) MD->removeInstruction(I);
1672      I->eraseFromParent();
1673    }
1674    return false;
1675  }
1676
1677  // Okay, we can eliminate this load by inserting a reload in the predecessor
1678  // and using PHI construction to get the value in the other predecessors, do
1679  // it.
1680  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1681  DEBUG(if (!NewInsts.empty())
1682          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1683                 << *NewInsts.back() << '\n');
1684
1685  // Assign value numbers to the new instructions.
1686  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1687    // FIXME: We really _ought_ to insert these value numbers into their
1688    // parent's availability map.  However, in doing so, we risk getting into
1689    // ordering issues.  If a block hasn't been processed yet, we would be
1690    // marking a value as AVAIL-IN, which isn't what we intend.
1691    VN.lookup_or_add(NewInsts[i]);
1692  }
1693
1694  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1695         E = PredLoads.end(); I != E; ++I) {
1696    BasicBlock *UnavailablePred = I->first;
1697    Value *LoadPtr = I->second;
1698
1699    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1700                                        LI->getAlignment(),
1701                                        UnavailablePred->getTerminator());
1702
1703    // Transfer the old load's TBAA tag to the new load.
1704    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1705      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1706
1707    // Transfer DebugLoc.
1708    NewLoad->setDebugLoc(LI->getDebugLoc());
1709
1710    // Add the newly created load.
1711    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1712                                                        NewLoad));
1713    MD->invalidateCachedPointerInfo(LoadPtr);
1714    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1715  }
1716
1717  // Perform PHI construction.
1718  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1719  LI->replaceAllUsesWith(V);
1720  if (isa<PHINode>(V))
1721    V->takeName(LI);
1722  if (V->getType()->isPointerTy())
1723    MD->invalidateCachedPointerInfo(V);
1724  markInstructionForDeletion(LI);
1725  ++NumPRELoad;
1726  return true;
1727}
1728
1729/// processLoad - Attempt to eliminate a load, first by eliminating it
1730/// locally, and then attempting non-local elimination if that fails.
1731bool GVN::processLoad(LoadInst *L) {
1732  if (!MD)
1733    return false;
1734
1735  if (!L->isSimple())
1736    return false;
1737
1738  if (L->use_empty()) {
1739    markInstructionForDeletion(L);
1740    return true;
1741  }
1742
1743  // ... to a pointer that has been loaded from before...
1744  MemDepResult Dep = MD->getDependency(L);
1745
1746  // If we have a clobber and target data is around, see if this is a clobber
1747  // that we can fix up through code synthesis.
1748  if (Dep.isClobber() && TD) {
1749    // Check to see if we have something like this:
1750    //   store i32 123, i32* %P
1751    //   %A = bitcast i32* %P to i8*
1752    //   %B = gep i8* %A, i32 1
1753    //   %C = load i8* %B
1754    //
1755    // We could do that by recognizing if the clobber instructions are obviously
1756    // a common base + constant offset, and if the previous store (or memset)
1757    // completely covers this load.  This sort of thing can happen in bitfield
1758    // access code.
1759    Value *AvailVal = 0;
1760    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1761      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1762                                                  L->getPointerOperand(),
1763                                                  DepSI, *TD);
1764      if (Offset != -1)
1765        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1766                                        L->getType(), L, *TD);
1767    }
1768
1769    // Check to see if we have something like this:
1770    //    load i32* P
1771    //    load i8* (P+1)
1772    // if we have this, replace the later with an extraction from the former.
1773    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1774      // If this is a clobber and L is the first instruction in its block, then
1775      // we have the first instruction in the entry block.
1776      if (DepLI == L)
1777        return false;
1778
1779      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1780                                                 L->getPointerOperand(),
1781                                                 DepLI, *TD);
1782      if (Offset != -1)
1783        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1784    }
1785
1786    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1787    // a value on from it.
1788    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1789      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1790                                                    L->getPointerOperand(),
1791                                                    DepMI, *TD);
1792      if (Offset != -1)
1793        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1794    }
1795
1796    if (AvailVal) {
1797      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1798            << *AvailVal << '\n' << *L << "\n\n\n");
1799
1800      // Replace the load!
1801      L->replaceAllUsesWith(AvailVal);
1802      if (AvailVal->getType()->isPointerTy())
1803        MD->invalidateCachedPointerInfo(AvailVal);
1804      markInstructionForDeletion(L);
1805      ++NumGVNLoad;
1806      return true;
1807    }
1808  }
1809
1810  // If the value isn't available, don't do anything!
1811  if (Dep.isClobber()) {
1812    DEBUG(
1813      // fast print dep, using operator<< on instruction is too slow.
1814      dbgs() << "GVN: load ";
1815      WriteAsOperand(dbgs(), L);
1816      Instruction *I = Dep.getInst();
1817      dbgs() << " is clobbered by " << *I << '\n';
1818    );
1819    return false;
1820  }
1821
1822  // If it is defined in another block, try harder.
1823  if (Dep.isNonLocal())
1824    return processNonLocalLoad(L);
1825
1826  if (!Dep.isDef()) {
1827    DEBUG(
1828      // fast print dep, using operator<< on instruction is too slow.
1829      dbgs() << "GVN: load ";
1830      WriteAsOperand(dbgs(), L);
1831      dbgs() << " has unknown dependence\n";
1832    );
1833    return false;
1834  }
1835
1836  Instruction *DepInst = Dep.getInst();
1837  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1838    Value *StoredVal = DepSI->getValueOperand();
1839
1840    // The store and load are to a must-aliased pointer, but they may not
1841    // actually have the same type.  See if we know how to reuse the stored
1842    // value (depending on its type).
1843    if (StoredVal->getType() != L->getType()) {
1844      if (TD) {
1845        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1846                                                   L, *TD);
1847        if (StoredVal == 0)
1848          return false;
1849
1850        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1851                     << '\n' << *L << "\n\n\n");
1852      }
1853      else
1854        return false;
1855    }
1856
1857    // Remove it!
1858    L->replaceAllUsesWith(StoredVal);
1859    if (StoredVal->getType()->isPointerTy())
1860      MD->invalidateCachedPointerInfo(StoredVal);
1861    markInstructionForDeletion(L);
1862    ++NumGVNLoad;
1863    return true;
1864  }
1865
1866  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1867    Value *AvailableVal = DepLI;
1868
1869    // The loads are of a must-aliased pointer, but they may not actually have
1870    // the same type.  See if we know how to reuse the previously loaded value
1871    // (depending on its type).
1872    if (DepLI->getType() != L->getType()) {
1873      if (TD) {
1874        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1875                                                      L, *TD);
1876        if (AvailableVal == 0)
1877          return false;
1878
1879        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1880                     << "\n" << *L << "\n\n\n");
1881      }
1882      else
1883        return false;
1884    }
1885
1886    // Remove it!
1887    L->replaceAllUsesWith(AvailableVal);
1888    if (DepLI->getType()->isPointerTy())
1889      MD->invalidateCachedPointerInfo(DepLI);
1890    markInstructionForDeletion(L);
1891    ++NumGVNLoad;
1892    return true;
1893  }
1894
1895  // If this load really doesn't depend on anything, then we must be loading an
1896  // undef value.  This can happen when loading for a fresh allocation with no
1897  // intervening stores, for example.
1898  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1899    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1900    markInstructionForDeletion(L);
1901    ++NumGVNLoad;
1902    return true;
1903  }
1904
1905  // If this load occurs either right after a lifetime begin,
1906  // then the loaded value is undefined.
1907  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1908    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1909      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1910      markInstructionForDeletion(L);
1911      ++NumGVNLoad;
1912      return true;
1913    }
1914  }
1915
1916  return false;
1917}
1918
1919// findLeader - In order to find a leader for a given value number at a
1920// specific basic block, we first obtain the list of all Values for that number,
1921// and then scan the list to find one whose block dominates the block in
1922// question.  This is fast because dominator tree queries consist of only
1923// a few comparisons of DFS numbers.
1924Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1925  LeaderTableEntry Vals = LeaderTable[num];
1926  if (!Vals.Val) return 0;
1927
1928  Value *Val = 0;
1929  if (DT->dominates(Vals.BB, BB)) {
1930    Val = Vals.Val;
1931    if (isa<Constant>(Val)) return Val;
1932  }
1933
1934  LeaderTableEntry* Next = Vals.Next;
1935  while (Next) {
1936    if (DT->dominates(Next->BB, BB)) {
1937      if (isa<Constant>(Next->Val)) return Next->Val;
1938      if (!Val) Val = Next->Val;
1939    }
1940
1941    Next = Next->Next;
1942  }
1943
1944  return Val;
1945}
1946
1947/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1948/// use is dominated by the given basic block.  Returns the number of uses that
1949/// were replaced.
1950unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1951                                          BasicBlock *Root) {
1952  unsigned Count = 0;
1953  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1954       UI != UE; ) {
1955    Use &U = (UI++).getUse();
1956    if (DT->dominates(Root, cast<Instruction>(U.getUser())->getParent())) {
1957      U.set(To);
1958      ++Count;
1959    }
1960  }
1961  return Count;
1962}
1963
1964/// propagateEquality - The given values are known to be equal in every block
1965/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1966/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1967bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
1968  if (LHS == RHS) return false;
1969  assert(LHS->getType() == RHS->getType() && "Equal but types differ!");
1970
1971  // Don't try to propagate equalities between constants.
1972  if (isa<Constant>(LHS) && isa<Constant>(RHS))
1973    return false;
1974
1975  // Make sure that any constants are on the right-hand side.  In general the
1976  // best results are obtained by placing the longest lived value on the RHS.
1977  if (isa<Constant>(LHS))
1978    std::swap(LHS, RHS);
1979
1980  // If neither term is constant then bail out.  This is not for correctness,
1981  // it's just that the non-constant case is much less useful: it occurs just
1982  // as often as the constant case but handling it hardly ever results in an
1983  // improvement.
1984  if (!isa<Constant>(RHS))
1985    return false;
1986
1987  // If value numbering later deduces that an instruction in the scope is equal
1988  // to 'LHS' then ensure it will be turned into 'RHS'.
1989  addToLeaderTable(VN.lookup_or_add(LHS), RHS, Root);
1990
1991  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1992  // LHS always has at least one use that is not dominated by Root, this will
1993  // never do anything if LHS has only one use.
1994  bool Changed = false;
1995  if (!LHS->hasOneUse()) {
1996    unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
1997    Changed |= NumReplacements > 0;
1998    NumGVNEqProp += NumReplacements;
1999  }
2000
2001  // Now try to deduce additional equalities from this one.  For example, if the
2002  // known equality was "(A != B)" == "false" then it follows that A and B are
2003  // equal in the scope.  Only boolean equalities with an explicit true or false
2004  // RHS are currently supported.
2005  if (!RHS->getType()->isIntegerTy(1))
2006    // Not a boolean equality - bail out.
2007    return Changed;
2008  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2009  if (!CI)
2010    // RHS neither 'true' nor 'false' - bail out.
2011    return Changed;
2012  // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2013  bool isKnownTrue = CI->isAllOnesValue();
2014  bool isKnownFalse = !isKnownTrue;
2015
2016  // If "A && B" is known true then both A and B are known true.  If "A || B"
2017  // is known false then both A and B are known false.
2018  Value *A, *B;
2019  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2020      (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2021    Changed |= propagateEquality(A, RHS, Root);
2022    Changed |= propagateEquality(B, RHS, Root);
2023    return Changed;
2024  }
2025
2026  // If we are propagating an equality like "(A == B)" == "true" then also
2027  // propagate the equality A == B.  When propagating a comparison such as
2028  // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2029  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2030    Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2031
2032    // If "A == B" is known true, or "A != B" is known false, then replace
2033    // A with B everywhere in the scope.
2034    if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2035        (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2036      Changed |= propagateEquality(Op0, Op1, Root);
2037
2038    // If "A >= B" is known true, replace "A < B" with false everywhere.
2039    CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2040    Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2041    // Since we don't have the instruction "A < B" immediately to hand, work out
2042    // the value number that it would have and use that to find an appropriate
2043    // instruction (if any).
2044    unsigned Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2045    Value *NotCmp = findLeader(Root, Num);
2046    if (NotCmp && isa<Instruction>(NotCmp)) {
2047      unsigned NumReplacements =
2048        replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2049      Changed |= NumReplacements > 0;
2050      NumGVNEqProp += NumReplacements;
2051    }
2052    // Ensure that any instruction in scope that gets the "A < B" value number
2053    // is replaced with false.
2054    addToLeaderTable(Num, NotVal, Root);
2055
2056    return Changed;
2057  }
2058
2059  return Changed;
2060}
2061
2062/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2063/// true if every path from the entry block to 'Dst' passes via this edge.  In
2064/// particular 'Dst' must not be reachable via another edge from 'Src'.
2065static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
2066                                       DominatorTree *DT) {
2067  // While in theory it is interesting to consider the case in which Dst has
2068  // more than one predecessor, because Dst might be part of a loop which is
2069  // only reachable from Src, in practice it is pointless since at the time
2070  // GVN runs all such loops have preheaders, which means that Dst will have
2071  // been changed to have only one predecessor, namely Src.
2072  BasicBlock *Pred = Dst->getSinglePredecessor();
2073  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2074  (void)Src;
2075  return Pred != 0;
2076}
2077
2078/// processInstruction - When calculating availability, handle an instruction
2079/// by inserting it into the appropriate sets
2080bool GVN::processInstruction(Instruction *I) {
2081  // Ignore dbg info intrinsics.
2082  if (isa<DbgInfoIntrinsic>(I))
2083    return false;
2084
2085  // If the instruction can be easily simplified then do so now in preference
2086  // to value numbering it.  Value numbering often exposes redundancies, for
2087  // example if it determines that %y is equal to %x then the instruction
2088  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2089  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2090    I->replaceAllUsesWith(V);
2091    if (MD && V->getType()->isPointerTy())
2092      MD->invalidateCachedPointerInfo(V);
2093    markInstructionForDeletion(I);
2094    ++NumGVNSimpl;
2095    return true;
2096  }
2097
2098  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2099    if (processLoad(LI))
2100      return true;
2101
2102    unsigned Num = VN.lookup_or_add(LI);
2103    addToLeaderTable(Num, LI, LI->getParent());
2104    return false;
2105  }
2106
2107  // For conditional branches, we can perform simple conditional propagation on
2108  // the condition value itself.
2109  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2110    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2111      return false;
2112
2113    Value *BranchCond = BI->getCondition();
2114
2115    BasicBlock *TrueSucc = BI->getSuccessor(0);
2116    BasicBlock *FalseSucc = BI->getSuccessor(1);
2117    BasicBlock *Parent = BI->getParent();
2118    bool Changed = false;
2119
2120    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2121      Changed |= propagateEquality(BranchCond,
2122                                   ConstantInt::getTrue(TrueSucc->getContext()),
2123                                   TrueSucc);
2124
2125    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2126      Changed |= propagateEquality(BranchCond,
2127                                   ConstantInt::getFalse(FalseSucc->getContext()),
2128                                   FalseSucc);
2129
2130    return Changed;
2131  }
2132
2133  // For switches, propagate the case values into the case destinations.
2134  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2135    Value *SwitchCond = SI->getCondition();
2136    BasicBlock *Parent = SI->getParent();
2137    bool Changed = false;
2138    for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i) {
2139      BasicBlock *Dst = SI->getCaseSuccessor(i);
2140      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2141        Changed |= propagateEquality(SwitchCond, SI->getCaseValue(i), Dst);
2142    }
2143    return Changed;
2144  }
2145
2146  // Instructions with void type don't return a value, so there's
2147  // no point in trying to find redundancies in them.
2148  if (I->getType()->isVoidTy()) return false;
2149
2150  uint32_t NextNum = VN.getNextUnusedValueNumber();
2151  unsigned Num = VN.lookup_or_add(I);
2152
2153  // Allocations are always uniquely numbered, so we can save time and memory
2154  // by fast failing them.
2155  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2156    addToLeaderTable(Num, I, I->getParent());
2157    return false;
2158  }
2159
2160  // If the number we were assigned was a brand new VN, then we don't
2161  // need to do a lookup to see if the number already exists
2162  // somewhere in the domtree: it can't!
2163  if (Num >= NextNum) {
2164    addToLeaderTable(Num, I, I->getParent());
2165    return false;
2166  }
2167
2168  // Perform fast-path value-number based elimination of values inherited from
2169  // dominators.
2170  Value *repl = findLeader(I->getParent(), Num);
2171  if (repl == 0) {
2172    // Failure, just remember this instance for future use.
2173    addToLeaderTable(Num, I, I->getParent());
2174    return false;
2175  }
2176
2177  // Remove it!
2178  I->replaceAllUsesWith(repl);
2179  if (MD && repl->getType()->isPointerTy())
2180    MD->invalidateCachedPointerInfo(repl);
2181  markInstructionForDeletion(I);
2182  return true;
2183}
2184
2185/// runOnFunction - This is the main transformation entry point for a function.
2186bool GVN::runOnFunction(Function& F) {
2187  if (!NoLoads)
2188    MD = &getAnalysis<MemoryDependenceAnalysis>();
2189  DT = &getAnalysis<DominatorTree>();
2190  TD = getAnalysisIfAvailable<TargetData>();
2191  TLI = &getAnalysis<TargetLibraryInfo>();
2192  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2193  VN.setMemDep(MD);
2194  VN.setDomTree(DT);
2195
2196  bool Changed = false;
2197  bool ShouldContinue = true;
2198
2199  // Merge unconditional branches, allowing PRE to catch more
2200  // optimization opportunities.
2201  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2202    BasicBlock *BB = FI++;
2203
2204    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2205    if (removedBlock) ++NumGVNBlocks;
2206
2207    Changed |= removedBlock;
2208  }
2209
2210  unsigned Iteration = 0;
2211  while (ShouldContinue) {
2212    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2213    ShouldContinue = iterateOnFunction(F);
2214    if (splitCriticalEdges())
2215      ShouldContinue = true;
2216    Changed |= ShouldContinue;
2217    ++Iteration;
2218  }
2219
2220  if (EnablePRE) {
2221    bool PREChanged = true;
2222    while (PREChanged) {
2223      PREChanged = performPRE(F);
2224      Changed |= PREChanged;
2225    }
2226  }
2227  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2228  // computations into blocks where they become fully redundant.  Note that
2229  // we can't do this until PRE's critical edge splitting updates memdep.
2230  // Actually, when this happens, we should just fully integrate PRE into GVN.
2231
2232  cleanupGlobalSets();
2233
2234  return Changed;
2235}
2236
2237
2238bool GVN::processBlock(BasicBlock *BB) {
2239  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2240  // (and incrementing BI before processing an instruction).
2241  assert(InstrsToErase.empty() &&
2242         "We expect InstrsToErase to be empty across iterations");
2243  bool ChangedFunction = false;
2244
2245  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2246       BI != BE;) {
2247    ChangedFunction |= processInstruction(BI);
2248    if (InstrsToErase.empty()) {
2249      ++BI;
2250      continue;
2251    }
2252
2253    // If we need some instructions deleted, do it now.
2254    NumGVNInstr += InstrsToErase.size();
2255
2256    // Avoid iterator invalidation.
2257    bool AtStart = BI == BB->begin();
2258    if (!AtStart)
2259      --BI;
2260
2261    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2262         E = InstrsToErase.end(); I != E; ++I) {
2263      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2264      if (MD) MD->removeInstruction(*I);
2265      (*I)->eraseFromParent();
2266      DEBUG(verifyRemoved(*I));
2267    }
2268    InstrsToErase.clear();
2269
2270    if (AtStart)
2271      BI = BB->begin();
2272    else
2273      ++BI;
2274  }
2275
2276  return ChangedFunction;
2277}
2278
2279/// performPRE - Perform a purely local form of PRE that looks for diamond
2280/// control flow patterns and attempts to perform simple PRE at the join point.
2281bool GVN::performPRE(Function &F) {
2282  bool Changed = false;
2283  DenseMap<BasicBlock*, Value*> predMap;
2284  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2285       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2286    BasicBlock *CurrentBlock = *DI;
2287
2288    // Nothing to PRE in the entry block.
2289    if (CurrentBlock == &F.getEntryBlock()) continue;
2290
2291    // Don't perform PRE on a landing pad.
2292    if (CurrentBlock->isLandingPad()) continue;
2293
2294    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2295         BE = CurrentBlock->end(); BI != BE; ) {
2296      Instruction *CurInst = BI++;
2297
2298      if (isa<AllocaInst>(CurInst) ||
2299          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2300          CurInst->getType()->isVoidTy() ||
2301          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2302          isa<DbgInfoIntrinsic>(CurInst))
2303        continue;
2304
2305      // We don't currently value number ANY inline asm calls.
2306      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2307        if (CallI->isInlineAsm())
2308          continue;
2309
2310      uint32_t ValNo = VN.lookup(CurInst);
2311
2312      // Look for the predecessors for PRE opportunities.  We're
2313      // only trying to solve the basic diamond case, where
2314      // a value is computed in the successor and one predecessor,
2315      // but not the other.  We also explicitly disallow cases
2316      // where the successor is its own predecessor, because they're
2317      // more complicated to get right.
2318      unsigned NumWith = 0;
2319      unsigned NumWithout = 0;
2320      BasicBlock *PREPred = 0;
2321      predMap.clear();
2322
2323      for (pred_iterator PI = pred_begin(CurrentBlock),
2324           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2325        BasicBlock *P = *PI;
2326        // We're not interested in PRE where the block is its
2327        // own predecessor, or in blocks with predecessors
2328        // that are not reachable.
2329        if (P == CurrentBlock) {
2330          NumWithout = 2;
2331          break;
2332        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2333          NumWithout = 2;
2334          break;
2335        }
2336
2337        Value* predV = findLeader(P, ValNo);
2338        if (predV == 0) {
2339          PREPred = P;
2340          ++NumWithout;
2341        } else if (predV == CurInst) {
2342          NumWithout = 2;
2343        } else {
2344          predMap[P] = predV;
2345          ++NumWith;
2346        }
2347      }
2348
2349      // Don't do PRE when it might increase code size, i.e. when
2350      // we would need to insert instructions in more than one pred.
2351      if (NumWithout != 1 || NumWith == 0)
2352        continue;
2353
2354      // Don't do PRE across indirect branch.
2355      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2356        continue;
2357
2358      // We can't do PRE safely on a critical edge, so instead we schedule
2359      // the edge to be split and perform the PRE the next time we iterate
2360      // on the function.
2361      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2362      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2363        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2364        continue;
2365      }
2366
2367      // Instantiate the expression in the predecessor that lacked it.
2368      // Because we are going top-down through the block, all value numbers
2369      // will be available in the predecessor by the time we need them.  Any
2370      // that weren't originally present will have been instantiated earlier
2371      // in this loop.
2372      Instruction *PREInstr = CurInst->clone();
2373      bool success = true;
2374      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2375        Value *Op = PREInstr->getOperand(i);
2376        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2377          continue;
2378
2379        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2380          PREInstr->setOperand(i, V);
2381        } else {
2382          success = false;
2383          break;
2384        }
2385      }
2386
2387      // Fail out if we encounter an operand that is not available in
2388      // the PRE predecessor.  This is typically because of loads which
2389      // are not value numbered precisely.
2390      if (!success) {
2391        delete PREInstr;
2392        DEBUG(verifyRemoved(PREInstr));
2393        continue;
2394      }
2395
2396      PREInstr->insertBefore(PREPred->getTerminator());
2397      PREInstr->setName(CurInst->getName() + ".pre");
2398      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2399      predMap[PREPred] = PREInstr;
2400      VN.add(PREInstr, ValNo);
2401      ++NumGVNPRE;
2402
2403      // Update the availability map to include the new instruction.
2404      addToLeaderTable(ValNo, PREInstr, PREPred);
2405
2406      // Create a PHI to make the value available in this block.
2407      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2408      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2409                                     CurInst->getName() + ".pre-phi",
2410                                     CurrentBlock->begin());
2411      for (pred_iterator PI = PB; PI != PE; ++PI) {
2412        BasicBlock *P = *PI;
2413        Phi->addIncoming(predMap[P], P);
2414      }
2415
2416      VN.add(Phi, ValNo);
2417      addToLeaderTable(ValNo, Phi, CurrentBlock);
2418      Phi->setDebugLoc(CurInst->getDebugLoc());
2419      CurInst->replaceAllUsesWith(Phi);
2420      if (Phi->getType()->isPointerTy()) {
2421        // Because we have added a PHI-use of the pointer value, it has now
2422        // "escaped" from alias analysis' perspective.  We need to inform
2423        // AA of this.
2424        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2425             ++ii) {
2426          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2427          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2428        }
2429
2430        if (MD)
2431          MD->invalidateCachedPointerInfo(Phi);
2432      }
2433      VN.erase(CurInst);
2434      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2435
2436      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2437      if (MD) MD->removeInstruction(CurInst);
2438      CurInst->eraseFromParent();
2439      DEBUG(verifyRemoved(CurInst));
2440      Changed = true;
2441    }
2442  }
2443
2444  if (splitCriticalEdges())
2445    Changed = true;
2446
2447  return Changed;
2448}
2449
2450/// splitCriticalEdges - Split critical edges found during the previous
2451/// iteration that may enable further optimization.
2452bool GVN::splitCriticalEdges() {
2453  if (toSplit.empty())
2454    return false;
2455  do {
2456    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2457    SplitCriticalEdge(Edge.first, Edge.second, this);
2458  } while (!toSplit.empty());
2459  if (MD) MD->invalidateCachedPredecessors();
2460  return true;
2461}
2462
2463/// iterateOnFunction - Executes one iteration of GVN
2464bool GVN::iterateOnFunction(Function &F) {
2465  cleanupGlobalSets();
2466
2467  // Top-down walk of the dominator tree
2468  bool Changed = false;
2469#if 0
2470  // Needed for value numbering with phi construction to work.
2471  ReversePostOrderTraversal<Function*> RPOT(&F);
2472  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2473       RE = RPOT.end(); RI != RE; ++RI)
2474    Changed |= processBlock(*RI);
2475#else
2476  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2477       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2478    Changed |= processBlock(DI->getBlock());
2479#endif
2480
2481  return Changed;
2482}
2483
2484void GVN::cleanupGlobalSets() {
2485  VN.clear();
2486  LeaderTable.clear();
2487  TableAllocator.Reset();
2488}
2489
2490/// verifyRemoved - Verify that the specified instruction does not occur in our
2491/// internal data structures.
2492void GVN::verifyRemoved(const Instruction *Inst) const {
2493  VN.verifyRemoved(Inst);
2494
2495  // Walk through the value number scope to make sure the instruction isn't
2496  // ferreted away in it.
2497  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2498       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2499    const LeaderTableEntry *Node = &I->second;
2500    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2501
2502    while (Node->Next) {
2503      Node = Node->Next;
2504      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2505    }
2506  }
2507}
2508