GVN.cpp revision 618c1dbd293d15ee19f61b1156ab8086ad28311a
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/SSAUpdater.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/DepthFirstIterator.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/Support/Allocator.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/PatternMatch.h"
46using namespace llvm;
47using namespace PatternMatch;
48
49STATISTIC(NumGVNInstr,  "Number of instructions deleted");
50STATISTIC(NumGVNLoad,   "Number of loads deleted");
51STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
52STATISTIC(NumGVNBlocks, "Number of blocks merged");
53STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
54STATISTIC(NumGVNEqProp, "Number of equalities propagated");
55STATISTIC(NumPRELoad,   "Number of loads PRE'd");
56
57static cl::opt<bool> EnablePRE("enable-pre",
58                               cl::init(true), cl::Hidden);
59static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
60
61//===----------------------------------------------------------------------===//
62//                         ValueTable Class
63//===----------------------------------------------------------------------===//
64
65/// This class holds the mapping between values and value numbers.  It is used
66/// as an efficient mechanism to determine the expression-wise equivalence of
67/// two values.
68namespace {
69  struct Expression {
70    uint32_t opcode;
71    Type *type;
72    SmallVector<uint32_t, 4> varargs;
73
74    Expression(uint32_t o = ~2U) : opcode(o) { }
75
76    bool operator==(const Expression &other) const {
77      if (opcode != other.opcode)
78        return false;
79      if (opcode == ~0U || opcode == ~1U)
80        return true;
81      if (type != other.type)
82        return false;
83      if (varargs != other.varargs)
84        return false;
85      return true;
86    }
87  };
88
89  class ValueTable {
90    DenseMap<Value*, uint32_t> valueNumbering;
91    DenseMap<Expression, uint32_t> expressionNumbering;
92    AliasAnalysis *AA;
93    MemoryDependenceAnalysis *MD;
94    DominatorTree *DT;
95
96    uint32_t nextValueNumber;
97
98    Expression create_expression(Instruction* I);
99    Expression create_extractvalue_expression(ExtractValueInst* EI);
100    uint32_t lookup_or_add_call(CallInst* C);
101  public:
102    ValueTable() : nextValueNumber(1) { }
103    uint32_t lookup_or_add(Value *V);
104    uint32_t lookup(Value *V) const;
105    void add(Value *V, uint32_t num);
106    void clear();
107    void erase(Value *v);
108    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
109    AliasAnalysis *getAliasAnalysis() const { return AA; }
110    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
111    void setDomTree(DominatorTree* D) { DT = D; }
112    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
113    void verifyRemoved(const Value *) const;
114  };
115}
116
117namespace llvm {
118template <> struct DenseMapInfo<Expression> {
119  static inline Expression getEmptyKey() {
120    return ~0U;
121  }
122
123  static inline Expression getTombstoneKey() {
124    return ~1U;
125  }
126
127  static unsigned getHashValue(const Expression e) {
128    unsigned hash = e.opcode;
129
130    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
131            (unsigned)((uintptr_t)e.type >> 9));
132
133    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
134         E = e.varargs.end(); I != E; ++I)
135      hash = *I + hash * 37;
136
137    return hash;
138  }
139  static bool isEqual(const Expression &LHS, const Expression &RHS) {
140    return LHS == RHS;
141  }
142};
143
144}
145
146//===----------------------------------------------------------------------===//
147//                     ValueTable Internal Functions
148//===----------------------------------------------------------------------===//
149
150Expression ValueTable::create_expression(Instruction *I) {
151  Expression e;
152  e.type = I->getType();
153  e.opcode = I->getOpcode();
154  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
155       OI != OE; ++OI)
156    e.varargs.push_back(lookup_or_add(*OI));
157
158  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
159    e.opcode = (C->getOpcode() << 8) | C->getPredicate();
160  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
161    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
162         II != IE; ++II)
163      e.varargs.push_back(*II);
164  }
165
166  return e;
167}
168
169Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
170  assert(EI != 0 && "Not an ExtractValueInst?");
171  Expression e;
172  e.type = EI->getType();
173  e.opcode = 0;
174
175  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
176  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
177    // EI might be an extract from one of our recognised intrinsics. If it
178    // is we'll synthesize a semantically equivalent expression instead on
179    // an extract value expression.
180    switch (I->getIntrinsicID()) {
181      case Intrinsic::sadd_with_overflow:
182      case Intrinsic::uadd_with_overflow:
183        e.opcode = Instruction::Add;
184        break;
185      case Intrinsic::ssub_with_overflow:
186      case Intrinsic::usub_with_overflow:
187        e.opcode = Instruction::Sub;
188        break;
189      case Intrinsic::smul_with_overflow:
190      case Intrinsic::umul_with_overflow:
191        e.opcode = Instruction::Mul;
192        break;
193      default:
194        break;
195    }
196
197    if (e.opcode != 0) {
198      // Intrinsic recognized. Grab its args to finish building the expression.
199      assert(I->getNumArgOperands() == 2 &&
200             "Expect two args for recognised intrinsics.");
201      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
202      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
203      return e;
204    }
205  }
206
207  // Not a recognised intrinsic. Fall back to producing an extract value
208  // expression.
209  e.opcode = EI->getOpcode();
210  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
211       OI != OE; ++OI)
212    e.varargs.push_back(lookup_or_add(*OI));
213
214  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
215         II != IE; ++II)
216    e.varargs.push_back(*II);
217
218  return e;
219}
220
221//===----------------------------------------------------------------------===//
222//                     ValueTable External Functions
223//===----------------------------------------------------------------------===//
224
225/// add - Insert a value into the table with a specified value number.
226void ValueTable::add(Value *V, uint32_t num) {
227  valueNumbering.insert(std::make_pair(V, num));
228}
229
230uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
231  if (AA->doesNotAccessMemory(C)) {
232    Expression exp = create_expression(C);
233    uint32_t& e = expressionNumbering[exp];
234    if (!e) e = nextValueNumber++;
235    valueNumbering[C] = e;
236    return e;
237  } else if (AA->onlyReadsMemory(C)) {
238    Expression exp = create_expression(C);
239    uint32_t& e = expressionNumbering[exp];
240    if (!e) {
241      e = nextValueNumber++;
242      valueNumbering[C] = e;
243      return e;
244    }
245    if (!MD) {
246      e = nextValueNumber++;
247      valueNumbering[C] = e;
248      return e;
249    }
250
251    MemDepResult local_dep = MD->getDependency(C);
252
253    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
254      valueNumbering[C] =  nextValueNumber;
255      return nextValueNumber++;
256    }
257
258    if (local_dep.isDef()) {
259      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
260
261      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
262        valueNumbering[C] = nextValueNumber;
263        return nextValueNumber++;
264      }
265
266      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
267        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
268        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
269        if (c_vn != cd_vn) {
270          valueNumbering[C] = nextValueNumber;
271          return nextValueNumber++;
272        }
273      }
274
275      uint32_t v = lookup_or_add(local_cdep);
276      valueNumbering[C] = v;
277      return v;
278    }
279
280    // Non-local case.
281    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
282      MD->getNonLocalCallDependency(CallSite(C));
283    // FIXME: Move the checking logic to MemDep!
284    CallInst* cdep = 0;
285
286    // Check to see if we have a single dominating call instruction that is
287    // identical to C.
288    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
289      const NonLocalDepEntry *I = &deps[i];
290      if (I->getResult().isNonLocal())
291        continue;
292
293      // We don't handle non-definitions.  If we already have a call, reject
294      // instruction dependencies.
295      if (!I->getResult().isDef() || cdep != 0) {
296        cdep = 0;
297        break;
298      }
299
300      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
301      // FIXME: All duplicated with non-local case.
302      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
303        cdep = NonLocalDepCall;
304        continue;
305      }
306
307      cdep = 0;
308      break;
309    }
310
311    if (!cdep) {
312      valueNumbering[C] = nextValueNumber;
313      return nextValueNumber++;
314    }
315
316    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
317      valueNumbering[C] = nextValueNumber;
318      return nextValueNumber++;
319    }
320    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
321      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
322      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
323      if (c_vn != cd_vn) {
324        valueNumbering[C] = nextValueNumber;
325        return nextValueNumber++;
326      }
327    }
328
329    uint32_t v = lookup_or_add(cdep);
330    valueNumbering[C] = v;
331    return v;
332
333  } else {
334    valueNumbering[C] = nextValueNumber;
335    return nextValueNumber++;
336  }
337}
338
339/// lookup_or_add - Returns the value number for the specified value, assigning
340/// it a new number if it did not have one before.
341uint32_t ValueTable::lookup_or_add(Value *V) {
342  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
343  if (VI != valueNumbering.end())
344    return VI->second;
345
346  if (!isa<Instruction>(V)) {
347    valueNumbering[V] = nextValueNumber;
348    return nextValueNumber++;
349  }
350
351  Instruction* I = cast<Instruction>(V);
352  Expression exp;
353  switch (I->getOpcode()) {
354    case Instruction::Call:
355      return lookup_or_add_call(cast<CallInst>(I));
356    case Instruction::Add:
357    case Instruction::FAdd:
358    case Instruction::Sub:
359    case Instruction::FSub:
360    case Instruction::Mul:
361    case Instruction::FMul:
362    case Instruction::UDiv:
363    case Instruction::SDiv:
364    case Instruction::FDiv:
365    case Instruction::URem:
366    case Instruction::SRem:
367    case Instruction::FRem:
368    case Instruction::Shl:
369    case Instruction::LShr:
370    case Instruction::AShr:
371    case Instruction::And:
372    case Instruction::Or :
373    case Instruction::Xor:
374    case Instruction::ICmp:
375    case Instruction::FCmp:
376    case Instruction::Trunc:
377    case Instruction::ZExt:
378    case Instruction::SExt:
379    case Instruction::FPToUI:
380    case Instruction::FPToSI:
381    case Instruction::UIToFP:
382    case Instruction::SIToFP:
383    case Instruction::FPTrunc:
384    case Instruction::FPExt:
385    case Instruction::PtrToInt:
386    case Instruction::IntToPtr:
387    case Instruction::BitCast:
388    case Instruction::Select:
389    case Instruction::ExtractElement:
390    case Instruction::InsertElement:
391    case Instruction::ShuffleVector:
392    case Instruction::InsertValue:
393    case Instruction::GetElementPtr:
394      exp = create_expression(I);
395      break;
396    case Instruction::ExtractValue:
397      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
398      break;
399    default:
400      valueNumbering[V] = nextValueNumber;
401      return nextValueNumber++;
402  }
403
404  uint32_t& e = expressionNumbering[exp];
405  if (!e) e = nextValueNumber++;
406  valueNumbering[V] = e;
407  return e;
408}
409
410/// lookup - Returns the value number of the specified value. Fails if
411/// the value has not yet been numbered.
412uint32_t ValueTable::lookup(Value *V) const {
413  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
414  assert(VI != valueNumbering.end() && "Value not numbered?");
415  return VI->second;
416}
417
418/// clear - Remove all entries from the ValueTable.
419void ValueTable::clear() {
420  valueNumbering.clear();
421  expressionNumbering.clear();
422  nextValueNumber = 1;
423}
424
425/// erase - Remove a value from the value numbering.
426void ValueTable::erase(Value *V) {
427  valueNumbering.erase(V);
428}
429
430/// verifyRemoved - Verify that the value is removed from all internal data
431/// structures.
432void ValueTable::verifyRemoved(const Value *V) const {
433  for (DenseMap<Value*, uint32_t>::const_iterator
434         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
435    assert(I->first != V && "Inst still occurs in value numbering map!");
436  }
437}
438
439//===----------------------------------------------------------------------===//
440//                                GVN Pass
441//===----------------------------------------------------------------------===//
442
443namespace {
444
445  class GVN : public FunctionPass {
446    bool NoLoads;
447    MemoryDependenceAnalysis *MD;
448    DominatorTree *DT;
449    const TargetData *TD;
450    const TargetLibraryInfo *TLI;
451
452    ValueTable VN;
453
454    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
455    /// have that value number.  Use findLeader to query it.
456    struct LeaderTableEntry {
457      Value *Val;
458      BasicBlock *BB;
459      LeaderTableEntry *Next;
460    };
461    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
462    BumpPtrAllocator TableAllocator;
463
464    SmallVector<Instruction*, 8> InstrsToErase;
465  public:
466    static char ID; // Pass identification, replacement for typeid
467    explicit GVN(bool noloads = false)
468        : FunctionPass(ID), NoLoads(noloads), MD(0) {
469      initializeGVNPass(*PassRegistry::getPassRegistry());
470    }
471
472    bool runOnFunction(Function &F);
473
474    /// markInstructionForDeletion - This removes the specified instruction from
475    /// our various maps and marks it for deletion.
476    void markInstructionForDeletion(Instruction *I) {
477      VN.erase(I);
478      InstrsToErase.push_back(I);
479    }
480
481    const TargetData *getTargetData() const { return TD; }
482    DominatorTree &getDominatorTree() const { return *DT; }
483    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
484    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
485  private:
486    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
487    /// its value number.
488    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
489      LeaderTableEntry &Curr = LeaderTable[N];
490      if (!Curr.Val) {
491        Curr.Val = V;
492        Curr.BB = BB;
493        return;
494      }
495
496      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
497      Node->Val = V;
498      Node->BB = BB;
499      Node->Next = Curr.Next;
500      Curr.Next = Node;
501    }
502
503    /// removeFromLeaderTable - Scan the list of values corresponding to a given
504    /// value number, and remove the given value if encountered.
505    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
506      LeaderTableEntry* Prev = 0;
507      LeaderTableEntry* Curr = &LeaderTable[N];
508
509      while (Curr->Val != V || Curr->BB != BB) {
510        Prev = Curr;
511        Curr = Curr->Next;
512      }
513
514      if (Prev) {
515        Prev->Next = Curr->Next;
516      } else {
517        if (!Curr->Next) {
518          Curr->Val = 0;
519          Curr->BB = 0;
520        } else {
521          LeaderTableEntry* Next = Curr->Next;
522          Curr->Val = Next->Val;
523          Curr->BB = Next->BB;
524          Curr->Next = Next->Next;
525        }
526      }
527    }
528
529    // List of critical edges to be split between iterations.
530    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
531
532    // This transformation requires dominator postdominator info
533    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
534      AU.addRequired<DominatorTree>();
535      AU.addRequired<TargetLibraryInfo>();
536      if (!NoLoads)
537        AU.addRequired<MemoryDependenceAnalysis>();
538      AU.addRequired<AliasAnalysis>();
539
540      AU.addPreserved<DominatorTree>();
541      AU.addPreserved<AliasAnalysis>();
542    }
543
544
545    // Helper fuctions
546    // FIXME: eliminate or document these better
547    bool processLoad(LoadInst *L);
548    bool processInstruction(Instruction *I);
549    bool processNonLocalLoad(LoadInst *L);
550    bool processBlock(BasicBlock *BB);
551    void dump(DenseMap<uint32_t, Value*> &d);
552    bool iterateOnFunction(Function &F);
553    bool performPRE(Function &F);
554    Value *findLeader(BasicBlock *BB, uint32_t num);
555    void cleanupGlobalSets();
556    void verifyRemoved(const Instruction *I) const;
557    bool splitCriticalEdges();
558    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
559                                         BasicBlock *Root);
560    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
561  };
562
563  char GVN::ID = 0;
564}
565
566// createGVNPass - The public interface to this file...
567FunctionPass *llvm::createGVNPass(bool NoLoads) {
568  return new GVN(NoLoads);
569}
570
571INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
572INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
573INITIALIZE_PASS_DEPENDENCY(DominatorTree)
574INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
575INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
576INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
577
578void GVN::dump(DenseMap<uint32_t, Value*>& d) {
579  errs() << "{\n";
580  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
581       E = d.end(); I != E; ++I) {
582      errs() << I->first << "\n";
583      I->second->dump();
584  }
585  errs() << "}\n";
586}
587
588/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
589/// we're analyzing is fully available in the specified block.  As we go, keep
590/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
591/// map is actually a tri-state map with the following values:
592///   0) we know the block *is not* fully available.
593///   1) we know the block *is* fully available.
594///   2) we do not know whether the block is fully available or not, but we are
595///      currently speculating that it will be.
596///   3) we are speculating for this block and have used that to speculate for
597///      other blocks.
598static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
599                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
600  // Optimistically assume that the block is fully available and check to see
601  // if we already know about this block in one lookup.
602  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
603    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
604
605  // If the entry already existed for this block, return the precomputed value.
606  if (!IV.second) {
607    // If this is a speculative "available" value, mark it as being used for
608    // speculation of other blocks.
609    if (IV.first->second == 2)
610      IV.first->second = 3;
611    return IV.first->second != 0;
612  }
613
614  // Otherwise, see if it is fully available in all predecessors.
615  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
616
617  // If this block has no predecessors, it isn't live-in here.
618  if (PI == PE)
619    goto SpeculationFailure;
620
621  for (; PI != PE; ++PI)
622    // If the value isn't fully available in one of our predecessors, then it
623    // isn't fully available in this block either.  Undo our previous
624    // optimistic assumption and bail out.
625    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
626      goto SpeculationFailure;
627
628  return true;
629
630// SpeculationFailure - If we get here, we found out that this is not, after
631// all, a fully-available block.  We have a problem if we speculated on this and
632// used the speculation to mark other blocks as available.
633SpeculationFailure:
634  char &BBVal = FullyAvailableBlocks[BB];
635
636  // If we didn't speculate on this, just return with it set to false.
637  if (BBVal == 2) {
638    BBVal = 0;
639    return false;
640  }
641
642  // If we did speculate on this value, we could have blocks set to 1 that are
643  // incorrect.  Walk the (transitive) successors of this block and mark them as
644  // 0 if set to one.
645  SmallVector<BasicBlock*, 32> BBWorklist;
646  BBWorklist.push_back(BB);
647
648  do {
649    BasicBlock *Entry = BBWorklist.pop_back_val();
650    // Note that this sets blocks to 0 (unavailable) if they happen to not
651    // already be in FullyAvailableBlocks.  This is safe.
652    char &EntryVal = FullyAvailableBlocks[Entry];
653    if (EntryVal == 0) continue;  // Already unavailable.
654
655    // Mark as unavailable.
656    EntryVal = 0;
657
658    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
659      BBWorklist.push_back(*I);
660  } while (!BBWorklist.empty());
661
662  return false;
663}
664
665
666/// CanCoerceMustAliasedValueToLoad - Return true if
667/// CoerceAvailableValueToLoadType will succeed.
668static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
669                                            Type *LoadTy,
670                                            const TargetData &TD) {
671  // If the loaded or stored value is an first class array or struct, don't try
672  // to transform them.  We need to be able to bitcast to integer.
673  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
674      StoredVal->getType()->isStructTy() ||
675      StoredVal->getType()->isArrayTy())
676    return false;
677
678  // The store has to be at least as big as the load.
679  if (TD.getTypeSizeInBits(StoredVal->getType()) <
680        TD.getTypeSizeInBits(LoadTy))
681    return false;
682
683  return true;
684}
685
686
687/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
688/// then a load from a must-aliased pointer of a different type, try to coerce
689/// the stored value.  LoadedTy is the type of the load we want to replace and
690/// InsertPt is the place to insert new instructions.
691///
692/// If we can't do it, return null.
693static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
694                                             Type *LoadedTy,
695                                             Instruction *InsertPt,
696                                             const TargetData &TD) {
697  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
698    return 0;
699
700  // If this is already the right type, just return it.
701  Type *StoredValTy = StoredVal->getType();
702
703  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
704  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
705
706  // If the store and reload are the same size, we can always reuse it.
707  if (StoreSize == LoadSize) {
708    // Pointer to Pointer -> use bitcast.
709    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
710      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
711
712    // Convert source pointers to integers, which can be bitcast.
713    if (StoredValTy->isPointerTy()) {
714      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
715      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
716    }
717
718    Type *TypeToCastTo = LoadedTy;
719    if (TypeToCastTo->isPointerTy())
720      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
721
722    if (StoredValTy != TypeToCastTo)
723      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
724
725    // Cast to pointer if the load needs a pointer type.
726    if (LoadedTy->isPointerTy())
727      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
728
729    return StoredVal;
730  }
731
732  // If the loaded value is smaller than the available value, then we can
733  // extract out a piece from it.  If the available value is too small, then we
734  // can't do anything.
735  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
736
737  // Convert source pointers to integers, which can be manipulated.
738  if (StoredValTy->isPointerTy()) {
739    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
740    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
741  }
742
743  // Convert vectors and fp to integer, which can be manipulated.
744  if (!StoredValTy->isIntegerTy()) {
745    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
746    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
747  }
748
749  // If this is a big-endian system, we need to shift the value down to the low
750  // bits so that a truncate will work.
751  if (TD.isBigEndian()) {
752    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
753    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
754  }
755
756  // Truncate the integer to the right size now.
757  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
758  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
759
760  if (LoadedTy == NewIntTy)
761    return StoredVal;
762
763  // If the result is a pointer, inttoptr.
764  if (LoadedTy->isPointerTy())
765    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
766
767  // Otherwise, bitcast.
768  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
769}
770
771/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
772/// memdep query of a load that ends up being a clobbering memory write (store,
773/// memset, memcpy, memmove).  This means that the write *may* provide bits used
774/// by the load but we can't be sure because the pointers don't mustalias.
775///
776/// Check this case to see if there is anything more we can do before we give
777/// up.  This returns -1 if we have to give up, or a byte number in the stored
778/// value of the piece that feeds the load.
779static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
780                                          Value *WritePtr,
781                                          uint64_t WriteSizeInBits,
782                                          const TargetData &TD) {
783  // If the loaded or stored value is an first class array or struct, don't try
784  // to transform them.  We need to be able to bitcast to integer.
785  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
786    return -1;
787
788  int64_t StoreOffset = 0, LoadOffset = 0;
789  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
790  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
791  if (StoreBase != LoadBase)
792    return -1;
793
794  // If the load and store are to the exact same address, they should have been
795  // a must alias.  AA must have gotten confused.
796  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
797  // to a load from the base of the memset.
798#if 0
799  if (LoadOffset == StoreOffset) {
800    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
801    << "Base       = " << *StoreBase << "\n"
802    << "Store Ptr  = " << *WritePtr << "\n"
803    << "Store Offs = " << StoreOffset << "\n"
804    << "Load Ptr   = " << *LoadPtr << "\n";
805    abort();
806  }
807#endif
808
809  // If the load and store don't overlap at all, the store doesn't provide
810  // anything to the load.  In this case, they really don't alias at all, AA
811  // must have gotten confused.
812  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
813
814  if ((WriteSizeInBits & 7) | (LoadSize & 7))
815    return -1;
816  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
817  LoadSize >>= 3;
818
819
820  bool isAAFailure = false;
821  if (StoreOffset < LoadOffset)
822    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
823  else
824    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
825
826  if (isAAFailure) {
827#if 0
828    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
829    << "Base       = " << *StoreBase << "\n"
830    << "Store Ptr  = " << *WritePtr << "\n"
831    << "Store Offs = " << StoreOffset << "\n"
832    << "Load Ptr   = " << *LoadPtr << "\n";
833    abort();
834#endif
835    return -1;
836  }
837
838  // If the Load isn't completely contained within the stored bits, we don't
839  // have all the bits to feed it.  We could do something crazy in the future
840  // (issue a smaller load then merge the bits in) but this seems unlikely to be
841  // valuable.
842  if (StoreOffset > LoadOffset ||
843      StoreOffset+StoreSize < LoadOffset+LoadSize)
844    return -1;
845
846  // Okay, we can do this transformation.  Return the number of bytes into the
847  // store that the load is.
848  return LoadOffset-StoreOffset;
849}
850
851/// AnalyzeLoadFromClobberingStore - This function is called when we have a
852/// memdep query of a load that ends up being a clobbering store.
853static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
854                                          StoreInst *DepSI,
855                                          const TargetData &TD) {
856  // Cannot handle reading from store of first-class aggregate yet.
857  if (DepSI->getValueOperand()->getType()->isStructTy() ||
858      DepSI->getValueOperand()->getType()->isArrayTy())
859    return -1;
860
861  Value *StorePtr = DepSI->getPointerOperand();
862  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
863  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
864                                        StorePtr, StoreSize, TD);
865}
866
867/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
868/// memdep query of a load that ends up being clobbered by another load.  See if
869/// the other load can feed into the second load.
870static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
871                                         LoadInst *DepLI, const TargetData &TD){
872  // Cannot handle reading from store of first-class aggregate yet.
873  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
874    return -1;
875
876  Value *DepPtr = DepLI->getPointerOperand();
877  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
878  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
879  if (R != -1) return R;
880
881  // If we have a load/load clobber an DepLI can be widened to cover this load,
882  // then we should widen it!
883  int64_t LoadOffs = 0;
884  const Value *LoadBase =
885    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
886  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
887
888  unsigned Size = MemoryDependenceAnalysis::
889    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
890  if (Size == 0) return -1;
891
892  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
893}
894
895
896
897static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
898                                            MemIntrinsic *MI,
899                                            const TargetData &TD) {
900  // If the mem operation is a non-constant size, we can't handle it.
901  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
902  if (SizeCst == 0) return -1;
903  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
904
905  // If this is memset, we just need to see if the offset is valid in the size
906  // of the memset..
907  if (MI->getIntrinsicID() == Intrinsic::memset)
908    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
909                                          MemSizeInBits, TD);
910
911  // If we have a memcpy/memmove, the only case we can handle is if this is a
912  // copy from constant memory.  In that case, we can read directly from the
913  // constant memory.
914  MemTransferInst *MTI = cast<MemTransferInst>(MI);
915
916  Constant *Src = dyn_cast<Constant>(MTI->getSource());
917  if (Src == 0) return -1;
918
919  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
920  if (GV == 0 || !GV->isConstant()) return -1;
921
922  // See if the access is within the bounds of the transfer.
923  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
924                                              MI->getDest(), MemSizeInBits, TD);
925  if (Offset == -1)
926    return Offset;
927
928  // Otherwise, see if we can constant fold a load from the constant with the
929  // offset applied as appropriate.
930  Src = ConstantExpr::getBitCast(Src,
931                                 llvm::Type::getInt8PtrTy(Src->getContext()));
932  Constant *OffsetCst =
933    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
934  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
935  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
936  if (ConstantFoldLoadFromConstPtr(Src, &TD))
937    return Offset;
938  return -1;
939}
940
941
942/// GetStoreValueForLoad - This function is called when we have a
943/// memdep query of a load that ends up being a clobbering store.  This means
944/// that the store provides bits used by the load but we the pointers don't
945/// mustalias.  Check this case to see if there is anything more we can do
946/// before we give up.
947static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
948                                   Type *LoadTy,
949                                   Instruction *InsertPt, const TargetData &TD){
950  LLVMContext &Ctx = SrcVal->getType()->getContext();
951
952  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
953  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
954
955  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
956
957  // Compute which bits of the stored value are being used by the load.  Convert
958  // to an integer type to start with.
959  if (SrcVal->getType()->isPointerTy())
960    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
961  if (!SrcVal->getType()->isIntegerTy())
962    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
963
964  // Shift the bits to the least significant depending on endianness.
965  unsigned ShiftAmt;
966  if (TD.isLittleEndian())
967    ShiftAmt = Offset*8;
968  else
969    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
970
971  if (ShiftAmt)
972    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
973
974  if (LoadSize != StoreSize)
975    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
976
977  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
978}
979
980/// GetStoreValueForLoad - This function is called when we have a
981/// memdep query of a load that ends up being a clobbering load.  This means
982/// that the load *may* provide bits used by the load but we can't be sure
983/// because the pointers don't mustalias.  Check this case to see if there is
984/// anything more we can do before we give up.
985static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
986                                  Type *LoadTy, Instruction *InsertPt,
987                                  GVN &gvn) {
988  const TargetData &TD = *gvn.getTargetData();
989  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
990  // widen SrcVal out to a larger load.
991  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
992  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
993  if (Offset+LoadSize > SrcValSize) {
994    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
995    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
996    // If we have a load/load clobber an DepLI can be widened to cover this
997    // load, then we should widen it to the next power of 2 size big enough!
998    unsigned NewLoadSize = Offset+LoadSize;
999    if (!isPowerOf2_32(NewLoadSize))
1000      NewLoadSize = NextPowerOf2(NewLoadSize);
1001
1002    Value *PtrVal = SrcVal->getPointerOperand();
1003
1004    // Insert the new load after the old load.  This ensures that subsequent
1005    // memdep queries will find the new load.  We can't easily remove the old
1006    // load completely because it is already in the value numbering table.
1007    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1008    Type *DestPTy =
1009      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1010    DestPTy = PointerType::get(DestPTy,
1011                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1012    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1013    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1014    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1015    NewLoad->takeName(SrcVal);
1016    NewLoad->setAlignment(SrcVal->getAlignment());
1017
1018    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1019    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1020
1021    // Replace uses of the original load with the wider load.  On a big endian
1022    // system, we need to shift down to get the relevant bits.
1023    Value *RV = NewLoad;
1024    if (TD.isBigEndian())
1025      RV = Builder.CreateLShr(RV,
1026                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1027    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1028    SrcVal->replaceAllUsesWith(RV);
1029
1030    // We would like to use gvn.markInstructionForDeletion here, but we can't
1031    // because the load is already memoized into the leader map table that GVN
1032    // tracks.  It is potentially possible to remove the load from the table,
1033    // but then there all of the operations based on it would need to be
1034    // rehashed.  Just leave the dead load around.
1035    gvn.getMemDep().removeInstruction(SrcVal);
1036    SrcVal = NewLoad;
1037  }
1038
1039  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1040}
1041
1042
1043/// GetMemInstValueForLoad - This function is called when we have a
1044/// memdep query of a load that ends up being a clobbering mem intrinsic.
1045static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1046                                     Type *LoadTy, Instruction *InsertPt,
1047                                     const TargetData &TD){
1048  LLVMContext &Ctx = LoadTy->getContext();
1049  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1050
1051  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1052
1053  // We know that this method is only called when the mem transfer fully
1054  // provides the bits for the load.
1055  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1056    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1057    // independently of what the offset is.
1058    Value *Val = MSI->getValue();
1059    if (LoadSize != 1)
1060      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1061
1062    Value *OneElt = Val;
1063
1064    // Splat the value out to the right number of bits.
1065    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1066      // If we can double the number of bytes set, do it.
1067      if (NumBytesSet*2 <= LoadSize) {
1068        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1069        Val = Builder.CreateOr(Val, ShVal);
1070        NumBytesSet <<= 1;
1071        continue;
1072      }
1073
1074      // Otherwise insert one byte at a time.
1075      Value *ShVal = Builder.CreateShl(Val, 1*8);
1076      Val = Builder.CreateOr(OneElt, ShVal);
1077      ++NumBytesSet;
1078    }
1079
1080    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1081  }
1082
1083  // Otherwise, this is a memcpy/memmove from a constant global.
1084  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1085  Constant *Src = cast<Constant>(MTI->getSource());
1086
1087  // Otherwise, see if we can constant fold a load from the constant with the
1088  // offset applied as appropriate.
1089  Src = ConstantExpr::getBitCast(Src,
1090                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1091  Constant *OffsetCst =
1092  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1093  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1094  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1095  return ConstantFoldLoadFromConstPtr(Src, &TD);
1096}
1097
1098namespace {
1099
1100struct AvailableValueInBlock {
1101  /// BB - The basic block in question.
1102  BasicBlock *BB;
1103  enum ValType {
1104    SimpleVal,  // A simple offsetted value that is accessed.
1105    LoadVal,    // A value produced by a load.
1106    MemIntrin   // A memory intrinsic which is loaded from.
1107  };
1108
1109  /// V - The value that is live out of the block.
1110  PointerIntPair<Value *, 2, ValType> Val;
1111
1112  /// Offset - The byte offset in Val that is interesting for the load query.
1113  unsigned Offset;
1114
1115  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1116                                   unsigned Offset = 0) {
1117    AvailableValueInBlock Res;
1118    Res.BB = BB;
1119    Res.Val.setPointer(V);
1120    Res.Val.setInt(SimpleVal);
1121    Res.Offset = Offset;
1122    return Res;
1123  }
1124
1125  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1126                                     unsigned Offset = 0) {
1127    AvailableValueInBlock Res;
1128    Res.BB = BB;
1129    Res.Val.setPointer(MI);
1130    Res.Val.setInt(MemIntrin);
1131    Res.Offset = Offset;
1132    return Res;
1133  }
1134
1135  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1136                                       unsigned Offset = 0) {
1137    AvailableValueInBlock Res;
1138    Res.BB = BB;
1139    Res.Val.setPointer(LI);
1140    Res.Val.setInt(LoadVal);
1141    Res.Offset = Offset;
1142    return Res;
1143  }
1144
1145  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1146  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1147  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1148
1149  Value *getSimpleValue() const {
1150    assert(isSimpleValue() && "Wrong accessor");
1151    return Val.getPointer();
1152  }
1153
1154  LoadInst *getCoercedLoadValue() const {
1155    assert(isCoercedLoadValue() && "Wrong accessor");
1156    return cast<LoadInst>(Val.getPointer());
1157  }
1158
1159  MemIntrinsic *getMemIntrinValue() const {
1160    assert(isMemIntrinValue() && "Wrong accessor");
1161    return cast<MemIntrinsic>(Val.getPointer());
1162  }
1163
1164  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1165  /// defined here to the specified type.  This handles various coercion cases.
1166  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1167    Value *Res;
1168    if (isSimpleValue()) {
1169      Res = getSimpleValue();
1170      if (Res->getType() != LoadTy) {
1171        const TargetData *TD = gvn.getTargetData();
1172        assert(TD && "Need target data to handle type mismatch case");
1173        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1174                                   *TD);
1175
1176        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1177                     << *getSimpleValue() << '\n'
1178                     << *Res << '\n' << "\n\n\n");
1179      }
1180    } else if (isCoercedLoadValue()) {
1181      LoadInst *Load = getCoercedLoadValue();
1182      if (Load->getType() == LoadTy && Offset == 0) {
1183        Res = Load;
1184      } else {
1185        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1186                                  gvn);
1187
1188        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1189                     << *getCoercedLoadValue() << '\n'
1190                     << *Res << '\n' << "\n\n\n");
1191      }
1192    } else {
1193      const TargetData *TD = gvn.getTargetData();
1194      assert(TD && "Need target data to handle type mismatch case");
1195      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1196                                   LoadTy, BB->getTerminator(), *TD);
1197      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1198                   << "  " << *getMemIntrinValue() << '\n'
1199                   << *Res << '\n' << "\n\n\n");
1200    }
1201    return Res;
1202  }
1203};
1204
1205} // end anonymous namespace
1206
1207/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1208/// construct SSA form, allowing us to eliminate LI.  This returns the value
1209/// that should be used at LI's definition site.
1210static Value *ConstructSSAForLoadSet(LoadInst *LI,
1211                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1212                                     GVN &gvn) {
1213  // Check for the fully redundant, dominating load case.  In this case, we can
1214  // just use the dominating value directly.
1215  if (ValuesPerBlock.size() == 1 &&
1216      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1217                                               LI->getParent()))
1218    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1219
1220  // Otherwise, we have to construct SSA form.
1221  SmallVector<PHINode*, 8> NewPHIs;
1222  SSAUpdater SSAUpdate(&NewPHIs);
1223  SSAUpdate.Initialize(LI->getType(), LI->getName());
1224
1225  Type *LoadTy = LI->getType();
1226
1227  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1228    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1229    BasicBlock *BB = AV.BB;
1230
1231    if (SSAUpdate.HasValueForBlock(BB))
1232      continue;
1233
1234    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1235  }
1236
1237  // Perform PHI construction.
1238  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1239
1240  // If new PHI nodes were created, notify alias analysis.
1241  if (V->getType()->isPointerTy()) {
1242    AliasAnalysis *AA = gvn.getAliasAnalysis();
1243
1244    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1245      AA->copyValue(LI, NewPHIs[i]);
1246
1247    // Now that we've copied information to the new PHIs, scan through
1248    // them again and inform alias analysis that we've added potentially
1249    // escaping uses to any values that are operands to these PHIs.
1250    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1251      PHINode *P = NewPHIs[i];
1252      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1253        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1254        AA->addEscapingUse(P->getOperandUse(jj));
1255      }
1256    }
1257  }
1258
1259  return V;
1260}
1261
1262static bool isLifetimeStart(const Instruction *Inst) {
1263  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1264    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1265  return false;
1266}
1267
1268/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1269/// non-local by performing PHI construction.
1270bool GVN::processNonLocalLoad(LoadInst *LI) {
1271  // Find the non-local dependencies of the load.
1272  SmallVector<NonLocalDepResult, 64> Deps;
1273  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1274  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1275  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1276  //             << Deps.size() << *LI << '\n');
1277
1278  // If we had to process more than one hundred blocks to find the
1279  // dependencies, this load isn't worth worrying about.  Optimizing
1280  // it will be too expensive.
1281  if (Deps.size() > 100)
1282    return false;
1283
1284  // If we had a phi translation failure, we'll have a single entry which is a
1285  // clobber in the current block.  Reject this early.
1286  if (Deps.size() == 1
1287      && !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber())
1288  {
1289    DEBUG(
1290      dbgs() << "GVN: non-local load ";
1291      WriteAsOperand(dbgs(), LI);
1292      dbgs() << " has unknown dependencies\n";
1293    );
1294    return false;
1295  }
1296
1297  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1298  // where we have a value available in repl, also keep track of whether we see
1299  // dependencies that produce an unknown value for the load (such as a call
1300  // that could potentially clobber the load).
1301  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1302  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1303
1304  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1305    BasicBlock *DepBB = Deps[i].getBB();
1306    MemDepResult DepInfo = Deps[i].getResult();
1307
1308    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1309      UnavailableBlocks.push_back(DepBB);
1310      continue;
1311    }
1312
1313    if (DepInfo.isClobber()) {
1314      // The address being loaded in this non-local block may not be the same as
1315      // the pointer operand of the load if PHI translation occurs.  Make sure
1316      // to consider the right address.
1317      Value *Address = Deps[i].getAddress();
1318
1319      // If the dependence is to a store that writes to a superset of the bits
1320      // read by the load, we can extract the bits we need for the load from the
1321      // stored value.
1322      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1323        if (TD && Address) {
1324          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1325                                                      DepSI, *TD);
1326          if (Offset != -1) {
1327            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1328                                                       DepSI->getValueOperand(),
1329                                                                Offset));
1330            continue;
1331          }
1332        }
1333      }
1334
1335      // Check to see if we have something like this:
1336      //    load i32* P
1337      //    load i8* (P+1)
1338      // if we have this, replace the later with an extraction from the former.
1339      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1340        // If this is a clobber and L is the first instruction in its block, then
1341        // we have the first instruction in the entry block.
1342        if (DepLI != LI && Address && TD) {
1343          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1344                                                     LI->getPointerOperand(),
1345                                                     DepLI, *TD);
1346
1347          if (Offset != -1) {
1348            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1349                                                                    Offset));
1350            continue;
1351          }
1352        }
1353      }
1354
1355      // If the clobbering value is a memset/memcpy/memmove, see if we can
1356      // forward a value on from it.
1357      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1358        if (TD && Address) {
1359          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1360                                                        DepMI, *TD);
1361          if (Offset != -1) {
1362            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1363                                                                  Offset));
1364            continue;
1365          }
1366        }
1367      }
1368
1369      UnavailableBlocks.push_back(DepBB);
1370      continue;
1371    }
1372
1373    // DepInfo.isDef() here
1374
1375    Instruction *DepInst = DepInfo.getInst();
1376
1377    // Loading the allocation -> undef.
1378    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1379        // Loading immediately after lifetime begin -> undef.
1380        isLifetimeStart(DepInst)) {
1381      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1382                                             UndefValue::get(LI->getType())));
1383      continue;
1384    }
1385
1386    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1387      // Reject loads and stores that are to the same address but are of
1388      // different types if we have to.
1389      if (S->getValueOperand()->getType() != LI->getType()) {
1390        // If the stored value is larger or equal to the loaded value, we can
1391        // reuse it.
1392        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1393                                                        LI->getType(), *TD)) {
1394          UnavailableBlocks.push_back(DepBB);
1395          continue;
1396        }
1397      }
1398
1399      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1400                                                         S->getValueOperand()));
1401      continue;
1402    }
1403
1404    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1405      // If the types mismatch and we can't handle it, reject reuse of the load.
1406      if (LD->getType() != LI->getType()) {
1407        // If the stored value is larger or equal to the loaded value, we can
1408        // reuse it.
1409        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1410          UnavailableBlocks.push_back(DepBB);
1411          continue;
1412        }
1413      }
1414      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1415      continue;
1416    }
1417
1418    UnavailableBlocks.push_back(DepBB);
1419    continue;
1420  }
1421
1422  // If we have no predecessors that produce a known value for this load, exit
1423  // early.
1424  if (ValuesPerBlock.empty()) return false;
1425
1426  // If all of the instructions we depend on produce a known value for this
1427  // load, then it is fully redundant and we can use PHI insertion to compute
1428  // its value.  Insert PHIs and remove the fully redundant value now.
1429  if (UnavailableBlocks.empty()) {
1430    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1431
1432    // Perform PHI construction.
1433    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1434    LI->replaceAllUsesWith(V);
1435
1436    if (isa<PHINode>(V))
1437      V->takeName(LI);
1438    if (V->getType()->isPointerTy())
1439      MD->invalidateCachedPointerInfo(V);
1440    markInstructionForDeletion(LI);
1441    ++NumGVNLoad;
1442    return true;
1443  }
1444
1445  if (!EnablePRE || !EnableLoadPRE)
1446    return false;
1447
1448  // Okay, we have *some* definitions of the value.  This means that the value
1449  // is available in some of our (transitive) predecessors.  Lets think about
1450  // doing PRE of this load.  This will involve inserting a new load into the
1451  // predecessor when it's not available.  We could do this in general, but
1452  // prefer to not increase code size.  As such, we only do this when we know
1453  // that we only have to insert *one* load (which means we're basically moving
1454  // the load, not inserting a new one).
1455
1456  SmallPtrSet<BasicBlock *, 4> Blockers;
1457  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1458    Blockers.insert(UnavailableBlocks[i]);
1459
1460  // Let's find the first basic block with more than one predecessor.  Walk
1461  // backwards through predecessors if needed.
1462  BasicBlock *LoadBB = LI->getParent();
1463  BasicBlock *TmpBB = LoadBB;
1464
1465  bool isSinglePred = false;
1466  bool allSingleSucc = true;
1467  while (TmpBB->getSinglePredecessor()) {
1468    isSinglePred = true;
1469    TmpBB = TmpBB->getSinglePredecessor();
1470    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1471      return false;
1472    if (Blockers.count(TmpBB))
1473      return false;
1474
1475    // If any of these blocks has more than one successor (i.e. if the edge we
1476    // just traversed was critical), then there are other paths through this
1477    // block along which the load may not be anticipated.  Hoisting the load
1478    // above this block would be adding the load to execution paths along
1479    // which it was not previously executed.
1480    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1481      return false;
1482  }
1483
1484  assert(TmpBB);
1485  LoadBB = TmpBB;
1486
1487  // FIXME: It is extremely unclear what this loop is doing, other than
1488  // artificially restricting loadpre.
1489  if (isSinglePred) {
1490    bool isHot = false;
1491    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1492      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1493      if (AV.isSimpleValue())
1494        // "Hot" Instruction is in some loop (because it dominates its dep.
1495        // instruction).
1496        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1497          if (DT->dominates(LI, I)) {
1498            isHot = true;
1499            break;
1500          }
1501    }
1502
1503    // We are interested only in "hot" instructions. We don't want to do any
1504    // mis-optimizations here.
1505    if (!isHot)
1506      return false;
1507  }
1508
1509  // Check to see how many predecessors have the loaded value fully
1510  // available.
1511  DenseMap<BasicBlock*, Value*> PredLoads;
1512  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1513  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1514    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1515  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1516    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1517
1518  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1519  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1520       PI != E; ++PI) {
1521    BasicBlock *Pred = *PI;
1522    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1523      continue;
1524    }
1525    PredLoads[Pred] = 0;
1526
1527    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1528      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1529        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1530              << Pred->getName() << "': " << *LI << '\n');
1531        return false;
1532      }
1533
1534      if (LoadBB->isLandingPad()) {
1535        DEBUG(dbgs()
1536              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1537              << Pred->getName() << "': " << *LI << '\n');
1538        return false;
1539      }
1540
1541      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1542      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1543    }
1544  }
1545
1546  if (!NeedToSplit.empty()) {
1547    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1548    return false;
1549  }
1550
1551  // Decide whether PRE is profitable for this load.
1552  unsigned NumUnavailablePreds = PredLoads.size();
1553  assert(NumUnavailablePreds != 0 &&
1554         "Fully available value should be eliminated above!");
1555
1556  // If this load is unavailable in multiple predecessors, reject it.
1557  // FIXME: If we could restructure the CFG, we could make a common pred with
1558  // all the preds that don't have an available LI and insert a new load into
1559  // that one block.
1560  if (NumUnavailablePreds != 1)
1561      return false;
1562
1563  // Check if the load can safely be moved to all the unavailable predecessors.
1564  bool CanDoPRE = true;
1565  SmallVector<Instruction*, 8> NewInsts;
1566  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1567         E = PredLoads.end(); I != E; ++I) {
1568    BasicBlock *UnavailablePred = I->first;
1569
1570    // Do PHI translation to get its value in the predecessor if necessary.  The
1571    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1572
1573    // If all preds have a single successor, then we know it is safe to insert
1574    // the load on the pred (?!?), so we can insert code to materialize the
1575    // pointer if it is not available.
1576    PHITransAddr Address(LI->getPointerOperand(), TD);
1577    Value *LoadPtr = 0;
1578    if (allSingleSucc) {
1579      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1580                                                  *DT, NewInsts);
1581    } else {
1582      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1583      LoadPtr = Address.getAddr();
1584    }
1585
1586    // If we couldn't find or insert a computation of this phi translated value,
1587    // we fail PRE.
1588    if (LoadPtr == 0) {
1589      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1590            << *LI->getPointerOperand() << "\n");
1591      CanDoPRE = false;
1592      break;
1593    }
1594
1595    // Make sure it is valid to move this load here.  We have to watch out for:
1596    //  @1 = getelementptr (i8* p, ...
1597    //  test p and branch if == 0
1598    //  load @1
1599    // It is valid to have the getelementptr before the test, even if p can
1600    // be 0, as getelementptr only does address arithmetic.
1601    // If we are not pushing the value through any multiple-successor blocks
1602    // we do not have this case.  Otherwise, check that the load is safe to
1603    // put anywhere; this can be improved, but should be conservatively safe.
1604    if (!allSingleSucc &&
1605        // FIXME: REEVALUTE THIS.
1606        !isSafeToLoadUnconditionally(LoadPtr,
1607                                     UnavailablePred->getTerminator(),
1608                                     LI->getAlignment(), TD)) {
1609      CanDoPRE = false;
1610      break;
1611    }
1612
1613    I->second = LoadPtr;
1614  }
1615
1616  if (!CanDoPRE) {
1617    while (!NewInsts.empty()) {
1618      Instruction *I = NewInsts.pop_back_val();
1619      if (MD) MD->removeInstruction(I);
1620      I->eraseFromParent();
1621    }
1622    return false;
1623  }
1624
1625  // Okay, we can eliminate this load by inserting a reload in the predecessor
1626  // and using PHI construction to get the value in the other predecessors, do
1627  // it.
1628  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1629  DEBUG(if (!NewInsts.empty())
1630          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1631                 << *NewInsts.back() << '\n');
1632
1633  // Assign value numbers to the new instructions.
1634  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1635    // FIXME: We really _ought_ to insert these value numbers into their
1636    // parent's availability map.  However, in doing so, we risk getting into
1637    // ordering issues.  If a block hasn't been processed yet, we would be
1638    // marking a value as AVAIL-IN, which isn't what we intend.
1639    VN.lookup_or_add(NewInsts[i]);
1640  }
1641
1642  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1643         E = PredLoads.end(); I != E; ++I) {
1644    BasicBlock *UnavailablePred = I->first;
1645    Value *LoadPtr = I->second;
1646
1647    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1648                                        LI->getAlignment(),
1649                                        UnavailablePred->getTerminator());
1650
1651    // Transfer the old load's TBAA tag to the new load.
1652    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1653      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1654
1655    // Transfer DebugLoc.
1656    NewLoad->setDebugLoc(LI->getDebugLoc());
1657
1658    // Add the newly created load.
1659    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1660                                                        NewLoad));
1661    MD->invalidateCachedPointerInfo(LoadPtr);
1662    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1663  }
1664
1665  // Perform PHI construction.
1666  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1667  LI->replaceAllUsesWith(V);
1668  if (isa<PHINode>(V))
1669    V->takeName(LI);
1670  if (V->getType()->isPointerTy())
1671    MD->invalidateCachedPointerInfo(V);
1672  markInstructionForDeletion(LI);
1673  ++NumPRELoad;
1674  return true;
1675}
1676
1677/// processLoad - Attempt to eliminate a load, first by eliminating it
1678/// locally, and then attempting non-local elimination if that fails.
1679bool GVN::processLoad(LoadInst *L) {
1680  if (!MD)
1681    return false;
1682
1683  if (!L->isSimple())
1684    return false;
1685
1686  if (L->use_empty()) {
1687    markInstructionForDeletion(L);
1688    return true;
1689  }
1690
1691  // ... to a pointer that has been loaded from before...
1692  MemDepResult Dep = MD->getDependency(L);
1693
1694  // If we have a clobber and target data is around, see if this is a clobber
1695  // that we can fix up through code synthesis.
1696  if (Dep.isClobber() && TD) {
1697    // Check to see if we have something like this:
1698    //   store i32 123, i32* %P
1699    //   %A = bitcast i32* %P to i8*
1700    //   %B = gep i8* %A, i32 1
1701    //   %C = load i8* %B
1702    //
1703    // We could do that by recognizing if the clobber instructions are obviously
1704    // a common base + constant offset, and if the previous store (or memset)
1705    // completely covers this load.  This sort of thing can happen in bitfield
1706    // access code.
1707    Value *AvailVal = 0;
1708    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1709      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1710                                                  L->getPointerOperand(),
1711                                                  DepSI, *TD);
1712      if (Offset != -1)
1713        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1714                                        L->getType(), L, *TD);
1715    }
1716
1717    // Check to see if we have something like this:
1718    //    load i32* P
1719    //    load i8* (P+1)
1720    // if we have this, replace the later with an extraction from the former.
1721    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1722      // If this is a clobber and L is the first instruction in its block, then
1723      // we have the first instruction in the entry block.
1724      if (DepLI == L)
1725        return false;
1726
1727      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1728                                                 L->getPointerOperand(),
1729                                                 DepLI, *TD);
1730      if (Offset != -1)
1731        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1732    }
1733
1734    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1735    // a value on from it.
1736    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1737      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1738                                                    L->getPointerOperand(),
1739                                                    DepMI, *TD);
1740      if (Offset != -1)
1741        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1742    }
1743
1744    if (AvailVal) {
1745      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1746            << *AvailVal << '\n' << *L << "\n\n\n");
1747
1748      // Replace the load!
1749      L->replaceAllUsesWith(AvailVal);
1750      if (AvailVal->getType()->isPointerTy())
1751        MD->invalidateCachedPointerInfo(AvailVal);
1752      markInstructionForDeletion(L);
1753      ++NumGVNLoad;
1754      return true;
1755    }
1756  }
1757
1758  // If the value isn't available, don't do anything!
1759  if (Dep.isClobber()) {
1760    DEBUG(
1761      // fast print dep, using operator<< on instruction is too slow.
1762      dbgs() << "GVN: load ";
1763      WriteAsOperand(dbgs(), L);
1764      Instruction *I = Dep.getInst();
1765      dbgs() << " is clobbered by " << *I << '\n';
1766    );
1767    return false;
1768  }
1769
1770  // If it is defined in another block, try harder.
1771  if (Dep.isNonLocal())
1772    return processNonLocalLoad(L);
1773
1774  if (!Dep.isDef()) {
1775    DEBUG(
1776      // fast print dep, using operator<< on instruction is too slow.
1777      dbgs() << "GVN: load ";
1778      WriteAsOperand(dbgs(), L);
1779      dbgs() << " has unknown dependence\n";
1780    );
1781    return false;
1782  }
1783
1784  Instruction *DepInst = Dep.getInst();
1785  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1786    Value *StoredVal = DepSI->getValueOperand();
1787
1788    // The store and load are to a must-aliased pointer, but they may not
1789    // actually have the same type.  See if we know how to reuse the stored
1790    // value (depending on its type).
1791    if (StoredVal->getType() != L->getType()) {
1792      if (TD) {
1793        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1794                                                   L, *TD);
1795        if (StoredVal == 0)
1796          return false;
1797
1798        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1799                     << '\n' << *L << "\n\n\n");
1800      }
1801      else
1802        return false;
1803    }
1804
1805    // Remove it!
1806    L->replaceAllUsesWith(StoredVal);
1807    if (StoredVal->getType()->isPointerTy())
1808      MD->invalidateCachedPointerInfo(StoredVal);
1809    markInstructionForDeletion(L);
1810    ++NumGVNLoad;
1811    return true;
1812  }
1813
1814  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1815    Value *AvailableVal = DepLI;
1816
1817    // The loads are of a must-aliased pointer, but they may not actually have
1818    // the same type.  See if we know how to reuse the previously loaded value
1819    // (depending on its type).
1820    if (DepLI->getType() != L->getType()) {
1821      if (TD) {
1822        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1823                                                      L, *TD);
1824        if (AvailableVal == 0)
1825          return false;
1826
1827        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1828                     << "\n" << *L << "\n\n\n");
1829      }
1830      else
1831        return false;
1832    }
1833
1834    // Remove it!
1835    L->replaceAllUsesWith(AvailableVal);
1836    if (DepLI->getType()->isPointerTy())
1837      MD->invalidateCachedPointerInfo(DepLI);
1838    markInstructionForDeletion(L);
1839    ++NumGVNLoad;
1840    return true;
1841  }
1842
1843  // If this load really doesn't depend on anything, then we must be loading an
1844  // undef value.  This can happen when loading for a fresh allocation with no
1845  // intervening stores, for example.
1846  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1847    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1848    markInstructionForDeletion(L);
1849    ++NumGVNLoad;
1850    return true;
1851  }
1852
1853  // If this load occurs either right after a lifetime begin,
1854  // then the loaded value is undefined.
1855  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1856    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1857      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1858      markInstructionForDeletion(L);
1859      ++NumGVNLoad;
1860      return true;
1861    }
1862  }
1863
1864  return false;
1865}
1866
1867// findLeader - In order to find a leader for a given value number at a
1868// specific basic block, we first obtain the list of all Values for that number,
1869// and then scan the list to find one whose block dominates the block in
1870// question.  This is fast because dominator tree queries consist of only
1871// a few comparisons of DFS numbers.
1872Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1873  LeaderTableEntry Vals = LeaderTable[num];
1874  if (!Vals.Val) return 0;
1875
1876  Value *Val = 0;
1877  if (DT->dominates(Vals.BB, BB)) {
1878    Val = Vals.Val;
1879    if (isa<Constant>(Val)) return Val;
1880  }
1881
1882  LeaderTableEntry* Next = Vals.Next;
1883  while (Next) {
1884    if (DT->dominates(Next->BB, BB)) {
1885      if (isa<Constant>(Next->Val)) return Next->Val;
1886      if (!Val) Val = Next->Val;
1887    }
1888
1889    Next = Next->Next;
1890  }
1891
1892  return Val;
1893}
1894
1895/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1896/// use is dominated by the given basic block.  Returns the number of uses that
1897/// were replaced.
1898unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1899                                          BasicBlock *Root) {
1900  unsigned Count = 0;
1901  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1902       UI != UE; ) {
1903    Instruction *User = cast<Instruction>(*UI);
1904    unsigned OpNum = UI.getOperandNo();
1905    ++UI;
1906
1907    if (DT->dominates(Root, User->getParent())) {
1908      User->setOperand(OpNum, To);
1909      ++Count;
1910    }
1911  }
1912  return Count;
1913}
1914
1915/// propagateEquality - The given values are known to be equal in every block
1916/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1917/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1918bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
1919  if (LHS == RHS) return false;
1920  assert(LHS->getType() == RHS->getType() && "Equal but types differ!");
1921
1922  // Don't try to propagate equalities between constants.
1923  if (isa<Constant>(LHS) && isa<Constant>(RHS))
1924    return false;
1925
1926  // Make sure that any constants are on the right-hand side.  In general the
1927  // best results are obtained by placing the longest lived value on the RHS.
1928  if (isa<Constant>(LHS))
1929    std::swap(LHS, RHS);
1930
1931  // If neither term is constant then bail out.  This is not for correctness,
1932  // it's just that the non-constant case is much less useful: it occurs just
1933  // as often as the constant case but handling it hardly ever results in an
1934  // improvement.
1935  if (!isa<Constant>(RHS))
1936    return false;
1937
1938  // If value numbering later deduces that an instruction in the scope is equal
1939  // to 'LHS' then ensure it will be turned into 'RHS'.
1940  addToLeaderTable(VN.lookup_or_add(LHS), RHS, Root);
1941
1942  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1943  // LHS always has at least one use that is not dominated by Root, this will
1944  // never do anything if LHS has only one use.
1945  bool Changed = false;
1946  if (!LHS->hasOneUse()) {
1947    unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
1948    Changed |= NumReplacements > 0;
1949    NumGVNEqProp += NumReplacements;
1950  }
1951
1952  // Now try to deduce additional equalities from this one.  For example, if the
1953  // known equality was "(A != B)" == "false" then it follows that A and B are
1954  // equal in the scope.  Only boolean equalities with an explicit true or false
1955  // RHS are currently supported.
1956  if (!RHS->getType()->isIntegerTy(1))
1957    // Not a boolean equality - bail out.
1958    return Changed;
1959  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1960  if (!CI)
1961    // RHS neither 'true' nor 'false' - bail out.
1962    return Changed;
1963  // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1964  bool isKnownTrue = CI->isAllOnesValue();
1965  bool isKnownFalse = !isKnownTrue;
1966
1967  // If "A && B" is known true then both A and B are known true.  If "A || B"
1968  // is known false then both A and B are known false.
1969  Value *A, *B;
1970  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1971      (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1972    Changed |= propagateEquality(A, RHS, Root);
1973    Changed |= propagateEquality(B, RHS, Root);
1974    return Changed;
1975  }
1976
1977  // If we are propagating an equality like "(A == B)" == "true" then also
1978  // propagate the equality A == B.
1979  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
1980    // Only equality comparisons are supported.
1981    if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1982        (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) {
1983      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1984      Changed |= propagateEquality(Op0, Op1, Root);
1985    }
1986    return Changed;
1987  }
1988
1989  return Changed;
1990}
1991
1992/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
1993/// true if every path from the entry block to 'Dst' passes via this edge.  In
1994/// particular 'Dst' must not be reachable via another edge from 'Src'.
1995static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
1996                                       DominatorTree *DT) {
1997  // First off, there must not be more than one edge from Src to Dst, there
1998  // should be exactly one.  So keep track of the number of times Src occurs
1999  // as a predecessor of Dst and fail if it's more than once.  Secondly, any
2000  // other predecessors of Dst should be dominated by Dst (see logic below).
2001  bool SawEdgeFromSrc = false;
2002  for (pred_iterator PI = pred_begin(Dst), PE = pred_end(Dst); PI != PE; ++PI) {
2003    BasicBlock *Pred = *PI;
2004    if (Pred == Src) {
2005      // An edge from Src to Dst.
2006      if (SawEdgeFromSrc)
2007        // There are multiple edges from Src to Dst - fail.
2008        return false;
2009      SawEdgeFromSrc = true;
2010      continue;
2011    }
2012    // If the predecessor is not dominated by Dst, then it must be possible to
2013    // reach it either without passing through Src (and thus not via the edge)
2014    // or by passing through Src but taking a different edge out of Src.  Either
2015    // way it is possible to reach Dst without passing via the edge, so fail.
2016    if (!DT->dominates(Dst, *PI))
2017      return false;
2018  }
2019  assert(SawEdgeFromSrc && "No edge between these basic blocks!");
2020
2021  // Every path from the entry block to Dst must at some point pass to Dst from
2022  // a predecessor that is not dominated by Dst.  This predecessor can only be
2023  // Src, since all others are dominated by Dst.  As there is only one edge from
2024  // Src to Dst, the path passes by this edge.
2025  return true;
2026}
2027
2028/// processInstruction - When calculating availability, handle an instruction
2029/// by inserting it into the appropriate sets
2030bool GVN::processInstruction(Instruction *I) {
2031  // Ignore dbg info intrinsics.
2032  if (isa<DbgInfoIntrinsic>(I))
2033    return false;
2034
2035  // If the instruction can be easily simplified then do so now in preference
2036  // to value numbering it.  Value numbering often exposes redundancies, for
2037  // example if it determines that %y is equal to %x then the instruction
2038  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2039  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2040    I->replaceAllUsesWith(V);
2041    if (MD && V->getType()->isPointerTy())
2042      MD->invalidateCachedPointerInfo(V);
2043    markInstructionForDeletion(I);
2044    ++NumGVNSimpl;
2045    return true;
2046  }
2047
2048  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2049    if (processLoad(LI))
2050      return true;
2051
2052    unsigned Num = VN.lookup_or_add(LI);
2053    addToLeaderTable(Num, LI, LI->getParent());
2054    return false;
2055  }
2056
2057  // For conditional branches, we can perform simple conditional propagation on
2058  // the condition value itself.
2059  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2060    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2061      return false;
2062
2063    Value *BranchCond = BI->getCondition();
2064
2065    BasicBlock *TrueSucc = BI->getSuccessor(0);
2066    BasicBlock *FalseSucc = BI->getSuccessor(1);
2067    BasicBlock *Parent = BI->getParent();
2068    bool Changed = false;
2069
2070    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2071      Changed |= propagateEquality(BranchCond,
2072                                   ConstantInt::getTrue(TrueSucc->getContext()),
2073                                   TrueSucc);
2074
2075    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2076      Changed |= propagateEquality(BranchCond,
2077                                   ConstantInt::getFalse(FalseSucc->getContext()),
2078                                   FalseSucc);
2079
2080    return Changed;
2081  }
2082
2083  // For switches, propagate the case values into the case destinations.
2084  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2085    Value *SwitchCond = SI->getCondition();
2086    BasicBlock *Parent = SI->getParent();
2087    bool Changed = false;
2088    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2089      BasicBlock *Dst = SI->getSuccessor(i);
2090      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2091        Changed |= propagateEquality(SwitchCond, SI->getCaseValue(i), Dst);
2092    }
2093    return Changed;
2094  }
2095
2096  // Instructions with void type don't return a value, so there's
2097  // no point in trying to find redudancies in them.
2098  if (I->getType()->isVoidTy()) return false;
2099
2100  uint32_t NextNum = VN.getNextUnusedValueNumber();
2101  unsigned Num = VN.lookup_or_add(I);
2102
2103  // Allocations are always uniquely numbered, so we can save time and memory
2104  // by fast failing them.
2105  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2106    addToLeaderTable(Num, I, I->getParent());
2107    return false;
2108  }
2109
2110  // If the number we were assigned was a brand new VN, then we don't
2111  // need to do a lookup to see if the number already exists
2112  // somewhere in the domtree: it can't!
2113  if (Num == NextNum) {
2114    addToLeaderTable(Num, I, I->getParent());
2115    return false;
2116  }
2117
2118  // Perform fast-path value-number based elimination of values inherited from
2119  // dominators.
2120  Value *repl = findLeader(I->getParent(), Num);
2121  if (repl == 0) {
2122    // Failure, just remember this instance for future use.
2123    addToLeaderTable(Num, I, I->getParent());
2124    return false;
2125  }
2126
2127  // Remove it!
2128  I->replaceAllUsesWith(repl);
2129  if (MD && repl->getType()->isPointerTy())
2130    MD->invalidateCachedPointerInfo(repl);
2131  markInstructionForDeletion(I);
2132  return true;
2133}
2134
2135/// runOnFunction - This is the main transformation entry point for a function.
2136bool GVN::runOnFunction(Function& F) {
2137  if (!NoLoads)
2138    MD = &getAnalysis<MemoryDependenceAnalysis>();
2139  DT = &getAnalysis<DominatorTree>();
2140  TD = getAnalysisIfAvailable<TargetData>();
2141  TLI = &getAnalysis<TargetLibraryInfo>();
2142  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2143  VN.setMemDep(MD);
2144  VN.setDomTree(DT);
2145
2146  bool Changed = false;
2147  bool ShouldContinue = true;
2148
2149  // Merge unconditional branches, allowing PRE to catch more
2150  // optimization opportunities.
2151  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2152    BasicBlock *BB = FI++;
2153
2154    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2155    if (removedBlock) ++NumGVNBlocks;
2156
2157    Changed |= removedBlock;
2158  }
2159
2160  unsigned Iteration = 0;
2161  while (ShouldContinue) {
2162    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2163    ShouldContinue = iterateOnFunction(F);
2164    if (splitCriticalEdges())
2165      ShouldContinue = true;
2166    Changed |= ShouldContinue;
2167    ++Iteration;
2168  }
2169
2170  if (EnablePRE) {
2171    bool PREChanged = true;
2172    while (PREChanged) {
2173      PREChanged = performPRE(F);
2174      Changed |= PREChanged;
2175    }
2176  }
2177  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2178  // computations into blocks where they become fully redundant.  Note that
2179  // we can't do this until PRE's critical edge splitting updates memdep.
2180  // Actually, when this happens, we should just fully integrate PRE into GVN.
2181
2182  cleanupGlobalSets();
2183
2184  return Changed;
2185}
2186
2187
2188bool GVN::processBlock(BasicBlock *BB) {
2189  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2190  // (and incrementing BI before processing an instruction).
2191  assert(InstrsToErase.empty() &&
2192         "We expect InstrsToErase to be empty across iterations");
2193  bool ChangedFunction = false;
2194
2195  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2196       BI != BE;) {
2197    ChangedFunction |= processInstruction(BI);
2198    if (InstrsToErase.empty()) {
2199      ++BI;
2200      continue;
2201    }
2202
2203    // If we need some instructions deleted, do it now.
2204    NumGVNInstr += InstrsToErase.size();
2205
2206    // Avoid iterator invalidation.
2207    bool AtStart = BI == BB->begin();
2208    if (!AtStart)
2209      --BI;
2210
2211    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2212         E = InstrsToErase.end(); I != E; ++I) {
2213      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2214      if (MD) MD->removeInstruction(*I);
2215      (*I)->eraseFromParent();
2216      DEBUG(verifyRemoved(*I));
2217    }
2218    InstrsToErase.clear();
2219
2220    if (AtStart)
2221      BI = BB->begin();
2222    else
2223      ++BI;
2224  }
2225
2226  return ChangedFunction;
2227}
2228
2229/// performPRE - Perform a purely local form of PRE that looks for diamond
2230/// control flow patterns and attempts to perform simple PRE at the join point.
2231bool GVN::performPRE(Function &F) {
2232  bool Changed = false;
2233  DenseMap<BasicBlock*, Value*> predMap;
2234  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2235       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2236    BasicBlock *CurrentBlock = *DI;
2237
2238    // Nothing to PRE in the entry block.
2239    if (CurrentBlock == &F.getEntryBlock()) continue;
2240
2241    // Don't perform PRE on a landing pad.
2242    if (CurrentBlock->isLandingPad()) continue;
2243
2244    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2245         BE = CurrentBlock->end(); BI != BE; ) {
2246      Instruction *CurInst = BI++;
2247
2248      if (isa<AllocaInst>(CurInst) ||
2249          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2250          CurInst->getType()->isVoidTy() ||
2251          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2252          isa<DbgInfoIntrinsic>(CurInst))
2253        continue;
2254
2255      // We don't currently value number ANY inline asm calls.
2256      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2257        if (CallI->isInlineAsm())
2258          continue;
2259
2260      uint32_t ValNo = VN.lookup(CurInst);
2261
2262      // Look for the predecessors for PRE opportunities.  We're
2263      // only trying to solve the basic diamond case, where
2264      // a value is computed in the successor and one predecessor,
2265      // but not the other.  We also explicitly disallow cases
2266      // where the successor is its own predecessor, because they're
2267      // more complicated to get right.
2268      unsigned NumWith = 0;
2269      unsigned NumWithout = 0;
2270      BasicBlock *PREPred = 0;
2271      predMap.clear();
2272
2273      for (pred_iterator PI = pred_begin(CurrentBlock),
2274           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2275        BasicBlock *P = *PI;
2276        // We're not interested in PRE where the block is its
2277        // own predecessor, or in blocks with predecessors
2278        // that are not reachable.
2279        if (P == CurrentBlock) {
2280          NumWithout = 2;
2281          break;
2282        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2283          NumWithout = 2;
2284          break;
2285        }
2286
2287        Value* predV = findLeader(P, ValNo);
2288        if (predV == 0) {
2289          PREPred = P;
2290          ++NumWithout;
2291        } else if (predV == CurInst) {
2292          NumWithout = 2;
2293        } else {
2294          predMap[P] = predV;
2295          ++NumWith;
2296        }
2297      }
2298
2299      // Don't do PRE when it might increase code size, i.e. when
2300      // we would need to insert instructions in more than one pred.
2301      if (NumWithout != 1 || NumWith == 0)
2302        continue;
2303
2304      // Don't do PRE across indirect branch.
2305      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2306        continue;
2307
2308      // We can't do PRE safely on a critical edge, so instead we schedule
2309      // the edge to be split and perform the PRE the next time we iterate
2310      // on the function.
2311      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2312      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2313        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2314        continue;
2315      }
2316
2317      // Instantiate the expression in the predecessor that lacked it.
2318      // Because we are going top-down through the block, all value numbers
2319      // will be available in the predecessor by the time we need them.  Any
2320      // that weren't originally present will have been instantiated earlier
2321      // in this loop.
2322      Instruction *PREInstr = CurInst->clone();
2323      bool success = true;
2324      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2325        Value *Op = PREInstr->getOperand(i);
2326        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2327          continue;
2328
2329        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2330          PREInstr->setOperand(i, V);
2331        } else {
2332          success = false;
2333          break;
2334        }
2335      }
2336
2337      // Fail out if we encounter an operand that is not available in
2338      // the PRE predecessor.  This is typically because of loads which
2339      // are not value numbered precisely.
2340      if (!success) {
2341        delete PREInstr;
2342        DEBUG(verifyRemoved(PREInstr));
2343        continue;
2344      }
2345
2346      PREInstr->insertBefore(PREPred->getTerminator());
2347      PREInstr->setName(CurInst->getName() + ".pre");
2348      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2349      predMap[PREPred] = PREInstr;
2350      VN.add(PREInstr, ValNo);
2351      ++NumGVNPRE;
2352
2353      // Update the availability map to include the new instruction.
2354      addToLeaderTable(ValNo, PREInstr, PREPred);
2355
2356      // Create a PHI to make the value available in this block.
2357      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2358      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2359                                     CurInst->getName() + ".pre-phi",
2360                                     CurrentBlock->begin());
2361      for (pred_iterator PI = PB; PI != PE; ++PI) {
2362        BasicBlock *P = *PI;
2363        Phi->addIncoming(predMap[P], P);
2364      }
2365
2366      VN.add(Phi, ValNo);
2367      addToLeaderTable(ValNo, Phi, CurrentBlock);
2368      Phi->setDebugLoc(CurInst->getDebugLoc());
2369      CurInst->replaceAllUsesWith(Phi);
2370      if (Phi->getType()->isPointerTy()) {
2371        // Because we have added a PHI-use of the pointer value, it has now
2372        // "escaped" from alias analysis' perspective.  We need to inform
2373        // AA of this.
2374        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2375             ++ii) {
2376          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2377          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2378        }
2379
2380        if (MD)
2381          MD->invalidateCachedPointerInfo(Phi);
2382      }
2383      VN.erase(CurInst);
2384      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2385
2386      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2387      if (MD) MD->removeInstruction(CurInst);
2388      CurInst->eraseFromParent();
2389      DEBUG(verifyRemoved(CurInst));
2390      Changed = true;
2391    }
2392  }
2393
2394  if (splitCriticalEdges())
2395    Changed = true;
2396
2397  return Changed;
2398}
2399
2400/// splitCriticalEdges - Split critical edges found during the previous
2401/// iteration that may enable further optimization.
2402bool GVN::splitCriticalEdges() {
2403  if (toSplit.empty())
2404    return false;
2405  do {
2406    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2407    SplitCriticalEdge(Edge.first, Edge.second, this);
2408  } while (!toSplit.empty());
2409  if (MD) MD->invalidateCachedPredecessors();
2410  return true;
2411}
2412
2413/// iterateOnFunction - Executes one iteration of GVN
2414bool GVN::iterateOnFunction(Function &F) {
2415  cleanupGlobalSets();
2416
2417  // Top-down walk of the dominator tree
2418  bool Changed = false;
2419#if 0
2420  // Needed for value numbering with phi construction to work.
2421  ReversePostOrderTraversal<Function*> RPOT(&F);
2422  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2423       RE = RPOT.end(); RI != RE; ++RI)
2424    Changed |= processBlock(*RI);
2425#else
2426  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2427       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2428    Changed |= processBlock(DI->getBlock());
2429#endif
2430
2431  return Changed;
2432}
2433
2434void GVN::cleanupGlobalSets() {
2435  VN.clear();
2436  LeaderTable.clear();
2437  TableAllocator.Reset();
2438}
2439
2440/// verifyRemoved - Verify that the specified instruction does not occur in our
2441/// internal data structures.
2442void GVN::verifyRemoved(const Instruction *Inst) const {
2443  VN.verifyRemoved(Inst);
2444
2445  // Walk through the value number scope to make sure the instruction isn't
2446  // ferreted away in it.
2447  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2448       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2449    const LeaderTableEntry *Node = &I->second;
2450    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2451
2452    while (Node->Next) {
2453      Node = Node->Next;
2454      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2455    }
2456  }
2457}
2458