GVN.cpp revision 64b535608e03531e0a0a5745724b7e8d819bdd71
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself, it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/MemoryDependenceAnalysis.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include <cstdio>
40using namespace llvm;
41
42STATISTIC(NumGVNInstr, "Number of instructions deleted");
43STATISTIC(NumGVNLoad, "Number of loads deleted");
44STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
45STATISTIC(NumGVNBlocks, "Number of blocks merged");
46STATISTIC(NumPRELoad, "Number of loads PRE'd");
47
48static cl::opt<bool> EnablePRE("enable-pre",
49                               cl::init(true), cl::Hidden);
50cl::opt<bool> EnableLoadPRE("enable-load-pre"/*, cl::init(true)*/);
51
52//===----------------------------------------------------------------------===//
53//                         ValueTable Class
54//===----------------------------------------------------------------------===//
55
56/// This class holds the mapping between values and value numbers.  It is used
57/// as an efficient mechanism to determine the expression-wise equivalence of
58/// two values.
59namespace {
60  struct VISIBILITY_HIDDEN Expression {
61    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
62                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
63                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
64                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
65                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
66                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
67                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
68                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
69                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
70                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
71                            EMPTY, TOMBSTONE };
72
73    ExpressionOpcode opcode;
74    const Type* type;
75    uint32_t firstVN;
76    uint32_t secondVN;
77    uint32_t thirdVN;
78    SmallVector<uint32_t, 4> varargs;
79    Value* function;
80
81    Expression() { }
82    Expression(ExpressionOpcode o) : opcode(o) { }
83
84    bool operator==(const Expression &other) const {
85      if (opcode != other.opcode)
86        return false;
87      else if (opcode == EMPTY || opcode == TOMBSTONE)
88        return true;
89      else if (type != other.type)
90        return false;
91      else if (function != other.function)
92        return false;
93      else if (firstVN != other.firstVN)
94        return false;
95      else if (secondVN != other.secondVN)
96        return false;
97      else if (thirdVN != other.thirdVN)
98        return false;
99      else {
100        if (varargs.size() != other.varargs.size())
101          return false;
102
103        for (size_t i = 0; i < varargs.size(); ++i)
104          if (varargs[i] != other.varargs[i])
105            return false;
106
107        return true;
108      }
109    }
110
111    bool operator!=(const Expression &other) const {
112      if (opcode != other.opcode)
113        return true;
114      else if (opcode == EMPTY || opcode == TOMBSTONE)
115        return false;
116      else if (type != other.type)
117        return true;
118      else if (function != other.function)
119        return true;
120      else if (firstVN != other.firstVN)
121        return true;
122      else if (secondVN != other.secondVN)
123        return true;
124      else if (thirdVN != other.thirdVN)
125        return true;
126      else {
127        if (varargs.size() != other.varargs.size())
128          return true;
129
130        for (size_t i = 0; i < varargs.size(); ++i)
131          if (varargs[i] != other.varargs[i])
132            return true;
133
134          return false;
135      }
136    }
137  };
138
139  class VISIBILITY_HIDDEN ValueTable {
140    private:
141      DenseMap<Value*, uint32_t> valueNumbering;
142      DenseMap<Expression, uint32_t> expressionNumbering;
143      AliasAnalysis* AA;
144      MemoryDependenceAnalysis* MD;
145      DominatorTree* DT;
146
147      uint32_t nextValueNumber;
148
149      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
150      Expression::ExpressionOpcode getOpcode(CmpInst* C);
151      Expression::ExpressionOpcode getOpcode(CastInst* C);
152      Expression create_expression(BinaryOperator* BO);
153      Expression create_expression(CmpInst* C);
154      Expression create_expression(ShuffleVectorInst* V);
155      Expression create_expression(ExtractElementInst* C);
156      Expression create_expression(InsertElementInst* V);
157      Expression create_expression(SelectInst* V);
158      Expression create_expression(CastInst* C);
159      Expression create_expression(GetElementPtrInst* G);
160      Expression create_expression(CallInst* C);
161      Expression create_expression(Constant* C);
162    public:
163      ValueTable() : nextValueNumber(1) { }
164      uint32_t lookup_or_add(Value* V);
165      uint32_t lookup(Value* V) const;
166      void add(Value* V, uint32_t num);
167      void clear();
168      void erase(Value* v);
169      unsigned size();
170      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
171      AliasAnalysis *getAliasAnalysis() const { return AA; }
172      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
173      void setDomTree(DominatorTree* D) { DT = D; }
174      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
175  };
176}
177
178namespace llvm {
179template <> struct DenseMapInfo<Expression> {
180  static inline Expression getEmptyKey() {
181    return Expression(Expression::EMPTY);
182  }
183
184  static inline Expression getTombstoneKey() {
185    return Expression(Expression::TOMBSTONE);
186  }
187
188  static unsigned getHashValue(const Expression e) {
189    unsigned hash = e.opcode;
190
191    hash = e.firstVN + hash * 37;
192    hash = e.secondVN + hash * 37;
193    hash = e.thirdVN + hash * 37;
194
195    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
196            (unsigned)((uintptr_t)e.type >> 9)) +
197           hash * 37;
198
199    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
200         E = e.varargs.end(); I != E; ++I)
201      hash = *I + hash * 37;
202
203    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
204            (unsigned)((uintptr_t)e.function >> 9)) +
205           hash * 37;
206
207    return hash;
208  }
209  static bool isEqual(const Expression &LHS, const Expression &RHS) {
210    return LHS == RHS;
211  }
212  static bool isPod() { return true; }
213};
214}
215
216//===----------------------------------------------------------------------===//
217//                     ValueTable Internal Functions
218//===----------------------------------------------------------------------===//
219Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
220  switch(BO->getOpcode()) {
221  default: // THIS SHOULD NEVER HAPPEN
222    assert(0 && "Binary operator with unknown opcode?");
223  case Instruction::Add:  return Expression::ADD;
224  case Instruction::Sub:  return Expression::SUB;
225  case Instruction::Mul:  return Expression::MUL;
226  case Instruction::UDiv: return Expression::UDIV;
227  case Instruction::SDiv: return Expression::SDIV;
228  case Instruction::FDiv: return Expression::FDIV;
229  case Instruction::URem: return Expression::UREM;
230  case Instruction::SRem: return Expression::SREM;
231  case Instruction::FRem: return Expression::FREM;
232  case Instruction::Shl:  return Expression::SHL;
233  case Instruction::LShr: return Expression::LSHR;
234  case Instruction::AShr: return Expression::ASHR;
235  case Instruction::And:  return Expression::AND;
236  case Instruction::Or:   return Expression::OR;
237  case Instruction::Xor:  return Expression::XOR;
238  }
239}
240
241Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
242  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
243    switch (C->getPredicate()) {
244    default:  // THIS SHOULD NEVER HAPPEN
245      assert(0 && "Comparison with unknown predicate?");
246    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
247    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
248    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
249    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
250    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
251    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
252    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
253    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
254    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
255    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
256    }
257  }
258  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
259  switch (C->getPredicate()) {
260  default: // THIS SHOULD NEVER HAPPEN
261    assert(0 && "Comparison with unknown predicate?");
262  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
263  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
264  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
265  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
266  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
267  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
268  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
269  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
270  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
271  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
272  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
273  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
274  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
275  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
276  }
277}
278
279Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
280  switch(C->getOpcode()) {
281  default: // THIS SHOULD NEVER HAPPEN
282    assert(0 && "Cast operator with unknown opcode?");
283  case Instruction::Trunc:    return Expression::TRUNC;
284  case Instruction::ZExt:     return Expression::ZEXT;
285  case Instruction::SExt:     return Expression::SEXT;
286  case Instruction::FPToUI:   return Expression::FPTOUI;
287  case Instruction::FPToSI:   return Expression::FPTOSI;
288  case Instruction::UIToFP:   return Expression::UITOFP;
289  case Instruction::SIToFP:   return Expression::SITOFP;
290  case Instruction::FPTrunc:  return Expression::FPTRUNC;
291  case Instruction::FPExt:    return Expression::FPEXT;
292  case Instruction::PtrToInt: return Expression::PTRTOINT;
293  case Instruction::IntToPtr: return Expression::INTTOPTR;
294  case Instruction::BitCast:  return Expression::BITCAST;
295  }
296}
297
298Expression ValueTable::create_expression(CallInst* C) {
299  Expression e;
300
301  e.type = C->getType();
302  e.firstVN = 0;
303  e.secondVN = 0;
304  e.thirdVN = 0;
305  e.function = C->getCalledFunction();
306  e.opcode = Expression::CALL;
307
308  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
309       I != E; ++I)
310    e.varargs.push_back(lookup_or_add(*I));
311
312  return e;
313}
314
315Expression ValueTable::create_expression(BinaryOperator* BO) {
316  Expression e;
317
318  e.firstVN = lookup_or_add(BO->getOperand(0));
319  e.secondVN = lookup_or_add(BO->getOperand(1));
320  e.thirdVN = 0;
321  e.function = 0;
322  e.type = BO->getType();
323  e.opcode = getOpcode(BO);
324
325  return e;
326}
327
328Expression ValueTable::create_expression(CmpInst* C) {
329  Expression e;
330
331  e.firstVN = lookup_or_add(C->getOperand(0));
332  e.secondVN = lookup_or_add(C->getOperand(1));
333  e.thirdVN = 0;
334  e.function = 0;
335  e.type = C->getType();
336  e.opcode = getOpcode(C);
337
338  return e;
339}
340
341Expression ValueTable::create_expression(CastInst* C) {
342  Expression e;
343
344  e.firstVN = lookup_or_add(C->getOperand(0));
345  e.secondVN = 0;
346  e.thirdVN = 0;
347  e.function = 0;
348  e.type = C->getType();
349  e.opcode = getOpcode(C);
350
351  return e;
352}
353
354Expression ValueTable::create_expression(ShuffleVectorInst* S) {
355  Expression e;
356
357  e.firstVN = lookup_or_add(S->getOperand(0));
358  e.secondVN = lookup_or_add(S->getOperand(1));
359  e.thirdVN = lookup_or_add(S->getOperand(2));
360  e.function = 0;
361  e.type = S->getType();
362  e.opcode = Expression::SHUFFLE;
363
364  return e;
365}
366
367Expression ValueTable::create_expression(ExtractElementInst* E) {
368  Expression e;
369
370  e.firstVN = lookup_or_add(E->getOperand(0));
371  e.secondVN = lookup_or_add(E->getOperand(1));
372  e.thirdVN = 0;
373  e.function = 0;
374  e.type = E->getType();
375  e.opcode = Expression::EXTRACT;
376
377  return e;
378}
379
380Expression ValueTable::create_expression(InsertElementInst* I) {
381  Expression e;
382
383  e.firstVN = lookup_or_add(I->getOperand(0));
384  e.secondVN = lookup_or_add(I->getOperand(1));
385  e.thirdVN = lookup_or_add(I->getOperand(2));
386  e.function = 0;
387  e.type = I->getType();
388  e.opcode = Expression::INSERT;
389
390  return e;
391}
392
393Expression ValueTable::create_expression(SelectInst* I) {
394  Expression e;
395
396  e.firstVN = lookup_or_add(I->getCondition());
397  e.secondVN = lookup_or_add(I->getTrueValue());
398  e.thirdVN = lookup_or_add(I->getFalseValue());
399  e.function = 0;
400  e.type = I->getType();
401  e.opcode = Expression::SELECT;
402
403  return e;
404}
405
406Expression ValueTable::create_expression(GetElementPtrInst* G) {
407  Expression e;
408
409  e.firstVN = lookup_or_add(G->getPointerOperand());
410  e.secondVN = 0;
411  e.thirdVN = 0;
412  e.function = 0;
413  e.type = G->getType();
414  e.opcode = Expression::GEP;
415
416  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
417       I != E; ++I)
418    e.varargs.push_back(lookup_or_add(*I));
419
420  return e;
421}
422
423//===----------------------------------------------------------------------===//
424//                     ValueTable External Functions
425//===----------------------------------------------------------------------===//
426
427/// add - Insert a value into the table with a specified value number.
428void ValueTable::add(Value* V, uint32_t num) {
429  valueNumbering.insert(std::make_pair(V, num));
430}
431
432/// lookup_or_add - Returns the value number for the specified value, assigning
433/// it a new number if it did not have one before.
434uint32_t ValueTable::lookup_or_add(Value* V) {
435  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
436  if (VI != valueNumbering.end())
437    return VI->second;
438
439  if (CallInst* C = dyn_cast<CallInst>(V)) {
440    if (AA->doesNotAccessMemory(C)) {
441      Expression e = create_expression(C);
442
443      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
444      if (EI != expressionNumbering.end()) {
445        valueNumbering.insert(std::make_pair(V, EI->second));
446        return EI->second;
447      } else {
448        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
449        valueNumbering.insert(std::make_pair(V, nextValueNumber));
450
451        return nextValueNumber++;
452      }
453    } else if (AA->onlyReadsMemory(C)) {
454      Expression e = create_expression(C);
455
456      if (expressionNumbering.find(e) == expressionNumbering.end()) {
457        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
458        valueNumbering.insert(std::make_pair(V, nextValueNumber));
459        return nextValueNumber++;
460      }
461
462      MemDepResult local_dep = MD->getDependency(C);
463
464      if (local_dep.isNone()) {
465        valueNumbering.insert(std::make_pair(V, nextValueNumber));
466        return nextValueNumber++;
467      }
468
469      if (Instruction *LocalDepInst = local_dep.getInst()) {
470        if (!isa<CallInst>(LocalDepInst)) {
471          valueNumbering.insert(std::make_pair(V, nextValueNumber));
472          return nextValueNumber++;
473        }
474
475        CallInst* local_cdep = cast<CallInst>(LocalDepInst);
476
477        if (local_cdep->getCalledFunction() != C->getCalledFunction() ||
478            local_cdep->getNumOperands() != C->getNumOperands()) {
479          valueNumbering.insert(std::make_pair(V, nextValueNumber));
480          return nextValueNumber++;
481        }
482
483        if (!C->getCalledFunction()) {
484          valueNumbering.insert(std::make_pair(V, nextValueNumber));
485          return nextValueNumber++;
486        }
487
488        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
489          uint32_t c_vn = lookup_or_add(C->getOperand(i));
490          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
491          if (c_vn != cd_vn) {
492            valueNumbering.insert(std::make_pair(V, nextValueNumber));
493            return nextValueNumber++;
494          }
495        }
496
497        uint32_t v = lookup_or_add(local_cdep);
498        valueNumbering.insert(std::make_pair(V, v));
499        return v;
500      }
501
502
503      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
504        MD->getNonLocalDependency(C);
505      CallInst* cdep = 0;
506
507      // Check to see if we have a single dominating call instruction that is
508      // identical to C.
509      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
510        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
511        // Ignore non-local dependencies.
512        if (I->second.isNonLocal())
513          continue;
514
515        // We don't handle non-depedencies.  If we already have a call, reject
516        // instruction dependencies.
517        if (I->second.isNone() || cdep != 0) {
518          cdep = 0;
519          break;
520        }
521
522        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
523        // FIXME: All duplicated with non-local case.
524        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
525          cdep = NonLocalDepCall;
526          continue;
527        }
528
529        cdep = 0;
530        break;
531      }
532
533      if (!cdep) {
534        valueNumbering.insert(std::make_pair(V, nextValueNumber));
535        return nextValueNumber++;
536      }
537
538      if (cdep->getCalledFunction() != C->getCalledFunction() ||
539          cdep->getNumOperands() != C->getNumOperands()) {
540        valueNumbering.insert(std::make_pair(V, nextValueNumber));
541        return nextValueNumber++;
542      }
543      if (!C->getCalledFunction()) {
544        valueNumbering.insert(std::make_pair(V, nextValueNumber));
545        return nextValueNumber++;
546      }
547      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
548        uint32_t c_vn = lookup_or_add(C->getOperand(i));
549        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
550        if (c_vn != cd_vn) {
551          valueNumbering.insert(std::make_pair(V, nextValueNumber));
552          return nextValueNumber++;
553        }
554      }
555
556      uint32_t v = lookup_or_add(cdep);
557      valueNumbering.insert(std::make_pair(V, v));
558      return v;
559
560    } else {
561      valueNumbering.insert(std::make_pair(V, nextValueNumber));
562      return nextValueNumber++;
563    }
564  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
565    Expression e = create_expression(BO);
566
567    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
568    if (EI != expressionNumbering.end()) {
569      valueNumbering.insert(std::make_pair(V, EI->second));
570      return EI->second;
571    } else {
572      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
573      valueNumbering.insert(std::make_pair(V, nextValueNumber));
574
575      return nextValueNumber++;
576    }
577  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
578    Expression e = create_expression(C);
579
580    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
581    if (EI != expressionNumbering.end()) {
582      valueNumbering.insert(std::make_pair(V, EI->second));
583      return EI->second;
584    } else {
585      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
586      valueNumbering.insert(std::make_pair(V, nextValueNumber));
587
588      return nextValueNumber++;
589    }
590  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
591    Expression e = create_expression(U);
592
593    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
594    if (EI != expressionNumbering.end()) {
595      valueNumbering.insert(std::make_pair(V, EI->second));
596      return EI->second;
597    } else {
598      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
599      valueNumbering.insert(std::make_pair(V, nextValueNumber));
600
601      return nextValueNumber++;
602    }
603  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
604    Expression e = create_expression(U);
605
606    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
607    if (EI != expressionNumbering.end()) {
608      valueNumbering.insert(std::make_pair(V, EI->second));
609      return EI->second;
610    } else {
611      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
612      valueNumbering.insert(std::make_pair(V, nextValueNumber));
613
614      return nextValueNumber++;
615    }
616  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
617    Expression e = create_expression(U);
618
619    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
620    if (EI != expressionNumbering.end()) {
621      valueNumbering.insert(std::make_pair(V, EI->second));
622      return EI->second;
623    } else {
624      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
625      valueNumbering.insert(std::make_pair(V, nextValueNumber));
626
627      return nextValueNumber++;
628    }
629  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
630    Expression e = create_expression(U);
631
632    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
633    if (EI != expressionNumbering.end()) {
634      valueNumbering.insert(std::make_pair(V, EI->second));
635      return EI->second;
636    } else {
637      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
638      valueNumbering.insert(std::make_pair(V, nextValueNumber));
639
640      return nextValueNumber++;
641    }
642  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
643    Expression e = create_expression(U);
644
645    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
646    if (EI != expressionNumbering.end()) {
647      valueNumbering.insert(std::make_pair(V, EI->second));
648      return EI->second;
649    } else {
650      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
651      valueNumbering.insert(std::make_pair(V, nextValueNumber));
652
653      return nextValueNumber++;
654    }
655  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
656    Expression e = create_expression(U);
657
658    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
659    if (EI != expressionNumbering.end()) {
660      valueNumbering.insert(std::make_pair(V, EI->second));
661      return EI->second;
662    } else {
663      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
664      valueNumbering.insert(std::make_pair(V, nextValueNumber));
665
666      return nextValueNumber++;
667    }
668  } else {
669    valueNumbering.insert(std::make_pair(V, nextValueNumber));
670    return nextValueNumber++;
671  }
672}
673
674/// lookup - Returns the value number of the specified value. Fails if
675/// the value has not yet been numbered.
676uint32_t ValueTable::lookup(Value* V) const {
677  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
678  assert(VI != valueNumbering.end() && "Value not numbered?");
679  return VI->second;
680}
681
682/// clear - Remove all entries from the ValueTable
683void ValueTable::clear() {
684  valueNumbering.clear();
685  expressionNumbering.clear();
686  nextValueNumber = 1;
687}
688
689/// erase - Remove a value from the value numbering
690void ValueTable::erase(Value* V) {
691  valueNumbering.erase(V);
692}
693
694//===----------------------------------------------------------------------===//
695//                         GVN Pass
696//===----------------------------------------------------------------------===//
697
698namespace {
699  struct VISIBILITY_HIDDEN ValueNumberScope {
700    ValueNumberScope* parent;
701    DenseMap<uint32_t, Value*> table;
702
703    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
704  };
705}
706
707namespace {
708
709  class VISIBILITY_HIDDEN GVN : public FunctionPass {
710    bool runOnFunction(Function &F);
711  public:
712    static char ID; // Pass identification, replacement for typeid
713    GVN() : FunctionPass(&ID) { }
714
715  private:
716    MemoryDependenceAnalysis *MD;
717    DominatorTree *DT;
718
719    ValueTable VN;
720    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
721
722    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
723    PhiMapType phiMap;
724
725
726    // This transformation requires dominator postdominator info
727    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
728      AU.addRequired<DominatorTree>();
729      AU.addRequired<MemoryDependenceAnalysis>();
730      AU.addRequired<AliasAnalysis>();
731
732      AU.addPreserved<DominatorTree>();
733      AU.addPreserved<AliasAnalysis>();
734    }
735
736    // Helper fuctions
737    // FIXME: eliminate or document these better
738    bool processLoad(LoadInst* L,
739                     DenseMap<Value*, LoadInst*> &lastLoad,
740                     SmallVectorImpl<Instruction*> &toErase);
741    bool processInstruction(Instruction* I,
742                            DenseMap<Value*, LoadInst*>& lastSeenLoad,
743                            SmallVectorImpl<Instruction*> &toErase);
744    bool processNonLocalLoad(LoadInst* L,
745                             SmallVectorImpl<Instruction*> &toErase);
746    bool processBlock(DomTreeNode* DTN);
747    Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
748                            DenseMap<BasicBlock*, Value*> &Phis,
749                            bool top_level = false);
750    void dump(DenseMap<uint32_t, Value*>& d);
751    bool iterateOnFunction(Function &F);
752    Value* CollapsePhi(PHINode* p);
753    bool isSafeReplacement(PHINode* p, Instruction* inst);
754    bool performPRE(Function& F);
755    Value* lookupNumber(BasicBlock* BB, uint32_t num);
756    bool mergeBlockIntoPredecessor(BasicBlock* BB);
757    void cleanupGlobalSets();
758  };
759
760  char GVN::ID = 0;
761}
762
763// createGVNPass - The public interface to this file...
764FunctionPass *llvm::createGVNPass() { return new GVN(); }
765
766static RegisterPass<GVN> X("gvn",
767                           "Global Value Numbering");
768
769void GVN::dump(DenseMap<uint32_t, Value*>& d) {
770  printf("{\n");
771  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
772       E = d.end(); I != E; ++I) {
773      printf("%d\n", I->first);
774      I->second->dump();
775  }
776  printf("}\n");
777}
778
779Value* GVN::CollapsePhi(PHINode* p) {
780  Value* constVal = p->hasConstantValue();
781  if (!constVal) return 0;
782
783  Instruction* inst = dyn_cast<Instruction>(constVal);
784  if (!inst)
785    return constVal;
786
787  if (DT->dominates(inst, p))
788    if (isSafeReplacement(p, inst))
789      return inst;
790  return 0;
791}
792
793bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
794  if (!isa<PHINode>(inst))
795    return true;
796
797  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
798       UI != E; ++UI)
799    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
800      if (use_phi->getParent() == inst->getParent())
801        return false;
802
803  return true;
804}
805
806/// GetValueForBlock - Get the value to use within the specified basic block.
807/// available values are in Phis.
808Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
809                             DenseMap<BasicBlock*, Value*> &Phis,
810                             bool top_level) {
811
812  // If we have already computed this value, return the previously computed val.
813  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
814  if (V != Phis.end() && !top_level) return V->second;
815
816  // If the block is unreachable, just return undef, since this path
817  // can't actually occur at runtime.
818  if (!DT->isReachableFromEntry(BB))
819    return Phis[BB] = UndefValue::get(orig->getType());
820
821  BasicBlock* singlePred = BB->getSinglePredecessor();
822  if (singlePred) {
823    Value *ret = GetValueForBlock(singlePred, orig, Phis);
824    Phis[BB] = ret;
825    return ret;
826  }
827
828  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
829  // now, then get values to fill in the incoming values for the PHI.
830  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
831                                BB->begin());
832  PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
833
834  if (Phis.count(BB) == 0)
835    Phis.insert(std::make_pair(BB, PN));
836
837  // Fill in the incoming values for the block.
838  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
839    Value* val = GetValueForBlock(*PI, orig, Phis);
840    PN->addIncoming(val, *PI);
841  }
842
843  VN.getAliasAnalysis()->copyValue(orig, PN);
844
845  // Attempt to collapse PHI nodes that are trivially redundant
846  Value* v = CollapsePhi(PN);
847  if (!v) {
848    // Cache our phi construction results
849    phiMap[orig->getPointerOperand()].insert(PN);
850    return PN;
851  }
852
853  PN->replaceAllUsesWith(v);
854
855  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
856       E = Phis.end(); I != E; ++I)
857    if (I->second == PN)
858      I->second = v;
859
860  DEBUG(cerr << "GVN removed: " << *PN);
861  MD->removeInstruction(PN);
862  PN->eraseFromParent();
863
864  Phis[BB] = v;
865  return v;
866}
867
868/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
869/// we're analyzing is fully available in the specified block.  As we go, keep
870/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
871/// map is actually a tri-state map with the following values:
872///   0) we know the block *is not* fully available.
873///   1) we know the block *is* fully available.
874///   2) we do not know whether the block is fully available or not, but we are
875///      currently speculating that it will be.
876///   3) we are speculating for this block and have used that to speculate for
877///      other blocks.
878static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
879                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
880  // Optimistically assume that the block is fully available and check to see
881  // if we already know about this block in one lookup.
882  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
883    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
884
885  // If the entry already existed for this block, return the precomputed value.
886  if (!IV.second) {
887    // If this is a speculative "available" value, mark it as being used for
888    // speculation of other blocks.
889    if (IV.first->second == 2)
890      IV.first->second = 3;
891    return IV.first->second != 0;
892  }
893
894  // Otherwise, see if it is fully available in all predecessors.
895  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
896
897  // If this block has no predecessors, it isn't live-in here.
898  if (PI == PE)
899    goto SpeculationFailure;
900
901  for (; PI != PE; ++PI)
902    // If the value isn't fully available in one of our predecessors, then it
903    // isn't fully available in this block either.  Undo our previous
904    // optimistic assumption and bail out.
905    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
906      goto SpeculationFailure;
907
908  return true;
909
910// SpeculationFailure - If we get here, we found out that this is not, after
911// all, a fully-available block.  We have a problem if we speculated on this and
912// used the speculation to mark other blocks as available.
913SpeculationFailure:
914  char &BBVal = FullyAvailableBlocks[BB];
915
916  // If we didn't speculate on this, just return with it set to false.
917  if (BBVal == 2) {
918    BBVal = 0;
919    return false;
920  }
921
922  // If we did speculate on this value, we could have blocks set to 1 that are
923  // incorrect.  Walk the (transitive) successors of this block and mark them as
924  // 0 if set to one.
925  SmallVector<BasicBlock*, 32> BBWorklist;
926  BBWorklist.push_back(BB);
927
928  while (!BBWorklist.empty()) {
929    BasicBlock *Entry = BBWorklist.pop_back_val();
930    // Note that this sets blocks to 0 (unavailable) if they happen to not
931    // already be in FullyAvailableBlocks.  This is safe.
932    char &EntryVal = FullyAvailableBlocks[Entry];
933    if (EntryVal == 0) continue;  // Already unavailable.
934
935    // Mark as unavailable.
936    EntryVal = 0;
937
938    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
939      BBWorklist.push_back(*I);
940  }
941
942  return false;
943}
944
945/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
946/// non-local by performing PHI construction.
947bool GVN::processNonLocalLoad(LoadInst *LI,
948                              SmallVectorImpl<Instruction*> &toErase) {
949  // Find the non-local dependencies of the load.
950  const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
951    MD->getNonLocalDependency(LI);
952  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << deps.size() << *LI);
953
954  // If we had to process more than one hundred blocks to find the
955  // dependencies, this load isn't worth worrying about.  Optimizing
956  // it will be too expensive.
957  if (deps.size() > 100)
958    return false;
959
960  BasicBlock *EntryBlock = &LI->getParent()->getParent()->getEntryBlock();
961
962  // Filter out useless results (non-locals, etc).  Keep track of the blocks
963  // where we have a value available in repl, also keep track of whether we see
964  // dependencies that produce an unknown value for the load (such as a call
965  // that could potentially clobber the load).
966  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
967  SmallVector<BasicBlock*, 16> UnavailableBlocks;
968
969  for (unsigned i = 0, e = deps.size(); i != e; ++i) {
970    BasicBlock *DepBB = deps[i].first;
971    MemDepResult DepInfo = deps[i].second;
972
973    if (DepInfo.isNonLocal()) {
974      // If this is a non-local dependency in the entry block, then we depend on
975      // the value live-in at the start of the function.  We could insert a load
976      // in the entry block to get this, but for now we'll just bail out.
977      if (DepBB == EntryBlock)
978        UnavailableBlocks.push_back(DepBB);
979      continue;
980    }
981
982    if (DepInfo.isNone()) {
983      ValuesPerBlock.push_back(std::make_pair(DepBB,
984                                              UndefValue::get(LI->getType())));
985      continue;
986    }
987
988    if (StoreInst* S = dyn_cast<StoreInst>(DepInfo.getInst())) {
989      // Reject loads and stores that are to the same address but are of
990      // different types.
991      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
992      // of bitfield access, it would be interesting to optimize for it at some
993      // point.
994      if (S->getOperand(0)->getType() != LI->getType()) {
995        UnavailableBlocks.push_back(DepBB);
996        continue;
997      }
998
999      if (S->getPointerOperand() != LI->getPointerOperand() &&
1000          VN.getAliasAnalysis()->alias(S->getPointerOperand(), 1,
1001                                       LI->getPointerOperand(), 1)
1002            != AliasAnalysis::MustAlias) {
1003        UnavailableBlocks.push_back(DepBB);
1004        continue;
1005      }
1006      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1007
1008    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInfo.getInst())) {
1009      if (LD->getType() != LI->getType()) {
1010        UnavailableBlocks.push_back(DepBB);
1011        continue;
1012      }
1013
1014      if (LD->getPointerOperand() != LI->getPointerOperand() &&
1015          VN.getAliasAnalysis()->alias(LD->getPointerOperand(), 1,
1016                                       LI->getPointerOperand(), 1)
1017          != AliasAnalysis::MustAlias) {
1018        UnavailableBlocks.push_back(DepBB);
1019        continue;
1020      }
1021      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1022    } else {
1023      UnavailableBlocks.push_back(DepBB);
1024      continue;
1025    }
1026  }
1027
1028  // If we have no predecessors that produce a known value for this load, exit
1029  // early.
1030  if (ValuesPerBlock.empty()) return false;
1031
1032  // If all of the instructions we depend on produce a known value for this
1033  // load, then it is fully redundant and we can use PHI insertion to compute
1034  // its value.  Insert PHIs and remove the fully redundant value now.
1035  if (UnavailableBlocks.empty()) {
1036    // Use cached PHI construction information from previous runs
1037    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1038    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1039         I != E; ++I) {
1040      if ((*I)->getParent() == LI->getParent()) {
1041        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1042        LI->replaceAllUsesWith(*I);
1043        toErase.push_back(LI);
1044        NumGVNLoad++;
1045        return true;
1046      }
1047
1048      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1049    }
1050
1051    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1052
1053    DenseMap<BasicBlock*, Value*> BlockReplValues;
1054    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1055    // Perform PHI construction.
1056    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1057    LI->replaceAllUsesWith(v);
1058    toErase.push_back(LI);
1059    NumGVNLoad++;
1060    return true;
1061  }
1062
1063  if (!EnablePRE || !EnableLoadPRE)
1064    return false;
1065
1066  // Okay, we have *some* definitions of the value.  This means that the value
1067  // is available in some of our (transitive) predecessors.  Lets think about
1068  // doing PRE of this load.  This will involve inserting a new load into the
1069  // predecessor when it's not available.  We could do this in general, but
1070  // prefer to not increase code size.  As such, we only do this when we know
1071  // that we only have to insert *one* load (which means we're basically moving
1072  // the load, not inserting a new one).
1073
1074  // Everything we do here is based on local predecessors of LI's block.  If it
1075  // only has one predecessor, bail now.
1076  BasicBlock *LoadBB = LI->getParent();
1077  if (LoadBB->getSinglePredecessor())
1078    return false;
1079
1080  // If we have a repl set with LI itself in it, this means we have a loop where
1081  // at least one of the values is LI.  Since this means that we won't be able
1082  // to eliminate LI even if we insert uses in the other predecessors, we will
1083  // end up increasing code size.  Reject this by scanning for LI.
1084  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1085    if (ValuesPerBlock[i].second == LI)
1086      return false;
1087
1088  // Okay, we have some hope :).  Check to see if the loaded value is fully
1089  // available in all but one predecessor.
1090  // FIXME: If we could restructure the CFG, we could make a common pred with
1091  // all the preds that don't have an available LI and insert a new load into
1092  // that one block.
1093  BasicBlock *UnavailablePred = 0;
1094
1095  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1096  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1097    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1098  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1099    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1100
1101  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1102       PI != E; ++PI) {
1103    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1104      continue;
1105
1106    // If this load is not available in multiple predecessors, reject it.
1107    if (UnavailablePred && UnavailablePred != *PI)
1108      return false;
1109    UnavailablePred = *PI;
1110  }
1111
1112  assert(UnavailablePred != 0 &&
1113         "Fully available value should be eliminated above!");
1114
1115  // If the loaded pointer is PHI node defined in this block, do PHI translation
1116  // to get its value in the predecessor.
1117  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1118
1119  // Make sure the value is live in the predecessor.  If it was defined by a
1120  // non-PHI instruction in this block, we don't know how to recompute it above.
1121  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1122    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1123      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1124                 << *LPInst << *LI << "\n");
1125      return false;
1126    }
1127
1128  // We don't currently handle critical edges :(
1129  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1130    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1131                << UnavailablePred->getName() << "': " << *LI);
1132    return false;
1133  }
1134
1135  // Okay, we can eliminate this load by inserting a reload in the predecessor
1136  // and using PHI construction to get the value in the other predecessors, do
1137  // it.
1138  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1139
1140  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1141                                LI->getAlignment(),
1142                                UnavailablePred->getTerminator());
1143
1144  DenseMap<BasicBlock*, Value*> BlockReplValues;
1145  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1146  BlockReplValues[UnavailablePred] = NewLoad;
1147
1148  // Perform PHI construction.
1149  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1150  LI->replaceAllUsesWith(v);
1151  v->takeName(LI);
1152  toErase.push_back(LI);
1153  NumPRELoad++;
1154  return true;
1155}
1156
1157/// processLoad - Attempt to eliminate a load, first by eliminating it
1158/// locally, and then attempting non-local elimination if that fails.
1159bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
1160                      SmallVectorImpl<Instruction*> &toErase) {
1161  if (L->isVolatile()) {
1162    lastLoad[L->getPointerOperand()] = L;
1163    return false;
1164  }
1165
1166  Value* pointer = L->getPointerOperand();
1167  LoadInst*& last = lastLoad[pointer];
1168
1169  // ... to a pointer that has been loaded from before...
1170  bool removedNonLocal = false;
1171  MemDepResult dep = MD->getDependency(L);
1172  if (dep.isNonLocal() &&
1173      L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
1174    removedNonLocal = processNonLocalLoad(L, toErase);
1175
1176    if (!removedNonLocal)
1177      last = L;
1178
1179    return removedNonLocal;
1180  }
1181
1182
1183  bool deletedLoad = false;
1184
1185  // Walk up the dependency chain until we either find
1186  // a dependency we can use, or we can't walk any further
1187  while (Instruction *DepInst = dep.getInst()) {
1188    // ... that depends on a store ...
1189    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
1190      if (S->getPointerOperand() == pointer) {
1191        // Remove it!
1192        L->replaceAllUsesWith(S->getOperand(0));
1193        toErase.push_back(L);
1194        deletedLoad = true;
1195        NumGVNLoad++;
1196      }
1197
1198      // Whether we removed it or not, we can't
1199      // go any further
1200      break;
1201    } else if (!isa<LoadInst>(DepInst)) {
1202      // Only want to handle loads below.
1203      break;
1204    } else if (!last) {
1205      // If we don't depend on a store, and we haven't
1206      // been loaded before, bail.
1207      break;
1208    } else if (DepInst == last) {
1209      // Remove it!
1210      L->replaceAllUsesWith(last);
1211      toErase.push_back(L);
1212      deletedLoad = true;
1213      NumGVNLoad++;
1214      break;
1215    } else {
1216      dep = MD->getDependencyFrom(L, DepInst, DepInst->getParent());
1217    }
1218  }
1219
1220  // If this load really doesn't depend on anything, then we must be loading an
1221  // undef value.  This can happen when loading for a fresh allocation with no
1222  // intervening stores, for example.
1223  if (dep.isNone()) {
1224    // If this load depends directly on an allocation, there isn't
1225    // anything stored there; therefore, we can optimize this load
1226    // to undef.
1227    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1228    toErase.push_back(L);
1229    deletedLoad = true;
1230    NumGVNLoad++;
1231  }
1232
1233  if (!deletedLoad)
1234    last = L;
1235
1236  return deletedLoad;
1237}
1238
1239Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1240  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1241  if (I == localAvail.end())
1242    return 0;
1243
1244  ValueNumberScope* locals = I->second;
1245
1246  while (locals) {
1247    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1248    if (I != locals->table.end())
1249      return I->second;
1250    else
1251      locals = locals->parent;
1252  }
1253
1254  return 0;
1255}
1256
1257/// processInstruction - When calculating availability, handle an instruction
1258/// by inserting it into the appropriate sets
1259bool GVN::processInstruction(Instruction *I,
1260                             DenseMap<Value*, LoadInst*> &lastSeenLoad,
1261                             SmallVectorImpl<Instruction*> &toErase) {
1262  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1263    bool changed = processLoad(L, lastSeenLoad, toErase);
1264
1265    if (!changed) {
1266      unsigned num = VN.lookup_or_add(L);
1267      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1268    }
1269
1270    return changed;
1271  }
1272
1273  uint32_t nextNum = VN.getNextUnusedValueNumber();
1274  unsigned num = VN.lookup_or_add(I);
1275
1276  // Allocations are always uniquely numbered, so we can save time and memory
1277  // by fast failing them.
1278  if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1279    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1280    return false;
1281  }
1282
1283  // Collapse PHI nodes
1284  if (PHINode* p = dyn_cast<PHINode>(I)) {
1285    Value* constVal = CollapsePhi(p);
1286
1287    if (constVal) {
1288      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1289           PI != PE; ++PI)
1290        if (PI->second.count(p))
1291          PI->second.erase(p);
1292
1293      p->replaceAllUsesWith(constVal);
1294      toErase.push_back(p);
1295    } else {
1296      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1297    }
1298
1299  // If the number we were assigned was a brand new VN, then we don't
1300  // need to do a lookup to see if the number already exists
1301  // somewhere in the domtree: it can't!
1302  } else if (num == nextNum) {
1303    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1304
1305  // Perform value-number based elimination
1306  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1307    // Remove it!
1308    VN.erase(I);
1309    I->replaceAllUsesWith(repl);
1310    toErase.push_back(I);
1311    return true;
1312  } else {
1313    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1314  }
1315
1316  return false;
1317}
1318
1319// GVN::runOnFunction - This is the main transformation entry point for a
1320// function.
1321//
1322bool GVN::runOnFunction(Function& F) {
1323  MD = &getAnalysis<MemoryDependenceAnalysis>();
1324  DT = &getAnalysis<DominatorTree>();
1325  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1326  VN.setMemDep(MD);
1327  VN.setDomTree(DT);
1328
1329  bool changed = false;
1330  bool shouldContinue = true;
1331
1332  // Merge unconditional branches, allowing PRE to catch more
1333  // optimization opportunities.
1334  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1335    BasicBlock* BB = FI;
1336    ++FI;
1337    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1338    if (removedBlock) NumGVNBlocks++;
1339
1340    changed |= removedBlock;
1341  }
1342
1343  while (shouldContinue) {
1344    shouldContinue = iterateOnFunction(F);
1345    changed |= shouldContinue;
1346  }
1347
1348  if (EnablePRE) {
1349    bool PREChanged = true;
1350    while (PREChanged) {
1351      PREChanged = performPRE(F);
1352      changed |= PREChanged;
1353    }
1354  }
1355
1356  cleanupGlobalSets();
1357
1358  return changed;
1359}
1360
1361
1362bool GVN::processBlock(DomTreeNode* DTN) {
1363  BasicBlock* BB = DTN->getBlock();
1364  SmallVector<Instruction*, 8> toErase;
1365  DenseMap<Value*, LoadInst*> lastSeenLoad;
1366  bool changed_function = false;
1367
1368  if (DTN->getIDom())
1369    localAvail[BB] =
1370                  new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
1371  else
1372    localAvail[BB] = new ValueNumberScope(0);
1373
1374  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1375       BI != BE;) {
1376    changed_function |= processInstruction(BI, lastSeenLoad, toErase);
1377    if (toErase.empty()) {
1378      ++BI;
1379      continue;
1380    }
1381
1382    // If we need some instructions deleted, do it now.
1383    NumGVNInstr += toErase.size();
1384
1385    // Avoid iterator invalidation.
1386    bool AtStart = BI == BB->begin();
1387    if (!AtStart)
1388      --BI;
1389
1390    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1391         E = toErase.end(); I != E; ++I) {
1392      DEBUG(cerr << "GVN removed: " << **I);
1393      MD->removeInstruction(*I);
1394      (*I)->eraseFromParent();
1395    }
1396
1397    if (AtStart)
1398      BI = BB->begin();
1399    else
1400      ++BI;
1401
1402    toErase.clear();
1403  }
1404
1405  return changed_function;
1406}
1407
1408/// performPRE - Perform a purely local form of PRE that looks for diamond
1409/// control flow patterns and attempts to perform simple PRE at the join point.
1410bool GVN::performPRE(Function& F) {
1411  bool Changed = false;
1412  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1413  DenseMap<BasicBlock*, Value*> predMap;
1414  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1415       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1416    BasicBlock* CurrentBlock = *DI;
1417
1418    // Nothing to PRE in the entry block.
1419    if (CurrentBlock == &F.getEntryBlock()) continue;
1420
1421    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1422         BE = CurrentBlock->end(); BI != BE; ) {
1423      Instruction *CurInst = BI++;
1424
1425      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1426          isa<PHINode>(CurInst) || CurInst->mayReadFromMemory() ||
1427          CurInst->mayWriteToMemory())
1428        continue;
1429
1430      uint32_t valno = VN.lookup(CurInst);
1431
1432      // Look for the predecessors for PRE opportunities.  We're
1433      // only trying to solve the basic diamond case, where
1434      // a value is computed in the successor and one predecessor,
1435      // but not the other.  We also explicitly disallow cases
1436      // where the successor is its own predecessor, because they're
1437      // more complicated to get right.
1438      unsigned numWith = 0;
1439      unsigned numWithout = 0;
1440      BasicBlock* PREPred = 0;
1441      predMap.clear();
1442
1443      for (pred_iterator PI = pred_begin(CurrentBlock),
1444           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1445        // We're not interested in PRE where the block is its
1446        // own predecessor, on in blocks with predecessors
1447        // that are not reachable.
1448        if (*PI == CurrentBlock) {
1449          numWithout = 2;
1450          break;
1451        } else if (!localAvail.count(*PI))  {
1452          numWithout = 2;
1453          break;
1454        }
1455
1456        DenseMap<uint32_t, Value*>::iterator predV =
1457                                            localAvail[*PI]->table.find(valno);
1458        if (predV == localAvail[*PI]->table.end()) {
1459          PREPred = *PI;
1460          numWithout++;
1461        } else if (predV->second == CurInst) {
1462          numWithout = 2;
1463        } else {
1464          predMap[*PI] = predV->second;
1465          numWith++;
1466        }
1467      }
1468
1469      // Don't do PRE when it might increase code size, i.e. when
1470      // we would need to insert instructions in more than one pred.
1471      if (numWithout != 1 || numWith == 0)
1472        continue;
1473
1474      // We can't do PRE safely on a critical edge, so instead we schedule
1475      // the edge to be split and perform the PRE the next time we iterate
1476      // on the function.
1477      unsigned succNum = 0;
1478      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1479           i != e; ++i)
1480        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1481          succNum = i;
1482          break;
1483        }
1484
1485      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1486        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1487        continue;
1488      }
1489
1490      // Instantiate the expression the in predecessor that lacked it.
1491      // Because we are going top-down through the block, all value numbers
1492      // will be available in the predecessor by the time we need them.  Any
1493      // that weren't original present will have been instantiated earlier
1494      // in this loop.
1495      Instruction* PREInstr = CurInst->clone();
1496      bool success = true;
1497      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1498        Value *Op = PREInstr->getOperand(i);
1499        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1500          continue;
1501
1502        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1503          PREInstr->setOperand(i, V);
1504        } else {
1505          success = false;
1506          break;
1507        }
1508      }
1509
1510      // Fail out if we encounter an operand that is not available in
1511      // the PRE predecessor.  This is typically because of loads which
1512      // are not value numbered precisely.
1513      if (!success) {
1514        delete PREInstr;
1515        continue;
1516      }
1517
1518      PREInstr->insertBefore(PREPred->getTerminator());
1519      PREInstr->setName(CurInst->getName() + ".pre");
1520      predMap[PREPred] = PREInstr;
1521      VN.add(PREInstr, valno);
1522      NumGVNPRE++;
1523
1524      // Update the availability map to include the new instruction.
1525      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1526
1527      // Create a PHI to make the value available in this block.
1528      PHINode* Phi = PHINode::Create(CurInst->getType(),
1529                                     CurInst->getName() + ".pre-phi",
1530                                     CurrentBlock->begin());
1531      for (pred_iterator PI = pred_begin(CurrentBlock),
1532           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1533        Phi->addIncoming(predMap[*PI], *PI);
1534
1535      VN.add(Phi, valno);
1536      localAvail[CurrentBlock]->table[valno] = Phi;
1537
1538      CurInst->replaceAllUsesWith(Phi);
1539      VN.erase(CurInst);
1540
1541      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1542      MD->removeInstruction(CurInst);
1543      CurInst->eraseFromParent();
1544      Changed = true;
1545    }
1546  }
1547
1548  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1549       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1550    SplitCriticalEdge(I->first, I->second, this);
1551
1552  return Changed || toSplit.size();
1553}
1554
1555// iterateOnFunction - Executes one iteration of GVN
1556bool GVN::iterateOnFunction(Function &F) {
1557  cleanupGlobalSets();
1558
1559  // Top-down walk of the dominator tree
1560  bool changed = false;
1561  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1562       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1563    changed |= processBlock(*DI);
1564
1565  return changed;
1566}
1567
1568void GVN::cleanupGlobalSets() {
1569  VN.clear();
1570  phiMap.clear();
1571
1572  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1573       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1574    delete I->second;
1575  localAvail.clear();
1576}
1577