GVN.cpp revision 680ac4ff4e9434a694d3f72c44f3f2d063a7cb15
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/Loads.h"
32#include "llvm/Analysis/MemoryBuiltins.h"
33#include "llvm/Analysis/MemoryDependenceAnalysis.h"
34#include "llvm/Analysis/PHITransAddr.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Assembly/Writer.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/SSAUpdater.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/PostOrderIterator.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Support/Allocator.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/GetElementPtrTypeIterator.h"
52#include "llvm/Support/IRBuilder.h"
53#include <list>
54using namespace llvm;
55
56STATISTIC(NumGVNInstr,  "Number of instructions deleted");
57STATISTIC(NumGVNLoad,   "Number of loads deleted");
58STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
59STATISTIC(NumGVNBlocks, "Number of blocks merged");
60STATISTIC(NumPRELoad,   "Number of loads PRE'd");
61
62static cl::opt<bool> EnablePRE("enable-pre",
63                               cl::init(true), cl::Hidden);
64static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
65
66//===----------------------------------------------------------------------===//
67//                         ValueTable Class
68//===----------------------------------------------------------------------===//
69
70/// This class holds the mapping between values and value numbers.  It is used
71/// as an efficient mechanism to determine the expression-wise equivalence of
72/// two values.
73namespace {
74  struct Expression {
75    uint32_t opcode;
76    const Type* type;
77    SmallVector<uint32_t, 4> varargs;
78
79    Expression() { }
80    Expression(uint32_t o) : opcode(o) { }
81
82    bool operator==(const Expression &other) const {
83      if (opcode != other.opcode)
84        return false;
85      else if (opcode == ~0U || opcode == ~1U)
86        return true;
87      else if (type != other.type)
88        return false;
89      else if (varargs != other.varargs)
90        return false;
91      return true;
92    }
93  };
94
95  class ValueTable {
96    private:
97      DenseMap<Value*, uint32_t> valueNumbering;
98      DenseMap<Expression, uint32_t> expressionNumbering;
99      AliasAnalysis* AA;
100      MemoryDependenceAnalysis* MD;
101      DominatorTree* DT;
102
103      uint32_t nextValueNumber;
104
105      Expression create_expression(Instruction* I);
106      uint32_t lookup_or_add_call(CallInst* C);
107    public:
108      ValueTable() : nextValueNumber(1) { }
109      uint32_t lookup_or_add(Value *V);
110      uint32_t lookup(Value *V) const;
111      void add(Value *V, uint32_t num);
112      void clear();
113      void erase(Value *v);
114      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
115      AliasAnalysis *getAliasAnalysis() const { return AA; }
116      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
117      void setDomTree(DominatorTree* D) { DT = D; }
118      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
119      void verifyRemoved(const Value *) const;
120  };
121}
122
123namespace llvm {
124template <> struct DenseMapInfo<Expression> {
125  static inline Expression getEmptyKey() {
126    return ~0U;
127  }
128
129  static inline Expression getTombstoneKey() {
130    return ~1U;
131  }
132
133  static unsigned getHashValue(const Expression e) {
134    unsigned hash = e.opcode;
135
136    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
137            (unsigned)((uintptr_t)e.type >> 9));
138
139    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
140         E = e.varargs.end(); I != E; ++I)
141      hash = *I + hash * 37;
142
143    return hash;
144  }
145  static bool isEqual(const Expression &LHS, const Expression &RHS) {
146    return LHS == RHS;
147  }
148};
149
150}
151
152//===----------------------------------------------------------------------===//
153//                     ValueTable Internal Functions
154//===----------------------------------------------------------------------===//
155
156
157Expression ValueTable::create_expression(Instruction *I) {
158  Expression e;
159  e.type = I->getType();
160  e.opcode = I->getOpcode();
161  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
162       OI != OE; ++OI)
163    e.varargs.push_back(lookup_or_add(*OI));
164
165  if (CmpInst *C = dyn_cast<CmpInst>(I))
166    e.opcode = (C->getOpcode() << 8) | C->getPredicate();
167  else if (ExtractValueInst *E = dyn_cast<ExtractValueInst>(I)) {
168    for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
169         II != IE; ++II)
170      e.varargs.push_back(*II);
171  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
172    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
173         II != IE; ++II)
174      e.varargs.push_back(*II);
175  }
176
177  return e;
178}
179
180//===----------------------------------------------------------------------===//
181//                     ValueTable External Functions
182//===----------------------------------------------------------------------===//
183
184/// add - Insert a value into the table with a specified value number.
185void ValueTable::add(Value *V, uint32_t num) {
186  valueNumbering.insert(std::make_pair(V, num));
187}
188
189uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
190  if (AA->doesNotAccessMemory(C)) {
191    Expression exp = create_expression(C);
192    uint32_t& e = expressionNumbering[exp];
193    if (!e) e = nextValueNumber++;
194    valueNumbering[C] = e;
195    return e;
196  } else if (AA->onlyReadsMemory(C)) {
197    Expression exp = create_expression(C);
198    uint32_t& e = expressionNumbering[exp];
199    if (!e) {
200      e = nextValueNumber++;
201      valueNumbering[C] = e;
202      return e;
203    }
204    if (!MD) {
205      e = nextValueNumber++;
206      valueNumbering[C] = e;
207      return e;
208    }
209
210    MemDepResult local_dep = MD->getDependency(C);
211
212    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
213      valueNumbering[C] =  nextValueNumber;
214      return nextValueNumber++;
215    }
216
217    if (local_dep.isDef()) {
218      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
219
220      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
221        valueNumbering[C] = nextValueNumber;
222        return nextValueNumber++;
223      }
224
225      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
226        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
227        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
228        if (c_vn != cd_vn) {
229          valueNumbering[C] = nextValueNumber;
230          return nextValueNumber++;
231        }
232      }
233
234      uint32_t v = lookup_or_add(local_cdep);
235      valueNumbering[C] = v;
236      return v;
237    }
238
239    // Non-local case.
240    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
241      MD->getNonLocalCallDependency(CallSite(C));
242    // FIXME: call/call dependencies for readonly calls should return def, not
243    // clobber!  Move the checking logic to MemDep!
244    CallInst* cdep = 0;
245
246    // Check to see if we have a single dominating call instruction that is
247    // identical to C.
248    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
249      const NonLocalDepEntry *I = &deps[i];
250      // Ignore non-local dependencies.
251      if (I->getResult().isNonLocal())
252        continue;
253
254      // We don't handle non-depedencies.  If we already have a call, reject
255      // instruction dependencies.
256      if (I->getResult().isClobber() || cdep != 0) {
257        cdep = 0;
258        break;
259      }
260
261      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
262      // FIXME: All duplicated with non-local case.
263      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
264        cdep = NonLocalDepCall;
265        continue;
266      }
267
268      cdep = 0;
269      break;
270    }
271
272    if (!cdep) {
273      valueNumbering[C] = nextValueNumber;
274      return nextValueNumber++;
275    }
276
277    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
278      valueNumbering[C] = nextValueNumber;
279      return nextValueNumber++;
280    }
281    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
282      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
283      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
284      if (c_vn != cd_vn) {
285        valueNumbering[C] = nextValueNumber;
286        return nextValueNumber++;
287      }
288    }
289
290    uint32_t v = lookup_or_add(cdep);
291    valueNumbering[C] = v;
292    return v;
293
294  } else {
295    valueNumbering[C] = nextValueNumber;
296    return nextValueNumber++;
297  }
298}
299
300/// lookup_or_add - Returns the value number for the specified value, assigning
301/// it a new number if it did not have one before.
302uint32_t ValueTable::lookup_or_add(Value *V) {
303  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
304  if (VI != valueNumbering.end())
305    return VI->second;
306
307  if (!isa<Instruction>(V)) {
308    valueNumbering[V] = nextValueNumber;
309    return nextValueNumber++;
310  }
311
312  Instruction* I = cast<Instruction>(V);
313  Expression exp;
314  switch (I->getOpcode()) {
315    case Instruction::Call:
316      return lookup_or_add_call(cast<CallInst>(I));
317    case Instruction::Add:
318    case Instruction::FAdd:
319    case Instruction::Sub:
320    case Instruction::FSub:
321    case Instruction::Mul:
322    case Instruction::FMul:
323    case Instruction::UDiv:
324    case Instruction::SDiv:
325    case Instruction::FDiv:
326    case Instruction::URem:
327    case Instruction::SRem:
328    case Instruction::FRem:
329    case Instruction::Shl:
330    case Instruction::LShr:
331    case Instruction::AShr:
332    case Instruction::And:
333    case Instruction::Or :
334    case Instruction::Xor:
335    case Instruction::ICmp:
336    case Instruction::FCmp:
337    case Instruction::Trunc:
338    case Instruction::ZExt:
339    case Instruction::SExt:
340    case Instruction::FPToUI:
341    case Instruction::FPToSI:
342    case Instruction::UIToFP:
343    case Instruction::SIToFP:
344    case Instruction::FPTrunc:
345    case Instruction::FPExt:
346    case Instruction::PtrToInt:
347    case Instruction::IntToPtr:
348    case Instruction::BitCast:
349    case Instruction::Select:
350    case Instruction::ExtractElement:
351    case Instruction::InsertElement:
352    case Instruction::ShuffleVector:
353    case Instruction::ExtractValue:
354    case Instruction::InsertValue:
355    case Instruction::GetElementPtr:
356      exp = create_expression(I);
357      break;
358    default:
359      valueNumbering[V] = nextValueNumber;
360      return nextValueNumber++;
361  }
362
363  uint32_t& e = expressionNumbering[exp];
364  if (!e) e = nextValueNumber++;
365  valueNumbering[V] = e;
366  return e;
367}
368
369/// lookup - Returns the value number of the specified value. Fails if
370/// the value has not yet been numbered.
371uint32_t ValueTable::lookup(Value *V) const {
372  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
373  assert(VI != valueNumbering.end() && "Value not numbered?");
374  return VI->second;
375}
376
377/// clear - Remove all entries from the ValueTable
378void ValueTable::clear() {
379  valueNumbering.clear();
380  expressionNumbering.clear();
381  nextValueNumber = 1;
382}
383
384/// erase - Remove a value from the value numbering
385void ValueTable::erase(Value *V) {
386  valueNumbering.erase(V);
387}
388
389/// verifyRemoved - Verify that the value is removed from all internal data
390/// structures.
391void ValueTable::verifyRemoved(const Value *V) const {
392  for (DenseMap<Value*, uint32_t>::const_iterator
393         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
394    assert(I->first != V && "Inst still occurs in value numbering map!");
395  }
396}
397
398//===----------------------------------------------------------------------===//
399//                                GVN Pass
400//===----------------------------------------------------------------------===//
401
402namespace {
403
404  class GVN : public FunctionPass {
405    bool runOnFunction(Function &F);
406  public:
407    static char ID; // Pass identification, replacement for typeid
408    explicit GVN(bool noloads = false)
409        : FunctionPass(ID), NoLoads(noloads), MD(0) {
410      initializeGVNPass(*PassRegistry::getPassRegistry());
411    }
412
413  private:
414    bool NoLoads;
415    MemoryDependenceAnalysis *MD;
416    DominatorTree *DT;
417    const TargetData* TD;
418
419    ValueTable VN;
420
421    /// NumberTable - A mapping from value numers to lists of Value*'s that
422    /// have that value number.  Use lookupNumber to query it.
423    struct NumberTableEntry {
424      Value *Val;
425      BasicBlock *BB;
426      NumberTableEntry *Next;
427    };
428    DenseMap<uint32_t, NumberTableEntry> NumberTable;
429    BumpPtrAllocator TableAllocator;
430
431    /// insert_table - Push a new Value to the NumberTable onto the list for
432    /// its value number.
433    void insert_table(uint32_t N, Value *V, BasicBlock *BB) {
434      NumberTableEntry& Curr = NumberTable[N];
435      if (!Curr.Val) {
436        Curr.Val = V;
437        Curr.BB = BB;
438        return;
439      }
440
441      NumberTableEntry* Node = TableAllocator.Allocate<NumberTableEntry>();
442      Node->Val = V;
443      Node->BB = BB;
444      Node->Next = Curr.Next;
445      Curr.Next = Node;
446    }
447
448    /// erase_table - Scan the list of values corresponding to a given value
449    /// number, and remove the given value if encountered.
450    void erase_table(uint32_t N, Value *V, BasicBlock *BB) {
451      NumberTableEntry* Prev = 0;
452      NumberTableEntry* Curr = &NumberTable[N];
453
454      while (Curr->Val != V || Curr->BB != BB) {
455        Prev = Curr;
456        Curr = Curr->Next;
457      }
458
459      if (Prev) {
460        Prev->Next = Curr->Next;
461      } else {
462        if (!Curr->Next) {
463          Curr->Val = 0;
464          Curr->BB = 0;
465        } else {
466          NumberTableEntry* Next = Curr->Next;
467          Curr->Val = Next->Val;
468          Curr->BB = Next->BB;
469          Curr->Next = Next->Next;
470        }
471      }
472    }
473
474    // List of critical edges to be split between iterations.
475    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
476
477    // This transformation requires dominator postdominator info
478    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
479      AU.addRequired<DominatorTree>();
480      if (!NoLoads)
481        AU.addRequired<MemoryDependenceAnalysis>();
482      AU.addRequired<AliasAnalysis>();
483
484      AU.addPreserved<DominatorTree>();
485      AU.addPreserved<AliasAnalysis>();
486    }
487
488    // Helper fuctions
489    // FIXME: eliminate or document these better
490    bool processLoad(LoadInst* L,
491                     SmallVectorImpl<Instruction*> &toErase);
492    bool processInstruction(Instruction *I,
493                            SmallVectorImpl<Instruction*> &toErase);
494    bool processNonLocalLoad(LoadInst* L,
495                             SmallVectorImpl<Instruction*> &toErase);
496    bool processBlock(BasicBlock *BB);
497    void dump(DenseMap<uint32_t, Value*>& d);
498    bool iterateOnFunction(Function &F);
499    bool performPRE(Function& F);
500    Value *lookupNumber(BasicBlock *BB, uint32_t num);
501    void cleanupGlobalSets();
502    void verifyRemoved(const Instruction *I) const;
503    bool splitCriticalEdges();
504  };
505
506  char GVN::ID = 0;
507}
508
509// createGVNPass - The public interface to this file...
510FunctionPass *llvm::createGVNPass(bool NoLoads) {
511  return new GVN(NoLoads);
512}
513
514INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
515INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
516INITIALIZE_PASS_DEPENDENCY(DominatorTree)
517INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
518INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
519
520void GVN::dump(DenseMap<uint32_t, Value*>& d) {
521  errs() << "{\n";
522  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
523       E = d.end(); I != E; ++I) {
524      errs() << I->first << "\n";
525      I->second->dump();
526  }
527  errs() << "}\n";
528}
529
530/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
531/// we're analyzing is fully available in the specified block.  As we go, keep
532/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
533/// map is actually a tri-state map with the following values:
534///   0) we know the block *is not* fully available.
535///   1) we know the block *is* fully available.
536///   2) we do not know whether the block is fully available or not, but we are
537///      currently speculating that it will be.
538///   3) we are speculating for this block and have used that to speculate for
539///      other blocks.
540static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
541                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
542  // Optimistically assume that the block is fully available and check to see
543  // if we already know about this block in one lookup.
544  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
545    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
546
547  // If the entry already existed for this block, return the precomputed value.
548  if (!IV.second) {
549    // If this is a speculative "available" value, mark it as being used for
550    // speculation of other blocks.
551    if (IV.first->second == 2)
552      IV.first->second = 3;
553    return IV.first->second != 0;
554  }
555
556  // Otherwise, see if it is fully available in all predecessors.
557  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
558
559  // If this block has no predecessors, it isn't live-in here.
560  if (PI == PE)
561    goto SpeculationFailure;
562
563  for (; PI != PE; ++PI)
564    // If the value isn't fully available in one of our predecessors, then it
565    // isn't fully available in this block either.  Undo our previous
566    // optimistic assumption and bail out.
567    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
568      goto SpeculationFailure;
569
570  return true;
571
572// SpeculationFailure - If we get here, we found out that this is not, after
573// all, a fully-available block.  We have a problem if we speculated on this and
574// used the speculation to mark other blocks as available.
575SpeculationFailure:
576  char &BBVal = FullyAvailableBlocks[BB];
577
578  // If we didn't speculate on this, just return with it set to false.
579  if (BBVal == 2) {
580    BBVal = 0;
581    return false;
582  }
583
584  // If we did speculate on this value, we could have blocks set to 1 that are
585  // incorrect.  Walk the (transitive) successors of this block and mark them as
586  // 0 if set to one.
587  SmallVector<BasicBlock*, 32> BBWorklist;
588  BBWorklist.push_back(BB);
589
590  do {
591    BasicBlock *Entry = BBWorklist.pop_back_val();
592    // Note that this sets blocks to 0 (unavailable) if they happen to not
593    // already be in FullyAvailableBlocks.  This is safe.
594    char &EntryVal = FullyAvailableBlocks[Entry];
595    if (EntryVal == 0) continue;  // Already unavailable.
596
597    // Mark as unavailable.
598    EntryVal = 0;
599
600    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
601      BBWorklist.push_back(*I);
602  } while (!BBWorklist.empty());
603
604  return false;
605}
606
607
608/// CanCoerceMustAliasedValueToLoad - Return true if
609/// CoerceAvailableValueToLoadType will succeed.
610static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
611                                            const Type *LoadTy,
612                                            const TargetData &TD) {
613  // If the loaded or stored value is an first class array or struct, don't try
614  // to transform them.  We need to be able to bitcast to integer.
615  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
616      StoredVal->getType()->isStructTy() ||
617      StoredVal->getType()->isArrayTy())
618    return false;
619
620  // The store has to be at least as big as the load.
621  if (TD.getTypeSizeInBits(StoredVal->getType()) <
622        TD.getTypeSizeInBits(LoadTy))
623    return false;
624
625  return true;
626}
627
628
629/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
630/// then a load from a must-aliased pointer of a different type, try to coerce
631/// the stored value.  LoadedTy is the type of the load we want to replace and
632/// InsertPt is the place to insert new instructions.
633///
634/// If we can't do it, return null.
635static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
636                                             const Type *LoadedTy,
637                                             Instruction *InsertPt,
638                                             const TargetData &TD) {
639  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
640    return 0;
641
642  const Type *StoredValTy = StoredVal->getType();
643
644  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
645  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
646
647  // If the store and reload are the same size, we can always reuse it.
648  if (StoreSize == LoadSize) {
649    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
650      // Pointer to Pointer -> use bitcast.
651      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
652    }
653
654    // Convert source pointers to integers, which can be bitcast.
655    if (StoredValTy->isPointerTy()) {
656      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
657      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
658    }
659
660    const Type *TypeToCastTo = LoadedTy;
661    if (TypeToCastTo->isPointerTy())
662      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
663
664    if (StoredValTy != TypeToCastTo)
665      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
666
667    // Cast to pointer if the load needs a pointer type.
668    if (LoadedTy->isPointerTy())
669      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
670
671    return StoredVal;
672  }
673
674  // If the loaded value is smaller than the available value, then we can
675  // extract out a piece from it.  If the available value is too small, then we
676  // can't do anything.
677  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
678
679  // Convert source pointers to integers, which can be manipulated.
680  if (StoredValTy->isPointerTy()) {
681    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
682    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
683  }
684
685  // Convert vectors and fp to integer, which can be manipulated.
686  if (!StoredValTy->isIntegerTy()) {
687    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
688    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
689  }
690
691  // If this is a big-endian system, we need to shift the value down to the low
692  // bits so that a truncate will work.
693  if (TD.isBigEndian()) {
694    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
695    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
696  }
697
698  // Truncate the integer to the right size now.
699  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
700  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
701
702  if (LoadedTy == NewIntTy)
703    return StoredVal;
704
705  // If the result is a pointer, inttoptr.
706  if (LoadedTy->isPointerTy())
707    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
708
709  // Otherwise, bitcast.
710  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
711}
712
713/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
714/// memdep query of a load that ends up being a clobbering memory write (store,
715/// memset, memcpy, memmove).  This means that the write *may* provide bits used
716/// by the load but we can't be sure because the pointers don't mustalias.
717///
718/// Check this case to see if there is anything more we can do before we give
719/// up.  This returns -1 if we have to give up, or a byte number in the stored
720/// value of the piece that feeds the load.
721static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
722                                          Value *WritePtr,
723                                          uint64_t WriteSizeInBits,
724                                          const TargetData &TD) {
725  // If the loaded or stored value is an first class array or struct, don't try
726  // to transform them.  We need to be able to bitcast to integer.
727  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
728    return -1;
729
730  int64_t StoreOffset = 0, LoadOffset = 0;
731  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
732  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
733  if (StoreBase != LoadBase)
734    return -1;
735
736  // If the load and store are to the exact same address, they should have been
737  // a must alias.  AA must have gotten confused.
738  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
739  // to a load from the base of the memset.
740#if 0
741  if (LoadOffset == StoreOffset) {
742    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
743    << "Base       = " << *StoreBase << "\n"
744    << "Store Ptr  = " << *WritePtr << "\n"
745    << "Store Offs = " << StoreOffset << "\n"
746    << "Load Ptr   = " << *LoadPtr << "\n";
747    abort();
748  }
749#endif
750
751  // If the load and store don't overlap at all, the store doesn't provide
752  // anything to the load.  In this case, they really don't alias at all, AA
753  // must have gotten confused.
754  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
755
756  if ((WriteSizeInBits & 7) | (LoadSize & 7))
757    return -1;
758  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
759  LoadSize >>= 3;
760
761
762  bool isAAFailure = false;
763  if (StoreOffset < LoadOffset)
764    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
765  else
766    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
767
768  if (isAAFailure) {
769#if 0
770    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
771    << "Base       = " << *StoreBase << "\n"
772    << "Store Ptr  = " << *WritePtr << "\n"
773    << "Store Offs = " << StoreOffset << "\n"
774    << "Load Ptr   = " << *LoadPtr << "\n";
775    abort();
776#endif
777    return -1;
778  }
779
780  // If the Load isn't completely contained within the stored bits, we don't
781  // have all the bits to feed it.  We could do something crazy in the future
782  // (issue a smaller load then merge the bits in) but this seems unlikely to be
783  // valuable.
784  if (StoreOffset > LoadOffset ||
785      StoreOffset+StoreSize < LoadOffset+LoadSize)
786    return -1;
787
788  // Okay, we can do this transformation.  Return the number of bytes into the
789  // store that the load is.
790  return LoadOffset-StoreOffset;
791}
792
793/// AnalyzeLoadFromClobberingStore - This function is called when we have a
794/// memdep query of a load that ends up being a clobbering store.
795static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
796                                          StoreInst *DepSI,
797                                          const TargetData &TD) {
798  // Cannot handle reading from store of first-class aggregate yet.
799  if (DepSI->getValueOperand()->getType()->isStructTy() ||
800      DepSI->getValueOperand()->getType()->isArrayTy())
801    return -1;
802
803  Value *StorePtr = DepSI->getPointerOperand();
804  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
805  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
806                                        StorePtr, StoreSize, TD);
807}
808
809static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
810                                            MemIntrinsic *MI,
811                                            const TargetData &TD) {
812  // If the mem operation is a non-constant size, we can't handle it.
813  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
814  if (SizeCst == 0) return -1;
815  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
816
817  // If this is memset, we just need to see if the offset is valid in the size
818  // of the memset..
819  if (MI->getIntrinsicID() == Intrinsic::memset)
820    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
821                                          MemSizeInBits, TD);
822
823  // If we have a memcpy/memmove, the only case we can handle is if this is a
824  // copy from constant memory.  In that case, we can read directly from the
825  // constant memory.
826  MemTransferInst *MTI = cast<MemTransferInst>(MI);
827
828  Constant *Src = dyn_cast<Constant>(MTI->getSource());
829  if (Src == 0) return -1;
830
831  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src));
832  if (GV == 0 || !GV->isConstant()) return -1;
833
834  // See if the access is within the bounds of the transfer.
835  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
836                                              MI->getDest(), MemSizeInBits, TD);
837  if (Offset == -1)
838    return Offset;
839
840  // Otherwise, see if we can constant fold a load from the constant with the
841  // offset applied as appropriate.
842  Src = ConstantExpr::getBitCast(Src,
843                                 llvm::Type::getInt8PtrTy(Src->getContext()));
844  Constant *OffsetCst =
845    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
846  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
847  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
848  if (ConstantFoldLoadFromConstPtr(Src, &TD))
849    return Offset;
850  return -1;
851}
852
853
854/// GetStoreValueForLoad - This function is called when we have a
855/// memdep query of a load that ends up being a clobbering store.  This means
856/// that the store *may* provide bits used by the load but we can't be sure
857/// because the pointers don't mustalias.  Check this case to see if there is
858/// anything more we can do before we give up.
859static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
860                                   const Type *LoadTy,
861                                   Instruction *InsertPt, const TargetData &TD){
862  LLVMContext &Ctx = SrcVal->getType()->getContext();
863
864  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
865  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
866
867  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
868
869  // Compute which bits of the stored value are being used by the load.  Convert
870  // to an integer type to start with.
871  if (SrcVal->getType()->isPointerTy())
872    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
873  if (!SrcVal->getType()->isIntegerTy())
874    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
875                                   "tmp");
876
877  // Shift the bits to the least significant depending on endianness.
878  unsigned ShiftAmt;
879  if (TD.isLittleEndian())
880    ShiftAmt = Offset*8;
881  else
882    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
883
884  if (ShiftAmt)
885    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
886
887  if (LoadSize != StoreSize)
888    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
889                                 "tmp");
890
891  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
892}
893
894/// GetMemInstValueForLoad - This function is called when we have a
895/// memdep query of a load that ends up being a clobbering mem intrinsic.
896static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
897                                     const Type *LoadTy, Instruction *InsertPt,
898                                     const TargetData &TD){
899  LLVMContext &Ctx = LoadTy->getContext();
900  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
901
902  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
903
904  // We know that this method is only called when the mem transfer fully
905  // provides the bits for the load.
906  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
907    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
908    // independently of what the offset is.
909    Value *Val = MSI->getValue();
910    if (LoadSize != 1)
911      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
912
913    Value *OneElt = Val;
914
915    // Splat the value out to the right number of bits.
916    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
917      // If we can double the number of bytes set, do it.
918      if (NumBytesSet*2 <= LoadSize) {
919        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
920        Val = Builder.CreateOr(Val, ShVal);
921        NumBytesSet <<= 1;
922        continue;
923      }
924
925      // Otherwise insert one byte at a time.
926      Value *ShVal = Builder.CreateShl(Val, 1*8);
927      Val = Builder.CreateOr(OneElt, ShVal);
928      ++NumBytesSet;
929    }
930
931    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
932  }
933
934  // Otherwise, this is a memcpy/memmove from a constant global.
935  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
936  Constant *Src = cast<Constant>(MTI->getSource());
937
938  // Otherwise, see if we can constant fold a load from the constant with the
939  // offset applied as appropriate.
940  Src = ConstantExpr::getBitCast(Src,
941                                 llvm::Type::getInt8PtrTy(Src->getContext()));
942  Constant *OffsetCst =
943  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
944  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
945  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
946  return ConstantFoldLoadFromConstPtr(Src, &TD);
947}
948
949namespace {
950
951struct AvailableValueInBlock {
952  /// BB - The basic block in question.
953  BasicBlock *BB;
954  enum ValType {
955    SimpleVal,  // A simple offsetted value that is accessed.
956    MemIntrin   // A memory intrinsic which is loaded from.
957  };
958
959  /// V - The value that is live out of the block.
960  PointerIntPair<Value *, 1, ValType> Val;
961
962  /// Offset - The byte offset in Val that is interesting for the load query.
963  unsigned Offset;
964
965  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
966                                   unsigned Offset = 0) {
967    AvailableValueInBlock Res;
968    Res.BB = BB;
969    Res.Val.setPointer(V);
970    Res.Val.setInt(SimpleVal);
971    Res.Offset = Offset;
972    return Res;
973  }
974
975  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
976                                     unsigned Offset = 0) {
977    AvailableValueInBlock Res;
978    Res.BB = BB;
979    Res.Val.setPointer(MI);
980    Res.Val.setInt(MemIntrin);
981    Res.Offset = Offset;
982    return Res;
983  }
984
985  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
986  Value *getSimpleValue() const {
987    assert(isSimpleValue() && "Wrong accessor");
988    return Val.getPointer();
989  }
990
991  MemIntrinsic *getMemIntrinValue() const {
992    assert(!isSimpleValue() && "Wrong accessor");
993    return cast<MemIntrinsic>(Val.getPointer());
994  }
995
996  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
997  /// defined here to the specified type.  This handles various coercion cases.
998  Value *MaterializeAdjustedValue(const Type *LoadTy,
999                                  const TargetData *TD) const {
1000    Value *Res;
1001    if (isSimpleValue()) {
1002      Res = getSimpleValue();
1003      if (Res->getType() != LoadTy) {
1004        assert(TD && "Need target data to handle type mismatch case");
1005        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1006                                   *TD);
1007
1008        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1009                     << *getSimpleValue() << '\n'
1010                     << *Res << '\n' << "\n\n\n");
1011      }
1012    } else {
1013      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1014                                   LoadTy, BB->getTerminator(), *TD);
1015      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1016                   << "  " << *getMemIntrinValue() << '\n'
1017                   << *Res << '\n' << "\n\n\n");
1018    }
1019    return Res;
1020  }
1021};
1022
1023}
1024
1025/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1026/// construct SSA form, allowing us to eliminate LI.  This returns the value
1027/// that should be used at LI's definition site.
1028static Value *ConstructSSAForLoadSet(LoadInst *LI,
1029                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1030                                     const TargetData *TD,
1031                                     const DominatorTree &DT,
1032                                     AliasAnalysis *AA) {
1033  // Check for the fully redundant, dominating load case.  In this case, we can
1034  // just use the dominating value directly.
1035  if (ValuesPerBlock.size() == 1 &&
1036      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1037    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1038
1039  // Otherwise, we have to construct SSA form.
1040  SmallVector<PHINode*, 8> NewPHIs;
1041  SSAUpdater SSAUpdate(&NewPHIs);
1042  SSAUpdate.Initialize(LI->getType(), LI->getName());
1043
1044  const Type *LoadTy = LI->getType();
1045
1046  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1047    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1048    BasicBlock *BB = AV.BB;
1049
1050    if (SSAUpdate.HasValueForBlock(BB))
1051      continue;
1052
1053    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1054  }
1055
1056  // Perform PHI construction.
1057  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1058
1059  // If new PHI nodes were created, notify alias analysis.
1060  if (V->getType()->isPointerTy())
1061    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1062      AA->copyValue(LI, NewPHIs[i]);
1063
1064    // Now that we've copied information to the new PHIs, scan through
1065    // them again and inform alias analysis that we've added potentially
1066    // escaping uses to any values that are operands to these PHIs.
1067    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1068      PHINode *P = NewPHIs[i];
1069      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii)
1070        AA->addEscapingUse(P->getOperandUse(2*ii));
1071    }
1072
1073  return V;
1074}
1075
1076static bool isLifetimeStart(const Instruction *Inst) {
1077  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1078    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1079  return false;
1080}
1081
1082/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1083/// non-local by performing PHI construction.
1084bool GVN::processNonLocalLoad(LoadInst *LI,
1085                              SmallVectorImpl<Instruction*> &toErase) {
1086  // Find the non-local dependencies of the load.
1087  SmallVector<NonLocalDepResult, 64> Deps;
1088  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1089  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1090  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1091  //             << Deps.size() << *LI << '\n');
1092
1093  // If we had to process more than one hundred blocks to find the
1094  // dependencies, this load isn't worth worrying about.  Optimizing
1095  // it will be too expensive.
1096  if (Deps.size() > 100)
1097    return false;
1098
1099  // If we had a phi translation failure, we'll have a single entry which is a
1100  // clobber in the current block.  Reject this early.
1101  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1102    DEBUG(
1103      dbgs() << "GVN: non-local load ";
1104      WriteAsOperand(dbgs(), LI);
1105      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1106    );
1107    return false;
1108  }
1109
1110  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1111  // where we have a value available in repl, also keep track of whether we see
1112  // dependencies that produce an unknown value for the load (such as a call
1113  // that could potentially clobber the load).
1114  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1115  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1116
1117  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1118    BasicBlock *DepBB = Deps[i].getBB();
1119    MemDepResult DepInfo = Deps[i].getResult();
1120
1121    if (DepInfo.isClobber()) {
1122      // The address being loaded in this non-local block may not be the same as
1123      // the pointer operand of the load if PHI translation occurs.  Make sure
1124      // to consider the right address.
1125      Value *Address = Deps[i].getAddress();
1126
1127      // If the dependence is to a store that writes to a superset of the bits
1128      // read by the load, we can extract the bits we need for the load from the
1129      // stored value.
1130      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1131        if (TD && Address) {
1132          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1133                                                      DepSI, *TD);
1134          if (Offset != -1) {
1135            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1136                                                       DepSI->getValueOperand(),
1137                                                                Offset));
1138            continue;
1139          }
1140        }
1141      }
1142
1143      // If the clobbering value is a memset/memcpy/memmove, see if we can
1144      // forward a value on from it.
1145      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1146        if (TD && Address) {
1147          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1148                                                        DepMI, *TD);
1149          if (Offset != -1) {
1150            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1151                                                                  Offset));
1152            continue;
1153          }
1154        }
1155      }
1156
1157      UnavailableBlocks.push_back(DepBB);
1158      continue;
1159    }
1160
1161    Instruction *DepInst = DepInfo.getInst();
1162
1163    // Loading the allocation -> undef.
1164    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1165        // Loading immediately after lifetime begin -> undef.
1166        isLifetimeStart(DepInst)) {
1167      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1168                                             UndefValue::get(LI->getType())));
1169      continue;
1170    }
1171
1172    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1173      // Reject loads and stores that are to the same address but are of
1174      // different types if we have to.
1175      if (S->getValueOperand()->getType() != LI->getType()) {
1176        // If the stored value is larger or equal to the loaded value, we can
1177        // reuse it.
1178        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1179                                                        LI->getType(), *TD)) {
1180          UnavailableBlocks.push_back(DepBB);
1181          continue;
1182        }
1183      }
1184
1185      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1186                                                         S->getValueOperand()));
1187      continue;
1188    }
1189
1190    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1191      // If the types mismatch and we can't handle it, reject reuse of the load.
1192      if (LD->getType() != LI->getType()) {
1193        // If the stored value is larger or equal to the loaded value, we can
1194        // reuse it.
1195        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1196          UnavailableBlocks.push_back(DepBB);
1197          continue;
1198        }
1199      }
1200      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1201      continue;
1202    }
1203
1204    UnavailableBlocks.push_back(DepBB);
1205    continue;
1206  }
1207
1208  // If we have no predecessors that produce a known value for this load, exit
1209  // early.
1210  if (ValuesPerBlock.empty()) return false;
1211
1212  // If all of the instructions we depend on produce a known value for this
1213  // load, then it is fully redundant and we can use PHI insertion to compute
1214  // its value.  Insert PHIs and remove the fully redundant value now.
1215  if (UnavailableBlocks.empty()) {
1216    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1217
1218    // Perform PHI construction.
1219    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1220                                      VN.getAliasAnalysis());
1221    LI->replaceAllUsesWith(V);
1222
1223    if (isa<PHINode>(V))
1224      V->takeName(LI);
1225    if (V->getType()->isPointerTy())
1226      MD->invalidateCachedPointerInfo(V);
1227    VN.erase(LI);
1228    toErase.push_back(LI);
1229    ++NumGVNLoad;
1230    return true;
1231  }
1232
1233  if (!EnablePRE || !EnableLoadPRE)
1234    return false;
1235
1236  // Okay, we have *some* definitions of the value.  This means that the value
1237  // is available in some of our (transitive) predecessors.  Lets think about
1238  // doing PRE of this load.  This will involve inserting a new load into the
1239  // predecessor when it's not available.  We could do this in general, but
1240  // prefer to not increase code size.  As such, we only do this when we know
1241  // that we only have to insert *one* load (which means we're basically moving
1242  // the load, not inserting a new one).
1243
1244  SmallPtrSet<BasicBlock *, 4> Blockers;
1245  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1246    Blockers.insert(UnavailableBlocks[i]);
1247
1248  // Lets find first basic block with more than one predecessor.  Walk backwards
1249  // through predecessors if needed.
1250  BasicBlock *LoadBB = LI->getParent();
1251  BasicBlock *TmpBB = LoadBB;
1252
1253  bool isSinglePred = false;
1254  bool allSingleSucc = true;
1255  while (TmpBB->getSinglePredecessor()) {
1256    isSinglePred = true;
1257    TmpBB = TmpBB->getSinglePredecessor();
1258    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1259      return false;
1260    if (Blockers.count(TmpBB))
1261      return false;
1262
1263    // If any of these blocks has more than one successor (i.e. if the edge we
1264    // just traversed was critical), then there are other paths through this
1265    // block along which the load may not be anticipated.  Hoisting the load
1266    // above this block would be adding the load to execution paths along
1267    // which it was not previously executed.
1268    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1269      return false;
1270  }
1271
1272  assert(TmpBB);
1273  LoadBB = TmpBB;
1274
1275  // FIXME: It is extremely unclear what this loop is doing, other than
1276  // artificially restricting loadpre.
1277  if (isSinglePred) {
1278    bool isHot = false;
1279    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1280      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1281      if (AV.isSimpleValue())
1282        // "Hot" Instruction is in some loop (because it dominates its dep.
1283        // instruction).
1284        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1285          if (DT->dominates(LI, I)) {
1286            isHot = true;
1287            break;
1288          }
1289    }
1290
1291    // We are interested only in "hot" instructions. We don't want to do any
1292    // mis-optimizations here.
1293    if (!isHot)
1294      return false;
1295  }
1296
1297  // Check to see how many predecessors have the loaded value fully
1298  // available.
1299  DenseMap<BasicBlock*, Value*> PredLoads;
1300  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1301  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1302    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1303  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1304    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1305
1306  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1307  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1308       PI != E; ++PI) {
1309    BasicBlock *Pred = *PI;
1310    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1311      continue;
1312    }
1313    PredLoads[Pred] = 0;
1314
1315    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1316      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1317        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1318              << Pred->getName() << "': " << *LI << '\n');
1319        return false;
1320      }
1321      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1322      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1323    }
1324  }
1325  if (!NeedToSplit.empty()) {
1326    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1327    return false;
1328  }
1329
1330  // Decide whether PRE is profitable for this load.
1331  unsigned NumUnavailablePreds = PredLoads.size();
1332  assert(NumUnavailablePreds != 0 &&
1333         "Fully available value should be eliminated above!");
1334
1335  // If this load is unavailable in multiple predecessors, reject it.
1336  // FIXME: If we could restructure the CFG, we could make a common pred with
1337  // all the preds that don't have an available LI and insert a new load into
1338  // that one block.
1339  if (NumUnavailablePreds != 1)
1340      return false;
1341
1342  // Check if the load can safely be moved to all the unavailable predecessors.
1343  bool CanDoPRE = true;
1344  SmallVector<Instruction*, 8> NewInsts;
1345  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1346         E = PredLoads.end(); I != E; ++I) {
1347    BasicBlock *UnavailablePred = I->first;
1348
1349    // Do PHI translation to get its value in the predecessor if necessary.  The
1350    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1351
1352    // If all preds have a single successor, then we know it is safe to insert
1353    // the load on the pred (?!?), so we can insert code to materialize the
1354    // pointer if it is not available.
1355    PHITransAddr Address(LI->getPointerOperand(), TD);
1356    Value *LoadPtr = 0;
1357    if (allSingleSucc) {
1358      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1359                                                  *DT, NewInsts);
1360    } else {
1361      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1362      LoadPtr = Address.getAddr();
1363    }
1364
1365    // If we couldn't find or insert a computation of this phi translated value,
1366    // we fail PRE.
1367    if (LoadPtr == 0) {
1368      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1369            << *LI->getPointerOperand() << "\n");
1370      CanDoPRE = false;
1371      break;
1372    }
1373
1374    // Make sure it is valid to move this load here.  We have to watch out for:
1375    //  @1 = getelementptr (i8* p, ...
1376    //  test p and branch if == 0
1377    //  load @1
1378    // It is valid to have the getelementptr before the test, even if p can be 0,
1379    // as getelementptr only does address arithmetic.
1380    // If we are not pushing the value through any multiple-successor blocks
1381    // we do not have this case.  Otherwise, check that the load is safe to
1382    // put anywhere; this can be improved, but should be conservatively safe.
1383    if (!allSingleSucc &&
1384        // FIXME: REEVALUTE THIS.
1385        !isSafeToLoadUnconditionally(LoadPtr,
1386                                     UnavailablePred->getTerminator(),
1387                                     LI->getAlignment(), TD)) {
1388      CanDoPRE = false;
1389      break;
1390    }
1391
1392    I->second = LoadPtr;
1393  }
1394
1395  if (!CanDoPRE) {
1396    while (!NewInsts.empty())
1397      NewInsts.pop_back_val()->eraseFromParent();
1398    return false;
1399  }
1400
1401  // Okay, we can eliminate this load by inserting a reload in the predecessor
1402  // and using PHI construction to get the value in the other predecessors, do
1403  // it.
1404  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1405  DEBUG(if (!NewInsts.empty())
1406          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1407                 << *NewInsts.back() << '\n');
1408
1409  // Assign value numbers to the new instructions.
1410  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1411    // FIXME: We really _ought_ to insert these value numbers into their
1412    // parent's availability map.  However, in doing so, we risk getting into
1413    // ordering issues.  If a block hasn't been processed yet, we would be
1414    // marking a value as AVAIL-IN, which isn't what we intend.
1415    VN.lookup_or_add(NewInsts[i]);
1416  }
1417
1418  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1419         E = PredLoads.end(); I != E; ++I) {
1420    BasicBlock *UnavailablePred = I->first;
1421    Value *LoadPtr = I->second;
1422
1423    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1424                                        LI->getAlignment(),
1425                                        UnavailablePred->getTerminator());
1426
1427    // Transfer the old load's TBAA tag to the new load.
1428    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1429      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1430
1431    // Add the newly created load.
1432    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1433                                                        NewLoad));
1434    MD->invalidateCachedPointerInfo(LoadPtr);
1435    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1436  }
1437
1438  // Perform PHI construction.
1439  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1440                                    VN.getAliasAnalysis());
1441  LI->replaceAllUsesWith(V);
1442  if (isa<PHINode>(V))
1443    V->takeName(LI);
1444  if (V->getType()->isPointerTy())
1445    MD->invalidateCachedPointerInfo(V);
1446  VN.erase(LI);
1447  toErase.push_back(LI);
1448  ++NumPRELoad;
1449  return true;
1450}
1451
1452/// processLoad - Attempt to eliminate a load, first by eliminating it
1453/// locally, and then attempting non-local elimination if that fails.
1454bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1455  if (!MD)
1456    return false;
1457
1458  if (L->isVolatile())
1459    return false;
1460
1461  // ... to a pointer that has been loaded from before...
1462  MemDepResult Dep = MD->getDependency(L);
1463
1464  // If the value isn't available, don't do anything!
1465  if (Dep.isClobber()) {
1466    // Check to see if we have something like this:
1467    //   store i32 123, i32* %P
1468    //   %A = bitcast i32* %P to i8*
1469    //   %B = gep i8* %A, i32 1
1470    //   %C = load i8* %B
1471    //
1472    // We could do that by recognizing if the clobber instructions are obviously
1473    // a common base + constant offset, and if the previous store (or memset)
1474    // completely covers this load.  This sort of thing can happen in bitfield
1475    // access code.
1476    Value *AvailVal = 0;
1477    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1478      if (TD) {
1479        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1480                                                    L->getPointerOperand(),
1481                                                    DepSI, *TD);
1482        if (Offset != -1)
1483          AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1484                                          L->getType(), L, *TD);
1485      }
1486
1487    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1488    // a value on from it.
1489    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1490      if (TD) {
1491        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1492                                                      L->getPointerOperand(),
1493                                                      DepMI, *TD);
1494        if (Offset != -1)
1495          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1496      }
1497    }
1498
1499    if (AvailVal) {
1500      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1501            << *AvailVal << '\n' << *L << "\n\n\n");
1502
1503      // Replace the load!
1504      L->replaceAllUsesWith(AvailVal);
1505      if (AvailVal->getType()->isPointerTy())
1506        MD->invalidateCachedPointerInfo(AvailVal);
1507      VN.erase(L);
1508      toErase.push_back(L);
1509      ++NumGVNLoad;
1510      return true;
1511    }
1512
1513    DEBUG(
1514      // fast print dep, using operator<< on instruction would be too slow
1515      dbgs() << "GVN: load ";
1516      WriteAsOperand(dbgs(), L);
1517      Instruction *I = Dep.getInst();
1518      dbgs() << " is clobbered by " << *I << '\n';
1519    );
1520    return false;
1521  }
1522
1523  // If it is defined in another block, try harder.
1524  if (Dep.isNonLocal())
1525    return processNonLocalLoad(L, toErase);
1526
1527  Instruction *DepInst = Dep.getInst();
1528  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1529    Value *StoredVal = DepSI->getValueOperand();
1530
1531    // The store and load are to a must-aliased pointer, but they may not
1532    // actually have the same type.  See if we know how to reuse the stored
1533    // value (depending on its type).
1534    if (StoredVal->getType() != L->getType()) {
1535      if (TD) {
1536        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1537                                                   L, *TD);
1538        if (StoredVal == 0)
1539          return false;
1540
1541        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1542                     << '\n' << *L << "\n\n\n");
1543      }
1544      else
1545        return false;
1546    }
1547
1548    // Remove it!
1549    L->replaceAllUsesWith(StoredVal);
1550    if (StoredVal->getType()->isPointerTy())
1551      MD->invalidateCachedPointerInfo(StoredVal);
1552    VN.erase(L);
1553    toErase.push_back(L);
1554    ++NumGVNLoad;
1555    return true;
1556  }
1557
1558  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1559    Value *AvailableVal = DepLI;
1560
1561    // The loads are of a must-aliased pointer, but they may not actually have
1562    // the same type.  See if we know how to reuse the previously loaded value
1563    // (depending on its type).
1564    if (DepLI->getType() != L->getType()) {
1565      if (TD) {
1566        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1567        if (AvailableVal == 0)
1568          return false;
1569
1570        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1571                     << "\n" << *L << "\n\n\n");
1572      }
1573      else
1574        return false;
1575    }
1576
1577    // Remove it!
1578    L->replaceAllUsesWith(AvailableVal);
1579    if (DepLI->getType()->isPointerTy())
1580      MD->invalidateCachedPointerInfo(DepLI);
1581    VN.erase(L);
1582    toErase.push_back(L);
1583    ++NumGVNLoad;
1584    return true;
1585  }
1586
1587  // If this load really doesn't depend on anything, then we must be loading an
1588  // undef value.  This can happen when loading for a fresh allocation with no
1589  // intervening stores, for example.
1590  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1591    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1592    VN.erase(L);
1593    toErase.push_back(L);
1594    ++NumGVNLoad;
1595    return true;
1596  }
1597
1598  // If this load occurs either right after a lifetime begin,
1599  // then the loaded value is undefined.
1600  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1601    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1602      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1603      VN.erase(L);
1604      toErase.push_back(L);
1605      ++NumGVNLoad;
1606      return true;
1607    }
1608  }
1609
1610  return false;
1611}
1612
1613// lookupNumber - In order to find a leader for a given value number at a
1614// specific basic block, we first obtain the list of all Values for that number,
1615// and then scan the list to find one whose block dominates the block in
1616// question.  This is fast because dominator tree queries consist of only
1617// a few comparisons of DFS numbers.
1618Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1619  NumberTableEntry Vals = NumberTable[num];
1620  if (!Vals.Val) return 0;
1621
1622  Value *Val = 0;
1623  if (DT->dominates(Vals.BB, BB)) {
1624    Val = Vals.Val;
1625    if (isa<Constant>(Val)) return Val;
1626  }
1627
1628  NumberTableEntry* Next = Vals.Next;
1629  while (Next) {
1630    if (DT->dominates(Next->BB, BB)) {
1631      if (isa<Constant>(Next->Val)) return Next->Val;
1632      if (!Val) Val = Next->Val;
1633    }
1634
1635    Next = Next->Next;
1636  }
1637
1638  return Val;
1639}
1640
1641
1642/// processInstruction - When calculating availability, handle an instruction
1643/// by inserting it into the appropriate sets
1644bool GVN::processInstruction(Instruction *I,
1645                             SmallVectorImpl<Instruction*> &toErase) {
1646  // Ignore dbg info intrinsics.
1647  if (isa<DbgInfoIntrinsic>(I))
1648    return false;
1649
1650  // If the instruction can be easily simplified then do so now in preference
1651  // to value numbering it.  Value numbering often exposes redundancies, for
1652  // example if it determines that %y is equal to %x then the instruction
1653  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1654  if (Value *V = SimplifyInstruction(I, TD, DT)) {
1655    I->replaceAllUsesWith(V);
1656    if (MD && V->getType()->isPointerTy())
1657      MD->invalidateCachedPointerInfo(V);
1658    VN.erase(I);
1659    toErase.push_back(I);
1660    return true;
1661  }
1662
1663  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1664    bool Changed = processLoad(LI, toErase);
1665
1666    if (!Changed) {
1667      unsigned Num = VN.lookup_or_add(LI);
1668      insert_table(Num, LI, LI->getParent());
1669    }
1670
1671    return Changed;
1672  }
1673
1674  // For conditions branches, we can perform simple conditional propagation on
1675  // the condition value itself.
1676  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1677    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1678      return false;
1679
1680    Value *BranchCond = BI->getCondition();
1681    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1682
1683    BasicBlock *TrueSucc = BI->getSuccessor(0);
1684    BasicBlock *FalseSucc = BI->getSuccessor(1);
1685
1686    if (TrueSucc->getSinglePredecessor())
1687      insert_table(CondVN,
1688                   ConstantInt::getTrue(TrueSucc->getContext()),
1689                   TrueSucc);
1690    if (FalseSucc->getSinglePredecessor())
1691      insert_table(CondVN,
1692                   ConstantInt::getFalse(TrueSucc->getContext()),
1693                   FalseSucc);
1694
1695    return false;
1696  }
1697
1698  uint32_t NextNum = VN.getNextUnusedValueNumber();
1699  unsigned Num = VN.lookup_or_add(I);
1700
1701  // Allocations are always uniquely numbered, so we can save time and memory
1702  // by fast failing them.
1703  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1704    insert_table(Num, I, I->getParent());
1705    return false;
1706  }
1707
1708  // If the number we were assigned was a brand new VN, then we don't
1709  // need to do a lookup to see if the number already exists
1710  // somewhere in the domtree: it can't!
1711  if (Num == NextNum) {
1712    insert_table(Num, I, I->getParent());
1713    return false;
1714  }
1715
1716  // Perform fast-path value-number based elimination of values inherited from
1717  // dominators.
1718  Value *repl = lookupNumber(I->getParent(), Num);
1719  if (repl == 0) {
1720    // Failure, just remember this instance for future use.
1721    insert_table(Num, I, I->getParent());
1722    return false;
1723  }
1724
1725  // Remove it!
1726  VN.erase(I);
1727  I->replaceAllUsesWith(repl);
1728  if (MD && repl->getType()->isPointerTy())
1729    MD->invalidateCachedPointerInfo(repl);
1730  toErase.push_back(I);
1731  return true;
1732}
1733
1734/// runOnFunction - This is the main transformation entry point for a function.
1735bool GVN::runOnFunction(Function& F) {
1736  if (!NoLoads)
1737    MD = &getAnalysis<MemoryDependenceAnalysis>();
1738  DT = &getAnalysis<DominatorTree>();
1739  TD = getAnalysisIfAvailable<TargetData>();
1740  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1741  VN.setMemDep(MD);
1742  VN.setDomTree(DT);
1743
1744  bool Changed = false;
1745  bool ShouldContinue = true;
1746
1747  // Merge unconditional branches, allowing PRE to catch more
1748  // optimization opportunities.
1749  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1750    BasicBlock *BB = FI;
1751    ++FI;
1752    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1753    if (removedBlock) ++NumGVNBlocks;
1754
1755    Changed |= removedBlock;
1756  }
1757
1758  unsigned Iteration = 0;
1759
1760  while (ShouldContinue) {
1761    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
1762    ShouldContinue = iterateOnFunction(F);
1763    if (splitCriticalEdges())
1764      ShouldContinue = true;
1765    Changed |= ShouldContinue;
1766    ++Iteration;
1767  }
1768
1769  if (EnablePRE) {
1770    bool PREChanged = true;
1771    while (PREChanged) {
1772      PREChanged = performPRE(F);
1773      Changed |= PREChanged;
1774    }
1775  }
1776  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1777  // computations into blocks where they become fully redundant.  Note that
1778  // we can't do this until PRE's critical edge splitting updates memdep.
1779  // Actually, when this happens, we should just fully integrate PRE into GVN.
1780
1781  cleanupGlobalSets();
1782
1783  return Changed;
1784}
1785
1786
1787bool GVN::processBlock(BasicBlock *BB) {
1788  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1789  // incrementing BI before processing an instruction).
1790  SmallVector<Instruction*, 8> toErase;
1791  bool ChangedFunction = false;
1792
1793  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1794       BI != BE;) {
1795    ChangedFunction |= processInstruction(BI, toErase);
1796    if (toErase.empty()) {
1797      ++BI;
1798      continue;
1799    }
1800
1801    // If we need some instructions deleted, do it now.
1802    NumGVNInstr += toErase.size();
1803
1804    // Avoid iterator invalidation.
1805    bool AtStart = BI == BB->begin();
1806    if (!AtStart)
1807      --BI;
1808
1809    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1810         E = toErase.end(); I != E; ++I) {
1811      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
1812      if (MD) MD->removeInstruction(*I);
1813      (*I)->eraseFromParent();
1814      DEBUG(verifyRemoved(*I));
1815    }
1816    toErase.clear();
1817
1818    if (AtStart)
1819      BI = BB->begin();
1820    else
1821      ++BI;
1822  }
1823
1824  return ChangedFunction;
1825}
1826
1827/// performPRE - Perform a purely local form of PRE that looks for diamond
1828/// control flow patterns and attempts to perform simple PRE at the join point.
1829bool GVN::performPRE(Function &F) {
1830  bool Changed = false;
1831  DenseMap<BasicBlock*, Value*> predMap;
1832  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1833       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1834    BasicBlock *CurrentBlock = *DI;
1835
1836    // Nothing to PRE in the entry block.
1837    if (CurrentBlock == &F.getEntryBlock()) continue;
1838
1839    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1840         BE = CurrentBlock->end(); BI != BE; ) {
1841      Instruction *CurInst = BI++;
1842
1843      if (isa<AllocaInst>(CurInst) ||
1844          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1845          CurInst->getType()->isVoidTy() ||
1846          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1847          isa<DbgInfoIntrinsic>(CurInst))
1848        continue;
1849
1850      // We don't currently value number ANY inline asm calls.
1851      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
1852        if (CallI->isInlineAsm())
1853          continue;
1854
1855      uint32_t ValNo = VN.lookup(CurInst);
1856
1857      // Look for the predecessors for PRE opportunities.  We're
1858      // only trying to solve the basic diamond case, where
1859      // a value is computed in the successor and one predecessor,
1860      // but not the other.  We also explicitly disallow cases
1861      // where the successor is its own predecessor, because they're
1862      // more complicated to get right.
1863      unsigned NumWith = 0;
1864      unsigned NumWithout = 0;
1865      BasicBlock *PREPred = 0;
1866      predMap.clear();
1867
1868      for (pred_iterator PI = pred_begin(CurrentBlock),
1869           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1870        BasicBlock *P = *PI;
1871        // We're not interested in PRE where the block is its
1872        // own predecessor, or in blocks with predecessors
1873        // that are not reachable.
1874        if (P == CurrentBlock) {
1875          NumWithout = 2;
1876          break;
1877        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
1878          NumWithout = 2;
1879          break;
1880        }
1881
1882        Value* predV = lookupNumber(P, ValNo);
1883        if (predV == 0) {
1884          PREPred = P;
1885          ++NumWithout;
1886        } else if (predV == CurInst) {
1887          NumWithout = 2;
1888        } else {
1889          predMap[P] = predV;
1890          ++NumWith;
1891        }
1892      }
1893
1894      // Don't do PRE when it might increase code size, i.e. when
1895      // we would need to insert instructions in more than one pred.
1896      if (NumWithout != 1 || NumWith == 0)
1897        continue;
1898
1899      // Don't do PRE across indirect branch.
1900      if (isa<IndirectBrInst>(PREPred->getTerminator()))
1901        continue;
1902
1903      // We can't do PRE safely on a critical edge, so instead we schedule
1904      // the edge to be split and perform the PRE the next time we iterate
1905      // on the function.
1906      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
1907      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1908        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1909        continue;
1910      }
1911
1912      // Instantiate the expression in the predecessor that lacked it.
1913      // Because we are going top-down through the block, all value numbers
1914      // will be available in the predecessor by the time we need them.  Any
1915      // that weren't originally present will have been instantiated earlier
1916      // in this loop.
1917      Instruction *PREInstr = CurInst->clone();
1918      bool success = true;
1919      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1920        Value *Op = PREInstr->getOperand(i);
1921        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1922          continue;
1923
1924        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1925          PREInstr->setOperand(i, V);
1926        } else {
1927          success = false;
1928          break;
1929        }
1930      }
1931
1932      // Fail out if we encounter an operand that is not available in
1933      // the PRE predecessor.  This is typically because of loads which
1934      // are not value numbered precisely.
1935      if (!success) {
1936        delete PREInstr;
1937        DEBUG(verifyRemoved(PREInstr));
1938        continue;
1939      }
1940
1941      PREInstr->insertBefore(PREPred->getTerminator());
1942      PREInstr->setName(CurInst->getName() + ".pre");
1943      predMap[PREPred] = PREInstr;
1944      VN.add(PREInstr, ValNo);
1945      ++NumGVNPRE;
1946
1947      // Update the availability map to include the new instruction.
1948      insert_table(ValNo, PREInstr, PREPred);
1949
1950      // Create a PHI to make the value available in this block.
1951      PHINode* Phi = PHINode::Create(CurInst->getType(),
1952                                     CurInst->getName() + ".pre-phi",
1953                                     CurrentBlock->begin());
1954      for (pred_iterator PI = pred_begin(CurrentBlock),
1955           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1956        BasicBlock *P = *PI;
1957        Phi->addIncoming(predMap[P], P);
1958      }
1959
1960      VN.add(Phi, ValNo);
1961      insert_table(ValNo, Phi, CurrentBlock);
1962
1963      CurInst->replaceAllUsesWith(Phi);
1964      if (Phi->getType()->isPointerTy()) {
1965        // Because we have added a PHI-use of the pointer value, it has now
1966        // "escaped" from alias analysis' perspective.  We need to inform
1967        // AA of this.
1968        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; ++ii)
1969          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(2*ii));
1970
1971        if (MD)
1972          MD->invalidateCachedPointerInfo(Phi);
1973      }
1974      VN.erase(CurInst);
1975      erase_table(ValNo, CurInst, CurrentBlock);
1976
1977      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
1978      if (MD) MD->removeInstruction(CurInst);
1979      CurInst->eraseFromParent();
1980      DEBUG(verifyRemoved(CurInst));
1981      Changed = true;
1982    }
1983  }
1984
1985  if (splitCriticalEdges())
1986    Changed = true;
1987
1988  return Changed;
1989}
1990
1991/// splitCriticalEdges - Split critical edges found during the previous
1992/// iteration that may enable further optimization.
1993bool GVN::splitCriticalEdges() {
1994  if (toSplit.empty())
1995    return false;
1996  do {
1997    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
1998    SplitCriticalEdge(Edge.first, Edge.second, this);
1999  } while (!toSplit.empty());
2000  if (MD) MD->invalidateCachedPredecessors();
2001  return true;
2002}
2003
2004/// iterateOnFunction - Executes one iteration of GVN
2005bool GVN::iterateOnFunction(Function &F) {
2006  cleanupGlobalSets();
2007
2008  // Top-down walk of the dominator tree
2009  bool Changed = false;
2010#if 0
2011  // Needed for value numbering with phi construction to work.
2012  ReversePostOrderTraversal<Function*> RPOT(&F);
2013  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2014       RE = RPOT.end(); RI != RE; ++RI)
2015    Changed |= processBlock(*RI);
2016#else
2017  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2018       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2019    Changed |= processBlock(DI->getBlock());
2020#endif
2021
2022  return Changed;
2023}
2024
2025void GVN::cleanupGlobalSets() {
2026  VN.clear();
2027  NumberTable.clear();
2028  TableAllocator.Reset();
2029}
2030
2031/// verifyRemoved - Verify that the specified instruction does not occur in our
2032/// internal data structures.
2033void GVN::verifyRemoved(const Instruction *Inst) const {
2034  VN.verifyRemoved(Inst);
2035
2036  // Walk through the value number scope to make sure the instruction isn't
2037  // ferreted away in it.
2038  for (DenseMap<uint32_t, NumberTableEntry>::const_iterator
2039       I = NumberTable.begin(), E = NumberTable.end(); I != E; ++I) {
2040    const NumberTableEntry *Node = &I->second;
2041    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2042
2043    while (Node->Next) {
2044      Node = Node->Next;
2045      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2046    }
2047  }
2048}
2049