GVN.cpp revision 68c26396c07b4ad96657d4510f06f7646785278d
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/InstructionSimplify.h"
39#include "llvm/Analysis/Loads.h"
40#include "llvm/Analysis/MemoryBuiltins.h"
41#include "llvm/Analysis/MemoryDependenceAnalysis.h"
42#include "llvm/Analysis/PHITransAddr.h"
43#include "llvm/Support/Allocator.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Support/IRBuilder.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Target/TargetData.h"
52#include "llvm/Transforms/Utils/BasicBlockUtils.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Transforms/Utils/SSAUpdater.h"
55#include <list>
56using namespace llvm;
57
58STATISTIC(NumGVNInstr,  "Number of instructions deleted");
59STATISTIC(NumGVNLoad,   "Number of loads deleted");
60STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
61STATISTIC(NumGVNBlocks, "Number of blocks merged");
62STATISTIC(NumPRELoad,   "Number of loads PRE'd");
63
64static cl::opt<bool> EnablePRE("enable-pre",
65                               cl::init(true), cl::Hidden);
66static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
67
68//===----------------------------------------------------------------------===//
69//                         ValueTable Class
70//===----------------------------------------------------------------------===//
71
72/// This class holds the mapping between values and value numbers.  It is used
73/// as an efficient mechanism to determine the expression-wise equivalence of
74/// two values.
75namespace {
76  struct Expression {
77    enum ExpressionOpcode {
78      ADD = Instruction::Add,
79      FADD = Instruction::FAdd,
80      SUB = Instruction::Sub,
81      FSUB = Instruction::FSub,
82      MUL = Instruction::Mul,
83      FMUL = Instruction::FMul,
84      UDIV = Instruction::UDiv,
85      SDIV = Instruction::SDiv,
86      FDIV = Instruction::FDiv,
87      UREM = Instruction::URem,
88      SREM = Instruction::SRem,
89      FREM = Instruction::FRem,
90      SHL = Instruction::Shl,
91      LSHR = Instruction::LShr,
92      ASHR = Instruction::AShr,
93      AND = Instruction::And,
94      OR = Instruction::Or,
95      XOR = Instruction::Xor,
96      TRUNC = Instruction::Trunc,
97      ZEXT = Instruction::ZExt,
98      SEXT = Instruction::SExt,
99      FPTOUI = Instruction::FPToUI,
100      FPTOSI = Instruction::FPToSI,
101      UITOFP = Instruction::UIToFP,
102      SITOFP = Instruction::SIToFP,
103      FPTRUNC = Instruction::FPTrunc,
104      FPEXT = Instruction::FPExt,
105      PTRTOINT = Instruction::PtrToInt,
106      INTTOPTR = Instruction::IntToPtr,
107      BITCAST = Instruction::BitCast,
108      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
109      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
110      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
111      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
112      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
113      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
114      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
115
116    ExpressionOpcode opcode;
117    const Type* type;
118    SmallVector<uint32_t, 4> varargs;
119    Value *function;
120
121    Expression() { }
122    Expression(ExpressionOpcode o) : opcode(o) { }
123
124    bool operator==(const Expression &other) const {
125      if (opcode != other.opcode)
126        return false;
127      else if (opcode == EMPTY || opcode == TOMBSTONE)
128        return true;
129      else if (type != other.type)
130        return false;
131      else if (function != other.function)
132        return false;
133      else {
134        if (varargs.size() != other.varargs.size())
135          return false;
136
137        for (size_t i = 0; i < varargs.size(); ++i)
138          if (varargs[i] != other.varargs[i])
139            return false;
140
141        return true;
142      }
143    }
144
145    /*bool operator!=(const Expression &other) const {
146      return !(*this == other);
147    }*/
148  };
149
150  class ValueTable {
151    private:
152      DenseMap<Value*, uint32_t> valueNumbering;
153      DenseMap<Expression, uint32_t> expressionNumbering;
154      AliasAnalysis* AA;
155      MemoryDependenceAnalysis* MD;
156      DominatorTree* DT;
157
158      uint32_t nextValueNumber;
159
160      Expression::ExpressionOpcode getOpcode(CmpInst* C);
161      Expression create_expression(BinaryOperator* BO);
162      Expression create_expression(CmpInst* C);
163      Expression create_expression(ShuffleVectorInst* V);
164      Expression create_expression(ExtractElementInst* C);
165      Expression create_expression(InsertElementInst* V);
166      Expression create_expression(SelectInst* V);
167      Expression create_expression(CastInst* C);
168      Expression create_expression(GetElementPtrInst* G);
169      Expression create_expression(CallInst* C);
170      Expression create_expression(ExtractValueInst* C);
171      Expression create_expression(InsertValueInst* C);
172
173      uint32_t lookup_or_add_call(CallInst* C);
174    public:
175      ValueTable() : nextValueNumber(1) { }
176      uint32_t lookup_or_add(Value *V);
177      uint32_t lookup(Value *V) const;
178      void add(Value *V, uint32_t num);
179      void clear();
180      void erase(Value *v);
181      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
182      AliasAnalysis *getAliasAnalysis() const { return AA; }
183      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
184      void setDomTree(DominatorTree* D) { DT = D; }
185      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
186      void verifyRemoved(const Value *) const;
187  };
188}
189
190namespace llvm {
191template <> struct DenseMapInfo<Expression> {
192  static inline Expression getEmptyKey() {
193    return Expression(Expression::EMPTY);
194  }
195
196  static inline Expression getTombstoneKey() {
197    return Expression(Expression::TOMBSTONE);
198  }
199
200  static unsigned getHashValue(const Expression e) {
201    unsigned hash = e.opcode;
202
203    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
204            (unsigned)((uintptr_t)e.type >> 9));
205
206    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
207         E = e.varargs.end(); I != E; ++I)
208      hash = *I + hash * 37;
209
210    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
211            (unsigned)((uintptr_t)e.function >> 9)) +
212           hash * 37;
213
214    return hash;
215  }
216  static bool isEqual(const Expression &LHS, const Expression &RHS) {
217    return LHS == RHS;
218  }
219};
220
221template <>
222struct isPodLike<Expression> { static const bool value = true; };
223
224}
225
226//===----------------------------------------------------------------------===//
227//                     ValueTable Internal Functions
228//===----------------------------------------------------------------------===//
229
230Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
231  if (isa<ICmpInst>(C)) {
232    switch (C->getPredicate()) {
233    default:  // THIS SHOULD NEVER HAPPEN
234      llvm_unreachable("Comparison with unknown predicate?");
235    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
236    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
237    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
238    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
239    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
240    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
241    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
242    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
243    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
244    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
245    }
246  } else {
247    switch (C->getPredicate()) {
248    default: // THIS SHOULD NEVER HAPPEN
249      llvm_unreachable("Comparison with unknown predicate?");
250    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
251    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
252    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
253    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
254    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
255    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
256    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
257    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
258    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
259    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
260    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
261    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
262    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
263    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
264    }
265  }
266}
267
268Expression ValueTable::create_expression(CallInst* C) {
269  Expression e;
270
271  e.type = C->getType();
272  e.function = C->getCalledFunction();
273  e.opcode = Expression::CALL;
274
275  CallSite CS(C);
276  for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
277       I != E; ++I)
278    e.varargs.push_back(lookup_or_add(*I));
279
280  return e;
281}
282
283Expression ValueTable::create_expression(BinaryOperator* BO) {
284  Expression e;
285  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
286  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
287  e.function = 0;
288  e.type = BO->getType();
289  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
290
291  return e;
292}
293
294Expression ValueTable::create_expression(CmpInst* C) {
295  Expression e;
296
297  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
298  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
299  e.function = 0;
300  e.type = C->getType();
301  e.opcode = getOpcode(C);
302
303  return e;
304}
305
306Expression ValueTable::create_expression(CastInst* C) {
307  Expression e;
308
309  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
310  e.function = 0;
311  e.type = C->getType();
312  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
313
314  return e;
315}
316
317Expression ValueTable::create_expression(ShuffleVectorInst* S) {
318  Expression e;
319
320  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
321  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
322  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
323  e.function = 0;
324  e.type = S->getType();
325  e.opcode = Expression::SHUFFLE;
326
327  return e;
328}
329
330Expression ValueTable::create_expression(ExtractElementInst* E) {
331  Expression e;
332
333  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
334  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
335  e.function = 0;
336  e.type = E->getType();
337  e.opcode = Expression::EXTRACT;
338
339  return e;
340}
341
342Expression ValueTable::create_expression(InsertElementInst* I) {
343  Expression e;
344
345  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
346  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
347  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
348  e.function = 0;
349  e.type = I->getType();
350  e.opcode = Expression::INSERT;
351
352  return e;
353}
354
355Expression ValueTable::create_expression(SelectInst* I) {
356  Expression e;
357
358  e.varargs.push_back(lookup_or_add(I->getCondition()));
359  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
360  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
361  e.function = 0;
362  e.type = I->getType();
363  e.opcode = Expression::SELECT;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(GetElementPtrInst* G) {
369  Expression e;
370
371  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
372  e.function = 0;
373  e.type = G->getType();
374  e.opcode = Expression::GEP;
375
376  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
377       I != E; ++I)
378    e.varargs.push_back(lookup_or_add(*I));
379
380  return e;
381}
382
383Expression ValueTable::create_expression(ExtractValueInst* E) {
384  Expression e;
385
386  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
387  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
388       II != IE; ++II)
389    e.varargs.push_back(*II);
390  e.function = 0;
391  e.type = E->getType();
392  e.opcode = Expression::EXTRACTVALUE;
393
394  return e;
395}
396
397Expression ValueTable::create_expression(InsertValueInst* E) {
398  Expression e;
399
400  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
401  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
402  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
403       II != IE; ++II)
404    e.varargs.push_back(*II);
405  e.function = 0;
406  e.type = E->getType();
407  e.opcode = Expression::INSERTVALUE;
408
409  return e;
410}
411
412//===----------------------------------------------------------------------===//
413//                     ValueTable External Functions
414//===----------------------------------------------------------------------===//
415
416/// add - Insert a value into the table with a specified value number.
417void ValueTable::add(Value *V, uint32_t num) {
418  valueNumbering.insert(std::make_pair(V, num));
419}
420
421uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
422  if (AA->doesNotAccessMemory(C)) {
423    Expression exp = create_expression(C);
424    uint32_t& e = expressionNumbering[exp];
425    if (!e) e = nextValueNumber++;
426    valueNumbering[C] = e;
427    return e;
428  } else if (AA->onlyReadsMemory(C)) {
429    Expression exp = create_expression(C);
430    uint32_t& e = expressionNumbering[exp];
431    if (!e) {
432      e = nextValueNumber++;
433      valueNumbering[C] = e;
434      return e;
435    }
436    if (!MD) {
437      e = nextValueNumber++;
438      valueNumbering[C] = e;
439      return e;
440    }
441
442    MemDepResult local_dep = MD->getDependency(C);
443
444    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
445      valueNumbering[C] =  nextValueNumber;
446      return nextValueNumber++;
447    }
448
449    if (local_dep.isDef()) {
450      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
451
452      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
453        valueNumbering[C] = nextValueNumber;
454        return nextValueNumber++;
455      }
456
457      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
458        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
459        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
460        if (c_vn != cd_vn) {
461          valueNumbering[C] = nextValueNumber;
462          return nextValueNumber++;
463        }
464      }
465
466      uint32_t v = lookup_or_add(local_cdep);
467      valueNumbering[C] = v;
468      return v;
469    }
470
471    // Non-local case.
472    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
473      MD->getNonLocalCallDependency(CallSite(C));
474    // FIXME: call/call dependencies for readonly calls should return def, not
475    // clobber!  Move the checking logic to MemDep!
476    CallInst* cdep = 0;
477
478    // Check to see if we have a single dominating call instruction that is
479    // identical to C.
480    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
481      const NonLocalDepEntry *I = &deps[i];
482      // Ignore non-local dependencies.
483      if (I->getResult().isNonLocal())
484        continue;
485
486      // We don't handle non-depedencies.  If we already have a call, reject
487      // instruction dependencies.
488      if (I->getResult().isClobber() || cdep != 0) {
489        cdep = 0;
490        break;
491      }
492
493      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
494      // FIXME: All duplicated with non-local case.
495      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
496        cdep = NonLocalDepCall;
497        continue;
498      }
499
500      cdep = 0;
501      break;
502    }
503
504    if (!cdep) {
505      valueNumbering[C] = nextValueNumber;
506      return nextValueNumber++;
507    }
508
509    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
510      valueNumbering[C] = nextValueNumber;
511      return nextValueNumber++;
512    }
513    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
514      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
515      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
516      if (c_vn != cd_vn) {
517        valueNumbering[C] = nextValueNumber;
518        return nextValueNumber++;
519      }
520    }
521
522    uint32_t v = lookup_or_add(cdep);
523    valueNumbering[C] = v;
524    return v;
525
526  } else {
527    valueNumbering[C] = nextValueNumber;
528    return nextValueNumber++;
529  }
530}
531
532/// lookup_or_add - Returns the value number for the specified value, assigning
533/// it a new number if it did not have one before.
534uint32_t ValueTable::lookup_or_add(Value *V) {
535  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
536  if (VI != valueNumbering.end())
537    return VI->second;
538
539  if (!isa<Instruction>(V)) {
540    valueNumbering[V] = nextValueNumber;
541    return nextValueNumber++;
542  }
543
544  Instruction* I = cast<Instruction>(V);
545  Expression exp;
546  switch (I->getOpcode()) {
547    case Instruction::Call:
548      return lookup_or_add_call(cast<CallInst>(I));
549    case Instruction::Add:
550    case Instruction::FAdd:
551    case Instruction::Sub:
552    case Instruction::FSub:
553    case Instruction::Mul:
554    case Instruction::FMul:
555    case Instruction::UDiv:
556    case Instruction::SDiv:
557    case Instruction::FDiv:
558    case Instruction::URem:
559    case Instruction::SRem:
560    case Instruction::FRem:
561    case Instruction::Shl:
562    case Instruction::LShr:
563    case Instruction::AShr:
564    case Instruction::And:
565    case Instruction::Or :
566    case Instruction::Xor:
567      exp = create_expression(cast<BinaryOperator>(I));
568      break;
569    case Instruction::ICmp:
570    case Instruction::FCmp:
571      exp = create_expression(cast<CmpInst>(I));
572      break;
573    case Instruction::Trunc:
574    case Instruction::ZExt:
575    case Instruction::SExt:
576    case Instruction::FPToUI:
577    case Instruction::FPToSI:
578    case Instruction::UIToFP:
579    case Instruction::SIToFP:
580    case Instruction::FPTrunc:
581    case Instruction::FPExt:
582    case Instruction::PtrToInt:
583    case Instruction::IntToPtr:
584    case Instruction::BitCast:
585      exp = create_expression(cast<CastInst>(I));
586      break;
587    case Instruction::Select:
588      exp = create_expression(cast<SelectInst>(I));
589      break;
590    case Instruction::ExtractElement:
591      exp = create_expression(cast<ExtractElementInst>(I));
592      break;
593    case Instruction::InsertElement:
594      exp = create_expression(cast<InsertElementInst>(I));
595      break;
596    case Instruction::ShuffleVector:
597      exp = create_expression(cast<ShuffleVectorInst>(I));
598      break;
599    case Instruction::ExtractValue:
600      exp = create_expression(cast<ExtractValueInst>(I));
601      break;
602    case Instruction::InsertValue:
603      exp = create_expression(cast<InsertValueInst>(I));
604      break;
605    case Instruction::GetElementPtr:
606      exp = create_expression(cast<GetElementPtrInst>(I));
607      break;
608    default:
609      valueNumbering[V] = nextValueNumber;
610      return nextValueNumber++;
611  }
612
613  uint32_t& e = expressionNumbering[exp];
614  if (!e) e = nextValueNumber++;
615  valueNumbering[V] = e;
616  return e;
617}
618
619/// lookup - Returns the value number of the specified value. Fails if
620/// the value has not yet been numbered.
621uint32_t ValueTable::lookup(Value *V) const {
622  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
623  assert(VI != valueNumbering.end() && "Value not numbered?");
624  return VI->second;
625}
626
627/// clear - Remove all entries from the ValueTable
628void ValueTable::clear() {
629  valueNumbering.clear();
630  expressionNumbering.clear();
631  nextValueNumber = 1;
632}
633
634/// erase - Remove a value from the value numbering
635void ValueTable::erase(Value *V) {
636  valueNumbering.erase(V);
637}
638
639/// verifyRemoved - Verify that the value is removed from all internal data
640/// structures.
641void ValueTable::verifyRemoved(const Value *V) const {
642  for (DenseMap<Value*, uint32_t>::const_iterator
643         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
644    assert(I->first != V && "Inst still occurs in value numbering map!");
645  }
646}
647
648//===----------------------------------------------------------------------===//
649//                                GVN Pass
650//===----------------------------------------------------------------------===//
651
652namespace {
653  struct ValueNumberScope {
654    ValueNumberScope* parent;
655    DenseMap<uint32_t, Value*> table;
656
657    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
658  };
659}
660
661namespace {
662
663  class GVN : public FunctionPass {
664    bool runOnFunction(Function &F);
665  public:
666    static char ID; // Pass identification, replacement for typeid
667    explicit GVN(bool noloads = false)
668        : FunctionPass(ID), NoLoads(noloads), MD(0) {
669      initializeGVNPass(*PassRegistry::getPassRegistry());
670    }
671
672  private:
673    bool NoLoads;
674    MemoryDependenceAnalysis *MD;
675    DominatorTree *DT;
676    const TargetData* TD;
677
678    ValueTable VN;
679
680    /// NumberTable - A mapping from value numers to lists of Value*'s that
681    /// have that value number.  Use lookupNumber to query it.
682    DenseMap<uint32_t, std::pair<Value*, void*> > NumberTable;
683    BumpPtrAllocator TableAllocator;
684
685    /// insert_table - Push a new Value to the NumberTable onto the list for
686    /// its value number.
687    void insert_table(uint32_t N, Value *V) {
688      std::pair<Value*, void*>& Curr = NumberTable[N];
689      if (!Curr.first) {
690        Curr.first = V;
691        return;
692      }
693
694      std::pair<Value*, void*>* Node =
695        TableAllocator.Allocate<std::pair<Value*, void*> >();
696      Node->first = V;
697      Node->second = Curr.second;
698      Curr.second = Node;
699    }
700
701    /// erase_table - Scan the list of values corresponding to a given value
702    /// number, and remove the given value if encountered.
703    void erase_table(uint32_t N, Value *V) {
704      std::pair<Value*, void*>* Prev = 0;
705      std::pair<Value*, void*>* Curr = &NumberTable[N];
706
707      while (Curr->first != V) {
708        Prev = Curr;
709        Curr = static_cast<std::pair<Value*, void*>*>(Curr->second);
710      }
711
712      if (Prev) {
713        Prev->second = Curr->second;
714      } else {
715        if (!Curr->second) {
716          Curr->first = 0;
717        } else {
718          std::pair<Value*, void*>* Next =
719            static_cast<std::pair<Value*, void*>*>(Curr->second);
720          Curr->first = Next->first;
721          Curr->second = Next->second;
722        }
723      }
724    }
725
726    // List of critical edges to be split between iterations.
727    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
728
729    // This transformation requires dominator postdominator info
730    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
731      AU.addRequired<DominatorTree>();
732      if (!NoLoads)
733        AU.addRequired<MemoryDependenceAnalysis>();
734      AU.addRequired<AliasAnalysis>();
735
736      AU.addPreserved<DominatorTree>();
737      AU.addPreserved<AliasAnalysis>();
738    }
739
740    // Helper fuctions
741    // FIXME: eliminate or document these better
742    bool processLoad(LoadInst* L,
743                     SmallVectorImpl<Instruction*> &toErase);
744    bool processInstruction(Instruction *I,
745                            SmallVectorImpl<Instruction*> &toErase);
746    bool processNonLocalLoad(LoadInst* L,
747                             SmallVectorImpl<Instruction*> &toErase);
748    bool processBlock(BasicBlock *BB);
749    void dump(DenseMap<uint32_t, Value*>& d);
750    bool iterateOnFunction(Function &F);
751    bool performPRE(Function& F);
752    Value *lookupNumber(BasicBlock *BB, uint32_t num);
753    void cleanupGlobalSets();
754    void verifyRemoved(const Instruction *I) const;
755    bool splitCriticalEdges();
756  };
757
758  char GVN::ID = 0;
759}
760
761// createGVNPass - The public interface to this file...
762FunctionPass *llvm::createGVNPass(bool NoLoads) {
763  return new GVN(NoLoads);
764}
765
766INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
767INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
768INITIALIZE_PASS_DEPENDENCY(DominatorTree)
769INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
770INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
771
772void GVN::dump(DenseMap<uint32_t, Value*>& d) {
773  errs() << "{\n";
774  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
775       E = d.end(); I != E; ++I) {
776      errs() << I->first << "\n";
777      I->second->dump();
778  }
779  errs() << "}\n";
780}
781
782/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
783/// we're analyzing is fully available in the specified block.  As we go, keep
784/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
785/// map is actually a tri-state map with the following values:
786///   0) we know the block *is not* fully available.
787///   1) we know the block *is* fully available.
788///   2) we do not know whether the block is fully available or not, but we are
789///      currently speculating that it will be.
790///   3) we are speculating for this block and have used that to speculate for
791///      other blocks.
792static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
793                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
794  // Optimistically assume that the block is fully available and check to see
795  // if we already know about this block in one lookup.
796  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
797    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
798
799  // If the entry already existed for this block, return the precomputed value.
800  if (!IV.second) {
801    // If this is a speculative "available" value, mark it as being used for
802    // speculation of other blocks.
803    if (IV.first->second == 2)
804      IV.first->second = 3;
805    return IV.first->second != 0;
806  }
807
808  // Otherwise, see if it is fully available in all predecessors.
809  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
810
811  // If this block has no predecessors, it isn't live-in here.
812  if (PI == PE)
813    goto SpeculationFailure;
814
815  for (; PI != PE; ++PI)
816    // If the value isn't fully available in one of our predecessors, then it
817    // isn't fully available in this block either.  Undo our previous
818    // optimistic assumption and bail out.
819    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
820      goto SpeculationFailure;
821
822  return true;
823
824// SpeculationFailure - If we get here, we found out that this is not, after
825// all, a fully-available block.  We have a problem if we speculated on this and
826// used the speculation to mark other blocks as available.
827SpeculationFailure:
828  char &BBVal = FullyAvailableBlocks[BB];
829
830  // If we didn't speculate on this, just return with it set to false.
831  if (BBVal == 2) {
832    BBVal = 0;
833    return false;
834  }
835
836  // If we did speculate on this value, we could have blocks set to 1 that are
837  // incorrect.  Walk the (transitive) successors of this block and mark them as
838  // 0 if set to one.
839  SmallVector<BasicBlock*, 32> BBWorklist;
840  BBWorklist.push_back(BB);
841
842  do {
843    BasicBlock *Entry = BBWorklist.pop_back_val();
844    // Note that this sets blocks to 0 (unavailable) if they happen to not
845    // already be in FullyAvailableBlocks.  This is safe.
846    char &EntryVal = FullyAvailableBlocks[Entry];
847    if (EntryVal == 0) continue;  // Already unavailable.
848
849    // Mark as unavailable.
850    EntryVal = 0;
851
852    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
853      BBWorklist.push_back(*I);
854  } while (!BBWorklist.empty());
855
856  return false;
857}
858
859
860/// CanCoerceMustAliasedValueToLoad - Return true if
861/// CoerceAvailableValueToLoadType will succeed.
862static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
863                                            const Type *LoadTy,
864                                            const TargetData &TD) {
865  // If the loaded or stored value is an first class array or struct, don't try
866  // to transform them.  We need to be able to bitcast to integer.
867  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
868      StoredVal->getType()->isStructTy() ||
869      StoredVal->getType()->isArrayTy())
870    return false;
871
872  // The store has to be at least as big as the load.
873  if (TD.getTypeSizeInBits(StoredVal->getType()) <
874        TD.getTypeSizeInBits(LoadTy))
875    return false;
876
877  return true;
878}
879
880
881/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
882/// then a load from a must-aliased pointer of a different type, try to coerce
883/// the stored value.  LoadedTy is the type of the load we want to replace and
884/// InsertPt is the place to insert new instructions.
885///
886/// If we can't do it, return null.
887static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
888                                             const Type *LoadedTy,
889                                             Instruction *InsertPt,
890                                             const TargetData &TD) {
891  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
892    return 0;
893
894  const Type *StoredValTy = StoredVal->getType();
895
896  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
897  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
898
899  // If the store and reload are the same size, we can always reuse it.
900  if (StoreSize == LoadSize) {
901    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
902      // Pointer to Pointer -> use bitcast.
903      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
904    }
905
906    // Convert source pointers to integers, which can be bitcast.
907    if (StoredValTy->isPointerTy()) {
908      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
909      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
910    }
911
912    const Type *TypeToCastTo = LoadedTy;
913    if (TypeToCastTo->isPointerTy())
914      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
915
916    if (StoredValTy != TypeToCastTo)
917      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
918
919    // Cast to pointer if the load needs a pointer type.
920    if (LoadedTy->isPointerTy())
921      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
922
923    return StoredVal;
924  }
925
926  // If the loaded value is smaller than the available value, then we can
927  // extract out a piece from it.  If the available value is too small, then we
928  // can't do anything.
929  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
930
931  // Convert source pointers to integers, which can be manipulated.
932  if (StoredValTy->isPointerTy()) {
933    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
934    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
935  }
936
937  // Convert vectors and fp to integer, which can be manipulated.
938  if (!StoredValTy->isIntegerTy()) {
939    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
940    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
941  }
942
943  // If this is a big-endian system, we need to shift the value down to the low
944  // bits so that a truncate will work.
945  if (TD.isBigEndian()) {
946    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
947    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
948  }
949
950  // Truncate the integer to the right size now.
951  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
952  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
953
954  if (LoadedTy == NewIntTy)
955    return StoredVal;
956
957  // If the result is a pointer, inttoptr.
958  if (LoadedTy->isPointerTy())
959    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
960
961  // Otherwise, bitcast.
962  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
963}
964
965/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
966/// be expressed as a base pointer plus a constant offset.  Return the base and
967/// offset to the caller.
968static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
969                                        const TargetData &TD) {
970  Operator *PtrOp = dyn_cast<Operator>(Ptr);
971  if (PtrOp == 0) return Ptr;
972
973  // Just look through bitcasts.
974  if (PtrOp->getOpcode() == Instruction::BitCast)
975    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
976
977  // If this is a GEP with constant indices, we can look through it.
978  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
979  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
980
981  gep_type_iterator GTI = gep_type_begin(GEP);
982  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
983       ++I, ++GTI) {
984    ConstantInt *OpC = cast<ConstantInt>(*I);
985    if (OpC->isZero()) continue;
986
987    // Handle a struct and array indices which add their offset to the pointer.
988    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
989      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
990    } else {
991      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
992      Offset += OpC->getSExtValue()*Size;
993    }
994  }
995
996  // Re-sign extend from the pointer size if needed to get overflow edge cases
997  // right.
998  unsigned PtrSize = TD.getPointerSizeInBits();
999  if (PtrSize < 64)
1000    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1001
1002  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1003}
1004
1005
1006/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
1007/// memdep query of a load that ends up being a clobbering memory write (store,
1008/// memset, memcpy, memmove).  This means that the write *may* provide bits used
1009/// by the load but we can't be sure because the pointers don't mustalias.
1010///
1011/// Check this case to see if there is anything more we can do before we give
1012/// up.  This returns -1 if we have to give up, or a byte number in the stored
1013/// value of the piece that feeds the load.
1014static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
1015                                          Value *WritePtr,
1016                                          uint64_t WriteSizeInBits,
1017                                          const TargetData &TD) {
1018  // If the loaded or stored value is an first class array or struct, don't try
1019  // to transform them.  We need to be able to bitcast to integer.
1020  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
1021    return -1;
1022
1023  int64_t StoreOffset = 0, LoadOffset = 0;
1024  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1025  Value *LoadBase =
1026    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1027  if (StoreBase != LoadBase)
1028    return -1;
1029
1030  // If the load and store are to the exact same address, they should have been
1031  // a must alias.  AA must have gotten confused.
1032  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1033  // to a load from the base of the memset.
1034#if 0
1035  if (LoadOffset == StoreOffset) {
1036    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1037    << "Base       = " << *StoreBase << "\n"
1038    << "Store Ptr  = " << *WritePtr << "\n"
1039    << "Store Offs = " << StoreOffset << "\n"
1040    << "Load Ptr   = " << *LoadPtr << "\n";
1041    abort();
1042  }
1043#endif
1044
1045  // If the load and store don't overlap at all, the store doesn't provide
1046  // anything to the load.  In this case, they really don't alias at all, AA
1047  // must have gotten confused.
1048  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1049  // remove this check, as it is duplicated with what we have below.
1050  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1051
1052  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1053    return -1;
1054  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1055  LoadSize >>= 3;
1056
1057
1058  bool isAAFailure = false;
1059  if (StoreOffset < LoadOffset)
1060    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1061  else
1062    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1063
1064  if (isAAFailure) {
1065#if 0
1066    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1067    << "Base       = " << *StoreBase << "\n"
1068    << "Store Ptr  = " << *WritePtr << "\n"
1069    << "Store Offs = " << StoreOffset << "\n"
1070    << "Load Ptr   = " << *LoadPtr << "\n";
1071    abort();
1072#endif
1073    return -1;
1074  }
1075
1076  // If the Load isn't completely contained within the stored bits, we don't
1077  // have all the bits to feed it.  We could do something crazy in the future
1078  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1079  // valuable.
1080  if (StoreOffset > LoadOffset ||
1081      StoreOffset+StoreSize < LoadOffset+LoadSize)
1082    return -1;
1083
1084  // Okay, we can do this transformation.  Return the number of bytes into the
1085  // store that the load is.
1086  return LoadOffset-StoreOffset;
1087}
1088
1089/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1090/// memdep query of a load that ends up being a clobbering store.
1091static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1092                                          StoreInst *DepSI,
1093                                          const TargetData &TD) {
1094  // Cannot handle reading from store of first-class aggregate yet.
1095  if (DepSI->getValueOperand()->getType()->isStructTy() ||
1096      DepSI->getValueOperand()->getType()->isArrayTy())
1097    return -1;
1098
1099  Value *StorePtr = DepSI->getPointerOperand();
1100  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1101  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1102                                        StorePtr, StoreSize, TD);
1103}
1104
1105static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1106                                            MemIntrinsic *MI,
1107                                            const TargetData &TD) {
1108  // If the mem operation is a non-constant size, we can't handle it.
1109  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1110  if (SizeCst == 0) return -1;
1111  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1112
1113  // If this is memset, we just need to see if the offset is valid in the size
1114  // of the memset..
1115  if (MI->getIntrinsicID() == Intrinsic::memset)
1116    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1117                                          MemSizeInBits, TD);
1118
1119  // If we have a memcpy/memmove, the only case we can handle is if this is a
1120  // copy from constant memory.  In that case, we can read directly from the
1121  // constant memory.
1122  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1123
1124  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1125  if (Src == 0) return -1;
1126
1127  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1128  if (GV == 0 || !GV->isConstant()) return -1;
1129
1130  // See if the access is within the bounds of the transfer.
1131  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1132                                              MI->getDest(), MemSizeInBits, TD);
1133  if (Offset == -1)
1134    return Offset;
1135
1136  // Otherwise, see if we can constant fold a load from the constant with the
1137  // offset applied as appropriate.
1138  Src = ConstantExpr::getBitCast(Src,
1139                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1140  Constant *OffsetCst =
1141    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1142  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1143  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1144  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1145    return Offset;
1146  return -1;
1147}
1148
1149
1150/// GetStoreValueForLoad - This function is called when we have a
1151/// memdep query of a load that ends up being a clobbering store.  This means
1152/// that the store *may* provide bits used by the load but we can't be sure
1153/// because the pointers don't mustalias.  Check this case to see if there is
1154/// anything more we can do before we give up.
1155static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1156                                   const Type *LoadTy,
1157                                   Instruction *InsertPt, const TargetData &TD){
1158  LLVMContext &Ctx = SrcVal->getType()->getContext();
1159
1160  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1161  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1162
1163  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1164
1165  // Compute which bits of the stored value are being used by the load.  Convert
1166  // to an integer type to start with.
1167  if (SrcVal->getType()->isPointerTy())
1168    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1169  if (!SrcVal->getType()->isIntegerTy())
1170    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1171                                   "tmp");
1172
1173  // Shift the bits to the least significant depending on endianness.
1174  unsigned ShiftAmt;
1175  if (TD.isLittleEndian())
1176    ShiftAmt = Offset*8;
1177  else
1178    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1179
1180  if (ShiftAmt)
1181    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1182
1183  if (LoadSize != StoreSize)
1184    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1185                                 "tmp");
1186
1187  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1188}
1189
1190/// GetMemInstValueForLoad - This function is called when we have a
1191/// memdep query of a load that ends up being a clobbering mem intrinsic.
1192static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1193                                     const Type *LoadTy, Instruction *InsertPt,
1194                                     const TargetData &TD){
1195  LLVMContext &Ctx = LoadTy->getContext();
1196  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1197
1198  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1199
1200  // We know that this method is only called when the mem transfer fully
1201  // provides the bits for the load.
1202  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1203    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1204    // independently of what the offset is.
1205    Value *Val = MSI->getValue();
1206    if (LoadSize != 1)
1207      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1208
1209    Value *OneElt = Val;
1210
1211    // Splat the value out to the right number of bits.
1212    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1213      // If we can double the number of bytes set, do it.
1214      if (NumBytesSet*2 <= LoadSize) {
1215        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1216        Val = Builder.CreateOr(Val, ShVal);
1217        NumBytesSet <<= 1;
1218        continue;
1219      }
1220
1221      // Otherwise insert one byte at a time.
1222      Value *ShVal = Builder.CreateShl(Val, 1*8);
1223      Val = Builder.CreateOr(OneElt, ShVal);
1224      ++NumBytesSet;
1225    }
1226
1227    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1228  }
1229
1230  // Otherwise, this is a memcpy/memmove from a constant global.
1231  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1232  Constant *Src = cast<Constant>(MTI->getSource());
1233
1234  // Otherwise, see if we can constant fold a load from the constant with the
1235  // offset applied as appropriate.
1236  Src = ConstantExpr::getBitCast(Src,
1237                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1238  Constant *OffsetCst =
1239  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1240  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1241  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1242  return ConstantFoldLoadFromConstPtr(Src, &TD);
1243}
1244
1245namespace {
1246
1247struct AvailableValueInBlock {
1248  /// BB - The basic block in question.
1249  BasicBlock *BB;
1250  enum ValType {
1251    SimpleVal,  // A simple offsetted value that is accessed.
1252    MemIntrin   // A memory intrinsic which is loaded from.
1253  };
1254
1255  /// V - The value that is live out of the block.
1256  PointerIntPair<Value *, 1, ValType> Val;
1257
1258  /// Offset - The byte offset in Val that is interesting for the load query.
1259  unsigned Offset;
1260
1261  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1262                                   unsigned Offset = 0) {
1263    AvailableValueInBlock Res;
1264    Res.BB = BB;
1265    Res.Val.setPointer(V);
1266    Res.Val.setInt(SimpleVal);
1267    Res.Offset = Offset;
1268    return Res;
1269  }
1270
1271  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1272                                     unsigned Offset = 0) {
1273    AvailableValueInBlock Res;
1274    Res.BB = BB;
1275    Res.Val.setPointer(MI);
1276    Res.Val.setInt(MemIntrin);
1277    Res.Offset = Offset;
1278    return Res;
1279  }
1280
1281  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1282  Value *getSimpleValue() const {
1283    assert(isSimpleValue() && "Wrong accessor");
1284    return Val.getPointer();
1285  }
1286
1287  MemIntrinsic *getMemIntrinValue() const {
1288    assert(!isSimpleValue() && "Wrong accessor");
1289    return cast<MemIntrinsic>(Val.getPointer());
1290  }
1291
1292  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1293  /// defined here to the specified type.  This handles various coercion cases.
1294  Value *MaterializeAdjustedValue(const Type *LoadTy,
1295                                  const TargetData *TD) const {
1296    Value *Res;
1297    if (isSimpleValue()) {
1298      Res = getSimpleValue();
1299      if (Res->getType() != LoadTy) {
1300        assert(TD && "Need target data to handle type mismatch case");
1301        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1302                                   *TD);
1303
1304        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1305                     << *getSimpleValue() << '\n'
1306                     << *Res << '\n' << "\n\n\n");
1307      }
1308    } else {
1309      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1310                                   LoadTy, BB->getTerminator(), *TD);
1311      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1312                   << "  " << *getMemIntrinValue() << '\n'
1313                   << *Res << '\n' << "\n\n\n");
1314    }
1315    return Res;
1316  }
1317};
1318
1319}
1320
1321/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1322/// construct SSA form, allowing us to eliminate LI.  This returns the value
1323/// that should be used at LI's definition site.
1324static Value *ConstructSSAForLoadSet(LoadInst *LI,
1325                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1326                                     const TargetData *TD,
1327                                     const DominatorTree &DT,
1328                                     AliasAnalysis *AA) {
1329  // Check for the fully redundant, dominating load case.  In this case, we can
1330  // just use the dominating value directly.
1331  if (ValuesPerBlock.size() == 1 &&
1332      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1333    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1334
1335  // Otherwise, we have to construct SSA form.
1336  SmallVector<PHINode*, 8> NewPHIs;
1337  SSAUpdater SSAUpdate(&NewPHIs);
1338  SSAUpdate.Initialize(LI->getType(), LI->getName());
1339
1340  const Type *LoadTy = LI->getType();
1341
1342  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1343    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1344    BasicBlock *BB = AV.BB;
1345
1346    if (SSAUpdate.HasValueForBlock(BB))
1347      continue;
1348
1349    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1350  }
1351
1352  // Perform PHI construction.
1353  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1354
1355  // If new PHI nodes were created, notify alias analysis.
1356  if (V->getType()->isPointerTy())
1357    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1358      AA->copyValue(LI, NewPHIs[i]);
1359
1360  return V;
1361}
1362
1363static bool isLifetimeStart(const Instruction *Inst) {
1364  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1365    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1366  return false;
1367}
1368
1369/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1370/// non-local by performing PHI construction.
1371bool GVN::processNonLocalLoad(LoadInst *LI,
1372                              SmallVectorImpl<Instruction*> &toErase) {
1373  // Find the non-local dependencies of the load.
1374  SmallVector<NonLocalDepResult, 64> Deps;
1375  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1376  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1377  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1378  //             << Deps.size() << *LI << '\n');
1379
1380  // If we had to process more than one hundred blocks to find the
1381  // dependencies, this load isn't worth worrying about.  Optimizing
1382  // it will be too expensive.
1383  if (Deps.size() > 100)
1384    return false;
1385
1386  // If we had a phi translation failure, we'll have a single entry which is a
1387  // clobber in the current block.  Reject this early.
1388  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1389    DEBUG(
1390      dbgs() << "GVN: non-local load ";
1391      WriteAsOperand(dbgs(), LI);
1392      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1393    );
1394    return false;
1395  }
1396
1397  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1398  // where we have a value available in repl, also keep track of whether we see
1399  // dependencies that produce an unknown value for the load (such as a call
1400  // that could potentially clobber the load).
1401  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1402  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1403
1404  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1405    BasicBlock *DepBB = Deps[i].getBB();
1406    MemDepResult DepInfo = Deps[i].getResult();
1407
1408    if (DepInfo.isClobber()) {
1409      // The address being loaded in this non-local block may not be the same as
1410      // the pointer operand of the load if PHI translation occurs.  Make sure
1411      // to consider the right address.
1412      Value *Address = Deps[i].getAddress();
1413
1414      // If the dependence is to a store that writes to a superset of the bits
1415      // read by the load, we can extract the bits we need for the load from the
1416      // stored value.
1417      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1418        if (TD && Address) {
1419          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1420                                                      DepSI, *TD);
1421          if (Offset != -1) {
1422            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1423                                                       DepSI->getValueOperand(),
1424                                                                Offset));
1425            continue;
1426          }
1427        }
1428      }
1429
1430      // If the clobbering value is a memset/memcpy/memmove, see if we can
1431      // forward a value on from it.
1432      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1433        if (TD && Address) {
1434          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1435                                                        DepMI, *TD);
1436          if (Offset != -1) {
1437            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1438                                                                  Offset));
1439            continue;
1440          }
1441        }
1442      }
1443
1444      UnavailableBlocks.push_back(DepBB);
1445      continue;
1446    }
1447
1448    Instruction *DepInst = DepInfo.getInst();
1449
1450    // Loading the allocation -> undef.
1451    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1452        // Loading immediately after lifetime begin -> undef.
1453        isLifetimeStart(DepInst)) {
1454      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1455                                             UndefValue::get(LI->getType())));
1456      continue;
1457    }
1458
1459    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1460      // Reject loads and stores that are to the same address but are of
1461      // different types if we have to.
1462      if (S->getValueOperand()->getType() != LI->getType()) {
1463        // If the stored value is larger or equal to the loaded value, we can
1464        // reuse it.
1465        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1466                                                        LI->getType(), *TD)) {
1467          UnavailableBlocks.push_back(DepBB);
1468          continue;
1469        }
1470      }
1471
1472      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1473                                                         S->getValueOperand()));
1474      continue;
1475    }
1476
1477    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1478      // If the types mismatch and we can't handle it, reject reuse of the load.
1479      if (LD->getType() != LI->getType()) {
1480        // If the stored value is larger or equal to the loaded value, we can
1481        // reuse it.
1482        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1483          UnavailableBlocks.push_back(DepBB);
1484          continue;
1485        }
1486      }
1487      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1488      continue;
1489    }
1490
1491    UnavailableBlocks.push_back(DepBB);
1492    continue;
1493  }
1494
1495  // If we have no predecessors that produce a known value for this load, exit
1496  // early.
1497  if (ValuesPerBlock.empty()) return false;
1498
1499  // If all of the instructions we depend on produce a known value for this
1500  // load, then it is fully redundant and we can use PHI insertion to compute
1501  // its value.  Insert PHIs and remove the fully redundant value now.
1502  if (UnavailableBlocks.empty()) {
1503    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1504
1505    // Perform PHI construction.
1506    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1507                                      VN.getAliasAnalysis());
1508    LI->replaceAllUsesWith(V);
1509
1510    if (isa<PHINode>(V))
1511      V->takeName(LI);
1512    if (V->getType()->isPointerTy())
1513      MD->invalidateCachedPointerInfo(V);
1514    VN.erase(LI);
1515    toErase.push_back(LI);
1516    ++NumGVNLoad;
1517    return true;
1518  }
1519
1520  if (!EnablePRE || !EnableLoadPRE)
1521    return false;
1522
1523  // Okay, we have *some* definitions of the value.  This means that the value
1524  // is available in some of our (transitive) predecessors.  Lets think about
1525  // doing PRE of this load.  This will involve inserting a new load into the
1526  // predecessor when it's not available.  We could do this in general, but
1527  // prefer to not increase code size.  As such, we only do this when we know
1528  // that we only have to insert *one* load (which means we're basically moving
1529  // the load, not inserting a new one).
1530
1531  SmallPtrSet<BasicBlock *, 4> Blockers;
1532  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1533    Blockers.insert(UnavailableBlocks[i]);
1534
1535  // Lets find first basic block with more than one predecessor.  Walk backwards
1536  // through predecessors if needed.
1537  BasicBlock *LoadBB = LI->getParent();
1538  BasicBlock *TmpBB = LoadBB;
1539
1540  bool isSinglePred = false;
1541  bool allSingleSucc = true;
1542  while (TmpBB->getSinglePredecessor()) {
1543    isSinglePred = true;
1544    TmpBB = TmpBB->getSinglePredecessor();
1545    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1546      return false;
1547    if (Blockers.count(TmpBB))
1548      return false;
1549
1550    // If any of these blocks has more than one successor (i.e. if the edge we
1551    // just traversed was critical), then there are other paths through this
1552    // block along which the load may not be anticipated.  Hoisting the load
1553    // above this block would be adding the load to execution paths along
1554    // which it was not previously executed.
1555    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1556      return false;
1557  }
1558
1559  assert(TmpBB);
1560  LoadBB = TmpBB;
1561
1562  // FIXME: It is extremely unclear what this loop is doing, other than
1563  // artificially restricting loadpre.
1564  if (isSinglePred) {
1565    bool isHot = false;
1566    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1567      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1568      if (AV.isSimpleValue())
1569        // "Hot" Instruction is in some loop (because it dominates its dep.
1570        // instruction).
1571        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1572          if (DT->dominates(LI, I)) {
1573            isHot = true;
1574            break;
1575          }
1576    }
1577
1578    // We are interested only in "hot" instructions. We don't want to do any
1579    // mis-optimizations here.
1580    if (!isHot)
1581      return false;
1582  }
1583
1584  // Check to see how many predecessors have the loaded value fully
1585  // available.
1586  DenseMap<BasicBlock*, Value*> PredLoads;
1587  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1588  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1589    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1590  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1591    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1592
1593  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1594  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1595       PI != E; ++PI) {
1596    BasicBlock *Pred = *PI;
1597    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1598      continue;
1599    }
1600    PredLoads[Pred] = 0;
1601
1602    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1603      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1604        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1605              << Pred->getName() << "': " << *LI << '\n');
1606        return false;
1607      }
1608      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1609      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1610    }
1611  }
1612  if (!NeedToSplit.empty()) {
1613    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1614    return false;
1615  }
1616
1617  // Decide whether PRE is profitable for this load.
1618  unsigned NumUnavailablePreds = PredLoads.size();
1619  assert(NumUnavailablePreds != 0 &&
1620         "Fully available value should be eliminated above!");
1621
1622  // If this load is unavailable in multiple predecessors, reject it.
1623  // FIXME: If we could restructure the CFG, we could make a common pred with
1624  // all the preds that don't have an available LI and insert a new load into
1625  // that one block.
1626  if (NumUnavailablePreds != 1)
1627      return false;
1628
1629  // Check if the load can safely be moved to all the unavailable predecessors.
1630  bool CanDoPRE = true;
1631  SmallVector<Instruction*, 8> NewInsts;
1632  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1633         E = PredLoads.end(); I != E; ++I) {
1634    BasicBlock *UnavailablePred = I->first;
1635
1636    // Do PHI translation to get its value in the predecessor if necessary.  The
1637    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1638
1639    // If all preds have a single successor, then we know it is safe to insert
1640    // the load on the pred (?!?), so we can insert code to materialize the
1641    // pointer if it is not available.
1642    PHITransAddr Address(LI->getPointerOperand(), TD);
1643    Value *LoadPtr = 0;
1644    if (allSingleSucc) {
1645      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1646                                                  *DT, NewInsts);
1647    } else {
1648      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1649      LoadPtr = Address.getAddr();
1650    }
1651
1652    // If we couldn't find or insert a computation of this phi translated value,
1653    // we fail PRE.
1654    if (LoadPtr == 0) {
1655      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1656            << *LI->getPointerOperand() << "\n");
1657      CanDoPRE = false;
1658      break;
1659    }
1660
1661    // Make sure it is valid to move this load here.  We have to watch out for:
1662    //  @1 = getelementptr (i8* p, ...
1663    //  test p and branch if == 0
1664    //  load @1
1665    // It is valid to have the getelementptr before the test, even if p can be 0,
1666    // as getelementptr only does address arithmetic.
1667    // If we are not pushing the value through any multiple-successor blocks
1668    // we do not have this case.  Otherwise, check that the load is safe to
1669    // put anywhere; this can be improved, but should be conservatively safe.
1670    if (!allSingleSucc &&
1671        // FIXME: REEVALUTE THIS.
1672        !isSafeToLoadUnconditionally(LoadPtr,
1673                                     UnavailablePred->getTerminator(),
1674                                     LI->getAlignment(), TD)) {
1675      CanDoPRE = false;
1676      break;
1677    }
1678
1679    I->second = LoadPtr;
1680  }
1681
1682  if (!CanDoPRE) {
1683    while (!NewInsts.empty())
1684      NewInsts.pop_back_val()->eraseFromParent();
1685    return false;
1686  }
1687
1688  // Okay, we can eliminate this load by inserting a reload in the predecessor
1689  // and using PHI construction to get the value in the other predecessors, do
1690  // it.
1691  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1692  DEBUG(if (!NewInsts.empty())
1693          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1694                 << *NewInsts.back() << '\n');
1695
1696  // Assign value numbers to the new instructions.
1697  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1698    // FIXME: We really _ought_ to insert these value numbers into their
1699    // parent's availability map.  However, in doing so, we risk getting into
1700    // ordering issues.  If a block hasn't been processed yet, we would be
1701    // marking a value as AVAIL-IN, which isn't what we intend.
1702    VN.lookup_or_add(NewInsts[i]);
1703  }
1704
1705  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1706         E = PredLoads.end(); I != E; ++I) {
1707    BasicBlock *UnavailablePred = I->first;
1708    Value *LoadPtr = I->second;
1709
1710    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1711                                  LI->getAlignment(),
1712                                  UnavailablePred->getTerminator());
1713
1714    // Add the newly created load.
1715    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1716                                                        NewLoad));
1717    MD->invalidateCachedPointerInfo(LoadPtr);
1718    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1719  }
1720
1721  // Perform PHI construction.
1722  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1723                                    VN.getAliasAnalysis());
1724  LI->replaceAllUsesWith(V);
1725  if (isa<PHINode>(V))
1726    V->takeName(LI);
1727  if (V->getType()->isPointerTy())
1728    MD->invalidateCachedPointerInfo(V);
1729  VN.erase(LI);
1730  toErase.push_back(LI);
1731  ++NumPRELoad;
1732  return true;
1733}
1734
1735/// processLoad - Attempt to eliminate a load, first by eliminating it
1736/// locally, and then attempting non-local elimination if that fails.
1737bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1738  if (!MD)
1739    return false;
1740
1741  if (L->isVolatile())
1742    return false;
1743
1744  // ... to a pointer that has been loaded from before...
1745  MemDepResult Dep = MD->getDependency(L);
1746
1747  // If the value isn't available, don't do anything!
1748  if (Dep.isClobber()) {
1749    // Check to see if we have something like this:
1750    //   store i32 123, i32* %P
1751    //   %A = bitcast i32* %P to i8*
1752    //   %B = gep i8* %A, i32 1
1753    //   %C = load i8* %B
1754    //
1755    // We could do that by recognizing if the clobber instructions are obviously
1756    // a common base + constant offset, and if the previous store (or memset)
1757    // completely covers this load.  This sort of thing can happen in bitfield
1758    // access code.
1759    Value *AvailVal = 0;
1760    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1761      if (TD) {
1762        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1763                                                    L->getPointerOperand(),
1764                                                    DepSI, *TD);
1765        if (Offset != -1)
1766          AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1767                                          L->getType(), L, *TD);
1768      }
1769
1770    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1771    // a value on from it.
1772    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1773      if (TD) {
1774        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1775                                                      L->getPointerOperand(),
1776                                                      DepMI, *TD);
1777        if (Offset != -1)
1778          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1779      }
1780    }
1781
1782    if (AvailVal) {
1783      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1784            << *AvailVal << '\n' << *L << "\n\n\n");
1785
1786      // Replace the load!
1787      L->replaceAllUsesWith(AvailVal);
1788      if (AvailVal->getType()->isPointerTy())
1789        MD->invalidateCachedPointerInfo(AvailVal);
1790      VN.erase(L);
1791      toErase.push_back(L);
1792      ++NumGVNLoad;
1793      return true;
1794    }
1795
1796    DEBUG(
1797      // fast print dep, using operator<< on instruction would be too slow
1798      dbgs() << "GVN: load ";
1799      WriteAsOperand(dbgs(), L);
1800      Instruction *I = Dep.getInst();
1801      dbgs() << " is clobbered by " << *I << '\n';
1802    );
1803    return false;
1804  }
1805
1806  // If it is defined in another block, try harder.
1807  if (Dep.isNonLocal())
1808    return processNonLocalLoad(L, toErase);
1809
1810  Instruction *DepInst = Dep.getInst();
1811  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1812    Value *StoredVal = DepSI->getValueOperand();
1813
1814    // The store and load are to a must-aliased pointer, but they may not
1815    // actually have the same type.  See if we know how to reuse the stored
1816    // value (depending on its type).
1817    if (StoredVal->getType() != L->getType()) {
1818      if (TD) {
1819        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1820                                                   L, *TD);
1821        if (StoredVal == 0)
1822          return false;
1823
1824        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1825                     << '\n' << *L << "\n\n\n");
1826      }
1827      else
1828        return false;
1829    }
1830
1831    // Remove it!
1832    L->replaceAllUsesWith(StoredVal);
1833    if (StoredVal->getType()->isPointerTy())
1834      MD->invalidateCachedPointerInfo(StoredVal);
1835    VN.erase(L);
1836    toErase.push_back(L);
1837    ++NumGVNLoad;
1838    return true;
1839  }
1840
1841  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1842    Value *AvailableVal = DepLI;
1843
1844    // The loads are of a must-aliased pointer, but they may not actually have
1845    // the same type.  See if we know how to reuse the previously loaded value
1846    // (depending on its type).
1847    if (DepLI->getType() != L->getType()) {
1848      if (TD) {
1849        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1850        if (AvailableVal == 0)
1851          return false;
1852
1853        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1854                     << "\n" << *L << "\n\n\n");
1855      }
1856      else
1857        return false;
1858    }
1859
1860    // Remove it!
1861    L->replaceAllUsesWith(AvailableVal);
1862    if (DepLI->getType()->isPointerTy())
1863      MD->invalidateCachedPointerInfo(DepLI);
1864    VN.erase(L);
1865    toErase.push_back(L);
1866    ++NumGVNLoad;
1867    return true;
1868  }
1869
1870  // If this load really doesn't depend on anything, then we must be loading an
1871  // undef value.  This can happen when loading for a fresh allocation with no
1872  // intervening stores, for example.
1873  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1874    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1875    VN.erase(L);
1876    toErase.push_back(L);
1877    ++NumGVNLoad;
1878    return true;
1879  }
1880
1881  // If this load occurs either right after a lifetime begin,
1882  // then the loaded value is undefined.
1883  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1884    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1885      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1886      VN.erase(L);
1887      toErase.push_back(L);
1888      ++NumGVNLoad;
1889      return true;
1890    }
1891  }
1892
1893  return false;
1894}
1895
1896// lookupNumber - In order to find a leader for a given value number at a
1897// specific basic block, we first obtain the list of all Values for that number,
1898// and then scan the list to find one whose block dominates the block in
1899// question.  This is fast because dominator tree queries consist of only
1900// a few comparisons of DFS numbers.
1901Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1902  std::pair<Value*, void*> Vals = NumberTable[num];
1903  if (!Vals.first) return 0;
1904  Instruction *Inst = dyn_cast<Instruction>(Vals.first);
1905  if (!Inst) return Vals.first;
1906  BasicBlock *Parent = Inst->getParent();
1907  if (DT->dominates(Parent, BB))
1908    return Inst;
1909
1910  std::pair<Value*, void*>* Next =
1911    static_cast<std::pair<Value*, void*>*>(Vals.second);
1912  while (Next) {
1913    Instruction *CurrInst = dyn_cast<Instruction>(Next->first);
1914    if (!CurrInst) return Next->first;
1915
1916    BasicBlock *Parent = CurrInst->getParent();
1917    if (DT->dominates(Parent, BB))
1918      return CurrInst;
1919
1920    Next = static_cast<std::pair<Value*, void*>*>(Next->second);
1921  }
1922
1923  return 0;
1924}
1925
1926
1927/// processInstruction - When calculating availability, handle an instruction
1928/// by inserting it into the appropriate sets
1929bool GVN::processInstruction(Instruction *I,
1930                             SmallVectorImpl<Instruction*> &toErase) {
1931  // Ignore dbg info intrinsics.
1932  if (isa<DbgInfoIntrinsic>(I))
1933    return false;
1934
1935  // If the instruction can be easily simplified then do so now in preference
1936  // to value numbering it.  Value numbering often exposes redundancies, for
1937  // example if it determines that %y is equal to %x then the instruction
1938  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1939  if (Value *V = SimplifyInstruction(I, TD, DT)) {
1940    I->replaceAllUsesWith(V);
1941    if (MD && V->getType()->isPointerTy())
1942      MD->invalidateCachedPointerInfo(V);
1943    VN.erase(I);
1944    toErase.push_back(I);
1945    return true;
1946  }
1947
1948  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1949    bool Changed = processLoad(LI, toErase);
1950
1951    if (!Changed) {
1952      unsigned Num = VN.lookup_or_add(LI);
1953      insert_table(Num, LI);
1954    }
1955
1956    return Changed;
1957  }
1958
1959  uint32_t NextNum = VN.getNextUnusedValueNumber();
1960  unsigned Num = VN.lookup_or_add(I);
1961
1962  // Allocations are always uniquely numbered, so we can save time and memory
1963  // by fast failing them.
1964  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1965    insert_table(Num, I);
1966    return false;
1967  }
1968
1969  if (isa<PHINode>(I)) {
1970    insert_table(Num, I);
1971
1972  // If the number we were assigned was a brand new VN, then we don't
1973  // need to do a lookup to see if the number already exists
1974  // somewhere in the domtree: it can't!
1975  } else if (Num == NextNum) {
1976    insert_table(Num, I);
1977
1978  // Perform fast-path value-number based elimination of values inherited from
1979  // dominators.
1980  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1981    // Remove it!
1982    VN.erase(I);
1983    I->replaceAllUsesWith(repl);
1984    if (MD && repl->getType()->isPointerTy())
1985      MD->invalidateCachedPointerInfo(repl);
1986    toErase.push_back(I);
1987    return true;
1988
1989  } else {
1990    insert_table(Num, I);
1991  }
1992
1993  return false;
1994}
1995
1996/// runOnFunction - This is the main transformation entry point for a function.
1997bool GVN::runOnFunction(Function& F) {
1998  if (!NoLoads)
1999    MD = &getAnalysis<MemoryDependenceAnalysis>();
2000  DT = &getAnalysis<DominatorTree>();
2001  TD = getAnalysisIfAvailable<TargetData>();
2002  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2003  VN.setMemDep(MD);
2004  VN.setDomTree(DT);
2005
2006  bool Changed = false;
2007  bool ShouldContinue = true;
2008
2009  // Merge unconditional branches, allowing PRE to catch more
2010  // optimization opportunities.
2011  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2012    BasicBlock *BB = FI;
2013    ++FI;
2014    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2015    if (removedBlock) ++NumGVNBlocks;
2016
2017    Changed |= removedBlock;
2018  }
2019
2020  unsigned Iteration = 0;
2021
2022  while (ShouldContinue) {
2023    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2024    ShouldContinue = iterateOnFunction(F);
2025    if (splitCriticalEdges())
2026      ShouldContinue = true;
2027    Changed |= ShouldContinue;
2028    ++Iteration;
2029  }
2030
2031  if (EnablePRE) {
2032    bool PREChanged = true;
2033    while (PREChanged) {
2034      PREChanged = performPRE(F);
2035      Changed |= PREChanged;
2036    }
2037  }
2038  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2039  // computations into blocks where they become fully redundant.  Note that
2040  // we can't do this until PRE's critical edge splitting updates memdep.
2041  // Actually, when this happens, we should just fully integrate PRE into GVN.
2042
2043  cleanupGlobalSets();
2044
2045  return Changed;
2046}
2047
2048
2049bool GVN::processBlock(BasicBlock *BB) {
2050  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2051  // incrementing BI before processing an instruction).
2052  SmallVector<Instruction*, 8> toErase;
2053  bool ChangedFunction = false;
2054
2055  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2056       BI != BE;) {
2057    ChangedFunction |= processInstruction(BI, toErase);
2058    if (toErase.empty()) {
2059      ++BI;
2060      continue;
2061    }
2062
2063    // If we need some instructions deleted, do it now.
2064    NumGVNInstr += toErase.size();
2065
2066    // Avoid iterator invalidation.
2067    bool AtStart = BI == BB->begin();
2068    if (!AtStart)
2069      --BI;
2070
2071    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2072         E = toErase.end(); I != E; ++I) {
2073      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2074      if (MD) MD->removeInstruction(*I);
2075      (*I)->eraseFromParent();
2076      DEBUG(verifyRemoved(*I));
2077    }
2078    toErase.clear();
2079
2080    if (AtStart)
2081      BI = BB->begin();
2082    else
2083      ++BI;
2084  }
2085
2086  return ChangedFunction;
2087}
2088
2089/// performPRE - Perform a purely local form of PRE that looks for diamond
2090/// control flow patterns and attempts to perform simple PRE at the join point.
2091bool GVN::performPRE(Function &F) {
2092  bool Changed = false;
2093  DenseMap<BasicBlock*, Value*> predMap;
2094  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2095       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2096    BasicBlock *CurrentBlock = *DI;
2097
2098    // Nothing to PRE in the entry block.
2099    if (CurrentBlock == &F.getEntryBlock()) continue;
2100
2101    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2102         BE = CurrentBlock->end(); BI != BE; ) {
2103      Instruction *CurInst = BI++;
2104
2105      if (isa<AllocaInst>(CurInst) ||
2106          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2107          CurInst->getType()->isVoidTy() ||
2108          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2109          isa<DbgInfoIntrinsic>(CurInst))
2110        continue;
2111
2112      // We don't currently value number ANY inline asm calls.
2113      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2114        if (CallI->isInlineAsm())
2115          continue;
2116
2117      uint32_t ValNo = VN.lookup(CurInst);
2118
2119      // Look for the predecessors for PRE opportunities.  We're
2120      // only trying to solve the basic diamond case, where
2121      // a value is computed in the successor and one predecessor,
2122      // but not the other.  We also explicitly disallow cases
2123      // where the successor is its own predecessor, because they're
2124      // more complicated to get right.
2125      unsigned NumWith = 0;
2126      unsigned NumWithout = 0;
2127      BasicBlock *PREPred = 0;
2128      predMap.clear();
2129
2130      for (pred_iterator PI = pred_begin(CurrentBlock),
2131           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2132        BasicBlock *P = *PI;
2133        // We're not interested in PRE where the block is its
2134        // own predecessor, or in blocks with predecessors
2135        // that are not reachable.
2136        if (P == CurrentBlock) {
2137          NumWithout = 2;
2138          break;
2139        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2140          NumWithout = 2;
2141          break;
2142        }
2143
2144        Value* predV = lookupNumber(P, ValNo);
2145        if (predV == 0) {
2146          PREPred = P;
2147          ++NumWithout;
2148        } else if (predV == CurInst) {
2149          NumWithout = 2;
2150        } else {
2151          predMap[P] = predV;
2152          ++NumWith;
2153        }
2154      }
2155
2156      // Don't do PRE when it might increase code size, i.e. when
2157      // we would need to insert instructions in more than one pred.
2158      if (NumWithout != 1 || NumWith == 0)
2159        continue;
2160
2161      // Don't do PRE across indirect branch.
2162      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2163        continue;
2164
2165      // We can't do PRE safely on a critical edge, so instead we schedule
2166      // the edge to be split and perform the PRE the next time we iterate
2167      // on the function.
2168      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2169      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2170        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2171        continue;
2172      }
2173
2174      // Instantiate the expression in the predecessor that lacked it.
2175      // Because we are going top-down through the block, all value numbers
2176      // will be available in the predecessor by the time we need them.  Any
2177      // that weren't originally present will have been instantiated earlier
2178      // in this loop.
2179      Instruction *PREInstr = CurInst->clone();
2180      bool success = true;
2181      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2182        Value *Op = PREInstr->getOperand(i);
2183        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2184          continue;
2185
2186        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2187          PREInstr->setOperand(i, V);
2188        } else {
2189          success = false;
2190          break;
2191        }
2192      }
2193
2194      // Fail out if we encounter an operand that is not available in
2195      // the PRE predecessor.  This is typically because of loads which
2196      // are not value numbered precisely.
2197      if (!success) {
2198        delete PREInstr;
2199        DEBUG(verifyRemoved(PREInstr));
2200        continue;
2201      }
2202
2203      PREInstr->insertBefore(PREPred->getTerminator());
2204      PREInstr->setName(CurInst->getName() + ".pre");
2205      predMap[PREPred] = PREInstr;
2206      VN.add(PREInstr, ValNo);
2207      ++NumGVNPRE;
2208
2209      // Update the availability map to include the new instruction.
2210      insert_table(ValNo, PREInstr);
2211
2212      // Create a PHI to make the value available in this block.
2213      PHINode* Phi = PHINode::Create(CurInst->getType(),
2214                                     CurInst->getName() + ".pre-phi",
2215                                     CurrentBlock->begin());
2216      for (pred_iterator PI = pred_begin(CurrentBlock),
2217           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2218        BasicBlock *P = *PI;
2219        Phi->addIncoming(predMap[P], P);
2220      }
2221
2222      VN.add(Phi, ValNo);
2223      insert_table(ValNo, Phi);
2224
2225      CurInst->replaceAllUsesWith(Phi);
2226      if (MD && Phi->getType()->isPointerTy())
2227        MD->invalidateCachedPointerInfo(Phi);
2228      VN.erase(CurInst);
2229      erase_table(ValNo, CurInst);
2230
2231      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2232      if (MD) MD->removeInstruction(CurInst);
2233      CurInst->eraseFromParent();
2234      DEBUG(verifyRemoved(CurInst));
2235      Changed = true;
2236    }
2237  }
2238
2239  if (splitCriticalEdges())
2240    Changed = true;
2241
2242  return Changed;
2243}
2244
2245/// splitCriticalEdges - Split critical edges found during the previous
2246/// iteration that may enable further optimization.
2247bool GVN::splitCriticalEdges() {
2248  if (toSplit.empty())
2249    return false;
2250  do {
2251    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2252    SplitCriticalEdge(Edge.first, Edge.second, this);
2253  } while (!toSplit.empty());
2254  if (MD) MD->invalidateCachedPredecessors();
2255  return true;
2256}
2257
2258/// iterateOnFunction - Executes one iteration of GVN
2259bool GVN::iterateOnFunction(Function &F) {
2260  cleanupGlobalSets();
2261
2262  // Top-down walk of the dominator tree
2263  bool Changed = false;
2264#if 0
2265  // Needed for value numbering with phi construction to work.
2266  ReversePostOrderTraversal<Function*> RPOT(&F);
2267  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2268       RE = RPOT.end(); RI != RE; ++RI)
2269    Changed |= processBlock(*RI);
2270#else
2271  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2272       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2273    Changed |= processBlock(DI->getBlock());
2274#endif
2275
2276  return Changed;
2277}
2278
2279void GVN::cleanupGlobalSets() {
2280  VN.clear();
2281  NumberTable.clear();
2282  TableAllocator.Reset();
2283}
2284
2285/// verifyRemoved - Verify that the specified instruction does not occur in our
2286/// internal data structures.
2287void GVN::verifyRemoved(const Instruction *Inst) const {
2288  VN.verifyRemoved(Inst);
2289
2290  // Walk through the value number scope to make sure the instruction isn't
2291  // ferreted away in it.
2292  for (DenseMap<uint32_t, std::pair<Value*, void*> >::const_iterator
2293       I = NumberTable.begin(), E = NumberTable.end(); I != E; ++I) {
2294    std::pair<Value*, void*> const * Node = &I->second;
2295    assert(Node->first != Inst && "Inst still in value numbering scope!");
2296
2297    while (Node->second) {
2298      Node = static_cast<std::pair<Value*, void*>*>(Node->second);
2299      assert(Node->first != Inst && "Inst still in value numbering scope!");
2300    }
2301  }
2302}
2303