GVN.cpp revision 6f7b210b2577fbc9247a9fc5223655390008ae89
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/MemoryBuiltins.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include <cstdio>
49using namespace llvm;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumPRELoad,   "Number of loads PRE'd");
56
57static cl::opt<bool> EnablePRE("enable-pre",
58                               cl::init(true), cl::Hidden);
59static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
60
61//===----------------------------------------------------------------------===//
62//                         ValueTable Class
63//===----------------------------------------------------------------------===//
64
65/// This class holds the mapping between values and value numbers.  It is used
66/// as an efficient mechanism to determine the expression-wise equivalence of
67/// two values.
68namespace {
69  struct Expression {
70    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
71                            UDIV, SDIV, FDIV, UREM, SREM,
72                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
73                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
74                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
75                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
76                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
77                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
78                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
79                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
80                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
81                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
82
83    ExpressionOpcode opcode;
84    const Type* type;
85    SmallVector<uint32_t, 4> varargs;
86    Value *function;
87
88    Expression() { }
89    Expression(ExpressionOpcode o) : opcode(o) { }
90
91    bool operator==(const Expression &other) const {
92      if (opcode != other.opcode)
93        return false;
94      else if (opcode == EMPTY || opcode == TOMBSTONE)
95        return true;
96      else if (type != other.type)
97        return false;
98      else if (function != other.function)
99        return false;
100      else {
101        if (varargs.size() != other.varargs.size())
102          return false;
103
104        for (size_t i = 0; i < varargs.size(); ++i)
105          if (varargs[i] != other.varargs[i])
106            return false;
107
108        return true;
109      }
110    }
111
112    bool operator!=(const Expression &other) const {
113      return !(*this == other);
114    }
115  };
116
117  class ValueTable {
118    private:
119      DenseMap<Value*, uint32_t> valueNumbering;
120      DenseMap<Expression, uint32_t> expressionNumbering;
121      AliasAnalysis* AA;
122      MemoryDependenceAnalysis* MD;
123      DominatorTree* DT;
124
125      uint32_t nextValueNumber;
126
127      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
128      Expression::ExpressionOpcode getOpcode(CmpInst* C);
129      Expression::ExpressionOpcode getOpcode(CastInst* C);
130      Expression create_expression(BinaryOperator* BO);
131      Expression create_expression(CmpInst* C);
132      Expression create_expression(ShuffleVectorInst* V);
133      Expression create_expression(ExtractElementInst* C);
134      Expression create_expression(InsertElementInst* V);
135      Expression create_expression(SelectInst* V);
136      Expression create_expression(CastInst* C);
137      Expression create_expression(GetElementPtrInst* G);
138      Expression create_expression(CallInst* C);
139      Expression create_expression(Constant* C);
140      Expression create_expression(ExtractValueInst* C);
141      Expression create_expression(InsertValueInst* C);
142
143      uint32_t lookup_or_add_call(CallInst* C);
144    public:
145      ValueTable() : nextValueNumber(1) { }
146      uint32_t lookup_or_add(Value *V);
147      uint32_t lookup(Value *V) const;
148      void add(Value *V, uint32_t num);
149      void clear();
150      void erase(Value *v);
151      unsigned size();
152      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
153      AliasAnalysis *getAliasAnalysis() const { return AA; }
154      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
155      void setDomTree(DominatorTree* D) { DT = D; }
156      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
157      void verifyRemoved(const Value *) const;
158  };
159}
160
161namespace llvm {
162template <> struct DenseMapInfo<Expression> {
163  static inline Expression getEmptyKey() {
164    return Expression(Expression::EMPTY);
165  }
166
167  static inline Expression getTombstoneKey() {
168    return Expression(Expression::TOMBSTONE);
169  }
170
171  static unsigned getHashValue(const Expression e) {
172    unsigned hash = e.opcode;
173
174    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
175            (unsigned)((uintptr_t)e.type >> 9));
176
177    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
178         E = e.varargs.end(); I != E; ++I)
179      hash = *I + hash * 37;
180
181    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
182            (unsigned)((uintptr_t)e.function >> 9)) +
183           hash * 37;
184
185    return hash;
186  }
187  static bool isEqual(const Expression &LHS, const Expression &RHS) {
188    return LHS == RHS;
189  }
190  static bool isPod() { return true; }
191};
192}
193
194//===----------------------------------------------------------------------===//
195//                     ValueTable Internal Functions
196//===----------------------------------------------------------------------===//
197Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
198  switch(BO->getOpcode()) {
199  default: // THIS SHOULD NEVER HAPPEN
200    llvm_unreachable("Binary operator with unknown opcode?");
201  case Instruction::Add:  return Expression::ADD;
202  case Instruction::FAdd: return Expression::FADD;
203  case Instruction::Sub:  return Expression::SUB;
204  case Instruction::FSub: return Expression::FSUB;
205  case Instruction::Mul:  return Expression::MUL;
206  case Instruction::FMul: return Expression::FMUL;
207  case Instruction::UDiv: return Expression::UDIV;
208  case Instruction::SDiv: return Expression::SDIV;
209  case Instruction::FDiv: return Expression::FDIV;
210  case Instruction::URem: return Expression::UREM;
211  case Instruction::SRem: return Expression::SREM;
212  case Instruction::FRem: return Expression::FREM;
213  case Instruction::Shl:  return Expression::SHL;
214  case Instruction::LShr: return Expression::LSHR;
215  case Instruction::AShr: return Expression::ASHR;
216  case Instruction::And:  return Expression::AND;
217  case Instruction::Or:   return Expression::OR;
218  case Instruction::Xor:  return Expression::XOR;
219  }
220}
221
222Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
223  if (isa<ICmpInst>(C)) {
224    switch (C->getPredicate()) {
225    default:  // THIS SHOULD NEVER HAPPEN
226      llvm_unreachable("Comparison with unknown predicate?");
227    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
228    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
229    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
230    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
231    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
232    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
233    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
234    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
235    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
236    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
237    }
238  } else {
239    switch (C->getPredicate()) {
240    default: // THIS SHOULD NEVER HAPPEN
241      llvm_unreachable("Comparison with unknown predicate?");
242    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
243    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
244    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
245    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
246    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
247    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
248    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
249    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
250    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
251    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
252    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
253    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
254    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
255    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
256    }
257  }
258}
259
260Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
261  switch(C->getOpcode()) {
262  default: // THIS SHOULD NEVER HAPPEN
263    llvm_unreachable("Cast operator with unknown opcode?");
264  case Instruction::Trunc:    return Expression::TRUNC;
265  case Instruction::ZExt:     return Expression::ZEXT;
266  case Instruction::SExt:     return Expression::SEXT;
267  case Instruction::FPToUI:   return Expression::FPTOUI;
268  case Instruction::FPToSI:   return Expression::FPTOSI;
269  case Instruction::UIToFP:   return Expression::UITOFP;
270  case Instruction::SIToFP:   return Expression::SITOFP;
271  case Instruction::FPTrunc:  return Expression::FPTRUNC;
272  case Instruction::FPExt:    return Expression::FPEXT;
273  case Instruction::PtrToInt: return Expression::PTRTOINT;
274  case Instruction::IntToPtr: return Expression::INTTOPTR;
275  case Instruction::BitCast:  return Expression::BITCAST;
276  }
277}
278
279Expression ValueTable::create_expression(CallInst* C) {
280  Expression e;
281
282  e.type = C->getType();
283  e.function = C->getCalledFunction();
284  e.opcode = Expression::CALL;
285
286  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
287       I != E; ++I)
288    e.varargs.push_back(lookup_or_add(*I));
289
290  return e;
291}
292
293Expression ValueTable::create_expression(BinaryOperator* BO) {
294  Expression e;
295  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
296  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
297  e.function = 0;
298  e.type = BO->getType();
299  e.opcode = getOpcode(BO);
300
301  return e;
302}
303
304Expression ValueTable::create_expression(CmpInst* C) {
305  Expression e;
306
307  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
308  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
309  e.function = 0;
310  e.type = C->getType();
311  e.opcode = getOpcode(C);
312
313  return e;
314}
315
316Expression ValueTable::create_expression(CastInst* C) {
317  Expression e;
318
319  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
320  e.function = 0;
321  e.type = C->getType();
322  e.opcode = getOpcode(C);
323
324  return e;
325}
326
327Expression ValueTable::create_expression(ShuffleVectorInst* S) {
328  Expression e;
329
330  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
331  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
332  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
333  e.function = 0;
334  e.type = S->getType();
335  e.opcode = Expression::SHUFFLE;
336
337  return e;
338}
339
340Expression ValueTable::create_expression(ExtractElementInst* E) {
341  Expression e;
342
343  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
344  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
345  e.function = 0;
346  e.type = E->getType();
347  e.opcode = Expression::EXTRACT;
348
349  return e;
350}
351
352Expression ValueTable::create_expression(InsertElementInst* I) {
353  Expression e;
354
355  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
356  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
357  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
358  e.function = 0;
359  e.type = I->getType();
360  e.opcode = Expression::INSERT;
361
362  return e;
363}
364
365Expression ValueTable::create_expression(SelectInst* I) {
366  Expression e;
367
368  e.varargs.push_back(lookup_or_add(I->getCondition()));
369  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
370  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
371  e.function = 0;
372  e.type = I->getType();
373  e.opcode = Expression::SELECT;
374
375  return e;
376}
377
378Expression ValueTable::create_expression(GetElementPtrInst* G) {
379  Expression e;
380
381  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
382  e.function = 0;
383  e.type = G->getType();
384  e.opcode = Expression::GEP;
385
386  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
387       I != E; ++I)
388    e.varargs.push_back(lookup_or_add(*I));
389
390  return e;
391}
392
393Expression ValueTable::create_expression(ExtractValueInst* E) {
394  Expression e;
395
396  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
397  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
398       II != IE; ++II)
399    e.varargs.push_back(*II);
400  e.function = 0;
401  e.type = E->getType();
402  e.opcode = Expression::EXTRACTVALUE;
403
404  return e;
405}
406
407Expression ValueTable::create_expression(InsertValueInst* E) {
408  Expression e;
409
410  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
411  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
412  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
413       II != IE; ++II)
414    e.varargs.push_back(*II);
415  e.function = 0;
416  e.type = E->getType();
417  e.opcode = Expression::INSERTVALUE;
418
419  return e;
420}
421
422//===----------------------------------------------------------------------===//
423//                     ValueTable External Functions
424//===----------------------------------------------------------------------===//
425
426/// add - Insert a value into the table with a specified value number.
427void ValueTable::add(Value *V, uint32_t num) {
428  valueNumbering.insert(std::make_pair(V, num));
429}
430
431uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
432  if (AA->doesNotAccessMemory(C)) {
433    Expression exp = create_expression(C);
434    uint32_t& e = expressionNumbering[exp];
435    if (!e) e = nextValueNumber++;
436    valueNumbering[C] = e;
437    return e;
438  } else if (AA->onlyReadsMemory(C)) {
439    Expression exp = create_expression(C);
440    uint32_t& e = expressionNumbering[exp];
441    if (!e) {
442      e = nextValueNumber++;
443      valueNumbering[C] = e;
444      return e;
445    }
446    if (!MD) {
447      e = nextValueNumber++;
448      valueNumbering[C] = e;
449      return e;
450    }
451
452    MemDepResult local_dep = MD->getDependency(C);
453
454    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
455      valueNumbering[C] =  nextValueNumber;
456      return nextValueNumber++;
457    }
458
459    if (local_dep.isDef()) {
460      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
461
462      if (local_cdep->getNumOperands() != C->getNumOperands()) {
463        valueNumbering[C] = nextValueNumber;
464        return nextValueNumber++;
465      }
466
467      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
468        uint32_t c_vn = lookup_or_add(C->getOperand(i));
469        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
470        if (c_vn != cd_vn) {
471          valueNumbering[C] = nextValueNumber;
472          return nextValueNumber++;
473        }
474      }
475
476      uint32_t v = lookup_or_add(local_cdep);
477      valueNumbering[C] = v;
478      return v;
479    }
480
481    // Non-local case.
482    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
483      MD->getNonLocalCallDependency(CallSite(C));
484    // FIXME: call/call dependencies for readonly calls should return def, not
485    // clobber!  Move the checking logic to MemDep!
486    CallInst* cdep = 0;
487
488    // Check to see if we have a single dominating call instruction that is
489    // identical to C.
490    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
491      const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
492      // Ignore non-local dependencies.
493      if (I->second.isNonLocal())
494        continue;
495
496      // We don't handle non-depedencies.  If we already have a call, reject
497      // instruction dependencies.
498      if (I->second.isClobber() || cdep != 0) {
499        cdep = 0;
500        break;
501      }
502
503      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
504      // FIXME: All duplicated with non-local case.
505      if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
506        cdep = NonLocalDepCall;
507        continue;
508      }
509
510      cdep = 0;
511      break;
512    }
513
514    if (!cdep) {
515      valueNumbering[C] = nextValueNumber;
516      return nextValueNumber++;
517    }
518
519    if (cdep->getNumOperands() != C->getNumOperands()) {
520      valueNumbering[C] = nextValueNumber;
521      return nextValueNumber++;
522    }
523    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
524      uint32_t c_vn = lookup_or_add(C->getOperand(i));
525      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
526      if (c_vn != cd_vn) {
527        valueNumbering[C] = nextValueNumber;
528        return nextValueNumber++;
529      }
530    }
531
532    uint32_t v = lookup_or_add(cdep);
533    valueNumbering[C] = v;
534    return v;
535
536  } else {
537    valueNumbering[C] = nextValueNumber;
538    return nextValueNumber++;
539  }
540}
541
542/// lookup_or_add - Returns the value number for the specified value, assigning
543/// it a new number if it did not have one before.
544uint32_t ValueTable::lookup_or_add(Value *V) {
545  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
546  if (VI != valueNumbering.end())
547    return VI->second;
548
549  if (!isa<Instruction>(V)) {
550    valueNumbering[V] = nextValueNumber;
551    return nextValueNumber++;
552  }
553
554  Instruction* I = cast<Instruction>(V);
555  Expression exp;
556  switch (I->getOpcode()) {
557    case Instruction::Call:
558      return lookup_or_add_call(cast<CallInst>(I));
559    case Instruction::Add:
560    case Instruction::FAdd:
561    case Instruction::Sub:
562    case Instruction::FSub:
563    case Instruction::Mul:
564    case Instruction::FMul:
565    case Instruction::UDiv:
566    case Instruction::SDiv:
567    case Instruction::FDiv:
568    case Instruction::URem:
569    case Instruction::SRem:
570    case Instruction::FRem:
571    case Instruction::Shl:
572    case Instruction::LShr:
573    case Instruction::AShr:
574    case Instruction::And:
575    case Instruction::Or :
576    case Instruction::Xor:
577      exp = create_expression(cast<BinaryOperator>(I));
578      break;
579    case Instruction::ICmp:
580    case Instruction::FCmp:
581      exp = create_expression(cast<CmpInst>(I));
582      break;
583    case Instruction::Trunc:
584    case Instruction::ZExt:
585    case Instruction::SExt:
586    case Instruction::FPToUI:
587    case Instruction::FPToSI:
588    case Instruction::UIToFP:
589    case Instruction::SIToFP:
590    case Instruction::FPTrunc:
591    case Instruction::FPExt:
592    case Instruction::PtrToInt:
593    case Instruction::IntToPtr:
594    case Instruction::BitCast:
595      exp = create_expression(cast<CastInst>(I));
596      break;
597    case Instruction::Select:
598      exp = create_expression(cast<SelectInst>(I));
599      break;
600    case Instruction::ExtractElement:
601      exp = create_expression(cast<ExtractElementInst>(I));
602      break;
603    case Instruction::InsertElement:
604      exp = create_expression(cast<InsertElementInst>(I));
605      break;
606    case Instruction::ShuffleVector:
607      exp = create_expression(cast<ShuffleVectorInst>(I));
608      break;
609    case Instruction::ExtractValue:
610      exp = create_expression(cast<ExtractValueInst>(I));
611      break;
612    case Instruction::InsertValue:
613      exp = create_expression(cast<InsertValueInst>(I));
614      break;
615    case Instruction::GetElementPtr:
616      exp = create_expression(cast<GetElementPtrInst>(I));
617      break;
618    default:
619      valueNumbering[V] = nextValueNumber;
620      return nextValueNumber++;
621  }
622
623  uint32_t& e = expressionNumbering[exp];
624  if (!e) e = nextValueNumber++;
625  valueNumbering[V] = e;
626  return e;
627}
628
629/// lookup - Returns the value number of the specified value. Fails if
630/// the value has not yet been numbered.
631uint32_t ValueTable::lookup(Value *V) const {
632  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
633  assert(VI != valueNumbering.end() && "Value not numbered?");
634  return VI->second;
635}
636
637/// clear - Remove all entries from the ValueTable
638void ValueTable::clear() {
639  valueNumbering.clear();
640  expressionNumbering.clear();
641  nextValueNumber = 1;
642}
643
644/// erase - Remove a value from the value numbering
645void ValueTable::erase(Value *V) {
646  valueNumbering.erase(V);
647}
648
649/// verifyRemoved - Verify that the value is removed from all internal data
650/// structures.
651void ValueTable::verifyRemoved(const Value *V) const {
652  for (DenseMap<Value*, uint32_t>::const_iterator
653         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
654    assert(I->first != V && "Inst still occurs in value numbering map!");
655  }
656}
657
658//===----------------------------------------------------------------------===//
659//                                GVN Pass
660//===----------------------------------------------------------------------===//
661
662namespace {
663  struct ValueNumberScope {
664    ValueNumberScope* parent;
665    DenseMap<uint32_t, Value*> table;
666
667    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
668  };
669}
670
671namespace {
672
673  class GVN : public FunctionPass {
674    bool runOnFunction(Function &F);
675  public:
676    static char ID; // Pass identification, replacement for typeid
677    explicit GVN(bool nopre = false, bool noloads = false)
678      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
679
680  private:
681    bool NoPRE;
682    bool NoLoads;
683    MemoryDependenceAnalysis *MD;
684    DominatorTree *DT;
685
686    ValueTable VN;
687    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
688
689    // This transformation requires dominator postdominator info
690    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
691      AU.addRequired<DominatorTree>();
692      if (!NoLoads)
693        AU.addRequired<MemoryDependenceAnalysis>();
694      AU.addRequired<AliasAnalysis>();
695
696      AU.addPreserved<DominatorTree>();
697      AU.addPreserved<AliasAnalysis>();
698    }
699
700    // Helper fuctions
701    // FIXME: eliminate or document these better
702    bool processLoad(LoadInst* L,
703                     SmallVectorImpl<Instruction*> &toErase);
704    bool processInstruction(Instruction *I,
705                            SmallVectorImpl<Instruction*> &toErase);
706    bool processNonLocalLoad(LoadInst* L,
707                             SmallVectorImpl<Instruction*> &toErase);
708    bool processBlock(BasicBlock *BB);
709    void dump(DenseMap<uint32_t, Value*>& d);
710    bool iterateOnFunction(Function &F);
711    Value *CollapsePhi(PHINode* p);
712    bool performPRE(Function& F);
713    Value *lookupNumber(BasicBlock *BB, uint32_t num);
714    void cleanupGlobalSets();
715    void verifyRemoved(const Instruction *I) const;
716  };
717
718  char GVN::ID = 0;
719}
720
721// createGVNPass - The public interface to this file...
722FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
723  return new GVN(NoPRE, NoLoads);
724}
725
726static RegisterPass<GVN> X("gvn",
727                           "Global Value Numbering");
728
729void GVN::dump(DenseMap<uint32_t, Value*>& d) {
730  printf("{\n");
731  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
732       E = d.end(); I != E; ++I) {
733      printf("%d\n", I->first);
734      I->second->dump();
735  }
736  printf("}\n");
737}
738
739static bool isSafeReplacement(PHINode* p, Instruction *inst) {
740  if (!isa<PHINode>(inst))
741    return true;
742
743  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
744       UI != E; ++UI)
745    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
746      if (use_phi->getParent() == inst->getParent())
747        return false;
748
749  return true;
750}
751
752Value *GVN::CollapsePhi(PHINode *PN) {
753  Value *ConstVal = PN->hasConstantValue(DT);
754  if (!ConstVal) return 0;
755
756  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
757  if (!Inst)
758    return ConstVal;
759
760  if (DT->dominates(Inst, PN))
761    if (isSafeReplacement(PN, Inst))
762      return Inst;
763  return 0;
764}
765
766/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
767/// we're analyzing is fully available in the specified block.  As we go, keep
768/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
769/// map is actually a tri-state map with the following values:
770///   0) we know the block *is not* fully available.
771///   1) we know the block *is* fully available.
772///   2) we do not know whether the block is fully available or not, but we are
773///      currently speculating that it will be.
774///   3) we are speculating for this block and have used that to speculate for
775///      other blocks.
776static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
777                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
778  // Optimistically assume that the block is fully available and check to see
779  // if we already know about this block in one lookup.
780  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
781    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
782
783  // If the entry already existed for this block, return the precomputed value.
784  if (!IV.second) {
785    // If this is a speculative "available" value, mark it as being used for
786    // speculation of other blocks.
787    if (IV.first->second == 2)
788      IV.first->second = 3;
789    return IV.first->second != 0;
790  }
791
792  // Otherwise, see if it is fully available in all predecessors.
793  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
794
795  // If this block has no predecessors, it isn't live-in here.
796  if (PI == PE)
797    goto SpeculationFailure;
798
799  for (; PI != PE; ++PI)
800    // If the value isn't fully available in one of our predecessors, then it
801    // isn't fully available in this block either.  Undo our previous
802    // optimistic assumption and bail out.
803    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
804      goto SpeculationFailure;
805
806  return true;
807
808// SpeculationFailure - If we get here, we found out that this is not, after
809// all, a fully-available block.  We have a problem if we speculated on this and
810// used the speculation to mark other blocks as available.
811SpeculationFailure:
812  char &BBVal = FullyAvailableBlocks[BB];
813
814  // If we didn't speculate on this, just return with it set to false.
815  if (BBVal == 2) {
816    BBVal = 0;
817    return false;
818  }
819
820  // If we did speculate on this value, we could have blocks set to 1 that are
821  // incorrect.  Walk the (transitive) successors of this block and mark them as
822  // 0 if set to one.
823  SmallVector<BasicBlock*, 32> BBWorklist;
824  BBWorklist.push_back(BB);
825
826  while (!BBWorklist.empty()) {
827    BasicBlock *Entry = BBWorklist.pop_back_val();
828    // Note that this sets blocks to 0 (unavailable) if they happen to not
829    // already be in FullyAvailableBlocks.  This is safe.
830    char &EntryVal = FullyAvailableBlocks[Entry];
831    if (EntryVal == 0) continue;  // Already unavailable.
832
833    // Mark as unavailable.
834    EntryVal = 0;
835
836    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
837      BBWorklist.push_back(*I);
838  }
839
840  return false;
841}
842
843
844/// CanCoerceMustAliasedValueToLoad - Return true if
845/// CoerceAvailableValueToLoadType will succeed.
846static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
847                                            const Type *LoadTy,
848                                            const TargetData &TD) {
849  // If the loaded or stored value is an first class array or struct, don't try
850  // to transform them.  We need to be able to bitcast to integer.
851  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
852      isa<StructType>(StoredVal->getType()) ||
853      isa<ArrayType>(StoredVal->getType()))
854    return false;
855
856  // The store has to be at least as big as the load.
857  if (TD.getTypeSizeInBits(StoredVal->getType()) <
858        TD.getTypeSizeInBits(LoadTy))
859    return false;
860
861  return true;
862}
863
864
865/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
866/// then a load from a must-aliased pointer of a different type, try to coerce
867/// the stored value.  LoadedTy is the type of the load we want to replace and
868/// InsertPt is the place to insert new instructions.
869///
870/// If we can't do it, return null.
871static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
872                                             const Type *LoadedTy,
873                                             Instruction *InsertPt,
874                                             const TargetData &TD) {
875  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
876    return 0;
877
878  const Type *StoredValTy = StoredVal->getType();
879
880  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
881  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
882
883  // If the store and reload are the same size, we can always reuse it.
884  if (StoreSize == LoadSize) {
885    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
886      // Pointer to Pointer -> use bitcast.
887      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
888    }
889
890    // Convert source pointers to integers, which can be bitcast.
891    if (isa<PointerType>(StoredValTy)) {
892      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
893      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
894    }
895
896    const Type *TypeToCastTo = LoadedTy;
897    if (isa<PointerType>(TypeToCastTo))
898      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
899
900    if (StoredValTy != TypeToCastTo)
901      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
902
903    // Cast to pointer if the load needs a pointer type.
904    if (isa<PointerType>(LoadedTy))
905      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
906
907    return StoredVal;
908  }
909
910  // If the loaded value is smaller than the available value, then we can
911  // extract out a piece from it.  If the available value is too small, then we
912  // can't do anything.
913  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
914
915  // Convert source pointers to integers, which can be manipulated.
916  if (isa<PointerType>(StoredValTy)) {
917    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
918    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
919  }
920
921  // Convert vectors and fp to integer, which can be manipulated.
922  if (!isa<IntegerType>(StoredValTy)) {
923    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
924    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
925  }
926
927  // If this is a big-endian system, we need to shift the value down to the low
928  // bits so that a truncate will work.
929  if (TD.isBigEndian()) {
930    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
931    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
932  }
933
934  // Truncate the integer to the right size now.
935  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
936  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
937
938  if (LoadedTy == NewIntTy)
939    return StoredVal;
940
941  // If the result is a pointer, inttoptr.
942  if (isa<PointerType>(LoadedTy))
943    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
944
945  // Otherwise, bitcast.
946  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
947}
948
949/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
950/// be expressed as a base pointer plus a constant offset.  Return the base and
951/// offset to the caller.
952static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
953                                        const TargetData &TD) {
954  Operator *PtrOp = dyn_cast<Operator>(Ptr);
955  if (PtrOp == 0) return Ptr;
956
957  // Just look through bitcasts.
958  if (PtrOp->getOpcode() == Instruction::BitCast)
959    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
960
961  // If this is a GEP with constant indices, we can look through it.
962  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
963  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
964
965  gep_type_iterator GTI = gep_type_begin(GEP);
966  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
967       ++I, ++GTI) {
968    ConstantInt *OpC = cast<ConstantInt>(*I);
969    if (OpC->isZero()) continue;
970
971    // Handle a struct and array indices which add their offset to the pointer.
972    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
973      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
974    } else {
975      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
976      Offset += OpC->getSExtValue()*Size;
977    }
978  }
979
980  // Re-sign extend from the pointer size if needed to get overflow edge cases
981  // right.
982  unsigned PtrSize = TD.getPointerSizeInBits();
983  if (PtrSize < 64)
984    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
985
986  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
987}
988
989
990/// AnalyzeLoadFromClobberingStore - This function is called when we have a
991/// memdep query of a load that ends up being a clobbering store.  This means
992/// that the store *may* provide bits used by the load but we can't be sure
993/// because the pointers don't mustalias.  Check this case to see if there is
994/// anything more we can do before we give up.  This returns -1 if we have to
995/// give up, or a byte number in the stored value of the piece that feeds the
996/// load.
997static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
998                                          const TargetData &TD) {
999  // If the loaded or stored value is an first class array or struct, don't try
1000  // to transform them.  We need to be able to bitcast to integer.
1001  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
1002      isa<StructType>(DepSI->getOperand(0)->getType()) ||
1003      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1004    return -1;
1005
1006  int64_t StoreOffset = 0, LoadOffset = 0;
1007  Value *StoreBase =
1008    GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
1009  Value *LoadBase =
1010    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1011  if (StoreBase != LoadBase)
1012    return -1;
1013
1014  // If the load and store are to the exact same address, they should have been
1015  // a must alias.  AA must have gotten confused.
1016  // FIXME: Study to see if/when this happens.
1017  if (LoadOffset == StoreOffset) {
1018#if 0
1019    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1020    << "Base       = " << *StoreBase << "\n"
1021    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1022    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1023    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1024    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1025    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1026    << *L->getParent();
1027#endif
1028    return -1;
1029  }
1030
1031  // If the load and store don't overlap at all, the store doesn't provide
1032  // anything to the load.  In this case, they really don't alias at all, AA
1033  // must have gotten confused.
1034  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1035  // remove this check, as it is duplicated with what we have below.
1036  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1037  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
1038
1039  if ((StoreSize & 7) | (LoadSize & 7))
1040    return -1;
1041  StoreSize >>= 3;  // Convert to bytes.
1042  LoadSize >>= 3;
1043
1044
1045  bool isAAFailure = false;
1046  if (StoreOffset < LoadOffset) {
1047    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1048  } else {
1049    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1050  }
1051  if (isAAFailure) {
1052#if 0
1053    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1054    << "Base       = " << *StoreBase << "\n"
1055    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1056    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1057    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1058    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1059    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1060    << *L->getParent();
1061#endif
1062    return -1;
1063  }
1064
1065  // If the Load isn't completely contained within the stored bits, we don't
1066  // have all the bits to feed it.  We could do something crazy in the future
1067  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1068  // valuable.
1069  if (StoreOffset > LoadOffset ||
1070      StoreOffset+StoreSize < LoadOffset+LoadSize)
1071    return -1;
1072
1073  // Okay, we can do this transformation.  Return the number of bytes into the
1074  // store that the load is.
1075  return LoadOffset-StoreOffset;
1076}
1077
1078
1079/// GetStoreValueForLoad - This function is called when we have a
1080/// memdep query of a load that ends up being a clobbering store.  This means
1081/// that the store *may* provide bits used by the load but we can't be sure
1082/// because the pointers don't mustalias.  Check this case to see if there is
1083/// anything more we can do before we give up.
1084static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1085                                   const Type *LoadTy,
1086                                   Instruction *InsertPt, const TargetData &TD){
1087  LLVMContext &Ctx = SrcVal->getType()->getContext();
1088
1089  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1090  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1091
1092
1093  // Compute which bits of the stored value are being used by the load.  Convert
1094  // to an integer type to start with.
1095  if (isa<PointerType>(SrcVal->getType()))
1096    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1097  if (!isa<IntegerType>(SrcVal->getType()))
1098    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1099                             "tmp", InsertPt);
1100
1101  // Shift the bits to the least significant depending on endianness.
1102  unsigned ShiftAmt;
1103  if (TD.isLittleEndian()) {
1104    ShiftAmt = Offset*8;
1105  } else {
1106    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1107  }
1108
1109  if (ShiftAmt)
1110    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1111                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1112
1113  if (LoadSize != StoreSize)
1114    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1115                           "tmp", InsertPt);
1116
1117  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1118}
1119
1120struct AvailableValueInBlock {
1121  /// BB - The basic block in question.
1122  BasicBlock *BB;
1123  /// V - The value that is live out of the block.
1124  Value *V;
1125  /// Offset - The byte offset in V that is interesting for the load query.
1126  unsigned Offset;
1127
1128  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1129                                   unsigned Offset = 0) {
1130    AvailableValueInBlock Res;
1131    Res.BB = BB;
1132    Res.V = V;
1133    Res.Offset = Offset;
1134    return Res;
1135  }
1136};
1137
1138/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1139/// construct SSA form, allowing us to eliminate LI.  This returns the value
1140/// that should be used at LI's definition site.
1141static Value *ConstructSSAForLoadSet(LoadInst *LI,
1142                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1143                                     const TargetData *TD,
1144                                     AliasAnalysis *AA) {
1145  SmallVector<PHINode*, 8> NewPHIs;
1146  SSAUpdater SSAUpdate(&NewPHIs);
1147  SSAUpdate.Initialize(LI);
1148
1149  const Type *LoadTy = LI->getType();
1150
1151  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1152    BasicBlock *BB = ValuesPerBlock[i].BB;
1153    Value *AvailableVal = ValuesPerBlock[i].V;
1154    unsigned Offset = ValuesPerBlock[i].Offset;
1155
1156    if (SSAUpdate.HasValueForBlock(BB))
1157      continue;
1158
1159    if (AvailableVal->getType() != LoadTy) {
1160      assert(TD && "Need target data to handle type mismatch case");
1161      AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1162                                          BB->getTerminator(), *TD);
1163
1164      if (Offset) {
1165        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1166              << *ValuesPerBlock[i].V << '\n'
1167              << *AvailableVal << '\n' << "\n\n\n");
1168      }
1169
1170
1171      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1172            << *ValuesPerBlock[i].V << '\n'
1173            << *AvailableVal << '\n' << "\n\n\n");
1174    }
1175
1176    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1177  }
1178
1179  // Perform PHI construction.
1180  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1181
1182  // If new PHI nodes were created, notify alias analysis.
1183  if (isa<PointerType>(V->getType()))
1184    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1185      AA->copyValue(LI, NewPHIs[i]);
1186
1187  return V;
1188}
1189
1190/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1191/// non-local by performing PHI construction.
1192bool GVN::processNonLocalLoad(LoadInst *LI,
1193                              SmallVectorImpl<Instruction*> &toErase) {
1194  // Find the non-local dependencies of the load.
1195  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1196  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1197                                   Deps);
1198  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1199  //             << Deps.size() << *LI << '\n');
1200
1201  // If we had to process more than one hundred blocks to find the
1202  // dependencies, this load isn't worth worrying about.  Optimizing
1203  // it will be too expensive.
1204  if (Deps.size() > 100)
1205    return false;
1206
1207  // If we had a phi translation failure, we'll have a single entry which is a
1208  // clobber in the current block.  Reject this early.
1209  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1210    DEBUG(
1211      errs() << "GVN: non-local load ";
1212      WriteAsOperand(errs(), LI);
1213      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1214    );
1215    return false;
1216  }
1217
1218  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1219  // where we have a value available in repl, also keep track of whether we see
1220  // dependencies that produce an unknown value for the load (such as a call
1221  // that could potentially clobber the load).
1222  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1223  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1224
1225  const TargetData *TD = 0;
1226
1227  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1228    BasicBlock *DepBB = Deps[i].first;
1229    MemDepResult DepInfo = Deps[i].second;
1230
1231    if (DepInfo.isClobber()) {
1232      // If the dependence is to a store that writes to a superset of the bits
1233      // read by the load, we can extract the bits we need for the load from the
1234      // stored value.
1235      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1236        if (TD == 0)
1237          TD = getAnalysisIfAvailable<TargetData>();
1238        if (TD) {
1239          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1240          if (Offset != -1) {
1241            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1242                                                           DepSI->getOperand(0),
1243                                                                Offset));
1244            continue;
1245          }
1246        }
1247      }
1248
1249      // FIXME: Handle memset/memcpy.
1250      UnavailableBlocks.push_back(DepBB);
1251      continue;
1252    }
1253
1254    Instruction *DepInst = DepInfo.getInst();
1255
1256    // Loading the allocation -> undef.
1257    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1258      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1259                                             UndefValue::get(LI->getType())));
1260      continue;
1261    }
1262
1263    // Loading immediately after lifetime begin or end -> undef.
1264    if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1265      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1266          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1267        ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1268                                             UndefValue::get(LI->getType())));
1269      }
1270    }
1271
1272    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1273      // Reject loads and stores that are to the same address but are of
1274      // different types if we have to.
1275      if (S->getOperand(0)->getType() != LI->getType()) {
1276        if (TD == 0)
1277          TD = getAnalysisIfAvailable<TargetData>();
1278
1279        // If the stored value is larger or equal to the loaded value, we can
1280        // reuse it.
1281        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1282                                                        LI->getType(), *TD)) {
1283          UnavailableBlocks.push_back(DepBB);
1284          continue;
1285        }
1286      }
1287
1288      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1289                                                          S->getOperand(0)));
1290      continue;
1291    }
1292
1293    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1294      // If the types mismatch and we can't handle it, reject reuse of the load.
1295      if (LD->getType() != LI->getType()) {
1296        if (TD == 0)
1297          TD = getAnalysisIfAvailable<TargetData>();
1298
1299        // If the stored value is larger or equal to the loaded value, we can
1300        // reuse it.
1301        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1302          UnavailableBlocks.push_back(DepBB);
1303          continue;
1304        }
1305      }
1306      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1307      continue;
1308    }
1309
1310    UnavailableBlocks.push_back(DepBB);
1311    continue;
1312  }
1313
1314  // If we have no predecessors that produce a known value for this load, exit
1315  // early.
1316  if (ValuesPerBlock.empty()) return false;
1317
1318  // If all of the instructions we depend on produce a known value for this
1319  // load, then it is fully redundant and we can use PHI insertion to compute
1320  // its value.  Insert PHIs and remove the fully redundant value now.
1321  if (UnavailableBlocks.empty()) {
1322    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1323
1324    // Perform PHI construction.
1325    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1326                                      VN.getAliasAnalysis());
1327    LI->replaceAllUsesWith(V);
1328
1329    if (isa<PHINode>(V))
1330      V->takeName(LI);
1331    if (isa<PointerType>(V->getType()))
1332      MD->invalidateCachedPointerInfo(V);
1333    toErase.push_back(LI);
1334    NumGVNLoad++;
1335    return true;
1336  }
1337
1338  if (!EnablePRE || !EnableLoadPRE)
1339    return false;
1340
1341  // Okay, we have *some* definitions of the value.  This means that the value
1342  // is available in some of our (transitive) predecessors.  Lets think about
1343  // doing PRE of this load.  This will involve inserting a new load into the
1344  // predecessor when it's not available.  We could do this in general, but
1345  // prefer to not increase code size.  As such, we only do this when we know
1346  // that we only have to insert *one* load (which means we're basically moving
1347  // the load, not inserting a new one).
1348
1349  SmallPtrSet<BasicBlock *, 4> Blockers;
1350  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1351    Blockers.insert(UnavailableBlocks[i]);
1352
1353  // Lets find first basic block with more than one predecessor.  Walk backwards
1354  // through predecessors if needed.
1355  BasicBlock *LoadBB = LI->getParent();
1356  BasicBlock *TmpBB = LoadBB;
1357
1358  bool isSinglePred = false;
1359  bool allSingleSucc = true;
1360  while (TmpBB->getSinglePredecessor()) {
1361    isSinglePred = true;
1362    TmpBB = TmpBB->getSinglePredecessor();
1363    if (!TmpBB) // If haven't found any, bail now.
1364      return false;
1365    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1366      return false;
1367    if (Blockers.count(TmpBB))
1368      return false;
1369    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1370      allSingleSucc = false;
1371  }
1372
1373  assert(TmpBB);
1374  LoadBB = TmpBB;
1375
1376  // If we have a repl set with LI itself in it, this means we have a loop where
1377  // at least one of the values is LI.  Since this means that we won't be able
1378  // to eliminate LI even if we insert uses in the other predecessors, we will
1379  // end up increasing code size.  Reject this by scanning for LI.
1380  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1381    if (ValuesPerBlock[i].V == LI)
1382      return false;
1383
1384  if (isSinglePred) {
1385    bool isHot = false;
1386    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1387      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
1388        // "Hot" Instruction is in some loop (because it dominates its dep.
1389        // instruction).
1390        if (DT->dominates(LI, I)) {
1391          isHot = true;
1392          break;
1393        }
1394
1395    // We are interested only in "hot" instructions. We don't want to do any
1396    // mis-optimizations here.
1397    if (!isHot)
1398      return false;
1399  }
1400
1401  // Okay, we have some hope :).  Check to see if the loaded value is fully
1402  // available in all but one predecessor.
1403  // FIXME: If we could restructure the CFG, we could make a common pred with
1404  // all the preds that don't have an available LI and insert a new load into
1405  // that one block.
1406  BasicBlock *UnavailablePred = 0;
1407
1408  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1409  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1410    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1411  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1412    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1413
1414  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1415       PI != E; ++PI) {
1416    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1417      continue;
1418
1419    // If this load is not available in multiple predecessors, reject it.
1420    if (UnavailablePred && UnavailablePred != *PI)
1421      return false;
1422    UnavailablePred = *PI;
1423  }
1424
1425  assert(UnavailablePred != 0 &&
1426         "Fully available value should be eliminated above!");
1427
1428  // We don't currently handle critical edges :(
1429  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1430    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1431                 << UnavailablePred->getName() << "': " << *LI << '\n');
1432    return false;
1433  }
1434
1435  // Do PHI translation to get its value in the predecessor if necessary.  The
1436  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1437  //
1438  // FIXME: This may insert a computation, but we don't tell scalar GVN
1439  // optimization stuff about it.  How do we do this?
1440  Value *LoadPtr =
1441    MD->InsertPHITranslatedPointer(LI->getOperand(0), LoadBB,
1442                                   UnavailablePred, TD, *DT);
1443
1444  // If we couldn't find or insert a computation of this phi translated value,
1445  // we fail PRE.
1446  if (LoadPtr == 0) {
1447    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1448                 << *LI->getOperand(0) << "\n");
1449    return false;
1450  }
1451
1452  // Make sure it is valid to move this load here.  We have to watch out for:
1453  //  @1 = getelementptr (i8* p, ...
1454  //  test p and branch if == 0
1455  //  load @1
1456  // It is valid to have the getelementptr before the test, even if p can be 0,
1457  // as getelementptr only does address arithmetic.
1458  // If we are not pushing the value through any multiple-successor blocks
1459  // we do not have this case.  Otherwise, check that the load is safe to
1460  // put anywhere; this can be improved, but should be conservatively safe.
1461  if (!allSingleSucc &&
1462      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1463    return false;
1464
1465  // Okay, we can eliminate this load by inserting a reload in the predecessor
1466  // and using PHI construction to get the value in the other predecessors, do
1467  // it.
1468  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1469
1470  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1471                                LI->getAlignment(),
1472                                UnavailablePred->getTerminator());
1473
1474  // Add the newly created load.
1475  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1476
1477  // Perform PHI construction.
1478  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1479                                    VN.getAliasAnalysis());
1480  LI->replaceAllUsesWith(V);
1481  if (isa<PHINode>(V))
1482    V->takeName(LI);
1483  if (isa<PointerType>(V->getType()))
1484    MD->invalidateCachedPointerInfo(V);
1485  toErase.push_back(LI);
1486  NumPRELoad++;
1487  return true;
1488}
1489
1490/// processLoad - Attempt to eliminate a load, first by eliminating it
1491/// locally, and then attempting non-local elimination if that fails.
1492bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1493  if (!MD)
1494    return false;
1495
1496  if (L->isVolatile())
1497    return false;
1498
1499  // ... to a pointer that has been loaded from before...
1500  MemDepResult Dep = MD->getDependency(L);
1501
1502  // If the value isn't available, don't do anything!
1503  if (Dep.isClobber()) {
1504    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
1505    // to forward the value if available.
1506    //if (isa<MemIntrinsic>(Dep.getInst()))
1507    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
1508
1509    // Check to see if we have something like this:
1510    //   store i32 123, i32* %P
1511    //   %A = bitcast i32* %P to i8*
1512    //   %B = gep i8* %A, i32 1
1513    //   %C = load i8* %B
1514    //
1515    // We could do that by recognizing if the clobber instructions are obviously
1516    // a common base + constant offset, and if the previous store (or memset)
1517    // completely covers this load.  This sort of thing can happen in bitfield
1518    // access code.
1519    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1520      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1521        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1522        if (Offset != -1) {
1523          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1524                                                 L->getType(), L, *TD);
1525          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
1526                       << *AvailVal << '\n' << *L << "\n\n\n");
1527
1528          // Replace the load!
1529          L->replaceAllUsesWith(AvailVal);
1530          if (isa<PointerType>(AvailVal->getType()))
1531            MD->invalidateCachedPointerInfo(AvailVal);
1532          toErase.push_back(L);
1533          NumGVNLoad++;
1534          return true;
1535        }
1536      }
1537
1538    DEBUG(
1539      // fast print dep, using operator<< on instruction would be too slow
1540      errs() << "GVN: load ";
1541      WriteAsOperand(errs(), L);
1542      Instruction *I = Dep.getInst();
1543      errs() << " is clobbered by " << *I << '\n';
1544    );
1545    return false;
1546  }
1547
1548  // If it is defined in another block, try harder.
1549  if (Dep.isNonLocal())
1550    return processNonLocalLoad(L, toErase);
1551
1552  Instruction *DepInst = Dep.getInst();
1553  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1554    Value *StoredVal = DepSI->getOperand(0);
1555
1556    // The store and load are to a must-aliased pointer, but they may not
1557    // actually have the same type.  See if we know how to reuse the stored
1558    // value (depending on its type).
1559    const TargetData *TD = 0;
1560    if (StoredVal->getType() != L->getType()) {
1561      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1562        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1563                                                   L, *TD);
1564        if (StoredVal == 0)
1565          return false;
1566
1567        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1568                     << '\n' << *L << "\n\n\n");
1569      }
1570      else
1571        return false;
1572    }
1573
1574    // Remove it!
1575    L->replaceAllUsesWith(StoredVal);
1576    if (isa<PointerType>(StoredVal->getType()))
1577      MD->invalidateCachedPointerInfo(StoredVal);
1578    toErase.push_back(L);
1579    NumGVNLoad++;
1580    return true;
1581  }
1582
1583  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1584    Value *AvailableVal = DepLI;
1585
1586    // The loads are of a must-aliased pointer, but they may not actually have
1587    // the same type.  See if we know how to reuse the previously loaded value
1588    // (depending on its type).
1589    const TargetData *TD = 0;
1590    if (DepLI->getType() != L->getType()) {
1591      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1592        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1593        if (AvailableVal == 0)
1594          return false;
1595
1596        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1597                     << "\n" << *L << "\n\n\n");
1598      }
1599      else
1600        return false;
1601    }
1602
1603    // Remove it!
1604    L->replaceAllUsesWith(AvailableVal);
1605    if (isa<PointerType>(DepLI->getType()))
1606      MD->invalidateCachedPointerInfo(DepLI);
1607    toErase.push_back(L);
1608    NumGVNLoad++;
1609    return true;
1610  }
1611
1612  // If this load really doesn't depend on anything, then we must be loading an
1613  // undef value.  This can happen when loading for a fresh allocation with no
1614  // intervening stores, for example.
1615  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1616    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1617    toErase.push_back(L);
1618    NumGVNLoad++;
1619    return true;
1620  }
1621
1622  // If this load occurs either right after a lifetime begin or a lifetime end,
1623  // then the loaded value is undefined.
1624  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1625    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1626        II->getIntrinsicID() == Intrinsic::lifetime_end) {
1627      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1628      toErase.push_back(L);
1629      NumGVNLoad++;
1630      return true;
1631    }
1632  }
1633
1634  return false;
1635}
1636
1637Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1638  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1639  if (I == localAvail.end())
1640    return 0;
1641
1642  ValueNumberScope *Locals = I->second;
1643  while (Locals) {
1644    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1645    if (I != Locals->table.end())
1646      return I->second;
1647    Locals = Locals->parent;
1648  }
1649
1650  return 0;
1651}
1652
1653
1654/// processInstruction - When calculating availability, handle an instruction
1655/// by inserting it into the appropriate sets
1656bool GVN::processInstruction(Instruction *I,
1657                             SmallVectorImpl<Instruction*> &toErase) {
1658  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1659    bool Changed = processLoad(LI, toErase);
1660
1661    if (!Changed) {
1662      unsigned Num = VN.lookup_or_add(LI);
1663      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1664    }
1665
1666    return Changed;
1667  }
1668
1669  uint32_t NextNum = VN.getNextUnusedValueNumber();
1670  unsigned Num = VN.lookup_or_add(I);
1671
1672  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1673    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1674
1675    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1676      return false;
1677
1678    Value *BranchCond = BI->getCondition();
1679    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1680
1681    BasicBlock *TrueSucc = BI->getSuccessor(0);
1682    BasicBlock *FalseSucc = BI->getSuccessor(1);
1683
1684    if (TrueSucc->getSinglePredecessor())
1685      localAvail[TrueSucc]->table[CondVN] =
1686        ConstantInt::getTrue(TrueSucc->getContext());
1687    if (FalseSucc->getSinglePredecessor())
1688      localAvail[FalseSucc]->table[CondVN] =
1689        ConstantInt::getFalse(TrueSucc->getContext());
1690
1691    return false;
1692
1693  // Allocations are always uniquely numbered, so we can save time and memory
1694  // by fast failing them.
1695  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1696    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1697    return false;
1698  }
1699
1700  // Collapse PHI nodes
1701  if (PHINode* p = dyn_cast<PHINode>(I)) {
1702    Value *constVal = CollapsePhi(p);
1703
1704    if (constVal) {
1705      p->replaceAllUsesWith(constVal);
1706      if (MD && isa<PointerType>(constVal->getType()))
1707        MD->invalidateCachedPointerInfo(constVal);
1708      VN.erase(p);
1709
1710      toErase.push_back(p);
1711    } else {
1712      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1713    }
1714
1715  // If the number we were assigned was a brand new VN, then we don't
1716  // need to do a lookup to see if the number already exists
1717  // somewhere in the domtree: it can't!
1718  } else if (Num == NextNum) {
1719    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1720
1721  // Perform fast-path value-number based elimination of values inherited from
1722  // dominators.
1723  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1724    // Remove it!
1725    VN.erase(I);
1726    I->replaceAllUsesWith(repl);
1727    if (MD && isa<PointerType>(repl->getType()))
1728      MD->invalidateCachedPointerInfo(repl);
1729    toErase.push_back(I);
1730    return true;
1731
1732  } else {
1733    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1734  }
1735
1736  return false;
1737}
1738
1739/// runOnFunction - This is the main transformation entry point for a function.
1740bool GVN::runOnFunction(Function& F) {
1741  if (!NoLoads)
1742    MD = &getAnalysis<MemoryDependenceAnalysis>();
1743  DT = &getAnalysis<DominatorTree>();
1744  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1745  VN.setMemDep(MD);
1746  VN.setDomTree(DT);
1747
1748  bool Changed = false;
1749  bool ShouldContinue = true;
1750
1751  // Merge unconditional branches, allowing PRE to catch more
1752  // optimization opportunities.
1753  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1754    BasicBlock *BB = FI;
1755    ++FI;
1756    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1757    if (removedBlock) NumGVNBlocks++;
1758
1759    Changed |= removedBlock;
1760  }
1761
1762  unsigned Iteration = 0;
1763
1764  while (ShouldContinue) {
1765    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1766    ShouldContinue = iterateOnFunction(F);
1767    Changed |= ShouldContinue;
1768    ++Iteration;
1769  }
1770
1771  if (EnablePRE) {
1772    bool PREChanged = true;
1773    while (PREChanged) {
1774      PREChanged = performPRE(F);
1775      Changed |= PREChanged;
1776    }
1777  }
1778  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1779  // computations into blocks where they become fully redundant.  Note that
1780  // we can't do this until PRE's critical edge splitting updates memdep.
1781  // Actually, when this happens, we should just fully integrate PRE into GVN.
1782
1783  cleanupGlobalSets();
1784
1785  return Changed;
1786}
1787
1788
1789bool GVN::processBlock(BasicBlock *BB) {
1790  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1791  // incrementing BI before processing an instruction).
1792  SmallVector<Instruction*, 8> toErase;
1793  bool ChangedFunction = false;
1794
1795  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1796       BI != BE;) {
1797    ChangedFunction |= processInstruction(BI, toErase);
1798    if (toErase.empty()) {
1799      ++BI;
1800      continue;
1801    }
1802
1803    // If we need some instructions deleted, do it now.
1804    NumGVNInstr += toErase.size();
1805
1806    // Avoid iterator invalidation.
1807    bool AtStart = BI == BB->begin();
1808    if (!AtStart)
1809      --BI;
1810
1811    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1812         E = toErase.end(); I != E; ++I) {
1813      DEBUG(errs() << "GVN removed: " << **I << '\n');
1814      if (MD) MD->removeInstruction(*I);
1815      (*I)->eraseFromParent();
1816      DEBUG(verifyRemoved(*I));
1817    }
1818    toErase.clear();
1819
1820    if (AtStart)
1821      BI = BB->begin();
1822    else
1823      ++BI;
1824  }
1825
1826  return ChangedFunction;
1827}
1828
1829/// performPRE - Perform a purely local form of PRE that looks for diamond
1830/// control flow patterns and attempts to perform simple PRE at the join point.
1831bool GVN::performPRE(Function &F) {
1832  bool Changed = false;
1833  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1834  DenseMap<BasicBlock*, Value*> predMap;
1835  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1836       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1837    BasicBlock *CurrentBlock = *DI;
1838
1839    // Nothing to PRE in the entry block.
1840    if (CurrentBlock == &F.getEntryBlock()) continue;
1841
1842    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1843         BE = CurrentBlock->end(); BI != BE; ) {
1844      Instruction *CurInst = BI++;
1845
1846      if (isa<AllocaInst>(CurInst) ||
1847          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1848          CurInst->getType()->isVoidTy() ||
1849          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1850          isa<DbgInfoIntrinsic>(CurInst))
1851        continue;
1852
1853      uint32_t ValNo = VN.lookup(CurInst);
1854
1855      // Look for the predecessors for PRE opportunities.  We're
1856      // only trying to solve the basic diamond case, where
1857      // a value is computed in the successor and one predecessor,
1858      // but not the other.  We also explicitly disallow cases
1859      // where the successor is its own predecessor, because they're
1860      // more complicated to get right.
1861      unsigned NumWith = 0;
1862      unsigned NumWithout = 0;
1863      BasicBlock *PREPred = 0;
1864      predMap.clear();
1865
1866      for (pred_iterator PI = pred_begin(CurrentBlock),
1867           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1868        // We're not interested in PRE where the block is its
1869        // own predecessor, on in blocks with predecessors
1870        // that are not reachable.
1871        if (*PI == CurrentBlock) {
1872          NumWithout = 2;
1873          break;
1874        } else if (!localAvail.count(*PI))  {
1875          NumWithout = 2;
1876          break;
1877        }
1878
1879        DenseMap<uint32_t, Value*>::iterator predV =
1880                                            localAvail[*PI]->table.find(ValNo);
1881        if (predV == localAvail[*PI]->table.end()) {
1882          PREPred = *PI;
1883          NumWithout++;
1884        } else if (predV->second == CurInst) {
1885          NumWithout = 2;
1886        } else {
1887          predMap[*PI] = predV->second;
1888          NumWith++;
1889        }
1890      }
1891
1892      // Don't do PRE when it might increase code size, i.e. when
1893      // we would need to insert instructions in more than one pred.
1894      if (NumWithout != 1 || NumWith == 0)
1895        continue;
1896
1897      // Don't do PRE across indirect branch.
1898      if (isa<IndirectBrInst>(PREPred->getTerminator()))
1899        continue;
1900
1901      // We can't do PRE safely on a critical edge, so instead we schedule
1902      // the edge to be split and perform the PRE the next time we iterate
1903      // on the function.
1904      unsigned SuccNum = 0;
1905      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1906           i != e; ++i)
1907        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1908          SuccNum = i;
1909          break;
1910        }
1911
1912      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1913        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1914        continue;
1915      }
1916
1917      // Instantiate the expression the in predecessor that lacked it.
1918      // Because we are going top-down through the block, all value numbers
1919      // will be available in the predecessor by the time we need them.  Any
1920      // that weren't original present will have been instantiated earlier
1921      // in this loop.
1922      Instruction *PREInstr = CurInst->clone();
1923      bool success = true;
1924      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1925        Value *Op = PREInstr->getOperand(i);
1926        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1927          continue;
1928
1929        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1930          PREInstr->setOperand(i, V);
1931        } else {
1932          success = false;
1933          break;
1934        }
1935      }
1936
1937      // Fail out if we encounter an operand that is not available in
1938      // the PRE predecessor.  This is typically because of loads which
1939      // are not value numbered precisely.
1940      if (!success) {
1941        delete PREInstr;
1942        DEBUG(verifyRemoved(PREInstr));
1943        continue;
1944      }
1945
1946      PREInstr->insertBefore(PREPred->getTerminator());
1947      PREInstr->setName(CurInst->getName() + ".pre");
1948      predMap[PREPred] = PREInstr;
1949      VN.add(PREInstr, ValNo);
1950      NumGVNPRE++;
1951
1952      // Update the availability map to include the new instruction.
1953      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
1954
1955      // Create a PHI to make the value available in this block.
1956      PHINode* Phi = PHINode::Create(CurInst->getType(),
1957                                     CurInst->getName() + ".pre-phi",
1958                                     CurrentBlock->begin());
1959      for (pred_iterator PI = pred_begin(CurrentBlock),
1960           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1961        Phi->addIncoming(predMap[*PI], *PI);
1962
1963      VN.add(Phi, ValNo);
1964      localAvail[CurrentBlock]->table[ValNo] = Phi;
1965
1966      CurInst->replaceAllUsesWith(Phi);
1967      if (MD && isa<PointerType>(Phi->getType()))
1968        MD->invalidateCachedPointerInfo(Phi);
1969      VN.erase(CurInst);
1970
1971      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1972      if (MD) MD->removeInstruction(CurInst);
1973      CurInst->eraseFromParent();
1974      DEBUG(verifyRemoved(CurInst));
1975      Changed = true;
1976    }
1977  }
1978
1979  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1980       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1981    SplitCriticalEdge(I->first, I->second, this);
1982
1983  return Changed || toSplit.size();
1984}
1985
1986/// iterateOnFunction - Executes one iteration of GVN
1987bool GVN::iterateOnFunction(Function &F) {
1988  cleanupGlobalSets();
1989
1990  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1991       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1992    if (DI->getIDom())
1993      localAvail[DI->getBlock()] =
1994                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1995    else
1996      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1997  }
1998
1999  // Top-down walk of the dominator tree
2000  bool Changed = false;
2001#if 0
2002  // Needed for value numbering with phi construction to work.
2003  ReversePostOrderTraversal<Function*> RPOT(&F);
2004  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2005       RE = RPOT.end(); RI != RE; ++RI)
2006    Changed |= processBlock(*RI);
2007#else
2008  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2009       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2010    Changed |= processBlock(DI->getBlock());
2011#endif
2012
2013  return Changed;
2014}
2015
2016void GVN::cleanupGlobalSets() {
2017  VN.clear();
2018
2019  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2020       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2021    delete I->second;
2022  localAvail.clear();
2023}
2024
2025/// verifyRemoved - Verify that the specified instruction does not occur in our
2026/// internal data structures.
2027void GVN::verifyRemoved(const Instruction *Inst) const {
2028  VN.verifyRemoved(Inst);
2029
2030  // Walk through the value number scope to make sure the instruction isn't
2031  // ferreted away in it.
2032  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2033         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2034    const ValueNumberScope *VNS = I->second;
2035
2036    while (VNS) {
2037      for (DenseMap<uint32_t, Value*>::const_iterator
2038             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2039        assert(II->second != Inst && "Inst still in value numbering scope!");
2040      }
2041
2042      VNS = VNS->parent;
2043    }
2044  }
2045}
2046