GVN.cpp revision 722cc1f41413530e15a46eb940ce68330647ff27
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/Loads.h"
39#include "llvm/Analysis/MemoryBuiltins.h"
40#include "llvm/Analysis/MemoryDependenceAnalysis.h"
41#include "llvm/Analysis/PHITransAddr.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/GetElementPtrTypeIterator.h"
47#include "llvm/Support/IRBuilder.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumGVNInstr,  "Number of instructions deleted");
56STATISTIC(NumGVNLoad,   "Number of loads deleted");
57STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
58STATISTIC(NumGVNBlocks, "Number of blocks merged");
59STATISTIC(NumPRELoad,   "Number of loads PRE'd");
60
61static cl::opt<bool> EnablePRE("enable-pre",
62                               cl::init(true), cl::Hidden);
63static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
64static cl::opt<bool> EnableFullLoadPRE("enable-full-load-pre", cl::init(false));
65
66//===----------------------------------------------------------------------===//
67//                         ValueTable Class
68//===----------------------------------------------------------------------===//
69
70/// This class holds the mapping between values and value numbers.  It is used
71/// as an efficient mechanism to determine the expression-wise equivalence of
72/// two values.
73namespace {
74  struct Expression {
75    enum ExpressionOpcode {
76      ADD = Instruction::Add,
77      FADD = Instruction::FAdd,
78      SUB = Instruction::Sub,
79      FSUB = Instruction::FSub,
80      MUL = Instruction::Mul,
81      FMUL = Instruction::FMul,
82      UDIV = Instruction::UDiv,
83      SDIV = Instruction::SDiv,
84      FDIV = Instruction::FDiv,
85      UREM = Instruction::URem,
86      SREM = Instruction::SRem,
87      FREM = Instruction::FRem,
88      SHL = Instruction::Shl,
89      LSHR = Instruction::LShr,
90      ASHR = Instruction::AShr,
91      AND = Instruction::And,
92      OR = Instruction::Or,
93      XOR = Instruction::Xor,
94      TRUNC = Instruction::Trunc,
95      ZEXT = Instruction::ZExt,
96      SEXT = Instruction::SExt,
97      FPTOUI = Instruction::FPToUI,
98      FPTOSI = Instruction::FPToSI,
99      UITOFP = Instruction::UIToFP,
100      SITOFP = Instruction::SIToFP,
101      FPTRUNC = Instruction::FPTrunc,
102      FPEXT = Instruction::FPExt,
103      PTRTOINT = Instruction::PtrToInt,
104      INTTOPTR = Instruction::IntToPtr,
105      BITCAST = Instruction::BitCast,
106      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
107      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
108      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
109      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
110      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
111      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
112      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
113
114    ExpressionOpcode opcode;
115    const Type* type;
116    SmallVector<uint32_t, 4> varargs;
117    Value *function;
118
119    Expression() { }
120    Expression(ExpressionOpcode o) : opcode(o) { }
121
122    bool operator==(const Expression &other) const {
123      if (opcode != other.opcode)
124        return false;
125      else if (opcode == EMPTY || opcode == TOMBSTONE)
126        return true;
127      else if (type != other.type)
128        return false;
129      else if (function != other.function)
130        return false;
131      else {
132        if (varargs.size() != other.varargs.size())
133          return false;
134
135        for (size_t i = 0; i < varargs.size(); ++i)
136          if (varargs[i] != other.varargs[i])
137            return false;
138
139        return true;
140      }
141    }
142
143    /*bool operator!=(const Expression &other) const {
144      return !(*this == other);
145    }*/
146  };
147
148  class ValueTable {
149    private:
150      DenseMap<Value*, uint32_t> valueNumbering;
151      DenseMap<Expression, uint32_t> expressionNumbering;
152      AliasAnalysis* AA;
153      MemoryDependenceAnalysis* MD;
154      DominatorTree* DT;
155
156      uint32_t nextValueNumber;
157
158      Expression::ExpressionOpcode getOpcode(CmpInst* C);
159      Expression create_expression(BinaryOperator* BO);
160      Expression create_expression(CmpInst* C);
161      Expression create_expression(ShuffleVectorInst* V);
162      Expression create_expression(ExtractElementInst* C);
163      Expression create_expression(InsertElementInst* V);
164      Expression create_expression(SelectInst* V);
165      Expression create_expression(CastInst* C);
166      Expression create_expression(GetElementPtrInst* G);
167      Expression create_expression(CallInst* C);
168      Expression create_expression(ExtractValueInst* C);
169      Expression create_expression(InsertValueInst* C);
170
171      uint32_t lookup_or_add_call(CallInst* C);
172    public:
173      ValueTable() : nextValueNumber(1) { }
174      uint32_t lookup_or_add(Value *V);
175      uint32_t lookup(Value *V) const;
176      void add(Value *V, uint32_t num);
177      void clear();
178      void erase(Value *v);
179      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
180      AliasAnalysis *getAliasAnalysis() const { return AA; }
181      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
182      void setDomTree(DominatorTree* D) { DT = D; }
183      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
184      void verifyRemoved(const Value *) const;
185  };
186}
187
188namespace llvm {
189template <> struct DenseMapInfo<Expression> {
190  static inline Expression getEmptyKey() {
191    return Expression(Expression::EMPTY);
192  }
193
194  static inline Expression getTombstoneKey() {
195    return Expression(Expression::TOMBSTONE);
196  }
197
198  static unsigned getHashValue(const Expression e) {
199    unsigned hash = e.opcode;
200
201    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
202            (unsigned)((uintptr_t)e.type >> 9));
203
204    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
205         E = e.varargs.end(); I != E; ++I)
206      hash = *I + hash * 37;
207
208    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
209            (unsigned)((uintptr_t)e.function >> 9)) +
210           hash * 37;
211
212    return hash;
213  }
214  static bool isEqual(const Expression &LHS, const Expression &RHS) {
215    return LHS == RHS;
216  }
217};
218
219template <>
220struct isPodLike<Expression> { static const bool value = true; };
221
222}
223
224//===----------------------------------------------------------------------===//
225//                     ValueTable Internal Functions
226//===----------------------------------------------------------------------===//
227
228Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
229  if (isa<ICmpInst>(C)) {
230    switch (C->getPredicate()) {
231    default:  // THIS SHOULD NEVER HAPPEN
232      llvm_unreachable("Comparison with unknown predicate?");
233    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
234    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
235    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
236    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
237    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
238    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
239    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
240    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
241    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
242    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
243    }
244  } else {
245    switch (C->getPredicate()) {
246    default: // THIS SHOULD NEVER HAPPEN
247      llvm_unreachable("Comparison with unknown predicate?");
248    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
249    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
250    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
251    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
252    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
253    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
254    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
255    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
256    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
257    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
258    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
259    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
260    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
261    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
262    }
263  }
264}
265
266Expression ValueTable::create_expression(CallInst* C) {
267  Expression e;
268
269  e.type = C->getType();
270  e.function = C->getCalledFunction();
271  e.opcode = Expression::CALL;
272
273  CallSite CS(C);
274  for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
275       I != E; ++I)
276    e.varargs.push_back(lookup_or_add(*I));
277
278  return e;
279}
280
281Expression ValueTable::create_expression(BinaryOperator* BO) {
282  Expression e;
283  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
284  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
285  e.function = 0;
286  e.type = BO->getType();
287  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
288
289  return e;
290}
291
292Expression ValueTable::create_expression(CmpInst* C) {
293  Expression e;
294
295  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
296  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
297  e.function = 0;
298  e.type = C->getType();
299  e.opcode = getOpcode(C);
300
301  return e;
302}
303
304Expression ValueTable::create_expression(CastInst* C) {
305  Expression e;
306
307  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
308  e.function = 0;
309  e.type = C->getType();
310  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
311
312  return e;
313}
314
315Expression ValueTable::create_expression(ShuffleVectorInst* S) {
316  Expression e;
317
318  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
319  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
320  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
321  e.function = 0;
322  e.type = S->getType();
323  e.opcode = Expression::SHUFFLE;
324
325  return e;
326}
327
328Expression ValueTable::create_expression(ExtractElementInst* E) {
329  Expression e;
330
331  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
332  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
333  e.function = 0;
334  e.type = E->getType();
335  e.opcode = Expression::EXTRACT;
336
337  return e;
338}
339
340Expression ValueTable::create_expression(InsertElementInst* I) {
341  Expression e;
342
343  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
344  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
345  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
346  e.function = 0;
347  e.type = I->getType();
348  e.opcode = Expression::INSERT;
349
350  return e;
351}
352
353Expression ValueTable::create_expression(SelectInst* I) {
354  Expression e;
355
356  e.varargs.push_back(lookup_or_add(I->getCondition()));
357  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
358  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
359  e.function = 0;
360  e.type = I->getType();
361  e.opcode = Expression::SELECT;
362
363  return e;
364}
365
366Expression ValueTable::create_expression(GetElementPtrInst* G) {
367  Expression e;
368
369  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
370  e.function = 0;
371  e.type = G->getType();
372  e.opcode = Expression::GEP;
373
374  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
375       I != E; ++I)
376    e.varargs.push_back(lookup_or_add(*I));
377
378  return e;
379}
380
381Expression ValueTable::create_expression(ExtractValueInst* E) {
382  Expression e;
383
384  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
385  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
386       II != IE; ++II)
387    e.varargs.push_back(*II);
388  e.function = 0;
389  e.type = E->getType();
390  e.opcode = Expression::EXTRACTVALUE;
391
392  return e;
393}
394
395Expression ValueTable::create_expression(InsertValueInst* E) {
396  Expression e;
397
398  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
399  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
400  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
401       II != IE; ++II)
402    e.varargs.push_back(*II);
403  e.function = 0;
404  e.type = E->getType();
405  e.opcode = Expression::INSERTVALUE;
406
407  return e;
408}
409
410//===----------------------------------------------------------------------===//
411//                     ValueTable External Functions
412//===----------------------------------------------------------------------===//
413
414/// add - Insert a value into the table with a specified value number.
415void ValueTable::add(Value *V, uint32_t num) {
416  valueNumbering.insert(std::make_pair(V, num));
417}
418
419uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
420  if (AA->doesNotAccessMemory(C)) {
421    Expression exp = create_expression(C);
422    uint32_t& e = expressionNumbering[exp];
423    if (!e) e = nextValueNumber++;
424    valueNumbering[C] = e;
425    return e;
426  } else if (AA->onlyReadsMemory(C)) {
427    Expression exp = create_expression(C);
428    uint32_t& e = expressionNumbering[exp];
429    if (!e) {
430      e = nextValueNumber++;
431      valueNumbering[C] = e;
432      return e;
433    }
434    if (!MD) {
435      e = nextValueNumber++;
436      valueNumbering[C] = e;
437      return e;
438    }
439
440    MemDepResult local_dep = MD->getDependency(C);
441
442    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
443      valueNumbering[C] =  nextValueNumber;
444      return nextValueNumber++;
445    }
446
447    if (local_dep.isDef()) {
448      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
449
450      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
451        valueNumbering[C] = nextValueNumber;
452        return nextValueNumber++;
453      }
454
455      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
456        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
457        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
458        if (c_vn != cd_vn) {
459          valueNumbering[C] = nextValueNumber;
460          return nextValueNumber++;
461        }
462      }
463
464      uint32_t v = lookup_or_add(local_cdep);
465      valueNumbering[C] = v;
466      return v;
467    }
468
469    // Non-local case.
470    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
471      MD->getNonLocalCallDependency(CallSite(C));
472    // FIXME: call/call dependencies for readonly calls should return def, not
473    // clobber!  Move the checking logic to MemDep!
474    CallInst* cdep = 0;
475
476    // Check to see if we have a single dominating call instruction that is
477    // identical to C.
478    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
479      const NonLocalDepEntry *I = &deps[i];
480      // Ignore non-local dependencies.
481      if (I->getResult().isNonLocal())
482        continue;
483
484      // We don't handle non-depedencies.  If we already have a call, reject
485      // instruction dependencies.
486      if (I->getResult().isClobber() || cdep != 0) {
487        cdep = 0;
488        break;
489      }
490
491      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
492      // FIXME: All duplicated with non-local case.
493      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
494        cdep = NonLocalDepCall;
495        continue;
496      }
497
498      cdep = 0;
499      break;
500    }
501
502    if (!cdep) {
503      valueNumbering[C] = nextValueNumber;
504      return nextValueNumber++;
505    }
506
507    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
508      valueNumbering[C] = nextValueNumber;
509      return nextValueNumber++;
510    }
511    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
512      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
513      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
514      if (c_vn != cd_vn) {
515        valueNumbering[C] = nextValueNumber;
516        return nextValueNumber++;
517      }
518    }
519
520    uint32_t v = lookup_or_add(cdep);
521    valueNumbering[C] = v;
522    return v;
523
524  } else {
525    valueNumbering[C] = nextValueNumber;
526    return nextValueNumber++;
527  }
528}
529
530/// lookup_or_add - Returns the value number for the specified value, assigning
531/// it a new number if it did not have one before.
532uint32_t ValueTable::lookup_or_add(Value *V) {
533  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
534  if (VI != valueNumbering.end())
535    return VI->second;
536
537  if (!isa<Instruction>(V)) {
538    valueNumbering[V] = nextValueNumber;
539    return nextValueNumber++;
540  }
541
542  Instruction* I = cast<Instruction>(V);
543  Expression exp;
544  switch (I->getOpcode()) {
545    case Instruction::Call:
546      return lookup_or_add_call(cast<CallInst>(I));
547    case Instruction::Add:
548    case Instruction::FAdd:
549    case Instruction::Sub:
550    case Instruction::FSub:
551    case Instruction::Mul:
552    case Instruction::FMul:
553    case Instruction::UDiv:
554    case Instruction::SDiv:
555    case Instruction::FDiv:
556    case Instruction::URem:
557    case Instruction::SRem:
558    case Instruction::FRem:
559    case Instruction::Shl:
560    case Instruction::LShr:
561    case Instruction::AShr:
562    case Instruction::And:
563    case Instruction::Or :
564    case Instruction::Xor:
565      exp = create_expression(cast<BinaryOperator>(I));
566      break;
567    case Instruction::ICmp:
568    case Instruction::FCmp:
569      exp = create_expression(cast<CmpInst>(I));
570      break;
571    case Instruction::Trunc:
572    case Instruction::ZExt:
573    case Instruction::SExt:
574    case Instruction::FPToUI:
575    case Instruction::FPToSI:
576    case Instruction::UIToFP:
577    case Instruction::SIToFP:
578    case Instruction::FPTrunc:
579    case Instruction::FPExt:
580    case Instruction::PtrToInt:
581    case Instruction::IntToPtr:
582    case Instruction::BitCast:
583      exp = create_expression(cast<CastInst>(I));
584      break;
585    case Instruction::Select:
586      exp = create_expression(cast<SelectInst>(I));
587      break;
588    case Instruction::ExtractElement:
589      exp = create_expression(cast<ExtractElementInst>(I));
590      break;
591    case Instruction::InsertElement:
592      exp = create_expression(cast<InsertElementInst>(I));
593      break;
594    case Instruction::ShuffleVector:
595      exp = create_expression(cast<ShuffleVectorInst>(I));
596      break;
597    case Instruction::ExtractValue:
598      exp = create_expression(cast<ExtractValueInst>(I));
599      break;
600    case Instruction::InsertValue:
601      exp = create_expression(cast<InsertValueInst>(I));
602      break;
603    case Instruction::GetElementPtr:
604      exp = create_expression(cast<GetElementPtrInst>(I));
605      break;
606    default:
607      valueNumbering[V] = nextValueNumber;
608      return nextValueNumber++;
609  }
610
611  uint32_t& e = expressionNumbering[exp];
612  if (!e) e = nextValueNumber++;
613  valueNumbering[V] = e;
614  return e;
615}
616
617/// lookup - Returns the value number of the specified value. Fails if
618/// the value has not yet been numbered.
619uint32_t ValueTable::lookup(Value *V) const {
620  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
621  assert(VI != valueNumbering.end() && "Value not numbered?");
622  return VI->second;
623}
624
625/// clear - Remove all entries from the ValueTable
626void ValueTable::clear() {
627  valueNumbering.clear();
628  expressionNumbering.clear();
629  nextValueNumber = 1;
630}
631
632/// erase - Remove a value from the value numbering
633void ValueTable::erase(Value *V) {
634  valueNumbering.erase(V);
635}
636
637/// verifyRemoved - Verify that the value is removed from all internal data
638/// structures.
639void ValueTable::verifyRemoved(const Value *V) const {
640  for (DenseMap<Value*, uint32_t>::const_iterator
641         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
642    assert(I->first != V && "Inst still occurs in value numbering map!");
643  }
644}
645
646//===----------------------------------------------------------------------===//
647//                                GVN Pass
648//===----------------------------------------------------------------------===//
649
650namespace {
651  struct ValueNumberScope {
652    ValueNumberScope* parent;
653    DenseMap<uint32_t, Value*> table;
654
655    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
656  };
657}
658
659namespace {
660
661  class GVN : public FunctionPass {
662    bool runOnFunction(Function &F);
663  public:
664    static char ID; // Pass identification, replacement for typeid
665    explicit GVN(bool noloads = false)
666      : FunctionPass(ID), NoLoads(noloads), MD(0) { }
667
668  private:
669    bool NoLoads;
670    MemoryDependenceAnalysis *MD;
671    DominatorTree *DT;
672
673    ValueTable VN;
674    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
675
676    // List of critical edges to be split between iterations.
677    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
678
679    // This transformation requires dominator postdominator info
680    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
681      AU.addRequired<DominatorTree>();
682      if (!NoLoads)
683        AU.addRequired<MemoryDependenceAnalysis>();
684      AU.addRequired<AliasAnalysis>();
685
686      AU.addPreserved<DominatorTree>();
687      AU.addPreserved<AliasAnalysis>();
688    }
689
690    // Helper fuctions
691    // FIXME: eliminate or document these better
692    bool processLoad(LoadInst* L,
693                     SmallVectorImpl<Instruction*> &toErase);
694    bool processInstruction(Instruction *I,
695                            SmallVectorImpl<Instruction*> &toErase);
696    bool processNonLocalLoad(LoadInst* L,
697                             SmallVectorImpl<Instruction*> &toErase);
698    bool processBlock(BasicBlock *BB);
699    void dump(DenseMap<uint32_t, Value*>& d);
700    bool iterateOnFunction(Function &F);
701    Value *CollapsePhi(PHINode* p);
702    bool performPRE(Function& F);
703    Value *lookupNumber(BasicBlock *BB, uint32_t num);
704    void cleanupGlobalSets();
705    void verifyRemoved(const Instruction *I) const;
706    bool splitCriticalEdges();
707  };
708
709  char GVN::ID = 0;
710}
711
712// createGVNPass - The public interface to this file...
713FunctionPass *llvm::createGVNPass(bool NoLoads) {
714  return new GVN(NoLoads);
715}
716
717INITIALIZE_PASS(GVN, "gvn", "Global Value Numbering", false, false);
718
719void GVN::dump(DenseMap<uint32_t, Value*>& d) {
720  errs() << "{\n";
721  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
722       E = d.end(); I != E; ++I) {
723      errs() << I->first << "\n";
724      I->second->dump();
725  }
726  errs() << "}\n";
727}
728
729static bool isSafeReplacement(PHINode* p, Instruction *inst) {
730  if (!isa<PHINode>(inst))
731    return true;
732
733  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
734       UI != E; ++UI)
735    if (PHINode* use_phi = dyn_cast<PHINode>(*UI))
736      if (use_phi->getParent() == inst->getParent())
737        return false;
738
739  return true;
740}
741
742Value *GVN::CollapsePhi(PHINode *PN) {
743  Value *ConstVal = PN->hasConstantValue(DT);
744  if (!ConstVal) return 0;
745
746  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
747  if (!Inst)
748    return ConstVal;
749
750  if (DT->dominates(Inst, PN))
751    if (isSafeReplacement(PN, Inst))
752      return Inst;
753  return 0;
754}
755
756/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
757/// we're analyzing is fully available in the specified block.  As we go, keep
758/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
759/// map is actually a tri-state map with the following values:
760///   0) we know the block *is not* fully available.
761///   1) we know the block *is* fully available.
762///   2) we do not know whether the block is fully available or not, but we are
763///      currently speculating that it will be.
764///   3) we are speculating for this block and have used that to speculate for
765///      other blocks.
766static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
767                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
768  // Optimistically assume that the block is fully available and check to see
769  // if we already know about this block in one lookup.
770  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
771    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
772
773  // If the entry already existed for this block, return the precomputed value.
774  if (!IV.second) {
775    // If this is a speculative "available" value, mark it as being used for
776    // speculation of other blocks.
777    if (IV.first->second == 2)
778      IV.first->second = 3;
779    return IV.first->second != 0;
780  }
781
782  // Otherwise, see if it is fully available in all predecessors.
783  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
784
785  // If this block has no predecessors, it isn't live-in here.
786  if (PI == PE)
787    goto SpeculationFailure;
788
789  for (; PI != PE; ++PI)
790    // If the value isn't fully available in one of our predecessors, then it
791    // isn't fully available in this block either.  Undo our previous
792    // optimistic assumption and bail out.
793    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
794      goto SpeculationFailure;
795
796  return true;
797
798// SpeculationFailure - If we get here, we found out that this is not, after
799// all, a fully-available block.  We have a problem if we speculated on this and
800// used the speculation to mark other blocks as available.
801SpeculationFailure:
802  char &BBVal = FullyAvailableBlocks[BB];
803
804  // If we didn't speculate on this, just return with it set to false.
805  if (BBVal == 2) {
806    BBVal = 0;
807    return false;
808  }
809
810  // If we did speculate on this value, we could have blocks set to 1 that are
811  // incorrect.  Walk the (transitive) successors of this block and mark them as
812  // 0 if set to one.
813  SmallVector<BasicBlock*, 32> BBWorklist;
814  BBWorklist.push_back(BB);
815
816  do {
817    BasicBlock *Entry = BBWorklist.pop_back_val();
818    // Note that this sets blocks to 0 (unavailable) if they happen to not
819    // already be in FullyAvailableBlocks.  This is safe.
820    char &EntryVal = FullyAvailableBlocks[Entry];
821    if (EntryVal == 0) continue;  // Already unavailable.
822
823    // Mark as unavailable.
824    EntryVal = 0;
825
826    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
827      BBWorklist.push_back(*I);
828  } while (!BBWorklist.empty());
829
830  return false;
831}
832
833
834/// CanCoerceMustAliasedValueToLoad - Return true if
835/// CoerceAvailableValueToLoadType will succeed.
836static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
837                                            const Type *LoadTy,
838                                            const TargetData &TD) {
839  // If the loaded or stored value is an first class array or struct, don't try
840  // to transform them.  We need to be able to bitcast to integer.
841  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
842      StoredVal->getType()->isStructTy() ||
843      StoredVal->getType()->isArrayTy())
844    return false;
845
846  // The store has to be at least as big as the load.
847  if (TD.getTypeSizeInBits(StoredVal->getType()) <
848        TD.getTypeSizeInBits(LoadTy))
849    return false;
850
851  return true;
852}
853
854
855/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
856/// then a load from a must-aliased pointer of a different type, try to coerce
857/// the stored value.  LoadedTy is the type of the load we want to replace and
858/// InsertPt is the place to insert new instructions.
859///
860/// If we can't do it, return null.
861static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
862                                             const Type *LoadedTy,
863                                             Instruction *InsertPt,
864                                             const TargetData &TD) {
865  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
866    return 0;
867
868  const Type *StoredValTy = StoredVal->getType();
869
870  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
871  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
872
873  // If the store and reload are the same size, we can always reuse it.
874  if (StoreSize == LoadSize) {
875    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
876      // Pointer to Pointer -> use bitcast.
877      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
878    }
879
880    // Convert source pointers to integers, which can be bitcast.
881    if (StoredValTy->isPointerTy()) {
882      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
883      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
884    }
885
886    const Type *TypeToCastTo = LoadedTy;
887    if (TypeToCastTo->isPointerTy())
888      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
889
890    if (StoredValTy != TypeToCastTo)
891      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
892
893    // Cast to pointer if the load needs a pointer type.
894    if (LoadedTy->isPointerTy())
895      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
896
897    return StoredVal;
898  }
899
900  // If the loaded value is smaller than the available value, then we can
901  // extract out a piece from it.  If the available value is too small, then we
902  // can't do anything.
903  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
904
905  // Convert source pointers to integers, which can be manipulated.
906  if (StoredValTy->isPointerTy()) {
907    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
908    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
909  }
910
911  // Convert vectors and fp to integer, which can be manipulated.
912  if (!StoredValTy->isIntegerTy()) {
913    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
914    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
915  }
916
917  // If this is a big-endian system, we need to shift the value down to the low
918  // bits so that a truncate will work.
919  if (TD.isBigEndian()) {
920    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
921    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
922  }
923
924  // Truncate the integer to the right size now.
925  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
926  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
927
928  if (LoadedTy == NewIntTy)
929    return StoredVal;
930
931  // If the result is a pointer, inttoptr.
932  if (LoadedTy->isPointerTy())
933    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
934
935  // Otherwise, bitcast.
936  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
937}
938
939/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
940/// be expressed as a base pointer plus a constant offset.  Return the base and
941/// offset to the caller.
942static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
943                                        const TargetData &TD) {
944  Operator *PtrOp = dyn_cast<Operator>(Ptr);
945  if (PtrOp == 0) return Ptr;
946
947  // Just look through bitcasts.
948  if (PtrOp->getOpcode() == Instruction::BitCast)
949    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
950
951  // If this is a GEP with constant indices, we can look through it.
952  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
953  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
954
955  gep_type_iterator GTI = gep_type_begin(GEP);
956  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
957       ++I, ++GTI) {
958    ConstantInt *OpC = cast<ConstantInt>(*I);
959    if (OpC->isZero()) continue;
960
961    // Handle a struct and array indices which add their offset to the pointer.
962    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
963      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
964    } else {
965      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
966      Offset += OpC->getSExtValue()*Size;
967    }
968  }
969
970  // Re-sign extend from the pointer size if needed to get overflow edge cases
971  // right.
972  unsigned PtrSize = TD.getPointerSizeInBits();
973  if (PtrSize < 64)
974    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
975
976  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
977}
978
979
980/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
981/// memdep query of a load that ends up being a clobbering memory write (store,
982/// memset, memcpy, memmove).  This means that the write *may* provide bits used
983/// by the load but we can't be sure because the pointers don't mustalias.
984///
985/// Check this case to see if there is anything more we can do before we give
986/// up.  This returns -1 if we have to give up, or a byte number in the stored
987/// value of the piece that feeds the load.
988static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
989                                          Value *WritePtr,
990                                          uint64_t WriteSizeInBits,
991                                          const TargetData &TD) {
992  // If the loaded or stored value is an first class array or struct, don't try
993  // to transform them.  We need to be able to bitcast to integer.
994  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
995    return -1;
996
997  int64_t StoreOffset = 0, LoadOffset = 0;
998  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
999  Value *LoadBase =
1000    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1001  if (StoreBase != LoadBase)
1002    return -1;
1003
1004  // If the load and store are to the exact same address, they should have been
1005  // a must alias.  AA must have gotten confused.
1006  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1007  // to a load from the base of the memset.
1008#if 0
1009  if (LoadOffset == StoreOffset) {
1010    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1011    << "Base       = " << *StoreBase << "\n"
1012    << "Store Ptr  = " << *WritePtr << "\n"
1013    << "Store Offs = " << StoreOffset << "\n"
1014    << "Load Ptr   = " << *LoadPtr << "\n";
1015    abort();
1016  }
1017#endif
1018
1019  // If the load and store don't overlap at all, the store doesn't provide
1020  // anything to the load.  In this case, they really don't alias at all, AA
1021  // must have gotten confused.
1022  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1023  // remove this check, as it is duplicated with what we have below.
1024  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1025
1026  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1027    return -1;
1028  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1029  LoadSize >>= 3;
1030
1031
1032  bool isAAFailure = false;
1033  if (StoreOffset < LoadOffset)
1034    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1035  else
1036    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1037
1038  if (isAAFailure) {
1039#if 0
1040    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1041    << "Base       = " << *StoreBase << "\n"
1042    << "Store Ptr  = " << *WritePtr << "\n"
1043    << "Store Offs = " << StoreOffset << "\n"
1044    << "Load Ptr   = " << *LoadPtr << "\n";
1045    abort();
1046#endif
1047    return -1;
1048  }
1049
1050  // If the Load isn't completely contained within the stored bits, we don't
1051  // have all the bits to feed it.  We could do something crazy in the future
1052  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1053  // valuable.
1054  if (StoreOffset > LoadOffset ||
1055      StoreOffset+StoreSize < LoadOffset+LoadSize)
1056    return -1;
1057
1058  // Okay, we can do this transformation.  Return the number of bytes into the
1059  // store that the load is.
1060  return LoadOffset-StoreOffset;
1061}
1062
1063/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1064/// memdep query of a load that ends up being a clobbering store.
1065static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1066                                          StoreInst *DepSI,
1067                                          const TargetData &TD) {
1068  // Cannot handle reading from store of first-class aggregate yet.
1069  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1070      DepSI->getOperand(0)->getType()->isArrayTy())
1071    return -1;
1072
1073  Value *StorePtr = DepSI->getPointerOperand();
1074  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1075  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1076                                        StorePtr, StoreSize, TD);
1077}
1078
1079static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1080                                            MemIntrinsic *MI,
1081                                            const TargetData &TD) {
1082  // If the mem operation is a non-constant size, we can't handle it.
1083  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1084  if (SizeCst == 0) return -1;
1085  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1086
1087  // If this is memset, we just need to see if the offset is valid in the size
1088  // of the memset..
1089  if (MI->getIntrinsicID() == Intrinsic::memset)
1090    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1091                                          MemSizeInBits, TD);
1092
1093  // If we have a memcpy/memmove, the only case we can handle is if this is a
1094  // copy from constant memory.  In that case, we can read directly from the
1095  // constant memory.
1096  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1097
1098  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1099  if (Src == 0) return -1;
1100
1101  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1102  if (GV == 0 || !GV->isConstant()) return -1;
1103
1104  // See if the access is within the bounds of the transfer.
1105  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1106                                              MI->getDest(), MemSizeInBits, TD);
1107  if (Offset == -1)
1108    return Offset;
1109
1110  // Otherwise, see if we can constant fold a load from the constant with the
1111  // offset applied as appropriate.
1112  Src = ConstantExpr::getBitCast(Src,
1113                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1114  Constant *OffsetCst =
1115    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1116  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1117  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1118  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1119    return Offset;
1120  return -1;
1121}
1122
1123
1124/// GetStoreValueForLoad - This function is called when we have a
1125/// memdep query of a load that ends up being a clobbering store.  This means
1126/// that the store *may* provide bits used by the load but we can't be sure
1127/// because the pointers don't mustalias.  Check this case to see if there is
1128/// anything more we can do before we give up.
1129static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1130                                   const Type *LoadTy,
1131                                   Instruction *InsertPt, const TargetData &TD){
1132  LLVMContext &Ctx = SrcVal->getType()->getContext();
1133
1134  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1135  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1136
1137  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1138
1139  // Compute which bits of the stored value are being used by the load.  Convert
1140  // to an integer type to start with.
1141  if (SrcVal->getType()->isPointerTy())
1142    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1143  if (!SrcVal->getType()->isIntegerTy())
1144    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1145                                   "tmp");
1146
1147  // Shift the bits to the least significant depending on endianness.
1148  unsigned ShiftAmt;
1149  if (TD.isLittleEndian())
1150    ShiftAmt = Offset*8;
1151  else
1152    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1153
1154  if (ShiftAmt)
1155    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1156
1157  if (LoadSize != StoreSize)
1158    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1159                                 "tmp");
1160
1161  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1162}
1163
1164/// GetMemInstValueForLoad - This function is called when we have a
1165/// memdep query of a load that ends up being a clobbering mem intrinsic.
1166static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1167                                     const Type *LoadTy, Instruction *InsertPt,
1168                                     const TargetData &TD){
1169  LLVMContext &Ctx = LoadTy->getContext();
1170  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1171
1172  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1173
1174  // We know that this method is only called when the mem transfer fully
1175  // provides the bits for the load.
1176  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1177    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1178    // independently of what the offset is.
1179    Value *Val = MSI->getValue();
1180    if (LoadSize != 1)
1181      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1182
1183    Value *OneElt = Val;
1184
1185    // Splat the value out to the right number of bits.
1186    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1187      // If we can double the number of bytes set, do it.
1188      if (NumBytesSet*2 <= LoadSize) {
1189        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1190        Val = Builder.CreateOr(Val, ShVal);
1191        NumBytesSet <<= 1;
1192        continue;
1193      }
1194
1195      // Otherwise insert one byte at a time.
1196      Value *ShVal = Builder.CreateShl(Val, 1*8);
1197      Val = Builder.CreateOr(OneElt, ShVal);
1198      ++NumBytesSet;
1199    }
1200
1201    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1202  }
1203
1204  // Otherwise, this is a memcpy/memmove from a constant global.
1205  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1206  Constant *Src = cast<Constant>(MTI->getSource());
1207
1208  // Otherwise, see if we can constant fold a load from the constant with the
1209  // offset applied as appropriate.
1210  Src = ConstantExpr::getBitCast(Src,
1211                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1212  Constant *OffsetCst =
1213  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1214  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1215  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1216  return ConstantFoldLoadFromConstPtr(Src, &TD);
1217}
1218
1219namespace {
1220
1221struct AvailableValueInBlock {
1222  /// BB - The basic block in question.
1223  BasicBlock *BB;
1224  enum ValType {
1225    SimpleVal,  // A simple offsetted value that is accessed.
1226    MemIntrin   // A memory intrinsic which is loaded from.
1227  };
1228
1229  /// V - The value that is live out of the block.
1230  PointerIntPair<Value *, 1, ValType> Val;
1231
1232  /// Offset - The byte offset in Val that is interesting for the load query.
1233  unsigned Offset;
1234
1235  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1236                                   unsigned Offset = 0) {
1237    AvailableValueInBlock Res;
1238    Res.BB = BB;
1239    Res.Val.setPointer(V);
1240    Res.Val.setInt(SimpleVal);
1241    Res.Offset = Offset;
1242    return Res;
1243  }
1244
1245  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1246                                     unsigned Offset = 0) {
1247    AvailableValueInBlock Res;
1248    Res.BB = BB;
1249    Res.Val.setPointer(MI);
1250    Res.Val.setInt(MemIntrin);
1251    Res.Offset = Offset;
1252    return Res;
1253  }
1254
1255  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1256  Value *getSimpleValue() const {
1257    assert(isSimpleValue() && "Wrong accessor");
1258    return Val.getPointer();
1259  }
1260
1261  MemIntrinsic *getMemIntrinValue() const {
1262    assert(!isSimpleValue() && "Wrong accessor");
1263    return cast<MemIntrinsic>(Val.getPointer());
1264  }
1265
1266  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1267  /// defined here to the specified type.  This handles various coercion cases.
1268  Value *MaterializeAdjustedValue(const Type *LoadTy,
1269                                  const TargetData *TD) const {
1270    Value *Res;
1271    if (isSimpleValue()) {
1272      Res = getSimpleValue();
1273      if (Res->getType() != LoadTy) {
1274        assert(TD && "Need target data to handle type mismatch case");
1275        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1276                                   *TD);
1277
1278        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1279                     << *getSimpleValue() << '\n'
1280                     << *Res << '\n' << "\n\n\n");
1281      }
1282    } else {
1283      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1284                                   LoadTy, BB->getTerminator(), *TD);
1285      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1286                   << "  " << *getMemIntrinValue() << '\n'
1287                   << *Res << '\n' << "\n\n\n");
1288    }
1289    return Res;
1290  }
1291};
1292
1293}
1294
1295/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1296/// construct SSA form, allowing us to eliminate LI.  This returns the value
1297/// that should be used at LI's definition site.
1298static Value *ConstructSSAForLoadSet(LoadInst *LI,
1299                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1300                                     const TargetData *TD,
1301                                     const DominatorTree &DT,
1302                                     AliasAnalysis *AA) {
1303  // Check for the fully redundant, dominating load case.  In this case, we can
1304  // just use the dominating value directly.
1305  if (ValuesPerBlock.size() == 1 &&
1306      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1307    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1308
1309  // Otherwise, we have to construct SSA form.
1310  SmallVector<PHINode*, 8> NewPHIs;
1311  SSAUpdater SSAUpdate(&NewPHIs);
1312  SSAUpdate.Initialize(LI->getType(), LI->getName());
1313
1314  const Type *LoadTy = LI->getType();
1315
1316  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1317    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1318    BasicBlock *BB = AV.BB;
1319
1320    if (SSAUpdate.HasValueForBlock(BB))
1321      continue;
1322
1323    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1324  }
1325
1326  // Perform PHI construction.
1327  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1328
1329  // If new PHI nodes were created, notify alias analysis.
1330  if (V->getType()->isPointerTy())
1331    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1332      AA->copyValue(LI, NewPHIs[i]);
1333
1334  return V;
1335}
1336
1337static bool isLifetimeStart(const Instruction *Inst) {
1338  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1339    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1340  return false;
1341}
1342
1343/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1344/// non-local by performing PHI construction.
1345bool GVN::processNonLocalLoad(LoadInst *LI,
1346                              SmallVectorImpl<Instruction*> &toErase) {
1347  // Find the non-local dependencies of the load.
1348  SmallVector<NonLocalDepResult, 64> Deps;
1349  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1350                                   Deps);
1351  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1352  //             << Deps.size() << *LI << '\n');
1353
1354  // If we had to process more than one hundred blocks to find the
1355  // dependencies, this load isn't worth worrying about.  Optimizing
1356  // it will be too expensive.
1357  if (Deps.size() > 100)
1358    return false;
1359
1360  // If we had a phi translation failure, we'll have a single entry which is a
1361  // clobber in the current block.  Reject this early.
1362  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1363    DEBUG(
1364      dbgs() << "GVN: non-local load ";
1365      WriteAsOperand(dbgs(), LI);
1366      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1367    );
1368    return false;
1369  }
1370
1371  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1372  // where we have a value available in repl, also keep track of whether we see
1373  // dependencies that produce an unknown value for the load (such as a call
1374  // that could potentially clobber the load).
1375  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1376  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1377
1378  const TargetData *TD = 0;
1379
1380  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1381    BasicBlock *DepBB = Deps[i].getBB();
1382    MemDepResult DepInfo = Deps[i].getResult();
1383
1384    if (DepInfo.isClobber()) {
1385      // The address being loaded in this non-local block may not be the same as
1386      // the pointer operand of the load if PHI translation occurs.  Make sure
1387      // to consider the right address.
1388      Value *Address = Deps[i].getAddress();
1389
1390      // If the dependence is to a store that writes to a superset of the bits
1391      // read by the load, we can extract the bits we need for the load from the
1392      // stored value.
1393      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1394        if (TD == 0)
1395          TD = getAnalysisIfAvailable<TargetData>();
1396        if (TD && Address) {
1397          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1398                                                      DepSI, *TD);
1399          if (Offset != -1) {
1400            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1401                                                           DepSI->getOperand(0),
1402                                                                Offset));
1403            continue;
1404          }
1405        }
1406      }
1407
1408      // If the clobbering value is a memset/memcpy/memmove, see if we can
1409      // forward a value on from it.
1410      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1411        if (TD == 0)
1412          TD = getAnalysisIfAvailable<TargetData>();
1413        if (TD && Address) {
1414          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1415                                                        DepMI, *TD);
1416          if (Offset != -1) {
1417            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1418                                                                  Offset));
1419            continue;
1420          }
1421        }
1422      }
1423
1424      UnavailableBlocks.push_back(DepBB);
1425      continue;
1426    }
1427
1428    Instruction *DepInst = DepInfo.getInst();
1429
1430    // Loading the allocation -> undef.
1431    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1432        // Loading immediately after lifetime begin -> undef.
1433        isLifetimeStart(DepInst)) {
1434      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1435                                             UndefValue::get(LI->getType())));
1436      continue;
1437    }
1438
1439    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1440      // Reject loads and stores that are to the same address but are of
1441      // different types if we have to.
1442      if (S->getOperand(0)->getType() != LI->getType()) {
1443        if (TD == 0)
1444          TD = getAnalysisIfAvailable<TargetData>();
1445
1446        // If the stored value is larger or equal to the loaded value, we can
1447        // reuse it.
1448        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1449                                                        LI->getType(), *TD)) {
1450          UnavailableBlocks.push_back(DepBB);
1451          continue;
1452        }
1453      }
1454
1455      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1456                                                          S->getOperand(0)));
1457      continue;
1458    }
1459
1460    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1461      // If the types mismatch and we can't handle it, reject reuse of the load.
1462      if (LD->getType() != LI->getType()) {
1463        if (TD == 0)
1464          TD = getAnalysisIfAvailable<TargetData>();
1465
1466        // If the stored value is larger or equal to the loaded value, we can
1467        // reuse it.
1468        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1469          UnavailableBlocks.push_back(DepBB);
1470          continue;
1471        }
1472      }
1473      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1474      continue;
1475    }
1476
1477    UnavailableBlocks.push_back(DepBB);
1478    continue;
1479  }
1480
1481  // If we have no predecessors that produce a known value for this load, exit
1482  // early.
1483  if (ValuesPerBlock.empty()) return false;
1484
1485  // If all of the instructions we depend on produce a known value for this
1486  // load, then it is fully redundant and we can use PHI insertion to compute
1487  // its value.  Insert PHIs and remove the fully redundant value now.
1488  if (UnavailableBlocks.empty()) {
1489    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1490
1491    // Perform PHI construction.
1492    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1493                                      VN.getAliasAnalysis());
1494    LI->replaceAllUsesWith(V);
1495
1496    if (isa<PHINode>(V))
1497      V->takeName(LI);
1498    if (V->getType()->isPointerTy())
1499      MD->invalidateCachedPointerInfo(V);
1500    VN.erase(LI);
1501    toErase.push_back(LI);
1502    ++NumGVNLoad;
1503    return true;
1504  }
1505
1506  if (!EnablePRE || !EnableLoadPRE)
1507    return false;
1508
1509  // Okay, we have *some* definitions of the value.  This means that the value
1510  // is available in some of our (transitive) predecessors.  Lets think about
1511  // doing PRE of this load.  This will involve inserting a new load into the
1512  // predecessor when it's not available.  We could do this in general, but
1513  // prefer to not increase code size.  As such, we only do this when we know
1514  // that we only have to insert *one* load (which means we're basically moving
1515  // the load, not inserting a new one).
1516
1517  SmallPtrSet<BasicBlock *, 4> Blockers;
1518  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1519    Blockers.insert(UnavailableBlocks[i]);
1520
1521  // Lets find first basic block with more than one predecessor.  Walk backwards
1522  // through predecessors if needed.
1523  BasicBlock *LoadBB = LI->getParent();
1524  BasicBlock *TmpBB = LoadBB;
1525
1526  bool isSinglePred = false;
1527  bool allSingleSucc = true;
1528  while (TmpBB->getSinglePredecessor()) {
1529    isSinglePred = true;
1530    TmpBB = TmpBB->getSinglePredecessor();
1531    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1532      return false;
1533    if (Blockers.count(TmpBB))
1534      return false;
1535
1536    // If any of these blocks has more than one successor (i.e. if the edge we
1537    // just traversed was critical), then there are other paths through this
1538    // block along which the load may not be anticipated.  Hoisting the load
1539    // above this block would be adding the load to execution paths along
1540    // which it was not previously executed.
1541    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1542      return false;
1543  }
1544
1545  assert(TmpBB);
1546  LoadBB = TmpBB;
1547
1548  // FIXME: It is extremely unclear what this loop is doing, other than
1549  // artificially restricting loadpre.
1550  if (isSinglePred) {
1551    bool isHot = false;
1552    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1553      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1554      if (AV.isSimpleValue())
1555        // "Hot" Instruction is in some loop (because it dominates its dep.
1556        // instruction).
1557        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1558          if (DT->dominates(LI, I)) {
1559            isHot = true;
1560            break;
1561          }
1562    }
1563
1564    // We are interested only in "hot" instructions. We don't want to do any
1565    // mis-optimizations here.
1566    if (!isHot)
1567      return false;
1568  }
1569
1570  // Check to see how many predecessors have the loaded value fully
1571  // available.
1572  DenseMap<BasicBlock*, Value*> PredLoads;
1573  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1574  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1575    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1576  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1577    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1578
1579  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1580  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1581       PI != E; ++PI) {
1582    BasicBlock *Pred = *PI;
1583    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1584      continue;
1585    }
1586    PredLoads[Pred] = 0;
1587
1588    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1589      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1590        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1591              << Pred->getName() << "': " << *LI << '\n');
1592        return false;
1593      }
1594      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1595      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1596    }
1597  }
1598  if (!NeedToSplit.empty()) {
1599    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1600    return false;
1601  }
1602
1603  // Decide whether PRE is profitable for this load.
1604  unsigned NumUnavailablePreds = PredLoads.size();
1605  assert(NumUnavailablePreds != 0 &&
1606         "Fully available value should be eliminated above!");
1607  if (!EnableFullLoadPRE) {
1608    // If this load is unavailable in multiple predecessors, reject it.
1609    // FIXME: If we could restructure the CFG, we could make a common pred with
1610    // all the preds that don't have an available LI and insert a new load into
1611    // that one block.
1612    if (NumUnavailablePreds != 1)
1613      return false;
1614  }
1615
1616  // Check if the load can safely be moved to all the unavailable predecessors.
1617  bool CanDoPRE = true;
1618  SmallVector<Instruction*, 8> NewInsts;
1619  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1620         E = PredLoads.end(); I != E; ++I) {
1621    BasicBlock *UnavailablePred = I->first;
1622
1623    // Do PHI translation to get its value in the predecessor if necessary.  The
1624    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1625
1626    // If all preds have a single successor, then we know it is safe to insert
1627    // the load on the pred (?!?), so we can insert code to materialize the
1628    // pointer if it is not available.
1629    PHITransAddr Address(LI->getOperand(0), TD);
1630    Value *LoadPtr = 0;
1631    if (allSingleSucc) {
1632      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1633                                                  *DT, NewInsts);
1634    } else {
1635      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1636      LoadPtr = Address.getAddr();
1637    }
1638
1639    // If we couldn't find or insert a computation of this phi translated value,
1640    // we fail PRE.
1641    if (LoadPtr == 0) {
1642      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1643            << *LI->getOperand(0) << "\n");
1644      CanDoPRE = false;
1645      break;
1646    }
1647
1648    // Make sure it is valid to move this load here.  We have to watch out for:
1649    //  @1 = getelementptr (i8* p, ...
1650    //  test p and branch if == 0
1651    //  load @1
1652    // It is valid to have the getelementptr before the test, even if p can be 0,
1653    // as getelementptr only does address arithmetic.
1654    // If we are not pushing the value through any multiple-successor blocks
1655    // we do not have this case.  Otherwise, check that the load is safe to
1656    // put anywhere; this can be improved, but should be conservatively safe.
1657    if (!allSingleSucc &&
1658        // FIXME: REEVALUTE THIS.
1659        !isSafeToLoadUnconditionally(LoadPtr,
1660                                     UnavailablePred->getTerminator(),
1661                                     LI->getAlignment(), TD)) {
1662      CanDoPRE = false;
1663      break;
1664    }
1665
1666    I->second = LoadPtr;
1667  }
1668
1669  if (!CanDoPRE) {
1670    while (!NewInsts.empty())
1671      NewInsts.pop_back_val()->eraseFromParent();
1672    return false;
1673  }
1674
1675  // Okay, we can eliminate this load by inserting a reload in the predecessor
1676  // and using PHI construction to get the value in the other predecessors, do
1677  // it.
1678  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1679  DEBUG(if (!NewInsts.empty())
1680          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1681                 << *NewInsts.back() << '\n');
1682
1683  // Assign value numbers to the new instructions.
1684  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1685    // FIXME: We really _ought_ to insert these value numbers into their
1686    // parent's availability map.  However, in doing so, we risk getting into
1687    // ordering issues.  If a block hasn't been processed yet, we would be
1688    // marking a value as AVAIL-IN, which isn't what we intend.
1689    VN.lookup_or_add(NewInsts[i]);
1690  }
1691
1692  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1693         E = PredLoads.end(); I != E; ++I) {
1694    BasicBlock *UnavailablePred = I->first;
1695    Value *LoadPtr = I->second;
1696
1697    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1698                                  LI->getAlignment(),
1699                                  UnavailablePred->getTerminator());
1700
1701    // Add the newly created load.
1702    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1703                                                        NewLoad));
1704    MD->invalidateCachedPointerInfo(LoadPtr);
1705    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1706  }
1707
1708  // Perform PHI construction.
1709  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1710                                    VN.getAliasAnalysis());
1711  LI->replaceAllUsesWith(V);
1712  if (isa<PHINode>(V))
1713    V->takeName(LI);
1714  if (V->getType()->isPointerTy())
1715    MD->invalidateCachedPointerInfo(V);
1716  VN.erase(LI);
1717  toErase.push_back(LI);
1718  ++NumPRELoad;
1719  return true;
1720}
1721
1722/// processLoad - Attempt to eliminate a load, first by eliminating it
1723/// locally, and then attempting non-local elimination if that fails.
1724bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1725  if (!MD)
1726    return false;
1727
1728  if (L->isVolatile())
1729    return false;
1730
1731  // ... to a pointer that has been loaded from before...
1732  MemDepResult Dep = MD->getDependency(L);
1733
1734  // If the value isn't available, don't do anything!
1735  if (Dep.isClobber()) {
1736    // Check to see if we have something like this:
1737    //   store i32 123, i32* %P
1738    //   %A = bitcast i32* %P to i8*
1739    //   %B = gep i8* %A, i32 1
1740    //   %C = load i8* %B
1741    //
1742    // We could do that by recognizing if the clobber instructions are obviously
1743    // a common base + constant offset, and if the previous store (or memset)
1744    // completely covers this load.  This sort of thing can happen in bitfield
1745    // access code.
1746    Value *AvailVal = 0;
1747    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1748      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1749        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1750                                                    L->getPointerOperand(),
1751                                                    DepSI, *TD);
1752        if (Offset != -1)
1753          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1754                                          L->getType(), L, *TD);
1755      }
1756
1757    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1758    // a value on from it.
1759    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1760      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1761        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1762                                                      L->getPointerOperand(),
1763                                                      DepMI, *TD);
1764        if (Offset != -1)
1765          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1766      }
1767    }
1768
1769    if (AvailVal) {
1770      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1771            << *AvailVal << '\n' << *L << "\n\n\n");
1772
1773      // Replace the load!
1774      L->replaceAllUsesWith(AvailVal);
1775      if (AvailVal->getType()->isPointerTy())
1776        MD->invalidateCachedPointerInfo(AvailVal);
1777      VN.erase(L);
1778      toErase.push_back(L);
1779      ++NumGVNLoad;
1780      return true;
1781    }
1782
1783    DEBUG(
1784      // fast print dep, using operator<< on instruction would be too slow
1785      dbgs() << "GVN: load ";
1786      WriteAsOperand(dbgs(), L);
1787      Instruction *I = Dep.getInst();
1788      dbgs() << " is clobbered by " << *I << '\n';
1789    );
1790    return false;
1791  }
1792
1793  // If it is defined in another block, try harder.
1794  if (Dep.isNonLocal())
1795    return processNonLocalLoad(L, toErase);
1796
1797  Instruction *DepInst = Dep.getInst();
1798  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1799    Value *StoredVal = DepSI->getOperand(0);
1800
1801    // The store and load are to a must-aliased pointer, but they may not
1802    // actually have the same type.  See if we know how to reuse the stored
1803    // value (depending on its type).
1804    const TargetData *TD = 0;
1805    if (StoredVal->getType() != L->getType()) {
1806      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1807        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1808                                                   L, *TD);
1809        if (StoredVal == 0)
1810          return false;
1811
1812        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1813                     << '\n' << *L << "\n\n\n");
1814      }
1815      else
1816        return false;
1817    }
1818
1819    // Remove it!
1820    L->replaceAllUsesWith(StoredVal);
1821    if (StoredVal->getType()->isPointerTy())
1822      MD->invalidateCachedPointerInfo(StoredVal);
1823    VN.erase(L);
1824    toErase.push_back(L);
1825    ++NumGVNLoad;
1826    return true;
1827  }
1828
1829  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1830    Value *AvailableVal = DepLI;
1831
1832    // The loads are of a must-aliased pointer, but they may not actually have
1833    // the same type.  See if we know how to reuse the previously loaded value
1834    // (depending on its type).
1835    const TargetData *TD = 0;
1836    if (DepLI->getType() != L->getType()) {
1837      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1838        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1839        if (AvailableVal == 0)
1840          return false;
1841
1842        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1843                     << "\n" << *L << "\n\n\n");
1844      }
1845      else
1846        return false;
1847    }
1848
1849    // Remove it!
1850    L->replaceAllUsesWith(AvailableVal);
1851    if (DepLI->getType()->isPointerTy())
1852      MD->invalidateCachedPointerInfo(DepLI);
1853    VN.erase(L);
1854    toErase.push_back(L);
1855    ++NumGVNLoad;
1856    return true;
1857  }
1858
1859  // If this load really doesn't depend on anything, then we must be loading an
1860  // undef value.  This can happen when loading for a fresh allocation with no
1861  // intervening stores, for example.
1862  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1863    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1864    VN.erase(L);
1865    toErase.push_back(L);
1866    ++NumGVNLoad;
1867    return true;
1868  }
1869
1870  // If this load occurs either right after a lifetime begin,
1871  // then the loaded value is undefined.
1872  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1873    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1874      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1875      VN.erase(L);
1876      toErase.push_back(L);
1877      ++NumGVNLoad;
1878      return true;
1879    }
1880  }
1881
1882  return false;
1883}
1884
1885Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1886  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1887  if (I == localAvail.end())
1888    return 0;
1889
1890  ValueNumberScope *Locals = I->second;
1891  while (Locals) {
1892    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1893    if (I != Locals->table.end())
1894      return I->second;
1895    Locals = Locals->parent;
1896  }
1897
1898  return 0;
1899}
1900
1901
1902/// processInstruction - When calculating availability, handle an instruction
1903/// by inserting it into the appropriate sets
1904bool GVN::processInstruction(Instruction *I,
1905                             SmallVectorImpl<Instruction*> &toErase) {
1906  // Ignore dbg info intrinsics.
1907  if (isa<DbgInfoIntrinsic>(I))
1908    return false;
1909
1910  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1911    bool Changed = processLoad(LI, toErase);
1912
1913    if (!Changed) {
1914      unsigned Num = VN.lookup_or_add(LI);
1915      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1916    }
1917
1918    return Changed;
1919  }
1920
1921  uint32_t NextNum = VN.getNextUnusedValueNumber();
1922  unsigned Num = VN.lookup_or_add(I);
1923
1924  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1925    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1926
1927    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1928      return false;
1929
1930    Value *BranchCond = BI->getCondition();
1931    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1932
1933    BasicBlock *TrueSucc = BI->getSuccessor(0);
1934    BasicBlock *FalseSucc = BI->getSuccessor(1);
1935
1936    if (TrueSucc->getSinglePredecessor())
1937      localAvail[TrueSucc]->table[CondVN] =
1938        ConstantInt::getTrue(TrueSucc->getContext());
1939    if (FalseSucc->getSinglePredecessor())
1940      localAvail[FalseSucc]->table[CondVN] =
1941        ConstantInt::getFalse(TrueSucc->getContext());
1942
1943    return false;
1944
1945  // Allocations are always uniquely numbered, so we can save time and memory
1946  // by fast failing them.
1947  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1948    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1949    return false;
1950  }
1951
1952  // Collapse PHI nodes
1953  if (PHINode* p = dyn_cast<PHINode>(I)) {
1954    Value *constVal = CollapsePhi(p);
1955
1956    if (constVal) {
1957      p->replaceAllUsesWith(constVal);
1958      if (MD && constVal->getType()->isPointerTy())
1959        MD->invalidateCachedPointerInfo(constVal);
1960      VN.erase(p);
1961
1962      toErase.push_back(p);
1963    } else {
1964      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1965    }
1966
1967  // If the number we were assigned was a brand new VN, then we don't
1968  // need to do a lookup to see if the number already exists
1969  // somewhere in the domtree: it can't!
1970  } else if (Num == NextNum) {
1971    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1972
1973  // Perform fast-path value-number based elimination of values inherited from
1974  // dominators.
1975  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1976    // Remove it!
1977    VN.erase(I);
1978    I->replaceAllUsesWith(repl);
1979    if (MD && repl->getType()->isPointerTy())
1980      MD->invalidateCachedPointerInfo(repl);
1981    toErase.push_back(I);
1982    return true;
1983
1984  } else {
1985    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1986  }
1987
1988  return false;
1989}
1990
1991/// runOnFunction - This is the main transformation entry point for a function.
1992bool GVN::runOnFunction(Function& F) {
1993  if (!NoLoads)
1994    MD = &getAnalysis<MemoryDependenceAnalysis>();
1995  DT = &getAnalysis<DominatorTree>();
1996  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1997  VN.setMemDep(MD);
1998  VN.setDomTree(DT);
1999
2000  bool Changed = false;
2001  bool ShouldContinue = true;
2002
2003  // Merge unconditional branches, allowing PRE to catch more
2004  // optimization opportunities.
2005  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2006    BasicBlock *BB = FI;
2007    ++FI;
2008    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2009    if (removedBlock) ++NumGVNBlocks;
2010
2011    Changed |= removedBlock;
2012  }
2013
2014  unsigned Iteration = 0;
2015
2016  while (ShouldContinue) {
2017    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2018    ShouldContinue = iterateOnFunction(F);
2019    if (splitCriticalEdges())
2020      ShouldContinue = true;
2021    Changed |= ShouldContinue;
2022    ++Iteration;
2023  }
2024
2025  if (EnablePRE) {
2026    bool PREChanged = true;
2027    while (PREChanged) {
2028      PREChanged = performPRE(F);
2029      Changed |= PREChanged;
2030    }
2031  }
2032  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2033  // computations into blocks where they become fully redundant.  Note that
2034  // we can't do this until PRE's critical edge splitting updates memdep.
2035  // Actually, when this happens, we should just fully integrate PRE into GVN.
2036
2037  cleanupGlobalSets();
2038
2039  return Changed;
2040}
2041
2042
2043bool GVN::processBlock(BasicBlock *BB) {
2044  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2045  // incrementing BI before processing an instruction).
2046  SmallVector<Instruction*, 8> toErase;
2047  bool ChangedFunction = false;
2048
2049  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2050       BI != BE;) {
2051    ChangedFunction |= processInstruction(BI, toErase);
2052    if (toErase.empty()) {
2053      ++BI;
2054      continue;
2055    }
2056
2057    // If we need some instructions deleted, do it now.
2058    NumGVNInstr += toErase.size();
2059
2060    // Avoid iterator invalidation.
2061    bool AtStart = BI == BB->begin();
2062    if (!AtStart)
2063      --BI;
2064
2065    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2066         E = toErase.end(); I != E; ++I) {
2067      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2068      if (MD) MD->removeInstruction(*I);
2069      (*I)->eraseFromParent();
2070      DEBUG(verifyRemoved(*I));
2071    }
2072    toErase.clear();
2073
2074    if (AtStart)
2075      BI = BB->begin();
2076    else
2077      ++BI;
2078  }
2079
2080  return ChangedFunction;
2081}
2082
2083/// performPRE - Perform a purely local form of PRE that looks for diamond
2084/// control flow patterns and attempts to perform simple PRE at the join point.
2085bool GVN::performPRE(Function &F) {
2086  bool Changed = false;
2087  DenseMap<BasicBlock*, Value*> predMap;
2088  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2089       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2090    BasicBlock *CurrentBlock = *DI;
2091
2092    // Nothing to PRE in the entry block.
2093    if (CurrentBlock == &F.getEntryBlock()) continue;
2094
2095    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2096         BE = CurrentBlock->end(); BI != BE; ) {
2097      Instruction *CurInst = BI++;
2098
2099      if (isa<AllocaInst>(CurInst) ||
2100          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2101          CurInst->getType()->isVoidTy() ||
2102          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2103          isa<DbgInfoIntrinsic>(CurInst))
2104        continue;
2105
2106      // We don't currently value number ANY inline asm calls.
2107      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2108        if (CallI->isInlineAsm())
2109          continue;
2110
2111      uint32_t ValNo = VN.lookup(CurInst);
2112
2113      // Look for the predecessors for PRE opportunities.  We're
2114      // only trying to solve the basic diamond case, where
2115      // a value is computed in the successor and one predecessor,
2116      // but not the other.  We also explicitly disallow cases
2117      // where the successor is its own predecessor, because they're
2118      // more complicated to get right.
2119      unsigned NumWith = 0;
2120      unsigned NumWithout = 0;
2121      BasicBlock *PREPred = 0;
2122      predMap.clear();
2123
2124      for (pred_iterator PI = pred_begin(CurrentBlock),
2125           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2126        BasicBlock *P = *PI;
2127        // We're not interested in PRE where the block is its
2128        // own predecessor, or in blocks with predecessors
2129        // that are not reachable.
2130        if (P == CurrentBlock) {
2131          NumWithout = 2;
2132          break;
2133        } else if (!localAvail.count(P))  {
2134          NumWithout = 2;
2135          break;
2136        }
2137
2138        DenseMap<uint32_t, Value*>::iterator predV =
2139                                            localAvail[P]->table.find(ValNo);
2140        if (predV == localAvail[P]->table.end()) {
2141          PREPred = P;
2142          ++NumWithout;
2143        } else if (predV->second == CurInst) {
2144          NumWithout = 2;
2145        } else {
2146          predMap[P] = predV->second;
2147          ++NumWith;
2148        }
2149      }
2150
2151      // Don't do PRE when it might increase code size, i.e. when
2152      // we would need to insert instructions in more than one pred.
2153      if (NumWithout != 1 || NumWith == 0)
2154        continue;
2155
2156      // Don't do PRE across indirect branch.
2157      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2158        continue;
2159
2160      // We can't do PRE safely on a critical edge, so instead we schedule
2161      // the edge to be split and perform the PRE the next time we iterate
2162      // on the function.
2163      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2164      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2165        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2166        continue;
2167      }
2168
2169      // Instantiate the expression in the predecessor that lacked it.
2170      // Because we are going top-down through the block, all value numbers
2171      // will be available in the predecessor by the time we need them.  Any
2172      // that weren't originally present will have been instantiated earlier
2173      // in this loop.
2174      Instruction *PREInstr = CurInst->clone();
2175      bool success = true;
2176      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2177        Value *Op = PREInstr->getOperand(i);
2178        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2179          continue;
2180
2181        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2182          PREInstr->setOperand(i, V);
2183        } else {
2184          success = false;
2185          break;
2186        }
2187      }
2188
2189      // Fail out if we encounter an operand that is not available in
2190      // the PRE predecessor.  This is typically because of loads which
2191      // are not value numbered precisely.
2192      if (!success) {
2193        delete PREInstr;
2194        DEBUG(verifyRemoved(PREInstr));
2195        continue;
2196      }
2197
2198      PREInstr->insertBefore(PREPred->getTerminator());
2199      PREInstr->setName(CurInst->getName() + ".pre");
2200      predMap[PREPred] = PREInstr;
2201      VN.add(PREInstr, ValNo);
2202      ++NumGVNPRE;
2203
2204      // Update the availability map to include the new instruction.
2205      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2206
2207      // Create a PHI to make the value available in this block.
2208      PHINode* Phi = PHINode::Create(CurInst->getType(),
2209                                     CurInst->getName() + ".pre-phi",
2210                                     CurrentBlock->begin());
2211      for (pred_iterator PI = pred_begin(CurrentBlock),
2212           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2213        BasicBlock *P = *PI;
2214        Phi->addIncoming(predMap[P], P);
2215      }
2216
2217      VN.add(Phi, ValNo);
2218      localAvail[CurrentBlock]->table[ValNo] = Phi;
2219
2220      CurInst->replaceAllUsesWith(Phi);
2221      if (MD && Phi->getType()->isPointerTy())
2222        MD->invalidateCachedPointerInfo(Phi);
2223      VN.erase(CurInst);
2224
2225      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2226      if (MD) MD->removeInstruction(CurInst);
2227      CurInst->eraseFromParent();
2228      DEBUG(verifyRemoved(CurInst));
2229      Changed = true;
2230    }
2231  }
2232
2233  if (splitCriticalEdges())
2234    Changed = true;
2235
2236  return Changed;
2237}
2238
2239/// splitCriticalEdges - Split critical edges found during the previous
2240/// iteration that may enable further optimization.
2241bool GVN::splitCriticalEdges() {
2242  if (toSplit.empty())
2243    return false;
2244  do {
2245    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2246    SplitCriticalEdge(Edge.first, Edge.second, this);
2247  } while (!toSplit.empty());
2248  if (MD) MD->invalidateCachedPredecessors();
2249  return true;
2250}
2251
2252/// iterateOnFunction - Executes one iteration of GVN
2253bool GVN::iterateOnFunction(Function &F) {
2254  cleanupGlobalSets();
2255
2256  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2257       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2258    if (DI->getIDom())
2259      localAvail[DI->getBlock()] =
2260                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2261    else
2262      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2263  }
2264
2265  // Top-down walk of the dominator tree
2266  bool Changed = false;
2267#if 0
2268  // Needed for value numbering with phi construction to work.
2269  ReversePostOrderTraversal<Function*> RPOT(&F);
2270  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2271       RE = RPOT.end(); RI != RE; ++RI)
2272    Changed |= processBlock(*RI);
2273#else
2274  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2275       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2276    Changed |= processBlock(DI->getBlock());
2277#endif
2278
2279  return Changed;
2280}
2281
2282void GVN::cleanupGlobalSets() {
2283  VN.clear();
2284
2285  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2286       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2287    delete I->second;
2288  localAvail.clear();
2289}
2290
2291/// verifyRemoved - Verify that the specified instruction does not occur in our
2292/// internal data structures.
2293void GVN::verifyRemoved(const Instruction *Inst) const {
2294  VN.verifyRemoved(Inst);
2295
2296  // Walk through the value number scope to make sure the instruction isn't
2297  // ferreted away in it.
2298  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2299         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2300    const ValueNumberScope *VNS = I->second;
2301
2302    while (VNS) {
2303      for (DenseMap<uint32_t, Value*>::const_iterator
2304             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2305        assert(II->second != Inst && "Inst still in value numbering scope!");
2306      }
2307
2308      VNS = VNS->parent;
2309    }
2310  }
2311}
2312