GVN.cpp revision 7944c21cae06c5124cf1ee1f811d2a13f8e1b939
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/MemoryBuiltins.h"
39#include "llvm/Analysis/MemoryDependenceAnalysis.h"
40#include "llvm/Analysis/PHITransAddr.h"
41#include "llvm/Support/CFG.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetData.h"
49#include "llvm/Transforms/Utils/BasicBlockUtils.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include "llvm/Transforms/Utils/SSAUpdater.h"
52using namespace llvm;
53
54STATISTIC(NumGVNInstr,  "Number of instructions deleted");
55STATISTIC(NumGVNLoad,   "Number of loads deleted");
56STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
57STATISTIC(NumGVNBlocks, "Number of blocks merged");
58STATISTIC(NumPRELoad,   "Number of loads PRE'd");
59
60static cl::opt<bool> EnablePRE("enable-pre",
61                               cl::init(true), cl::Hidden);
62static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
63static cl::opt<bool> EnableFullLoadPRE("enable-full-load-pre", cl::init(false));
64
65//===----------------------------------------------------------------------===//
66//                         ValueTable Class
67//===----------------------------------------------------------------------===//
68
69/// This class holds the mapping between values and value numbers.  It is used
70/// as an efficient mechanism to determine the expression-wise equivalence of
71/// two values.
72namespace {
73  struct Expression {
74    enum ExpressionOpcode {
75      ADD = Instruction::Add,
76      FADD = Instruction::FAdd,
77      SUB = Instruction::Sub,
78      FSUB = Instruction::FSub,
79      MUL = Instruction::Mul,
80      FMUL = Instruction::FMul,
81      UDIV = Instruction::UDiv,
82      SDIV = Instruction::SDiv,
83      FDIV = Instruction::FDiv,
84      UREM = Instruction::URem,
85      SREM = Instruction::SRem,
86      FREM = Instruction::FRem,
87      SHL = Instruction::Shl,
88      LSHR = Instruction::LShr,
89      ASHR = Instruction::AShr,
90      AND = Instruction::And,
91      OR = Instruction::Or,
92      XOR = Instruction::Xor,
93      TRUNC = Instruction::Trunc,
94      ZEXT = Instruction::ZExt,
95      SEXT = Instruction::SExt,
96      FPTOUI = Instruction::FPToUI,
97      FPTOSI = Instruction::FPToSI,
98      UITOFP = Instruction::UIToFP,
99      SITOFP = Instruction::SIToFP,
100      FPTRUNC = Instruction::FPTrunc,
101      FPEXT = Instruction::FPExt,
102      PTRTOINT = Instruction::PtrToInt,
103      INTTOPTR = Instruction::IntToPtr,
104      BITCAST = Instruction::BitCast,
105      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
106      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
107      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
108      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
109      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
110      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
111      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
112
113    ExpressionOpcode opcode;
114    const Type* type;
115    SmallVector<uint32_t, 4> varargs;
116    Value *function;
117
118    Expression() { }
119    Expression(ExpressionOpcode o) : opcode(o) { }
120
121    bool operator==(const Expression &other) const {
122      if (opcode != other.opcode)
123        return false;
124      else if (opcode == EMPTY || opcode == TOMBSTONE)
125        return true;
126      else if (type != other.type)
127        return false;
128      else if (function != other.function)
129        return false;
130      else {
131        if (varargs.size() != other.varargs.size())
132          return false;
133
134        for (size_t i = 0; i < varargs.size(); ++i)
135          if (varargs[i] != other.varargs[i])
136            return false;
137
138        return true;
139      }
140    }
141
142    bool operator!=(const Expression &other) const {
143      return !(*this == other);
144    }
145  };
146
147  class ValueTable {
148    private:
149      DenseMap<Value*, uint32_t> valueNumbering;
150      DenseMap<Expression, uint32_t> expressionNumbering;
151      AliasAnalysis* AA;
152      MemoryDependenceAnalysis* MD;
153      DominatorTree* DT;
154
155      uint32_t nextValueNumber;
156
157      Expression::ExpressionOpcode getOpcode(CmpInst* C);
158      Expression create_expression(BinaryOperator* BO);
159      Expression create_expression(CmpInst* C);
160      Expression create_expression(ShuffleVectorInst* V);
161      Expression create_expression(ExtractElementInst* C);
162      Expression create_expression(InsertElementInst* V);
163      Expression create_expression(SelectInst* V);
164      Expression create_expression(CastInst* C);
165      Expression create_expression(GetElementPtrInst* G);
166      Expression create_expression(CallInst* C);
167      Expression create_expression(Constant* C);
168      Expression create_expression(ExtractValueInst* C);
169      Expression create_expression(InsertValueInst* C);
170
171      uint32_t lookup_or_add_call(CallInst* C);
172    public:
173      ValueTable() : nextValueNumber(1) { }
174      uint32_t lookup_or_add(Value *V);
175      uint32_t lookup(Value *V) const;
176      void add(Value *V, uint32_t num);
177      void clear();
178      void erase(Value *v);
179      unsigned size();
180      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
181      AliasAnalysis *getAliasAnalysis() const { return AA; }
182      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
183      void setDomTree(DominatorTree* D) { DT = D; }
184      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
185      void verifyRemoved(const Value *) const;
186  };
187}
188
189namespace llvm {
190template <> struct DenseMapInfo<Expression> {
191  static inline Expression getEmptyKey() {
192    return Expression(Expression::EMPTY);
193  }
194
195  static inline Expression getTombstoneKey() {
196    return Expression(Expression::TOMBSTONE);
197  }
198
199  static unsigned getHashValue(const Expression e) {
200    unsigned hash = e.opcode;
201
202    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
203            (unsigned)((uintptr_t)e.type >> 9));
204
205    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
206         E = e.varargs.end(); I != E; ++I)
207      hash = *I + hash * 37;
208
209    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
210            (unsigned)((uintptr_t)e.function >> 9)) +
211           hash * 37;
212
213    return hash;
214  }
215  static bool isEqual(const Expression &LHS, const Expression &RHS) {
216    return LHS == RHS;
217  }
218};
219
220template <>
221struct isPodLike<Expression> { static const bool value = true; };
222
223}
224
225//===----------------------------------------------------------------------===//
226//                     ValueTable Internal Functions
227//===----------------------------------------------------------------------===//
228
229Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
230  if (isa<ICmpInst>(C)) {
231    switch (C->getPredicate()) {
232    default:  // THIS SHOULD NEVER HAPPEN
233      llvm_unreachable("Comparison with unknown predicate?");
234    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
235    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
236    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
237    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
238    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
239    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
240    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
241    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
242    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
243    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
244    }
245  } else {
246    switch (C->getPredicate()) {
247    default: // THIS SHOULD NEVER HAPPEN
248      llvm_unreachable("Comparison with unknown predicate?");
249    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
250    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
251    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
252    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
253    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
254    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
255    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
256    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
257    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
258    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
259    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
260    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
261    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
262    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
263    }
264  }
265}
266
267Expression ValueTable::create_expression(CallInst* C) {
268  Expression e;
269
270  e.type = C->getType();
271  e.function = C->getCalledFunction();
272  e.opcode = Expression::CALL;
273
274  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
275       I != E; ++I)
276    e.varargs.push_back(lookup_or_add(*I));
277
278  return e;
279}
280
281Expression ValueTable::create_expression(BinaryOperator* BO) {
282  Expression e;
283  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
284  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
285  e.function = 0;
286  e.type = BO->getType();
287  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
288
289  return e;
290}
291
292Expression ValueTable::create_expression(CmpInst* C) {
293  Expression e;
294
295  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
296  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
297  e.function = 0;
298  e.type = C->getType();
299  e.opcode = getOpcode(C);
300
301  return e;
302}
303
304Expression ValueTable::create_expression(CastInst* C) {
305  Expression e;
306
307  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
308  e.function = 0;
309  e.type = C->getType();
310  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
311
312  return e;
313}
314
315Expression ValueTable::create_expression(ShuffleVectorInst* S) {
316  Expression e;
317
318  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
319  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
320  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
321  e.function = 0;
322  e.type = S->getType();
323  e.opcode = Expression::SHUFFLE;
324
325  return e;
326}
327
328Expression ValueTable::create_expression(ExtractElementInst* E) {
329  Expression e;
330
331  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
332  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
333  e.function = 0;
334  e.type = E->getType();
335  e.opcode = Expression::EXTRACT;
336
337  return e;
338}
339
340Expression ValueTable::create_expression(InsertElementInst* I) {
341  Expression e;
342
343  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
344  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
345  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
346  e.function = 0;
347  e.type = I->getType();
348  e.opcode = Expression::INSERT;
349
350  return e;
351}
352
353Expression ValueTable::create_expression(SelectInst* I) {
354  Expression e;
355
356  e.varargs.push_back(lookup_or_add(I->getCondition()));
357  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
358  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
359  e.function = 0;
360  e.type = I->getType();
361  e.opcode = Expression::SELECT;
362
363  return e;
364}
365
366Expression ValueTable::create_expression(GetElementPtrInst* G) {
367  Expression e;
368
369  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
370  e.function = 0;
371  e.type = G->getType();
372  e.opcode = Expression::GEP;
373
374  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
375       I != E; ++I)
376    e.varargs.push_back(lookup_or_add(*I));
377
378  return e;
379}
380
381Expression ValueTable::create_expression(ExtractValueInst* E) {
382  Expression e;
383
384  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
385  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
386       II != IE; ++II)
387    e.varargs.push_back(*II);
388  e.function = 0;
389  e.type = E->getType();
390  e.opcode = Expression::EXTRACTVALUE;
391
392  return e;
393}
394
395Expression ValueTable::create_expression(InsertValueInst* E) {
396  Expression e;
397
398  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
399  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
400  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
401       II != IE; ++II)
402    e.varargs.push_back(*II);
403  e.function = 0;
404  e.type = E->getType();
405  e.opcode = Expression::INSERTVALUE;
406
407  return e;
408}
409
410//===----------------------------------------------------------------------===//
411//                     ValueTable External Functions
412//===----------------------------------------------------------------------===//
413
414/// add - Insert a value into the table with a specified value number.
415void ValueTable::add(Value *V, uint32_t num) {
416  valueNumbering.insert(std::make_pair(V, num));
417}
418
419uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
420  if (AA->doesNotAccessMemory(C)) {
421    Expression exp = create_expression(C);
422    uint32_t& e = expressionNumbering[exp];
423    if (!e) e = nextValueNumber++;
424    valueNumbering[C] = e;
425    return e;
426  } else if (AA->onlyReadsMemory(C)) {
427    Expression exp = create_expression(C);
428    uint32_t& e = expressionNumbering[exp];
429    if (!e) {
430      e = nextValueNumber++;
431      valueNumbering[C] = e;
432      return e;
433    }
434    if (!MD) {
435      e = nextValueNumber++;
436      valueNumbering[C] = e;
437      return e;
438    }
439
440    MemDepResult local_dep = MD->getDependency(C);
441
442    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
443      valueNumbering[C] =  nextValueNumber;
444      return nextValueNumber++;
445    }
446
447    if (local_dep.isDef()) {
448      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
449
450      if (local_cdep->getNumOperands() != C->getNumOperands()) {
451        valueNumbering[C] = nextValueNumber;
452        return nextValueNumber++;
453      }
454
455      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
456        uint32_t c_vn = lookup_or_add(C->getOperand(i));
457        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
458        if (c_vn != cd_vn) {
459          valueNumbering[C] = nextValueNumber;
460          return nextValueNumber++;
461        }
462      }
463
464      uint32_t v = lookup_or_add(local_cdep);
465      valueNumbering[C] = v;
466      return v;
467    }
468
469    // Non-local case.
470    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
471      MD->getNonLocalCallDependency(CallSite(C));
472    // FIXME: call/call dependencies for readonly calls should return def, not
473    // clobber!  Move the checking logic to MemDep!
474    CallInst* cdep = 0;
475
476    // Check to see if we have a single dominating call instruction that is
477    // identical to C.
478    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
479      const NonLocalDepEntry *I = &deps[i];
480      // Ignore non-local dependencies.
481      if (I->getResult().isNonLocal())
482        continue;
483
484      // We don't handle non-depedencies.  If we already have a call, reject
485      // instruction dependencies.
486      if (I->getResult().isClobber() || cdep != 0) {
487        cdep = 0;
488        break;
489      }
490
491      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
492      // FIXME: All duplicated with non-local case.
493      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
494        cdep = NonLocalDepCall;
495        continue;
496      }
497
498      cdep = 0;
499      break;
500    }
501
502    if (!cdep) {
503      valueNumbering[C] = nextValueNumber;
504      return nextValueNumber++;
505    }
506
507    if (cdep->getNumOperands() != C->getNumOperands()) {
508      valueNumbering[C] = nextValueNumber;
509      return nextValueNumber++;
510    }
511    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
512      uint32_t c_vn = lookup_or_add(C->getOperand(i));
513      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
514      if (c_vn != cd_vn) {
515        valueNumbering[C] = nextValueNumber;
516        return nextValueNumber++;
517      }
518    }
519
520    uint32_t v = lookup_or_add(cdep);
521    valueNumbering[C] = v;
522    return v;
523
524  } else {
525    valueNumbering[C] = nextValueNumber;
526    return nextValueNumber++;
527  }
528}
529
530/// lookup_or_add - Returns the value number for the specified value, assigning
531/// it a new number if it did not have one before.
532uint32_t ValueTable::lookup_or_add(Value *V) {
533  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
534  if (VI != valueNumbering.end())
535    return VI->second;
536
537  if (!isa<Instruction>(V)) {
538    valueNumbering[V] = nextValueNumber;
539    return nextValueNumber++;
540  }
541
542  Instruction* I = cast<Instruction>(V);
543  Expression exp;
544  switch (I->getOpcode()) {
545    case Instruction::Call:
546      return lookup_or_add_call(cast<CallInst>(I));
547    case Instruction::Add:
548    case Instruction::FAdd:
549    case Instruction::Sub:
550    case Instruction::FSub:
551    case Instruction::Mul:
552    case Instruction::FMul:
553    case Instruction::UDiv:
554    case Instruction::SDiv:
555    case Instruction::FDiv:
556    case Instruction::URem:
557    case Instruction::SRem:
558    case Instruction::FRem:
559    case Instruction::Shl:
560    case Instruction::LShr:
561    case Instruction::AShr:
562    case Instruction::And:
563    case Instruction::Or :
564    case Instruction::Xor:
565      exp = create_expression(cast<BinaryOperator>(I));
566      break;
567    case Instruction::ICmp:
568    case Instruction::FCmp:
569      exp = create_expression(cast<CmpInst>(I));
570      break;
571    case Instruction::Trunc:
572    case Instruction::ZExt:
573    case Instruction::SExt:
574    case Instruction::FPToUI:
575    case Instruction::FPToSI:
576    case Instruction::UIToFP:
577    case Instruction::SIToFP:
578    case Instruction::FPTrunc:
579    case Instruction::FPExt:
580    case Instruction::PtrToInt:
581    case Instruction::IntToPtr:
582    case Instruction::BitCast:
583      exp = create_expression(cast<CastInst>(I));
584      break;
585    case Instruction::Select:
586      exp = create_expression(cast<SelectInst>(I));
587      break;
588    case Instruction::ExtractElement:
589      exp = create_expression(cast<ExtractElementInst>(I));
590      break;
591    case Instruction::InsertElement:
592      exp = create_expression(cast<InsertElementInst>(I));
593      break;
594    case Instruction::ShuffleVector:
595      exp = create_expression(cast<ShuffleVectorInst>(I));
596      break;
597    case Instruction::ExtractValue:
598      exp = create_expression(cast<ExtractValueInst>(I));
599      break;
600    case Instruction::InsertValue:
601      exp = create_expression(cast<InsertValueInst>(I));
602      break;
603    case Instruction::GetElementPtr:
604      exp = create_expression(cast<GetElementPtrInst>(I));
605      break;
606    default:
607      valueNumbering[V] = nextValueNumber;
608      return nextValueNumber++;
609  }
610
611  uint32_t& e = expressionNumbering[exp];
612  if (!e) e = nextValueNumber++;
613  valueNumbering[V] = e;
614  return e;
615}
616
617/// lookup - Returns the value number of the specified value. Fails if
618/// the value has not yet been numbered.
619uint32_t ValueTable::lookup(Value *V) const {
620  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
621  assert(VI != valueNumbering.end() && "Value not numbered?");
622  return VI->second;
623}
624
625/// clear - Remove all entries from the ValueTable
626void ValueTable::clear() {
627  valueNumbering.clear();
628  expressionNumbering.clear();
629  nextValueNumber = 1;
630}
631
632/// erase - Remove a value from the value numbering
633void ValueTable::erase(Value *V) {
634  valueNumbering.erase(V);
635}
636
637/// verifyRemoved - Verify that the value is removed from all internal data
638/// structures.
639void ValueTable::verifyRemoved(const Value *V) const {
640  for (DenseMap<Value*, uint32_t>::const_iterator
641         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
642    assert(I->first != V && "Inst still occurs in value numbering map!");
643  }
644}
645
646//===----------------------------------------------------------------------===//
647//                                GVN Pass
648//===----------------------------------------------------------------------===//
649
650namespace {
651  struct ValueNumberScope {
652    ValueNumberScope* parent;
653    DenseMap<uint32_t, Value*> table;
654
655    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
656  };
657}
658
659namespace {
660
661  class GVN : public FunctionPass {
662    bool runOnFunction(Function &F);
663  public:
664    static char ID; // Pass identification, replacement for typeid
665    explicit GVN(bool noloads = false)
666      : FunctionPass(&ID), NoLoads(noloads), MD(0) { }
667
668  private:
669    bool NoLoads;
670    MemoryDependenceAnalysis *MD;
671    DominatorTree *DT;
672
673    ValueTable VN;
674    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
675
676    // List of critical edges to be split between iterations.
677    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
678
679    // This transformation requires dominator postdominator info
680    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
681      AU.addRequired<DominatorTree>();
682      if (!NoLoads)
683        AU.addRequired<MemoryDependenceAnalysis>();
684      AU.addRequired<AliasAnalysis>();
685
686      AU.addPreserved<DominatorTree>();
687      AU.addPreserved<AliasAnalysis>();
688    }
689
690    // Helper fuctions
691    // FIXME: eliminate or document these better
692    bool processLoad(LoadInst* L,
693                     SmallVectorImpl<Instruction*> &toErase);
694    bool processInstruction(Instruction *I,
695                            SmallVectorImpl<Instruction*> &toErase);
696    bool processNonLocalLoad(LoadInst* L,
697                             SmallVectorImpl<Instruction*> &toErase);
698    bool processBlock(BasicBlock *BB);
699    void dump(DenseMap<uint32_t, Value*>& d);
700    bool iterateOnFunction(Function &F);
701    Value *CollapsePhi(PHINode* p);
702    bool performPRE(Function& F);
703    Value *lookupNumber(BasicBlock *BB, uint32_t num);
704    void cleanupGlobalSets();
705    void verifyRemoved(const Instruction *I) const;
706    bool splitCriticalEdges();
707  };
708
709  char GVN::ID = 0;
710}
711
712// createGVNPass - The public interface to this file...
713FunctionPass *llvm::createGVNPass(bool NoLoads) {
714  return new GVN(NoLoads);
715}
716
717static RegisterPass<GVN> X("gvn",
718                           "Global Value Numbering");
719
720void GVN::dump(DenseMap<uint32_t, Value*>& d) {
721  errs() << "{\n";
722  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
723       E = d.end(); I != E; ++I) {
724      errs() << I->first << "\n";
725      I->second->dump();
726  }
727  errs() << "}\n";
728}
729
730static bool isSafeReplacement(PHINode* p, Instruction *inst) {
731  if (!isa<PHINode>(inst))
732    return true;
733
734  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
735       UI != E; ++UI)
736    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
737      if (use_phi->getParent() == inst->getParent())
738        return false;
739
740  return true;
741}
742
743Value *GVN::CollapsePhi(PHINode *PN) {
744  Value *ConstVal = PN->hasConstantValue(DT);
745  if (!ConstVal) return 0;
746
747  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
748  if (!Inst)
749    return ConstVal;
750
751  if (DT->dominates(Inst, PN))
752    if (isSafeReplacement(PN, Inst))
753      return Inst;
754  return 0;
755}
756
757/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
758/// we're analyzing is fully available in the specified block.  As we go, keep
759/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
760/// map is actually a tri-state map with the following values:
761///   0) we know the block *is not* fully available.
762///   1) we know the block *is* fully available.
763///   2) we do not know whether the block is fully available or not, but we are
764///      currently speculating that it will be.
765///   3) we are speculating for this block and have used that to speculate for
766///      other blocks.
767static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
768                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
769  // Optimistically assume that the block is fully available and check to see
770  // if we already know about this block in one lookup.
771  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
772    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
773
774  // If the entry already existed for this block, return the precomputed value.
775  if (!IV.second) {
776    // If this is a speculative "available" value, mark it as being used for
777    // speculation of other blocks.
778    if (IV.first->second == 2)
779      IV.first->second = 3;
780    return IV.first->second != 0;
781  }
782
783  // Otherwise, see if it is fully available in all predecessors.
784  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
785
786  // If this block has no predecessors, it isn't live-in here.
787  if (PI == PE)
788    goto SpeculationFailure;
789
790  for (; PI != PE; ++PI)
791    // If the value isn't fully available in one of our predecessors, then it
792    // isn't fully available in this block either.  Undo our previous
793    // optimistic assumption and bail out.
794    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
795      goto SpeculationFailure;
796
797  return true;
798
799// SpeculationFailure - If we get here, we found out that this is not, after
800// all, a fully-available block.  We have a problem if we speculated on this and
801// used the speculation to mark other blocks as available.
802SpeculationFailure:
803  char &BBVal = FullyAvailableBlocks[BB];
804
805  // If we didn't speculate on this, just return with it set to false.
806  if (BBVal == 2) {
807    BBVal = 0;
808    return false;
809  }
810
811  // If we did speculate on this value, we could have blocks set to 1 that are
812  // incorrect.  Walk the (transitive) successors of this block and mark them as
813  // 0 if set to one.
814  SmallVector<BasicBlock*, 32> BBWorklist;
815  BBWorklist.push_back(BB);
816
817  do {
818    BasicBlock *Entry = BBWorklist.pop_back_val();
819    // Note that this sets blocks to 0 (unavailable) if they happen to not
820    // already be in FullyAvailableBlocks.  This is safe.
821    char &EntryVal = FullyAvailableBlocks[Entry];
822    if (EntryVal == 0) continue;  // Already unavailable.
823
824    // Mark as unavailable.
825    EntryVal = 0;
826
827    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
828      BBWorklist.push_back(*I);
829  } while (!BBWorklist.empty());
830
831  return false;
832}
833
834
835/// CanCoerceMustAliasedValueToLoad - Return true if
836/// CoerceAvailableValueToLoadType will succeed.
837static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
838                                            const Type *LoadTy,
839                                            const TargetData &TD) {
840  // If the loaded or stored value is an first class array or struct, don't try
841  // to transform them.  We need to be able to bitcast to integer.
842  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
843      StoredVal->getType()->isStructTy() ||
844      StoredVal->getType()->isArrayTy())
845    return false;
846
847  // The store has to be at least as big as the load.
848  if (TD.getTypeSizeInBits(StoredVal->getType()) <
849        TD.getTypeSizeInBits(LoadTy))
850    return false;
851
852  return true;
853}
854
855
856/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
857/// then a load from a must-aliased pointer of a different type, try to coerce
858/// the stored value.  LoadedTy is the type of the load we want to replace and
859/// InsertPt is the place to insert new instructions.
860///
861/// If we can't do it, return null.
862static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
863                                             const Type *LoadedTy,
864                                             Instruction *InsertPt,
865                                             const TargetData &TD) {
866  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
867    return 0;
868
869  const Type *StoredValTy = StoredVal->getType();
870
871  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
872  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
873
874  // If the store and reload are the same size, we can always reuse it.
875  if (StoreSize == LoadSize) {
876    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
877      // Pointer to Pointer -> use bitcast.
878      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
879    }
880
881    // Convert source pointers to integers, which can be bitcast.
882    if (StoredValTy->isPointerTy()) {
883      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
884      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
885    }
886
887    const Type *TypeToCastTo = LoadedTy;
888    if (TypeToCastTo->isPointerTy())
889      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
890
891    if (StoredValTy != TypeToCastTo)
892      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
893
894    // Cast to pointer if the load needs a pointer type.
895    if (LoadedTy->isPointerTy())
896      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
897
898    return StoredVal;
899  }
900
901  // If the loaded value is smaller than the available value, then we can
902  // extract out a piece from it.  If the available value is too small, then we
903  // can't do anything.
904  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
905
906  // Convert source pointers to integers, which can be manipulated.
907  if (StoredValTy->isPointerTy()) {
908    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
909    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
910  }
911
912  // Convert vectors and fp to integer, which can be manipulated.
913  if (!StoredValTy->isIntegerTy()) {
914    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
915    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
916  }
917
918  // If this is a big-endian system, we need to shift the value down to the low
919  // bits so that a truncate will work.
920  if (TD.isBigEndian()) {
921    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
922    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
923  }
924
925  // Truncate the integer to the right size now.
926  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
927  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
928
929  if (LoadedTy == NewIntTy)
930    return StoredVal;
931
932  // If the result is a pointer, inttoptr.
933  if (LoadedTy->isPointerTy())
934    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
935
936  // Otherwise, bitcast.
937  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
938}
939
940/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
941/// be expressed as a base pointer plus a constant offset.  Return the base and
942/// offset to the caller.
943static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
944                                        const TargetData &TD) {
945  Operator *PtrOp = dyn_cast<Operator>(Ptr);
946  if (PtrOp == 0) return Ptr;
947
948  // Just look through bitcasts.
949  if (PtrOp->getOpcode() == Instruction::BitCast)
950    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
951
952  // If this is a GEP with constant indices, we can look through it.
953  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
954  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
955
956  gep_type_iterator GTI = gep_type_begin(GEP);
957  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
958       ++I, ++GTI) {
959    ConstantInt *OpC = cast<ConstantInt>(*I);
960    if (OpC->isZero()) continue;
961
962    // Handle a struct and array indices which add their offset to the pointer.
963    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
964      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
965    } else {
966      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
967      Offset += OpC->getSExtValue()*Size;
968    }
969  }
970
971  // Re-sign extend from the pointer size if needed to get overflow edge cases
972  // right.
973  unsigned PtrSize = TD.getPointerSizeInBits();
974  if (PtrSize < 64)
975    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
976
977  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
978}
979
980
981/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
982/// memdep query of a load that ends up being a clobbering memory write (store,
983/// memset, memcpy, memmove).  This means that the write *may* provide bits used
984/// by the load but we can't be sure because the pointers don't mustalias.
985///
986/// Check this case to see if there is anything more we can do before we give
987/// up.  This returns -1 if we have to give up, or a byte number in the stored
988/// value of the piece that feeds the load.
989static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
990                                          Value *WritePtr,
991                                          uint64_t WriteSizeInBits,
992                                          const TargetData &TD) {
993  // If the loaded or stored value is an first class array or struct, don't try
994  // to transform them.  We need to be able to bitcast to integer.
995  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
996    return -1;
997
998  int64_t StoreOffset = 0, LoadOffset = 0;
999  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1000  Value *LoadBase =
1001    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1002  if (StoreBase != LoadBase)
1003    return -1;
1004
1005  // If the load and store are to the exact same address, they should have been
1006  // a must alias.  AA must have gotten confused.
1007  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1008  // to a load from the base of the memset.
1009#if 0
1010  if (LoadOffset == StoreOffset) {
1011    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1012    << "Base       = " << *StoreBase << "\n"
1013    << "Store Ptr  = " << *WritePtr << "\n"
1014    << "Store Offs = " << StoreOffset << "\n"
1015    << "Load Ptr   = " << *LoadPtr << "\n";
1016    abort();
1017  }
1018#endif
1019
1020  // If the load and store don't overlap at all, the store doesn't provide
1021  // anything to the load.  In this case, they really don't alias at all, AA
1022  // must have gotten confused.
1023  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1024  // remove this check, as it is duplicated with what we have below.
1025  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1026
1027  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1028    return -1;
1029  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1030  LoadSize >>= 3;
1031
1032
1033  bool isAAFailure = false;
1034  if (StoreOffset < LoadOffset)
1035    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1036  else
1037    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1038
1039  if (isAAFailure) {
1040#if 0
1041    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1042    << "Base       = " << *StoreBase << "\n"
1043    << "Store Ptr  = " << *WritePtr << "\n"
1044    << "Store Offs = " << StoreOffset << "\n"
1045    << "Load Ptr   = " << *LoadPtr << "\n";
1046    abort();
1047#endif
1048    return -1;
1049  }
1050
1051  // If the Load isn't completely contained within the stored bits, we don't
1052  // have all the bits to feed it.  We could do something crazy in the future
1053  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1054  // valuable.
1055  if (StoreOffset > LoadOffset ||
1056      StoreOffset+StoreSize < LoadOffset+LoadSize)
1057    return -1;
1058
1059  // Okay, we can do this transformation.  Return the number of bytes into the
1060  // store that the load is.
1061  return LoadOffset-StoreOffset;
1062}
1063
1064/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1065/// memdep query of a load that ends up being a clobbering store.
1066static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1067                                          StoreInst *DepSI,
1068                                          const TargetData &TD) {
1069  // Cannot handle reading from store of first-class aggregate yet.
1070  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1071      DepSI->getOperand(0)->getType()->isArrayTy())
1072    return -1;
1073
1074  Value *StorePtr = DepSI->getPointerOperand();
1075  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1076  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1077                                        StorePtr, StoreSize, TD);
1078}
1079
1080static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1081                                            MemIntrinsic *MI,
1082                                            const TargetData &TD) {
1083  // If the mem operation is a non-constant size, we can't handle it.
1084  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1085  if (SizeCst == 0) return -1;
1086  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1087
1088  // If this is memset, we just need to see if the offset is valid in the size
1089  // of the memset..
1090  if (MI->getIntrinsicID() == Intrinsic::memset)
1091    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1092                                          MemSizeInBits, TD);
1093
1094  // If we have a memcpy/memmove, the only case we can handle is if this is a
1095  // copy from constant memory.  In that case, we can read directly from the
1096  // constant memory.
1097  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1098
1099  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1100  if (Src == 0) return -1;
1101
1102  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1103  if (GV == 0 || !GV->isConstant()) return -1;
1104
1105  // See if the access is within the bounds of the transfer.
1106  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1107                                              MI->getDest(), MemSizeInBits, TD);
1108  if (Offset == -1)
1109    return Offset;
1110
1111  // Otherwise, see if we can constant fold a load from the constant with the
1112  // offset applied as appropriate.
1113  Src = ConstantExpr::getBitCast(Src,
1114                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1115  Constant *OffsetCst =
1116    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1117  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1118  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1119  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1120    return Offset;
1121  return -1;
1122}
1123
1124
1125/// GetStoreValueForLoad - This function is called when we have a
1126/// memdep query of a load that ends up being a clobbering store.  This means
1127/// that the store *may* provide bits used by the load but we can't be sure
1128/// because the pointers don't mustalias.  Check this case to see if there is
1129/// anything more we can do before we give up.
1130static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1131                                   const Type *LoadTy,
1132                                   Instruction *InsertPt, const TargetData &TD){
1133  LLVMContext &Ctx = SrcVal->getType()->getContext();
1134
1135  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1136  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1137
1138  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1139
1140  // Compute which bits of the stored value are being used by the load.  Convert
1141  // to an integer type to start with.
1142  if (SrcVal->getType()->isPointerTy())
1143    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1144  if (!SrcVal->getType()->isIntegerTy())
1145    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1146                                   "tmp");
1147
1148  // Shift the bits to the least significant depending on endianness.
1149  unsigned ShiftAmt;
1150  if (TD.isLittleEndian())
1151    ShiftAmt = Offset*8;
1152  else
1153    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1154
1155  if (ShiftAmt)
1156    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1157
1158  if (LoadSize != StoreSize)
1159    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1160                                 "tmp");
1161
1162  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1163}
1164
1165/// GetMemInstValueForLoad - This function is called when we have a
1166/// memdep query of a load that ends up being a clobbering mem intrinsic.
1167static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1168                                     const Type *LoadTy, Instruction *InsertPt,
1169                                     const TargetData &TD){
1170  LLVMContext &Ctx = LoadTy->getContext();
1171  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1172
1173  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1174
1175  // We know that this method is only called when the mem transfer fully
1176  // provides the bits for the load.
1177  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1178    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1179    // independently of what the offset is.
1180    Value *Val = MSI->getValue();
1181    if (LoadSize != 1)
1182      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1183
1184    Value *OneElt = Val;
1185
1186    // Splat the value out to the right number of bits.
1187    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1188      // If we can double the number of bytes set, do it.
1189      if (NumBytesSet*2 <= LoadSize) {
1190        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1191        Val = Builder.CreateOr(Val, ShVal);
1192        NumBytesSet <<= 1;
1193        continue;
1194      }
1195
1196      // Otherwise insert one byte at a time.
1197      Value *ShVal = Builder.CreateShl(Val, 1*8);
1198      Val = Builder.CreateOr(OneElt, ShVal);
1199      ++NumBytesSet;
1200    }
1201
1202    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1203  }
1204
1205  // Otherwise, this is a memcpy/memmove from a constant global.
1206  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1207  Constant *Src = cast<Constant>(MTI->getSource());
1208
1209  // Otherwise, see if we can constant fold a load from the constant with the
1210  // offset applied as appropriate.
1211  Src = ConstantExpr::getBitCast(Src,
1212                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1213  Constant *OffsetCst =
1214  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1215  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1216  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1217  return ConstantFoldLoadFromConstPtr(Src, &TD);
1218}
1219
1220namespace {
1221
1222struct AvailableValueInBlock {
1223  /// BB - The basic block in question.
1224  BasicBlock *BB;
1225  enum ValType {
1226    SimpleVal,  // A simple offsetted value that is accessed.
1227    MemIntrin   // A memory intrinsic which is loaded from.
1228  };
1229
1230  /// V - The value that is live out of the block.
1231  PointerIntPair<Value *, 1, ValType> Val;
1232
1233  /// Offset - The byte offset in Val that is interesting for the load query.
1234  unsigned Offset;
1235
1236  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1237                                   unsigned Offset = 0) {
1238    AvailableValueInBlock Res;
1239    Res.BB = BB;
1240    Res.Val.setPointer(V);
1241    Res.Val.setInt(SimpleVal);
1242    Res.Offset = Offset;
1243    return Res;
1244  }
1245
1246  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1247                                     unsigned Offset = 0) {
1248    AvailableValueInBlock Res;
1249    Res.BB = BB;
1250    Res.Val.setPointer(MI);
1251    Res.Val.setInt(MemIntrin);
1252    Res.Offset = Offset;
1253    return Res;
1254  }
1255
1256  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1257  Value *getSimpleValue() const {
1258    assert(isSimpleValue() && "Wrong accessor");
1259    return Val.getPointer();
1260  }
1261
1262  MemIntrinsic *getMemIntrinValue() const {
1263    assert(!isSimpleValue() && "Wrong accessor");
1264    return cast<MemIntrinsic>(Val.getPointer());
1265  }
1266
1267  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1268  /// defined here to the specified type.  This handles various coercion cases.
1269  Value *MaterializeAdjustedValue(const Type *LoadTy,
1270                                  const TargetData *TD) const {
1271    Value *Res;
1272    if (isSimpleValue()) {
1273      Res = getSimpleValue();
1274      if (Res->getType() != LoadTy) {
1275        assert(TD && "Need target data to handle type mismatch case");
1276        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1277                                   *TD);
1278
1279        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1280                     << *getSimpleValue() << '\n'
1281                     << *Res << '\n' << "\n\n\n");
1282      }
1283    } else {
1284      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1285                                   LoadTy, BB->getTerminator(), *TD);
1286      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1287                   << "  " << *getMemIntrinValue() << '\n'
1288                   << *Res << '\n' << "\n\n\n");
1289    }
1290    return Res;
1291  }
1292};
1293
1294}
1295
1296/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1297/// construct SSA form, allowing us to eliminate LI.  This returns the value
1298/// that should be used at LI's definition site.
1299static Value *ConstructSSAForLoadSet(LoadInst *LI,
1300                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1301                                     const TargetData *TD,
1302                                     const DominatorTree &DT,
1303                                     AliasAnalysis *AA) {
1304  // Check for the fully redundant, dominating load case.  In this case, we can
1305  // just use the dominating value directly.
1306  if (ValuesPerBlock.size() == 1 &&
1307      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1308    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1309
1310  // Otherwise, we have to construct SSA form.
1311  SmallVector<PHINode*, 8> NewPHIs;
1312  SSAUpdater SSAUpdate(&NewPHIs);
1313  SSAUpdate.Initialize(LI);
1314
1315  const Type *LoadTy = LI->getType();
1316
1317  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1318    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1319    BasicBlock *BB = AV.BB;
1320
1321    if (SSAUpdate.HasValueForBlock(BB))
1322      continue;
1323
1324    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1325  }
1326
1327  // Perform PHI construction.
1328  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1329
1330  // If new PHI nodes were created, notify alias analysis.
1331  if (V->getType()->isPointerTy())
1332    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1333      AA->copyValue(LI, NewPHIs[i]);
1334
1335  return V;
1336}
1337
1338static bool isLifetimeStart(const Instruction *Inst) {
1339  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1340    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1341  return false;
1342}
1343
1344/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1345/// non-local by performing PHI construction.
1346bool GVN::processNonLocalLoad(LoadInst *LI,
1347                              SmallVectorImpl<Instruction*> &toErase) {
1348  // Find the non-local dependencies of the load.
1349  SmallVector<NonLocalDepResult, 64> Deps;
1350  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1351                                   Deps);
1352  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1353  //             << Deps.size() << *LI << '\n');
1354
1355  // If we had to process more than one hundred blocks to find the
1356  // dependencies, this load isn't worth worrying about.  Optimizing
1357  // it will be too expensive.
1358  if (Deps.size() > 100)
1359    return false;
1360
1361  // If we had a phi translation failure, we'll have a single entry which is a
1362  // clobber in the current block.  Reject this early.
1363  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1364    DEBUG(
1365      dbgs() << "GVN: non-local load ";
1366      WriteAsOperand(dbgs(), LI);
1367      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1368    );
1369    return false;
1370  }
1371
1372  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1373  // where we have a value available in repl, also keep track of whether we see
1374  // dependencies that produce an unknown value for the load (such as a call
1375  // that could potentially clobber the load).
1376  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1377  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1378
1379  const TargetData *TD = 0;
1380
1381  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1382    BasicBlock *DepBB = Deps[i].getBB();
1383    MemDepResult DepInfo = Deps[i].getResult();
1384
1385    if (DepInfo.isClobber()) {
1386      // The address being loaded in this non-local block may not be the same as
1387      // the pointer operand of the load if PHI translation occurs.  Make sure
1388      // to consider the right address.
1389      Value *Address = Deps[i].getAddress();
1390
1391      // If the dependence is to a store that writes to a superset of the bits
1392      // read by the load, we can extract the bits we need for the load from the
1393      // stored value.
1394      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1395        if (TD == 0)
1396          TD = getAnalysisIfAvailable<TargetData>();
1397        if (TD && Address) {
1398          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1399                                                      DepSI, *TD);
1400          if (Offset != -1) {
1401            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1402                                                           DepSI->getOperand(0),
1403                                                                Offset));
1404            continue;
1405          }
1406        }
1407      }
1408
1409      // If the clobbering value is a memset/memcpy/memmove, see if we can
1410      // forward a value on from it.
1411      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1412        if (TD == 0)
1413          TD = getAnalysisIfAvailable<TargetData>();
1414        if (TD && Address) {
1415          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1416                                                        DepMI, *TD);
1417          if (Offset != -1) {
1418            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1419                                                                  Offset));
1420            continue;
1421          }
1422        }
1423      }
1424
1425      UnavailableBlocks.push_back(DepBB);
1426      continue;
1427    }
1428
1429    Instruction *DepInst = DepInfo.getInst();
1430
1431    // Loading the allocation -> undef.
1432    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1433        // Loading immediately after lifetime begin -> undef.
1434        isLifetimeStart(DepInst)) {
1435      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1436                                             UndefValue::get(LI->getType())));
1437      continue;
1438    }
1439
1440    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1441      // Reject loads and stores that are to the same address but are of
1442      // different types if we have to.
1443      if (S->getOperand(0)->getType() != LI->getType()) {
1444        if (TD == 0)
1445          TD = getAnalysisIfAvailable<TargetData>();
1446
1447        // If the stored value is larger or equal to the loaded value, we can
1448        // reuse it.
1449        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1450                                                        LI->getType(), *TD)) {
1451          UnavailableBlocks.push_back(DepBB);
1452          continue;
1453        }
1454      }
1455
1456      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1457                                                          S->getOperand(0)));
1458      continue;
1459    }
1460
1461    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1462      // If the types mismatch and we can't handle it, reject reuse of the load.
1463      if (LD->getType() != LI->getType()) {
1464        if (TD == 0)
1465          TD = getAnalysisIfAvailable<TargetData>();
1466
1467        // If the stored value is larger or equal to the loaded value, we can
1468        // reuse it.
1469        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1470          UnavailableBlocks.push_back(DepBB);
1471          continue;
1472        }
1473      }
1474      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1475      continue;
1476    }
1477
1478    UnavailableBlocks.push_back(DepBB);
1479    continue;
1480  }
1481
1482  // If we have no predecessors that produce a known value for this load, exit
1483  // early.
1484  if (ValuesPerBlock.empty()) return false;
1485
1486  // If all of the instructions we depend on produce a known value for this
1487  // load, then it is fully redundant and we can use PHI insertion to compute
1488  // its value.  Insert PHIs and remove the fully redundant value now.
1489  if (UnavailableBlocks.empty()) {
1490    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1491
1492    // Perform PHI construction.
1493    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1494                                      VN.getAliasAnalysis());
1495    LI->replaceAllUsesWith(V);
1496
1497    if (isa<PHINode>(V))
1498      V->takeName(LI);
1499    if (V->getType()->isPointerTy())
1500      MD->invalidateCachedPointerInfo(V);
1501    VN.erase(LI);
1502    toErase.push_back(LI);
1503    NumGVNLoad++;
1504    return true;
1505  }
1506
1507  if (!EnablePRE || !EnableLoadPRE)
1508    return false;
1509
1510  // Okay, we have *some* definitions of the value.  This means that the value
1511  // is available in some of our (transitive) predecessors.  Lets think about
1512  // doing PRE of this load.  This will involve inserting a new load into the
1513  // predecessor when it's not available.  We could do this in general, but
1514  // prefer to not increase code size.  As such, we only do this when we know
1515  // that we only have to insert *one* load (which means we're basically moving
1516  // the load, not inserting a new one).
1517
1518  SmallPtrSet<BasicBlock *, 4> Blockers;
1519  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1520    Blockers.insert(UnavailableBlocks[i]);
1521
1522  // Lets find first basic block with more than one predecessor.  Walk backwards
1523  // through predecessors if needed.
1524  BasicBlock *LoadBB = LI->getParent();
1525  BasicBlock *TmpBB = LoadBB;
1526
1527  bool isSinglePred = false;
1528  bool allSingleSucc = true;
1529  while (TmpBB->getSinglePredecessor()) {
1530    isSinglePred = true;
1531    TmpBB = TmpBB->getSinglePredecessor();
1532    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1533      return false;
1534    if (Blockers.count(TmpBB))
1535      return false;
1536    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1537      allSingleSucc = false;
1538  }
1539
1540  assert(TmpBB);
1541  LoadBB = TmpBB;
1542
1543  // If we have a repl set with LI itself in it, this means we have a loop where
1544  // at least one of the values is LI.  Since this means that we won't be able
1545  // to eliminate LI even if we insert uses in the other predecessors, we will
1546  // end up increasing code size.  Reject this by scanning for LI.
1547  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1548    if (ValuesPerBlock[i].isSimpleValue() &&
1549        ValuesPerBlock[i].getSimpleValue() == LI) {
1550      // Skip cases where LI is the only definition, even for EnableFullLoadPRE.
1551      if (!EnableFullLoadPRE || e == 1)
1552        return false;
1553    }
1554  }
1555
1556  // FIXME: It is extremely unclear what this loop is doing, other than
1557  // artificially restricting loadpre.
1558  if (isSinglePred) {
1559    bool isHot = false;
1560    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1561      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1562      if (AV.isSimpleValue())
1563        // "Hot" Instruction is in some loop (because it dominates its dep.
1564        // instruction).
1565        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1566          if (DT->dominates(LI, I)) {
1567            isHot = true;
1568            break;
1569          }
1570    }
1571
1572    // We are interested only in "hot" instructions. We don't want to do any
1573    // mis-optimizations here.
1574    if (!isHot)
1575      return false;
1576  }
1577
1578  // Check to see how many predecessors have the loaded value fully
1579  // available.
1580  DenseMap<BasicBlock*, Value*> PredLoads;
1581  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1582  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1583    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1584  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1585    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1586
1587  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1588  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1589       PI != E; ++PI) {
1590    BasicBlock *Pred = *PI;
1591    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1592      continue;
1593    }
1594    PredLoads[Pred] = 0;
1595
1596    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1597      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1598        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1599              << Pred->getName() << "': " << *LI << '\n');
1600        return false;
1601      }
1602      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1603      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1604    }
1605  }
1606  if (!NeedToSplit.empty()) {
1607    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1608    return false;
1609  }
1610
1611  // Decide whether PRE is profitable for this load.
1612  unsigned NumUnavailablePreds = PredLoads.size();
1613  assert(NumUnavailablePreds != 0 &&
1614         "Fully available value should be eliminated above!");
1615  if (!EnableFullLoadPRE) {
1616    // If this load is unavailable in multiple predecessors, reject it.
1617    // FIXME: If we could restructure the CFG, we could make a common pred with
1618    // all the preds that don't have an available LI and insert a new load into
1619    // that one block.
1620    if (NumUnavailablePreds != 1)
1621      return false;
1622  }
1623
1624  // Check if the load can safely be moved to all the unavailable predecessors.
1625  bool CanDoPRE = true;
1626  SmallVector<Instruction*, 8> NewInsts;
1627  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1628         E = PredLoads.end(); I != E; ++I) {
1629    BasicBlock *UnavailablePred = I->first;
1630
1631    // Do PHI translation to get its value in the predecessor if necessary.  The
1632    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1633
1634    // If all preds have a single successor, then we know it is safe to insert
1635    // the load on the pred (?!?), so we can insert code to materialize the
1636    // pointer if it is not available.
1637    PHITransAddr Address(LI->getOperand(0), TD);
1638    Value *LoadPtr = 0;
1639    if (allSingleSucc) {
1640      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1641                                                  *DT, NewInsts);
1642    } else {
1643      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1644      LoadPtr = Address.getAddr();
1645    }
1646
1647    // If we couldn't find or insert a computation of this phi translated value,
1648    // we fail PRE.
1649    if (LoadPtr == 0) {
1650      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1651            << *LI->getOperand(0) << "\n");
1652      CanDoPRE = false;
1653      break;
1654    }
1655
1656    // Make sure it is valid to move this load here.  We have to watch out for:
1657    //  @1 = getelementptr (i8* p, ...
1658    //  test p and branch if == 0
1659    //  load @1
1660    // It is valid to have the getelementptr before the test, even if p can be 0,
1661    // as getelementptr only does address arithmetic.
1662    // If we are not pushing the value through any multiple-successor blocks
1663    // we do not have this case.  Otherwise, check that the load is safe to
1664    // put anywhere; this can be improved, but should be conservatively safe.
1665    if (!allSingleSucc &&
1666        // FIXME: REEVALUTE THIS.
1667        !isSafeToLoadUnconditionally(LoadPtr,
1668                                     UnavailablePred->getTerminator(),
1669                                     LI->getAlignment(), TD)) {
1670      CanDoPRE = false;
1671      break;
1672    }
1673
1674    I->second = LoadPtr;
1675  }
1676
1677  if (!CanDoPRE) {
1678    while (!NewInsts.empty())
1679      NewInsts.pop_back_val()->eraseFromParent();
1680    return false;
1681  }
1682
1683  // Okay, we can eliminate this load by inserting a reload in the predecessor
1684  // and using PHI construction to get the value in the other predecessors, do
1685  // it.
1686  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1687  DEBUG(if (!NewInsts.empty())
1688          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1689                 << *NewInsts.back() << '\n');
1690
1691  // Assign value numbers to the new instructions.
1692  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1693    // FIXME: We really _ought_ to insert these value numbers into their
1694    // parent's availability map.  However, in doing so, we risk getting into
1695    // ordering issues.  If a block hasn't been processed yet, we would be
1696    // marking a value as AVAIL-IN, which isn't what we intend.
1697    VN.lookup_or_add(NewInsts[i]);
1698  }
1699
1700  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1701         E = PredLoads.end(); I != E; ++I) {
1702    BasicBlock *UnavailablePred = I->first;
1703    Value *LoadPtr = I->second;
1704
1705    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1706                                  LI->getAlignment(),
1707                                  UnavailablePred->getTerminator());
1708
1709    // Add the newly created load.
1710    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1711                                                        NewLoad));
1712    MD->invalidateCachedPointerInfo(LoadPtr);
1713    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1714  }
1715
1716  // Perform PHI construction.
1717  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1718                                    VN.getAliasAnalysis());
1719  LI->replaceAllUsesWith(V);
1720  if (isa<PHINode>(V))
1721    V->takeName(LI);
1722  if (V->getType()->isPointerTy())
1723    MD->invalidateCachedPointerInfo(V);
1724  VN.erase(LI);
1725  toErase.push_back(LI);
1726  NumPRELoad++;
1727  return true;
1728}
1729
1730/// processLoad - Attempt to eliminate a load, first by eliminating it
1731/// locally, and then attempting non-local elimination if that fails.
1732bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1733  if (!MD)
1734    return false;
1735
1736  if (L->isVolatile())
1737    return false;
1738
1739  // ... to a pointer that has been loaded from before...
1740  MemDepResult Dep = MD->getDependency(L);
1741
1742  // If the value isn't available, don't do anything!
1743  if (Dep.isClobber()) {
1744    // Check to see if we have something like this:
1745    //   store i32 123, i32* %P
1746    //   %A = bitcast i32* %P to i8*
1747    //   %B = gep i8* %A, i32 1
1748    //   %C = load i8* %B
1749    //
1750    // We could do that by recognizing if the clobber instructions are obviously
1751    // a common base + constant offset, and if the previous store (or memset)
1752    // completely covers this load.  This sort of thing can happen in bitfield
1753    // access code.
1754    Value *AvailVal = 0;
1755    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1756      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1757        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1758                                                    L->getPointerOperand(),
1759                                                    DepSI, *TD);
1760        if (Offset != -1)
1761          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1762                                          L->getType(), L, *TD);
1763      }
1764
1765    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1766    // a value on from it.
1767    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1768      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1769        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1770                                                      L->getPointerOperand(),
1771                                                      DepMI, *TD);
1772        if (Offset != -1)
1773          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1774      }
1775    }
1776
1777    if (AvailVal) {
1778      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1779            << *AvailVal << '\n' << *L << "\n\n\n");
1780
1781      // Replace the load!
1782      L->replaceAllUsesWith(AvailVal);
1783      if (AvailVal->getType()->isPointerTy())
1784        MD->invalidateCachedPointerInfo(AvailVal);
1785      VN.erase(L);
1786      toErase.push_back(L);
1787      NumGVNLoad++;
1788      return true;
1789    }
1790
1791    DEBUG(
1792      // fast print dep, using operator<< on instruction would be too slow
1793      dbgs() << "GVN: load ";
1794      WriteAsOperand(dbgs(), L);
1795      Instruction *I = Dep.getInst();
1796      dbgs() << " is clobbered by " << *I << '\n';
1797    );
1798    return false;
1799  }
1800
1801  // If it is defined in another block, try harder.
1802  if (Dep.isNonLocal())
1803    return processNonLocalLoad(L, toErase);
1804
1805  Instruction *DepInst = Dep.getInst();
1806  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1807    Value *StoredVal = DepSI->getOperand(0);
1808
1809    // The store and load are to a must-aliased pointer, but they may not
1810    // actually have the same type.  See if we know how to reuse the stored
1811    // value (depending on its type).
1812    const TargetData *TD = 0;
1813    if (StoredVal->getType() != L->getType()) {
1814      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1815        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1816                                                   L, *TD);
1817        if (StoredVal == 0)
1818          return false;
1819
1820        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1821                     << '\n' << *L << "\n\n\n");
1822      }
1823      else
1824        return false;
1825    }
1826
1827    // Remove it!
1828    L->replaceAllUsesWith(StoredVal);
1829    if (StoredVal->getType()->isPointerTy())
1830      MD->invalidateCachedPointerInfo(StoredVal);
1831    VN.erase(L);
1832    toErase.push_back(L);
1833    NumGVNLoad++;
1834    return true;
1835  }
1836
1837  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1838    Value *AvailableVal = DepLI;
1839
1840    // The loads are of a must-aliased pointer, but they may not actually have
1841    // the same type.  See if we know how to reuse the previously loaded value
1842    // (depending on its type).
1843    const TargetData *TD = 0;
1844    if (DepLI->getType() != L->getType()) {
1845      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1846        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1847        if (AvailableVal == 0)
1848          return false;
1849
1850        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1851                     << "\n" << *L << "\n\n\n");
1852      }
1853      else
1854        return false;
1855    }
1856
1857    // Remove it!
1858    L->replaceAllUsesWith(AvailableVal);
1859    if (DepLI->getType()->isPointerTy())
1860      MD->invalidateCachedPointerInfo(DepLI);
1861    VN.erase(L);
1862    toErase.push_back(L);
1863    NumGVNLoad++;
1864    return true;
1865  }
1866
1867  // If this load really doesn't depend on anything, then we must be loading an
1868  // undef value.  This can happen when loading for a fresh allocation with no
1869  // intervening stores, for example.
1870  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1871    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1872    VN.erase(L);
1873    toErase.push_back(L);
1874    NumGVNLoad++;
1875    return true;
1876  }
1877
1878  // If this load occurs either right after a lifetime begin,
1879  // then the loaded value is undefined.
1880  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1881    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1882      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1883      VN.erase(L);
1884      toErase.push_back(L);
1885      NumGVNLoad++;
1886      return true;
1887    }
1888  }
1889
1890  return false;
1891}
1892
1893Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1894  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1895  if (I == localAvail.end())
1896    return 0;
1897
1898  ValueNumberScope *Locals = I->second;
1899  while (Locals) {
1900    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1901    if (I != Locals->table.end())
1902      return I->second;
1903    Locals = Locals->parent;
1904  }
1905
1906  return 0;
1907}
1908
1909
1910/// processInstruction - When calculating availability, handle an instruction
1911/// by inserting it into the appropriate sets
1912bool GVN::processInstruction(Instruction *I,
1913                             SmallVectorImpl<Instruction*> &toErase) {
1914  // Ignore dbg info intrinsics.
1915  if (isa<DbgInfoIntrinsic>(I))
1916    return false;
1917
1918  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1919    bool Changed = processLoad(LI, toErase);
1920
1921    if (!Changed) {
1922      unsigned Num = VN.lookup_or_add(LI);
1923      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1924    }
1925
1926    return Changed;
1927  }
1928
1929  uint32_t NextNum = VN.getNextUnusedValueNumber();
1930  unsigned Num = VN.lookup_or_add(I);
1931
1932  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1933    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1934
1935    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1936      return false;
1937
1938    Value *BranchCond = BI->getCondition();
1939    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1940
1941    BasicBlock *TrueSucc = BI->getSuccessor(0);
1942    BasicBlock *FalseSucc = BI->getSuccessor(1);
1943
1944    if (TrueSucc->getSinglePredecessor())
1945      localAvail[TrueSucc]->table[CondVN] =
1946        ConstantInt::getTrue(TrueSucc->getContext());
1947    if (FalseSucc->getSinglePredecessor())
1948      localAvail[FalseSucc]->table[CondVN] =
1949        ConstantInt::getFalse(TrueSucc->getContext());
1950
1951    return false;
1952
1953  // Allocations are always uniquely numbered, so we can save time and memory
1954  // by fast failing them.
1955  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1956    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1957    return false;
1958  }
1959
1960  // Collapse PHI nodes
1961  if (PHINode* p = dyn_cast<PHINode>(I)) {
1962    Value *constVal = CollapsePhi(p);
1963
1964    if (constVal) {
1965      p->replaceAllUsesWith(constVal);
1966      if (MD && constVal->getType()->isPointerTy())
1967        MD->invalidateCachedPointerInfo(constVal);
1968      VN.erase(p);
1969
1970      toErase.push_back(p);
1971    } else {
1972      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1973    }
1974
1975  // If the number we were assigned was a brand new VN, then we don't
1976  // need to do a lookup to see if the number already exists
1977  // somewhere in the domtree: it can't!
1978  } else if (Num == NextNum) {
1979    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1980
1981  // Perform fast-path value-number based elimination of values inherited from
1982  // dominators.
1983  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1984    // Remove it!
1985    VN.erase(I);
1986    I->replaceAllUsesWith(repl);
1987    if (MD && repl->getType()->isPointerTy())
1988      MD->invalidateCachedPointerInfo(repl);
1989    toErase.push_back(I);
1990    return true;
1991
1992  } else {
1993    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1994  }
1995
1996  return false;
1997}
1998
1999/// runOnFunction - This is the main transformation entry point for a function.
2000bool GVN::runOnFunction(Function& F) {
2001  if (!NoLoads)
2002    MD = &getAnalysis<MemoryDependenceAnalysis>();
2003  DT = &getAnalysis<DominatorTree>();
2004  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2005  VN.setMemDep(MD);
2006  VN.setDomTree(DT);
2007
2008  bool Changed = false;
2009  bool ShouldContinue = true;
2010
2011  // Merge unconditional branches, allowing PRE to catch more
2012  // optimization opportunities.
2013  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2014    BasicBlock *BB = FI;
2015    ++FI;
2016    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2017    if (removedBlock) NumGVNBlocks++;
2018
2019    Changed |= removedBlock;
2020  }
2021
2022  unsigned Iteration = 0;
2023
2024  while (ShouldContinue) {
2025    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2026    ShouldContinue = iterateOnFunction(F);
2027    if (splitCriticalEdges())
2028      ShouldContinue = true;
2029    Changed |= ShouldContinue;
2030    ++Iteration;
2031  }
2032
2033  if (EnablePRE) {
2034    bool PREChanged = true;
2035    while (PREChanged) {
2036      PREChanged = performPRE(F);
2037      Changed |= PREChanged;
2038    }
2039  }
2040  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2041  // computations into blocks where they become fully redundant.  Note that
2042  // we can't do this until PRE's critical edge splitting updates memdep.
2043  // Actually, when this happens, we should just fully integrate PRE into GVN.
2044
2045  cleanupGlobalSets();
2046
2047  return Changed;
2048}
2049
2050
2051bool GVN::processBlock(BasicBlock *BB) {
2052  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2053  // incrementing BI before processing an instruction).
2054  SmallVector<Instruction*, 8> toErase;
2055  bool ChangedFunction = false;
2056
2057  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2058       BI != BE;) {
2059    ChangedFunction |= processInstruction(BI, toErase);
2060    if (toErase.empty()) {
2061      ++BI;
2062      continue;
2063    }
2064
2065    // If we need some instructions deleted, do it now.
2066    NumGVNInstr += toErase.size();
2067
2068    // Avoid iterator invalidation.
2069    bool AtStart = BI == BB->begin();
2070    if (!AtStart)
2071      --BI;
2072
2073    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2074         E = toErase.end(); I != E; ++I) {
2075      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2076      if (MD) MD->removeInstruction(*I);
2077      (*I)->eraseFromParent();
2078      DEBUG(verifyRemoved(*I));
2079    }
2080    toErase.clear();
2081
2082    if (AtStart)
2083      BI = BB->begin();
2084    else
2085      ++BI;
2086  }
2087
2088  return ChangedFunction;
2089}
2090
2091/// performPRE - Perform a purely local form of PRE that looks for diamond
2092/// control flow patterns and attempts to perform simple PRE at the join point.
2093bool GVN::performPRE(Function &F) {
2094  bool Changed = false;
2095  DenseMap<BasicBlock*, Value*> predMap;
2096  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2097       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2098    BasicBlock *CurrentBlock = *DI;
2099
2100    // Nothing to PRE in the entry block.
2101    if (CurrentBlock == &F.getEntryBlock()) continue;
2102
2103    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2104         BE = CurrentBlock->end(); BI != BE; ) {
2105      Instruction *CurInst = BI++;
2106
2107      if (isa<AllocaInst>(CurInst) ||
2108          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2109          CurInst->getType()->isVoidTy() ||
2110          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2111          isa<DbgInfoIntrinsic>(CurInst))
2112        continue;
2113
2114      uint32_t ValNo = VN.lookup(CurInst);
2115
2116      // Look for the predecessors for PRE opportunities.  We're
2117      // only trying to solve the basic diamond case, where
2118      // a value is computed in the successor and one predecessor,
2119      // but not the other.  We also explicitly disallow cases
2120      // where the successor is its own predecessor, because they're
2121      // more complicated to get right.
2122      unsigned NumWith = 0;
2123      unsigned NumWithout = 0;
2124      BasicBlock *PREPred = 0;
2125      predMap.clear();
2126
2127      for (pred_iterator PI = pred_begin(CurrentBlock),
2128           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2129        // We're not interested in PRE where the block is its
2130        // own predecessor, or in blocks with predecessors
2131        // that are not reachable.
2132        if (*PI == CurrentBlock) {
2133          NumWithout = 2;
2134          break;
2135        } else if (!localAvail.count(*PI))  {
2136          NumWithout = 2;
2137          break;
2138        }
2139
2140        DenseMap<uint32_t, Value*>::iterator predV =
2141                                            localAvail[*PI]->table.find(ValNo);
2142        if (predV == localAvail[*PI]->table.end()) {
2143          PREPred = *PI;
2144          NumWithout++;
2145        } else if (predV->second == CurInst) {
2146          NumWithout = 2;
2147        } else {
2148          predMap[*PI] = predV->second;
2149          NumWith++;
2150        }
2151      }
2152
2153      // Don't do PRE when it might increase code size, i.e. when
2154      // we would need to insert instructions in more than one pred.
2155      if (NumWithout != 1 || NumWith == 0)
2156        continue;
2157
2158      // Don't do PRE across indirect branch.
2159      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2160        continue;
2161
2162      // We can't do PRE safely on a critical edge, so instead we schedule
2163      // the edge to be split and perform the PRE the next time we iterate
2164      // on the function.
2165      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2166      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2167        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2168        continue;
2169      }
2170
2171      // Instantiate the expression in the predecessor that lacked it.
2172      // Because we are going top-down through the block, all value numbers
2173      // will be available in the predecessor by the time we need them.  Any
2174      // that weren't originally present will have been instantiated earlier
2175      // in this loop.
2176      Instruction *PREInstr = CurInst->clone();
2177      bool success = true;
2178      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2179        Value *Op = PREInstr->getOperand(i);
2180        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2181          continue;
2182
2183        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2184          PREInstr->setOperand(i, V);
2185        } else {
2186          success = false;
2187          break;
2188        }
2189      }
2190
2191      // Fail out if we encounter an operand that is not available in
2192      // the PRE predecessor.  This is typically because of loads which
2193      // are not value numbered precisely.
2194      if (!success) {
2195        delete PREInstr;
2196        DEBUG(verifyRemoved(PREInstr));
2197        continue;
2198      }
2199
2200      PREInstr->insertBefore(PREPred->getTerminator());
2201      PREInstr->setName(CurInst->getName() + ".pre");
2202      predMap[PREPred] = PREInstr;
2203      VN.add(PREInstr, ValNo);
2204      NumGVNPRE++;
2205
2206      // Update the availability map to include the new instruction.
2207      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2208
2209      // Create a PHI to make the value available in this block.
2210      PHINode* Phi = PHINode::Create(CurInst->getType(),
2211                                     CurInst->getName() + ".pre-phi",
2212                                     CurrentBlock->begin());
2213      for (pred_iterator PI = pred_begin(CurrentBlock),
2214           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2215        Phi->addIncoming(predMap[*PI], *PI);
2216
2217      VN.add(Phi, ValNo);
2218      localAvail[CurrentBlock]->table[ValNo] = Phi;
2219
2220      CurInst->replaceAllUsesWith(Phi);
2221      if (MD && Phi->getType()->isPointerTy())
2222        MD->invalidateCachedPointerInfo(Phi);
2223      VN.erase(CurInst);
2224
2225      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2226      if (MD) MD->removeInstruction(CurInst);
2227      CurInst->eraseFromParent();
2228      DEBUG(verifyRemoved(CurInst));
2229      Changed = true;
2230    }
2231  }
2232
2233  if (splitCriticalEdges())
2234    Changed = true;
2235
2236  return Changed;
2237}
2238
2239/// splitCriticalEdges - Split critical edges found during the previous
2240/// iteration that may enable further optimization.
2241bool GVN::splitCriticalEdges() {
2242  if (toSplit.empty())
2243    return false;
2244  do {
2245    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2246    SplitCriticalEdge(Edge.first, Edge.second, this);
2247  } while (!toSplit.empty());
2248  if (MD) MD->invalidateCachedPredecessors();
2249  return true;
2250}
2251
2252/// iterateOnFunction - Executes one iteration of GVN
2253bool GVN::iterateOnFunction(Function &F) {
2254  cleanupGlobalSets();
2255
2256  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2257       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2258    if (DI->getIDom())
2259      localAvail[DI->getBlock()] =
2260                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2261    else
2262      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2263  }
2264
2265  // Top-down walk of the dominator tree
2266  bool Changed = false;
2267#if 0
2268  // Needed for value numbering with phi construction to work.
2269  ReversePostOrderTraversal<Function*> RPOT(&F);
2270  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2271       RE = RPOT.end(); RI != RE; ++RI)
2272    Changed |= processBlock(*RI);
2273#else
2274  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2275       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2276    Changed |= processBlock(DI->getBlock());
2277#endif
2278
2279  return Changed;
2280}
2281
2282void GVN::cleanupGlobalSets() {
2283  VN.clear();
2284
2285  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2286       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2287    delete I->second;
2288  localAvail.clear();
2289}
2290
2291/// verifyRemoved - Verify that the specified instruction does not occur in our
2292/// internal data structures.
2293void GVN::verifyRemoved(const Instruction *Inst) const {
2294  VN.verifyRemoved(Inst);
2295
2296  // Walk through the value number scope to make sure the instruction isn't
2297  // ferreted away in it.
2298  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2299         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2300    const ValueNumberScope *VNS = I->second;
2301
2302    while (VNS) {
2303      for (DenseMap<uint32_t, Value*>::const_iterator
2304             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2305        assert(II->second != Inst && "Inst still in value numbering scope!");
2306      }
2307
2308      VNS = VNS->parent;
2309    }
2310  }
2311}
2312