GVN.cpp revision 879922932fad4149280b8bc03c60f0003f55a778
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself, it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/MemoryDependenceAnalysis.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include <cstdio>
40using namespace llvm;
41
42STATISTIC(NumGVNInstr, "Number of instructions deleted");
43STATISTIC(NumGVNLoad, "Number of loads deleted");
44STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
45STATISTIC(NumGVNBlocks, "Number of blocks merged");
46STATISTIC(NumPRELoad, "Number of loads PRE'd");
47
48static cl::opt<bool> EnablePRE("enable-pre",
49                               cl::init(true), cl::Hidden);
50cl::opt<bool> EnableLoadPRE("enable-load-pre"/*, cl::init(true)*/);
51
52//===----------------------------------------------------------------------===//
53//                         ValueTable Class
54//===----------------------------------------------------------------------===//
55
56/// This class holds the mapping between values and value numbers.  It is used
57/// as an efficient mechanism to determine the expression-wise equivalence of
58/// two values.
59namespace {
60  struct VISIBILITY_HIDDEN Expression {
61    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
62                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
63                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
64                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
65                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
66                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
67                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
68                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
69                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
70                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
71                            EMPTY, TOMBSTONE };
72
73    ExpressionOpcode opcode;
74    const Type* type;
75    uint32_t firstVN;
76    uint32_t secondVN;
77    uint32_t thirdVN;
78    SmallVector<uint32_t, 4> varargs;
79    Value* function;
80
81    Expression() { }
82    Expression(ExpressionOpcode o) : opcode(o) { }
83
84    bool operator==(const Expression &other) const {
85      if (opcode != other.opcode)
86        return false;
87      else if (opcode == EMPTY || opcode == TOMBSTONE)
88        return true;
89      else if (type != other.type)
90        return false;
91      else if (function != other.function)
92        return false;
93      else if (firstVN != other.firstVN)
94        return false;
95      else if (secondVN != other.secondVN)
96        return false;
97      else if (thirdVN != other.thirdVN)
98        return false;
99      else {
100        if (varargs.size() != other.varargs.size())
101          return false;
102
103        for (size_t i = 0; i < varargs.size(); ++i)
104          if (varargs[i] != other.varargs[i])
105            return false;
106
107        return true;
108      }
109    }
110
111    bool operator!=(const Expression &other) const {
112      if (opcode != other.opcode)
113        return true;
114      else if (opcode == EMPTY || opcode == TOMBSTONE)
115        return false;
116      else if (type != other.type)
117        return true;
118      else if (function != other.function)
119        return true;
120      else if (firstVN != other.firstVN)
121        return true;
122      else if (secondVN != other.secondVN)
123        return true;
124      else if (thirdVN != other.thirdVN)
125        return true;
126      else {
127        if (varargs.size() != other.varargs.size())
128          return true;
129
130        for (size_t i = 0; i < varargs.size(); ++i)
131          if (varargs[i] != other.varargs[i])
132            return true;
133
134          return false;
135      }
136    }
137  };
138
139  class VISIBILITY_HIDDEN ValueTable {
140    private:
141      DenseMap<Value*, uint32_t> valueNumbering;
142      DenseMap<Expression, uint32_t> expressionNumbering;
143      AliasAnalysis* AA;
144      MemoryDependenceAnalysis* MD;
145      DominatorTree* DT;
146
147      uint32_t nextValueNumber;
148
149      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
150      Expression::ExpressionOpcode getOpcode(CmpInst* C);
151      Expression::ExpressionOpcode getOpcode(CastInst* C);
152      Expression create_expression(BinaryOperator* BO);
153      Expression create_expression(CmpInst* C);
154      Expression create_expression(ShuffleVectorInst* V);
155      Expression create_expression(ExtractElementInst* C);
156      Expression create_expression(InsertElementInst* V);
157      Expression create_expression(SelectInst* V);
158      Expression create_expression(CastInst* C);
159      Expression create_expression(GetElementPtrInst* G);
160      Expression create_expression(CallInst* C);
161      Expression create_expression(Constant* C);
162    public:
163      ValueTable() : nextValueNumber(1) { }
164      uint32_t lookup_or_add(Value* V);
165      uint32_t lookup(Value* V) const;
166      void add(Value* V, uint32_t num);
167      void clear();
168      void erase(Value* v);
169      unsigned size();
170      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
171      AliasAnalysis *getAliasAnalysis() const { return AA; }
172      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
173      void setDomTree(DominatorTree* D) { DT = D; }
174      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
175  };
176}
177
178namespace llvm {
179template <> struct DenseMapInfo<Expression> {
180  static inline Expression getEmptyKey() {
181    return Expression(Expression::EMPTY);
182  }
183
184  static inline Expression getTombstoneKey() {
185    return Expression(Expression::TOMBSTONE);
186  }
187
188  static unsigned getHashValue(const Expression e) {
189    unsigned hash = e.opcode;
190
191    hash = e.firstVN + hash * 37;
192    hash = e.secondVN + hash * 37;
193    hash = e.thirdVN + hash * 37;
194
195    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
196            (unsigned)((uintptr_t)e.type >> 9)) +
197           hash * 37;
198
199    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
200         E = e.varargs.end(); I != E; ++I)
201      hash = *I + hash * 37;
202
203    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
204            (unsigned)((uintptr_t)e.function >> 9)) +
205           hash * 37;
206
207    return hash;
208  }
209  static bool isEqual(const Expression &LHS, const Expression &RHS) {
210    return LHS == RHS;
211  }
212  static bool isPod() { return true; }
213};
214}
215
216//===----------------------------------------------------------------------===//
217//                     ValueTable Internal Functions
218//===----------------------------------------------------------------------===//
219Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
220  switch(BO->getOpcode()) {
221  default: // THIS SHOULD NEVER HAPPEN
222    assert(0 && "Binary operator with unknown opcode?");
223  case Instruction::Add:  return Expression::ADD;
224  case Instruction::Sub:  return Expression::SUB;
225  case Instruction::Mul:  return Expression::MUL;
226  case Instruction::UDiv: return Expression::UDIV;
227  case Instruction::SDiv: return Expression::SDIV;
228  case Instruction::FDiv: return Expression::FDIV;
229  case Instruction::URem: return Expression::UREM;
230  case Instruction::SRem: return Expression::SREM;
231  case Instruction::FRem: return Expression::FREM;
232  case Instruction::Shl:  return Expression::SHL;
233  case Instruction::LShr: return Expression::LSHR;
234  case Instruction::AShr: return Expression::ASHR;
235  case Instruction::And:  return Expression::AND;
236  case Instruction::Or:   return Expression::OR;
237  case Instruction::Xor:  return Expression::XOR;
238  }
239}
240
241Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
242  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
243    switch (C->getPredicate()) {
244    default:  // THIS SHOULD NEVER HAPPEN
245      assert(0 && "Comparison with unknown predicate?");
246    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
247    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
248    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
249    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
250    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
251    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
252    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
253    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
254    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
255    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
256    }
257  }
258  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
259  switch (C->getPredicate()) {
260  default: // THIS SHOULD NEVER HAPPEN
261    assert(0 && "Comparison with unknown predicate?");
262  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
263  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
264  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
265  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
266  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
267  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
268  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
269  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
270  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
271  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
272  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
273  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
274  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
275  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
276  }
277}
278
279Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
280  switch(C->getOpcode()) {
281  default: // THIS SHOULD NEVER HAPPEN
282    assert(0 && "Cast operator with unknown opcode?");
283  case Instruction::Trunc:    return Expression::TRUNC;
284  case Instruction::ZExt:     return Expression::ZEXT;
285  case Instruction::SExt:     return Expression::SEXT;
286  case Instruction::FPToUI:   return Expression::FPTOUI;
287  case Instruction::FPToSI:   return Expression::FPTOSI;
288  case Instruction::UIToFP:   return Expression::UITOFP;
289  case Instruction::SIToFP:   return Expression::SITOFP;
290  case Instruction::FPTrunc:  return Expression::FPTRUNC;
291  case Instruction::FPExt:    return Expression::FPEXT;
292  case Instruction::PtrToInt: return Expression::PTRTOINT;
293  case Instruction::IntToPtr: return Expression::INTTOPTR;
294  case Instruction::BitCast:  return Expression::BITCAST;
295  }
296}
297
298Expression ValueTable::create_expression(CallInst* C) {
299  Expression e;
300
301  e.type = C->getType();
302  e.firstVN = 0;
303  e.secondVN = 0;
304  e.thirdVN = 0;
305  e.function = C->getCalledFunction();
306  e.opcode = Expression::CALL;
307
308  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
309       I != E; ++I)
310    e.varargs.push_back(lookup_or_add(*I));
311
312  return e;
313}
314
315Expression ValueTable::create_expression(BinaryOperator* BO) {
316  Expression e;
317
318  e.firstVN = lookup_or_add(BO->getOperand(0));
319  e.secondVN = lookup_or_add(BO->getOperand(1));
320  e.thirdVN = 0;
321  e.function = 0;
322  e.type = BO->getType();
323  e.opcode = getOpcode(BO);
324
325  return e;
326}
327
328Expression ValueTable::create_expression(CmpInst* C) {
329  Expression e;
330
331  e.firstVN = lookup_or_add(C->getOperand(0));
332  e.secondVN = lookup_or_add(C->getOperand(1));
333  e.thirdVN = 0;
334  e.function = 0;
335  e.type = C->getType();
336  e.opcode = getOpcode(C);
337
338  return e;
339}
340
341Expression ValueTable::create_expression(CastInst* C) {
342  Expression e;
343
344  e.firstVN = lookup_or_add(C->getOperand(0));
345  e.secondVN = 0;
346  e.thirdVN = 0;
347  e.function = 0;
348  e.type = C->getType();
349  e.opcode = getOpcode(C);
350
351  return e;
352}
353
354Expression ValueTable::create_expression(ShuffleVectorInst* S) {
355  Expression e;
356
357  e.firstVN = lookup_or_add(S->getOperand(0));
358  e.secondVN = lookup_or_add(S->getOperand(1));
359  e.thirdVN = lookup_or_add(S->getOperand(2));
360  e.function = 0;
361  e.type = S->getType();
362  e.opcode = Expression::SHUFFLE;
363
364  return e;
365}
366
367Expression ValueTable::create_expression(ExtractElementInst* E) {
368  Expression e;
369
370  e.firstVN = lookup_or_add(E->getOperand(0));
371  e.secondVN = lookup_or_add(E->getOperand(1));
372  e.thirdVN = 0;
373  e.function = 0;
374  e.type = E->getType();
375  e.opcode = Expression::EXTRACT;
376
377  return e;
378}
379
380Expression ValueTable::create_expression(InsertElementInst* I) {
381  Expression e;
382
383  e.firstVN = lookup_or_add(I->getOperand(0));
384  e.secondVN = lookup_or_add(I->getOperand(1));
385  e.thirdVN = lookup_or_add(I->getOperand(2));
386  e.function = 0;
387  e.type = I->getType();
388  e.opcode = Expression::INSERT;
389
390  return e;
391}
392
393Expression ValueTable::create_expression(SelectInst* I) {
394  Expression e;
395
396  e.firstVN = lookup_or_add(I->getCondition());
397  e.secondVN = lookup_or_add(I->getTrueValue());
398  e.thirdVN = lookup_or_add(I->getFalseValue());
399  e.function = 0;
400  e.type = I->getType();
401  e.opcode = Expression::SELECT;
402
403  return e;
404}
405
406Expression ValueTable::create_expression(GetElementPtrInst* G) {
407  Expression e;
408
409  e.firstVN = lookup_or_add(G->getPointerOperand());
410  e.secondVN = 0;
411  e.thirdVN = 0;
412  e.function = 0;
413  e.type = G->getType();
414  e.opcode = Expression::GEP;
415
416  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
417       I != E; ++I)
418    e.varargs.push_back(lookup_or_add(*I));
419
420  return e;
421}
422
423//===----------------------------------------------------------------------===//
424//                     ValueTable External Functions
425//===----------------------------------------------------------------------===//
426
427/// add - Insert a value into the table with a specified value number.
428void ValueTable::add(Value* V, uint32_t num) {
429  valueNumbering.insert(std::make_pair(V, num));
430}
431
432/// lookup_or_add - Returns the value number for the specified value, assigning
433/// it a new number if it did not have one before.
434uint32_t ValueTable::lookup_or_add(Value* V) {
435  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
436  if (VI != valueNumbering.end())
437    return VI->second;
438
439  if (CallInst* C = dyn_cast<CallInst>(V)) {
440    if (AA->doesNotAccessMemory(C)) {
441      Expression e = create_expression(C);
442
443      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
444      if (EI != expressionNumbering.end()) {
445        valueNumbering.insert(std::make_pair(V, EI->second));
446        return EI->second;
447      } else {
448        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
449        valueNumbering.insert(std::make_pair(V, nextValueNumber));
450
451        return nextValueNumber++;
452      }
453    } else if (AA->onlyReadsMemory(C)) {
454      Expression e = create_expression(C);
455
456      if (expressionNumbering.find(e) == expressionNumbering.end()) {
457        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
458        valueNumbering.insert(std::make_pair(V, nextValueNumber));
459        return nextValueNumber++;
460      }
461
462      MemDepResult local_dep = MD->getDependency(C);
463
464      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
465        valueNumbering.insert(std::make_pair(V, nextValueNumber));
466        return nextValueNumber++;
467      }
468
469      if (local_dep.isDef()) {
470        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
471
472        if (local_cdep->getNumOperands() != C->getNumOperands()) {
473          valueNumbering.insert(std::make_pair(V, nextValueNumber));
474          return nextValueNumber++;
475        }
476
477        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
478          uint32_t c_vn = lookup_or_add(C->getOperand(i));
479          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
480          if (c_vn != cd_vn) {
481            valueNumbering.insert(std::make_pair(V, nextValueNumber));
482            return nextValueNumber++;
483          }
484        }
485
486        uint32_t v = lookup_or_add(local_cdep);
487        valueNumbering.insert(std::make_pair(V, v));
488        return v;
489      }
490
491      // Non-local case.
492      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
493        MD->getNonLocalCallDependency(CallSite(C));
494      // FIXME: call/call dependencies for readonly calls should return def, not
495      // clobber!  Move the checking logic to MemDep!
496      CallInst* cdep = 0;
497
498      // Check to see if we have a single dominating call instruction that is
499      // identical to C.
500      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
501        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
502        // Ignore non-local dependencies.
503        if (I->second.isNonLocal())
504          continue;
505
506        // We don't handle non-depedencies.  If we already have a call, reject
507        // instruction dependencies.
508        if (I->second.isClobber() || cdep != 0) {
509          cdep = 0;
510          break;
511        }
512
513        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
514        // FIXME: All duplicated with non-local case.
515        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
516          cdep = NonLocalDepCall;
517          continue;
518        }
519
520        cdep = 0;
521        break;
522      }
523
524      if (!cdep) {
525        valueNumbering.insert(std::make_pair(V, nextValueNumber));
526        return nextValueNumber++;
527      }
528
529      if (cdep->getNumOperands() != C->getNumOperands()) {
530        valueNumbering.insert(std::make_pair(V, nextValueNumber));
531        return nextValueNumber++;
532      }
533      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
534        uint32_t c_vn = lookup_or_add(C->getOperand(i));
535        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
536        if (c_vn != cd_vn) {
537          valueNumbering.insert(std::make_pair(V, nextValueNumber));
538          return nextValueNumber++;
539        }
540      }
541
542      uint32_t v = lookup_or_add(cdep);
543      valueNumbering.insert(std::make_pair(V, v));
544      return v;
545
546    } else {
547      valueNumbering.insert(std::make_pair(V, nextValueNumber));
548      return nextValueNumber++;
549    }
550  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
551    Expression e = create_expression(BO);
552
553    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
554    if (EI != expressionNumbering.end()) {
555      valueNumbering.insert(std::make_pair(V, EI->second));
556      return EI->second;
557    } else {
558      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
559      valueNumbering.insert(std::make_pair(V, nextValueNumber));
560
561      return nextValueNumber++;
562    }
563  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
564    Expression e = create_expression(C);
565
566    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
567    if (EI != expressionNumbering.end()) {
568      valueNumbering.insert(std::make_pair(V, EI->second));
569      return EI->second;
570    } else {
571      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
572      valueNumbering.insert(std::make_pair(V, nextValueNumber));
573
574      return nextValueNumber++;
575    }
576  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
577    Expression e = create_expression(U);
578
579    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
580    if (EI != expressionNumbering.end()) {
581      valueNumbering.insert(std::make_pair(V, EI->second));
582      return EI->second;
583    } else {
584      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
585      valueNumbering.insert(std::make_pair(V, nextValueNumber));
586
587      return nextValueNumber++;
588    }
589  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
590    Expression e = create_expression(U);
591
592    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
593    if (EI != expressionNumbering.end()) {
594      valueNumbering.insert(std::make_pair(V, EI->second));
595      return EI->second;
596    } else {
597      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
598      valueNumbering.insert(std::make_pair(V, nextValueNumber));
599
600      return nextValueNumber++;
601    }
602  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
603    Expression e = create_expression(U);
604
605    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
606    if (EI != expressionNumbering.end()) {
607      valueNumbering.insert(std::make_pair(V, EI->second));
608      return EI->second;
609    } else {
610      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
611      valueNumbering.insert(std::make_pair(V, nextValueNumber));
612
613      return nextValueNumber++;
614    }
615  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
616    Expression e = create_expression(U);
617
618    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
619    if (EI != expressionNumbering.end()) {
620      valueNumbering.insert(std::make_pair(V, EI->second));
621      return EI->second;
622    } else {
623      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
624      valueNumbering.insert(std::make_pair(V, nextValueNumber));
625
626      return nextValueNumber++;
627    }
628  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
629    Expression e = create_expression(U);
630
631    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
632    if (EI != expressionNumbering.end()) {
633      valueNumbering.insert(std::make_pair(V, EI->second));
634      return EI->second;
635    } else {
636      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
637      valueNumbering.insert(std::make_pair(V, nextValueNumber));
638
639      return nextValueNumber++;
640    }
641  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
642    Expression e = create_expression(U);
643
644    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
645    if (EI != expressionNumbering.end()) {
646      valueNumbering.insert(std::make_pair(V, EI->second));
647      return EI->second;
648    } else {
649      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
650      valueNumbering.insert(std::make_pair(V, nextValueNumber));
651
652      return nextValueNumber++;
653    }
654  } else {
655    valueNumbering.insert(std::make_pair(V, nextValueNumber));
656    return nextValueNumber++;
657  }
658}
659
660/// lookup - Returns the value number of the specified value. Fails if
661/// the value has not yet been numbered.
662uint32_t ValueTable::lookup(Value* V) const {
663  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
664  assert(VI != valueNumbering.end() && "Value not numbered?");
665  return VI->second;
666}
667
668/// clear - Remove all entries from the ValueTable
669void ValueTable::clear() {
670  valueNumbering.clear();
671  expressionNumbering.clear();
672  nextValueNumber = 1;
673}
674
675/// erase - Remove a value from the value numbering
676void ValueTable::erase(Value* V) {
677  valueNumbering.erase(V);
678}
679
680//===----------------------------------------------------------------------===//
681//                         GVN Pass
682//===----------------------------------------------------------------------===//
683
684namespace {
685  struct VISIBILITY_HIDDEN ValueNumberScope {
686    ValueNumberScope* parent;
687    DenseMap<uint32_t, Value*> table;
688
689    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
690  };
691}
692
693namespace {
694
695  class VISIBILITY_HIDDEN GVN : public FunctionPass {
696    bool runOnFunction(Function &F);
697  public:
698    static char ID; // Pass identification, replacement for typeid
699    GVN() : FunctionPass(&ID) { }
700
701  private:
702    MemoryDependenceAnalysis *MD;
703    DominatorTree *DT;
704
705    ValueTable VN;
706    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
707
708    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
709    PhiMapType phiMap;
710
711
712    // This transformation requires dominator postdominator info
713    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
714      AU.addRequired<DominatorTree>();
715      AU.addRequired<MemoryDependenceAnalysis>();
716      AU.addRequired<AliasAnalysis>();
717
718      AU.addPreserved<DominatorTree>();
719      AU.addPreserved<AliasAnalysis>();
720    }
721
722    // Helper fuctions
723    // FIXME: eliminate or document these better
724    bool processLoad(LoadInst* L,
725                     SmallVectorImpl<Instruction*> &toErase);
726    bool processInstruction(Instruction* I,
727                            SmallVectorImpl<Instruction*> &toErase);
728    bool processNonLocalLoad(LoadInst* L,
729                             SmallVectorImpl<Instruction*> &toErase);
730    bool processBlock(DomTreeNode* DTN);
731    Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
732                            DenseMap<BasicBlock*, Value*> &Phis,
733                            bool top_level = false);
734    void dump(DenseMap<uint32_t, Value*>& d);
735    bool iterateOnFunction(Function &F);
736    Value* CollapsePhi(PHINode* p);
737    bool isSafeReplacement(PHINode* p, Instruction* inst);
738    bool performPRE(Function& F);
739    Value* lookupNumber(BasicBlock* BB, uint32_t num);
740    bool mergeBlockIntoPredecessor(BasicBlock* BB);
741    void cleanupGlobalSets();
742  };
743
744  char GVN::ID = 0;
745}
746
747// createGVNPass - The public interface to this file...
748FunctionPass *llvm::createGVNPass() { return new GVN(); }
749
750static RegisterPass<GVN> X("gvn",
751                           "Global Value Numbering");
752
753void GVN::dump(DenseMap<uint32_t, Value*>& d) {
754  printf("{\n");
755  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
756       E = d.end(); I != E; ++I) {
757      printf("%d\n", I->first);
758      I->second->dump();
759  }
760  printf("}\n");
761}
762
763Value* GVN::CollapsePhi(PHINode* p) {
764  Value* constVal = p->hasConstantValue();
765  if (!constVal) return 0;
766
767  Instruction* inst = dyn_cast<Instruction>(constVal);
768  if (!inst)
769    return constVal;
770
771  if (DT->dominates(inst, p))
772    if (isSafeReplacement(p, inst))
773      return inst;
774  return 0;
775}
776
777bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
778  if (!isa<PHINode>(inst))
779    return true;
780
781  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
782       UI != E; ++UI)
783    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
784      if (use_phi->getParent() == inst->getParent())
785        return false;
786
787  return true;
788}
789
790/// GetValueForBlock - Get the value to use within the specified basic block.
791/// available values are in Phis.
792Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
793                             DenseMap<BasicBlock*, Value*> &Phis,
794                             bool top_level) {
795
796  // If we have already computed this value, return the previously computed val.
797  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
798  if (V != Phis.end() && !top_level) return V->second;
799
800  // If the block is unreachable, just return undef, since this path
801  // can't actually occur at runtime.
802  if (!DT->isReachableFromEntry(BB))
803    return Phis[BB] = UndefValue::get(orig->getType());
804
805  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
806    Value *ret = GetValueForBlock(Pred, orig, Phis);
807    Phis[BB] = ret;
808    return ret;
809  }
810
811  // Get the number of predecessors of this block so we can reserve space later.
812  // If there is already a PHI in it, use the #preds from it, otherwise count.
813  // Getting it from the PHI is constant time.
814  unsigned NumPreds;
815  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
816    NumPreds = ExistingPN->getNumIncomingValues();
817  else
818    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
819
820  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
821  // now, then get values to fill in the incoming values for the PHI.
822  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
823                                BB->begin());
824  PN->reserveOperandSpace(NumPreds);
825
826  Phis.insert(std::make_pair(BB, PN));
827
828  // Fill in the incoming values for the block.
829  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
830    Value* val = GetValueForBlock(*PI, orig, Phis);
831    PN->addIncoming(val, *PI);
832  }
833
834  VN.getAliasAnalysis()->copyValue(orig, PN);
835
836  // Attempt to collapse PHI nodes that are trivially redundant
837  Value* v = CollapsePhi(PN);
838  if (!v) {
839    // Cache our phi construction results
840    phiMap[orig->getPointerOperand()].insert(PN);
841    return PN;
842  }
843
844  PN->replaceAllUsesWith(v);
845  if (isa<PointerType>(v->getType()))
846    MD->invalidateCachedPointerInfo(v);
847
848  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
849       E = Phis.end(); I != E; ++I)
850    if (I->second == PN)
851      I->second = v;
852
853  DEBUG(cerr << "GVN removed: " << *PN);
854  MD->removeInstruction(PN);
855  PN->eraseFromParent();
856
857  Phis[BB] = v;
858  return v;
859}
860
861/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
862/// we're analyzing is fully available in the specified block.  As we go, keep
863/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
864/// map is actually a tri-state map with the following values:
865///   0) we know the block *is not* fully available.
866///   1) we know the block *is* fully available.
867///   2) we do not know whether the block is fully available or not, but we are
868///      currently speculating that it will be.
869///   3) we are speculating for this block and have used that to speculate for
870///      other blocks.
871static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
872                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
873  // Optimistically assume that the block is fully available and check to see
874  // if we already know about this block in one lookup.
875  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
876    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
877
878  // If the entry already existed for this block, return the precomputed value.
879  if (!IV.second) {
880    // If this is a speculative "available" value, mark it as being used for
881    // speculation of other blocks.
882    if (IV.first->second == 2)
883      IV.first->second = 3;
884    return IV.first->second != 0;
885  }
886
887  // Otherwise, see if it is fully available in all predecessors.
888  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
889
890  // If this block has no predecessors, it isn't live-in here.
891  if (PI == PE)
892    goto SpeculationFailure;
893
894  for (; PI != PE; ++PI)
895    // If the value isn't fully available in one of our predecessors, then it
896    // isn't fully available in this block either.  Undo our previous
897    // optimistic assumption and bail out.
898    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
899      goto SpeculationFailure;
900
901  return true;
902
903// SpeculationFailure - If we get here, we found out that this is not, after
904// all, a fully-available block.  We have a problem if we speculated on this and
905// used the speculation to mark other blocks as available.
906SpeculationFailure:
907  char &BBVal = FullyAvailableBlocks[BB];
908
909  // If we didn't speculate on this, just return with it set to false.
910  if (BBVal == 2) {
911    BBVal = 0;
912    return false;
913  }
914
915  // If we did speculate on this value, we could have blocks set to 1 that are
916  // incorrect.  Walk the (transitive) successors of this block and mark them as
917  // 0 if set to one.
918  SmallVector<BasicBlock*, 32> BBWorklist;
919  BBWorklist.push_back(BB);
920
921  while (!BBWorklist.empty()) {
922    BasicBlock *Entry = BBWorklist.pop_back_val();
923    // Note that this sets blocks to 0 (unavailable) if they happen to not
924    // already be in FullyAvailableBlocks.  This is safe.
925    char &EntryVal = FullyAvailableBlocks[Entry];
926    if (EntryVal == 0) continue;  // Already unavailable.
927
928    // Mark as unavailable.
929    EntryVal = 0;
930
931    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
932      BBWorklist.push_back(*I);
933  }
934
935  return false;
936}
937
938/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
939/// non-local by performing PHI construction.
940bool GVN::processNonLocalLoad(LoadInst *LI,
941                              SmallVectorImpl<Instruction*> &toErase) {
942  // Find the non-local dependencies of the load.
943  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
944  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
945                                   Deps);
946  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
947
948  // If we had to process more than one hundred blocks to find the
949  // dependencies, this load isn't worth worrying about.  Optimizing
950  // it will be too expensive.
951  if (Deps.size() > 100)
952    return false;
953
954  // Filter out useless results (non-locals, etc).  Keep track of the blocks
955  // where we have a value available in repl, also keep track of whether we see
956  // dependencies that produce an unknown value for the load (such as a call
957  // that could potentially clobber the load).
958  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
959  SmallVector<BasicBlock*, 16> UnavailableBlocks;
960
961  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
962    BasicBlock *DepBB = Deps[i].first;
963    MemDepResult DepInfo = Deps[i].second;
964
965    if (DepInfo.isClobber()) {
966      UnavailableBlocks.push_back(DepBB);
967      continue;
968    }
969
970    Instruction *DepInst = DepInfo.getInst();
971
972    // Loading the allocation -> undef.
973    if (isa<AllocationInst>(DepInst)) {
974      ValuesPerBlock.push_back(std::make_pair(DepBB,
975                                              UndefValue::get(LI->getType())));
976      continue;
977    }
978
979    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
980      // Reject loads and stores that are to the same address but are of
981      // different types.
982      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
983      // of bitfield access, it would be interesting to optimize for it at some
984      // point.
985      if (S->getOperand(0)->getType() != LI->getType()) {
986        UnavailableBlocks.push_back(DepBB);
987        continue;
988      }
989
990      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
991
992    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
993      if (LD->getType() != LI->getType()) {
994        UnavailableBlocks.push_back(DepBB);
995        continue;
996      }
997      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
998    } else {
999      UnavailableBlocks.push_back(DepBB);
1000      continue;
1001    }
1002  }
1003
1004  // If we have no predecessors that produce a known value for this load, exit
1005  // early.
1006  if (ValuesPerBlock.empty()) return false;
1007
1008  // If all of the instructions we depend on produce a known value for this
1009  // load, then it is fully redundant and we can use PHI insertion to compute
1010  // its value.  Insert PHIs and remove the fully redundant value now.
1011  if (UnavailableBlocks.empty()) {
1012    // Use cached PHI construction information from previous runs
1013    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1014    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1015    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1016         I != E; ++I) {
1017      if ((*I)->getParent() == LI->getParent()) {
1018        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1019        LI->replaceAllUsesWith(*I);
1020        if (isa<PointerType>((*I)->getType()))
1021          MD->invalidateCachedPointerInfo(*I);
1022        toErase.push_back(LI);
1023        NumGVNLoad++;
1024        return true;
1025      }
1026
1027      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1028    }
1029
1030    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1031
1032    DenseMap<BasicBlock*, Value*> BlockReplValues;
1033    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1034    // Perform PHI construction.
1035    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1036    LI->replaceAllUsesWith(v);
1037    v->takeName(LI);
1038    if (isa<PointerType>(v->getType()))
1039      MD->invalidateCachedPointerInfo(v);
1040    toErase.push_back(LI);
1041    NumGVNLoad++;
1042    return true;
1043  }
1044
1045  if (!EnablePRE || !EnableLoadPRE)
1046    return false;
1047
1048  // Okay, we have *some* definitions of the value.  This means that the value
1049  // is available in some of our (transitive) predecessors.  Lets think about
1050  // doing PRE of this load.  This will involve inserting a new load into the
1051  // predecessor when it's not available.  We could do this in general, but
1052  // prefer to not increase code size.  As such, we only do this when we know
1053  // that we only have to insert *one* load (which means we're basically moving
1054  // the load, not inserting a new one).
1055
1056  // Everything we do here is based on local predecessors of LI's block.  If it
1057  // only has one predecessor, bail now.
1058  BasicBlock *LoadBB = LI->getParent();
1059  if (LoadBB->getSinglePredecessor())
1060    return false;
1061
1062  // If we have a repl set with LI itself in it, this means we have a loop where
1063  // at least one of the values is LI.  Since this means that we won't be able
1064  // to eliminate LI even if we insert uses in the other predecessors, we will
1065  // end up increasing code size.  Reject this by scanning for LI.
1066  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1067    if (ValuesPerBlock[i].second == LI)
1068      return false;
1069
1070  // Okay, we have some hope :).  Check to see if the loaded value is fully
1071  // available in all but one predecessor.
1072  // FIXME: If we could restructure the CFG, we could make a common pred with
1073  // all the preds that don't have an available LI and insert a new load into
1074  // that one block.
1075  BasicBlock *UnavailablePred = 0;
1076
1077  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1078  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1079    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1080  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1081    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1082
1083  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1084       PI != E; ++PI) {
1085    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1086      continue;
1087
1088    // If this load is not available in multiple predecessors, reject it.
1089    if (UnavailablePred && UnavailablePred != *PI)
1090      return false;
1091    UnavailablePred = *PI;
1092  }
1093
1094  assert(UnavailablePred != 0 &&
1095         "Fully available value should be eliminated above!");
1096
1097  // If the loaded pointer is PHI node defined in this block, do PHI translation
1098  // to get its value in the predecessor.
1099  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1100
1101  // Make sure the value is live in the predecessor.  If it was defined by a
1102  // non-PHI instruction in this block, we don't know how to recompute it above.
1103  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1104    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1105      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1106                 << *LPInst << *LI << "\n");
1107      return false;
1108    }
1109
1110  // We don't currently handle critical edges :(
1111  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1112    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1113                << UnavailablePred->getName() << "': " << *LI);
1114    return false;
1115  }
1116
1117  // Okay, we can eliminate this load by inserting a reload in the predecessor
1118  // and using PHI construction to get the value in the other predecessors, do
1119  // it.
1120  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1121
1122  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1123                                LI->getAlignment(),
1124                                UnavailablePred->getTerminator());
1125
1126  DenseMap<BasicBlock*, Value*> BlockReplValues;
1127  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1128  BlockReplValues[UnavailablePred] = NewLoad;
1129
1130  // Perform PHI construction.
1131  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1132  LI->replaceAllUsesWith(v);
1133  v->takeName(LI);
1134  if (isa<PointerType>(v->getType()))
1135    MD->invalidateCachedPointerInfo(v);
1136  toErase.push_back(LI);
1137  NumPRELoad++;
1138  return true;
1139}
1140
1141/// processLoad - Attempt to eliminate a load, first by eliminating it
1142/// locally, and then attempting non-local elimination if that fails.
1143bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1144  if (L->isVolatile())
1145    return false;
1146
1147  Value* pointer = L->getPointerOperand();
1148
1149  // ... to a pointer that has been loaded from before...
1150  MemDepResult dep = MD->getDependency(L);
1151
1152  // If the value isn't available, don't do anything!
1153  if (dep.isClobber())
1154    return false;
1155
1156  // If it is defined in another block, try harder.
1157  if (dep.isNonLocal())
1158    return processNonLocalLoad(L, toErase);
1159
1160  Instruction *DepInst = dep.getInst();
1161  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1162    // Only forward substitute stores to loads of the same type.
1163    // FIXME: Could do better!
1164    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1165      return false;
1166
1167    // Remove it!
1168    L->replaceAllUsesWith(DepSI->getOperand(0));
1169    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1170      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1171    toErase.push_back(L);
1172    NumGVNLoad++;
1173    return true;
1174  }
1175
1176  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1177    // Only forward substitute stores to loads of the same type.
1178    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1179    if (DepLI->getType() != L->getType())
1180      return false;
1181
1182    // Remove it!
1183    L->replaceAllUsesWith(DepLI);
1184    if (isa<PointerType>(DepLI->getType()))
1185      MD->invalidateCachedPointerInfo(DepLI);
1186    toErase.push_back(L);
1187    NumGVNLoad++;
1188    return true;
1189  }
1190
1191  // If this load really doesn't depend on anything, then we must be loading an
1192  // undef value.  This can happen when loading for a fresh allocation with no
1193  // intervening stores, for example.
1194  if (isa<AllocationInst>(DepInst)) {
1195    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1196    toErase.push_back(L);
1197    NumGVNLoad++;
1198    return true;
1199  }
1200
1201  return false;
1202}
1203
1204Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1205  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1206  if (I == localAvail.end())
1207    return 0;
1208
1209  ValueNumberScope* locals = I->second;
1210
1211  while (locals) {
1212    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1213    if (I != locals->table.end())
1214      return I->second;
1215    else
1216      locals = locals->parent;
1217  }
1218
1219  return 0;
1220}
1221
1222/// processInstruction - When calculating availability, handle an instruction
1223/// by inserting it into the appropriate sets
1224bool GVN::processInstruction(Instruction *I,
1225                             SmallVectorImpl<Instruction*> &toErase) {
1226  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1227    bool changed = processLoad(L, toErase);
1228
1229    if (!changed) {
1230      unsigned num = VN.lookup_or_add(L);
1231      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1232    }
1233
1234    return changed;
1235  }
1236
1237  uint32_t nextNum = VN.getNextUnusedValueNumber();
1238  unsigned num = VN.lookup_or_add(I);
1239
1240  // Allocations are always uniquely numbered, so we can save time and memory
1241  // by fast failing them.
1242  if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1243    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1244    return false;
1245  }
1246
1247  // Collapse PHI nodes
1248  if (PHINode* p = dyn_cast<PHINode>(I)) {
1249    Value* constVal = CollapsePhi(p);
1250
1251    if (constVal) {
1252      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1253           PI != PE; ++PI)
1254        PI->second.erase(p);
1255
1256      p->replaceAllUsesWith(constVal);
1257      if (isa<PointerType>(constVal->getType()))
1258        MD->invalidateCachedPointerInfo(constVal);
1259      toErase.push_back(p);
1260    } else {
1261      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1262    }
1263
1264  // If the number we were assigned was a brand new VN, then we don't
1265  // need to do a lookup to see if the number already exists
1266  // somewhere in the domtree: it can't!
1267  } else if (num == nextNum) {
1268    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1269
1270  // Perform value-number based elimination
1271  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1272    // Remove it!
1273    VN.erase(I);
1274    I->replaceAllUsesWith(repl);
1275    if (isa<PointerType>(repl->getType()))
1276      MD->invalidateCachedPointerInfo(repl);
1277    toErase.push_back(I);
1278    return true;
1279  } else {
1280    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1281  }
1282
1283  return false;
1284}
1285
1286// GVN::runOnFunction - This is the main transformation entry point for a
1287// function.
1288//
1289bool GVN::runOnFunction(Function& F) {
1290  MD = &getAnalysis<MemoryDependenceAnalysis>();
1291  DT = &getAnalysis<DominatorTree>();
1292  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1293  VN.setMemDep(MD);
1294  VN.setDomTree(DT);
1295
1296  bool changed = false;
1297  bool shouldContinue = true;
1298
1299  // Merge unconditional branches, allowing PRE to catch more
1300  // optimization opportunities.
1301  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1302    BasicBlock* BB = FI;
1303    ++FI;
1304    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1305    if (removedBlock) NumGVNBlocks++;
1306
1307    changed |= removedBlock;
1308  }
1309
1310  unsigned Iteration = 0;
1311
1312  while (shouldContinue) {
1313    DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1314    shouldContinue = iterateOnFunction(F);
1315    changed |= shouldContinue;
1316    ++Iteration;
1317  }
1318
1319  if (EnablePRE) {
1320    bool PREChanged = true;
1321    while (PREChanged) {
1322      PREChanged = performPRE(F);
1323      changed |= PREChanged;
1324    }
1325  }
1326  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1327  // computations into blocks where they become fully redundant.  Note that
1328  // we can't do this until PRE's critical edge splitting updates memdep.
1329  // Actually, when this happens, we should just fully integrate PRE into GVN.
1330
1331  cleanupGlobalSets();
1332
1333  return changed;
1334}
1335
1336
1337bool GVN::processBlock(DomTreeNode* DTN) {
1338  BasicBlock* BB = DTN->getBlock();
1339  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1340  // incrementing BI before processing an instruction).
1341  SmallVector<Instruction*, 8> toErase;
1342  bool changed_function = false;
1343
1344  if (DTN->getIDom())
1345    localAvail[BB] =
1346                  new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
1347  else
1348    localAvail[BB] = new ValueNumberScope(0);
1349
1350  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1351       BI != BE;) {
1352    changed_function |= processInstruction(BI, toErase);
1353    if (toErase.empty()) {
1354      ++BI;
1355      continue;
1356    }
1357
1358    // If we need some instructions deleted, do it now.
1359    NumGVNInstr += toErase.size();
1360
1361    // Avoid iterator invalidation.
1362    bool AtStart = BI == BB->begin();
1363    if (!AtStart)
1364      --BI;
1365
1366    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1367         E = toErase.end(); I != E; ++I) {
1368      DEBUG(cerr << "GVN removed: " << **I);
1369      MD->removeInstruction(*I);
1370      (*I)->eraseFromParent();
1371    }
1372    toErase.clear();
1373
1374    if (AtStart)
1375      BI = BB->begin();
1376    else
1377      ++BI;
1378  }
1379
1380  return changed_function;
1381}
1382
1383/// performPRE - Perform a purely local form of PRE that looks for diamond
1384/// control flow patterns and attempts to perform simple PRE at the join point.
1385bool GVN::performPRE(Function& F) {
1386  bool Changed = false;
1387  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1388  DenseMap<BasicBlock*, Value*> predMap;
1389  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1390       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1391    BasicBlock* CurrentBlock = *DI;
1392
1393    // Nothing to PRE in the entry block.
1394    if (CurrentBlock == &F.getEntryBlock()) continue;
1395
1396    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1397         BE = CurrentBlock->end(); BI != BE; ) {
1398      Instruction *CurInst = BI++;
1399
1400      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1401          isa<PHINode>(CurInst) || CurInst->mayReadFromMemory() ||
1402          CurInst->mayWriteToMemory())
1403        continue;
1404
1405      uint32_t valno = VN.lookup(CurInst);
1406
1407      // Look for the predecessors for PRE opportunities.  We're
1408      // only trying to solve the basic diamond case, where
1409      // a value is computed in the successor and one predecessor,
1410      // but not the other.  We also explicitly disallow cases
1411      // where the successor is its own predecessor, because they're
1412      // more complicated to get right.
1413      unsigned numWith = 0;
1414      unsigned numWithout = 0;
1415      BasicBlock* PREPred = 0;
1416      predMap.clear();
1417
1418      for (pred_iterator PI = pred_begin(CurrentBlock),
1419           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1420        // We're not interested in PRE where the block is its
1421        // own predecessor, on in blocks with predecessors
1422        // that are not reachable.
1423        if (*PI == CurrentBlock) {
1424          numWithout = 2;
1425          break;
1426        } else if (!localAvail.count(*PI))  {
1427          numWithout = 2;
1428          break;
1429        }
1430
1431        DenseMap<uint32_t, Value*>::iterator predV =
1432                                            localAvail[*PI]->table.find(valno);
1433        if (predV == localAvail[*PI]->table.end()) {
1434          PREPred = *PI;
1435          numWithout++;
1436        } else if (predV->second == CurInst) {
1437          numWithout = 2;
1438        } else {
1439          predMap[*PI] = predV->second;
1440          numWith++;
1441        }
1442      }
1443
1444      // Don't do PRE when it might increase code size, i.e. when
1445      // we would need to insert instructions in more than one pred.
1446      if (numWithout != 1 || numWith == 0)
1447        continue;
1448
1449      // We can't do PRE safely on a critical edge, so instead we schedule
1450      // the edge to be split and perform the PRE the next time we iterate
1451      // on the function.
1452      unsigned succNum = 0;
1453      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1454           i != e; ++i)
1455        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1456          succNum = i;
1457          break;
1458        }
1459
1460      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1461        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1462        continue;
1463      }
1464
1465      // Instantiate the expression the in predecessor that lacked it.
1466      // Because we are going top-down through the block, all value numbers
1467      // will be available in the predecessor by the time we need them.  Any
1468      // that weren't original present will have been instantiated earlier
1469      // in this loop.
1470      Instruction* PREInstr = CurInst->clone();
1471      bool success = true;
1472      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1473        Value *Op = PREInstr->getOperand(i);
1474        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1475          continue;
1476
1477        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1478          PREInstr->setOperand(i, V);
1479        } else {
1480          success = false;
1481          break;
1482        }
1483      }
1484
1485      // Fail out if we encounter an operand that is not available in
1486      // the PRE predecessor.  This is typically because of loads which
1487      // are not value numbered precisely.
1488      if (!success) {
1489        delete PREInstr;
1490        continue;
1491      }
1492
1493      PREInstr->insertBefore(PREPred->getTerminator());
1494      PREInstr->setName(CurInst->getName() + ".pre");
1495      predMap[PREPred] = PREInstr;
1496      VN.add(PREInstr, valno);
1497      NumGVNPRE++;
1498
1499      // Update the availability map to include the new instruction.
1500      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1501
1502      // Create a PHI to make the value available in this block.
1503      PHINode* Phi = PHINode::Create(CurInst->getType(),
1504                                     CurInst->getName() + ".pre-phi",
1505                                     CurrentBlock->begin());
1506      for (pred_iterator PI = pred_begin(CurrentBlock),
1507           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1508        Phi->addIncoming(predMap[*PI], *PI);
1509
1510      VN.add(Phi, valno);
1511      localAvail[CurrentBlock]->table[valno] = Phi;
1512
1513      CurInst->replaceAllUsesWith(Phi);
1514      if (isa<PointerType>(Phi->getType()))
1515        MD->invalidateCachedPointerInfo(Phi);
1516      VN.erase(CurInst);
1517
1518      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1519      MD->removeInstruction(CurInst);
1520      CurInst->eraseFromParent();
1521      Changed = true;
1522    }
1523  }
1524
1525  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1526       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1527    SplitCriticalEdge(I->first, I->second, this);
1528
1529  return Changed || toSplit.size();
1530}
1531
1532// iterateOnFunction - Executes one iteration of GVN
1533bool GVN::iterateOnFunction(Function &F) {
1534  cleanupGlobalSets();
1535
1536  // Top-down walk of the dominator tree
1537  bool changed = false;
1538  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1539       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1540    changed |= processBlock(*DI);
1541
1542  return changed;
1543}
1544
1545void GVN::cleanupGlobalSets() {
1546  VN.clear();
1547  phiMap.clear();
1548
1549  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1550       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1551    delete I->second;
1552  localAvail.clear();
1553}
1554