GVN.cpp revision 968d689ec30a0df63d252b8193664e01944edb8b
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DepthFirstIterator.h"
22#include "llvm/ADT/Hashing.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/Dominators.h"
28#include "llvm/Analysis/InstructionSimplify.h"
29#include "llvm/Analysis/Loads.h"
30#include "llvm/Analysis/MemoryBuiltins.h"
31#include "llvm/Analysis/MemoryDependenceAnalysis.h"
32#include "llvm/Analysis/PHITransAddr.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Assembly/Writer.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/IRBuilder.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/Metadata.h"
41#include "llvm/Support/Allocator.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/PatternMatch.h"
45#include "llvm/Target/TargetLibraryInfo.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48using namespace llvm;
49using namespace PatternMatch;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
56STATISTIC(NumGVNEqProp, "Number of equalities propagated");
57STATISTIC(NumPRELoad,   "Number of loads PRE'd");
58
59static cl::opt<bool> EnablePRE("enable-pre",
60                               cl::init(true), cl::Hidden);
61static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
62
63// Maximum allowed recursion depth.
64static cl::opt<uint32_t>
65MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
66                cl::desc("Max recurse depth (default = 1000)"));
67
68//===----------------------------------------------------------------------===//
69//                         ValueTable Class
70//===----------------------------------------------------------------------===//
71
72/// This class holds the mapping between values and value numbers.  It is used
73/// as an efficient mechanism to determine the expression-wise equivalence of
74/// two values.
75namespace {
76  struct Expression {
77    uint32_t opcode;
78    Type *type;
79    SmallVector<uint32_t, 4> varargs;
80
81    Expression(uint32_t o = ~2U) : opcode(o) { }
82
83    bool operator==(const Expression &other) const {
84      if (opcode != other.opcode)
85        return false;
86      if (opcode == ~0U || opcode == ~1U)
87        return true;
88      if (type != other.type)
89        return false;
90      if (varargs != other.varargs)
91        return false;
92      return true;
93    }
94
95    friend hash_code hash_value(const Expression &Value) {
96      return hash_combine(Value.opcode, Value.type,
97                          hash_combine_range(Value.varargs.begin(),
98                                             Value.varargs.end()));
99    }
100  };
101
102  class ValueTable {
103    DenseMap<Value*, uint32_t> valueNumbering;
104    DenseMap<Expression, uint32_t> expressionNumbering;
105    AliasAnalysis *AA;
106    MemoryDependenceAnalysis *MD;
107    DominatorTree *DT;
108
109    uint32_t nextValueNumber;
110
111    Expression create_expression(Instruction* I);
112    Expression create_cmp_expression(unsigned Opcode,
113                                     CmpInst::Predicate Predicate,
114                                     Value *LHS, Value *RHS);
115    Expression create_extractvalue_expression(ExtractValueInst* EI);
116    uint32_t lookup_or_add_call(CallInst* C);
117  public:
118    ValueTable() : nextValueNumber(1) { }
119    uint32_t lookup_or_add(Value *V);
120    uint32_t lookup(Value *V) const;
121    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
122                               Value *LHS, Value *RHS);
123    void add(Value *V, uint32_t num);
124    void clear();
125    void erase(Value *v);
126    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
127    AliasAnalysis *getAliasAnalysis() const { return AA; }
128    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
129    void setDomTree(DominatorTree* D) { DT = D; }
130    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
131    void verifyRemoved(const Value *) const;
132  };
133}
134
135namespace llvm {
136template <> struct DenseMapInfo<Expression> {
137  static inline Expression getEmptyKey() {
138    return ~0U;
139  }
140
141  static inline Expression getTombstoneKey() {
142    return ~1U;
143  }
144
145  static unsigned getHashValue(const Expression e) {
146    using llvm::hash_value;
147    return static_cast<unsigned>(hash_value(e));
148  }
149  static bool isEqual(const Expression &LHS, const Expression &RHS) {
150    return LHS == RHS;
151  }
152};
153
154}
155
156//===----------------------------------------------------------------------===//
157//                     ValueTable Internal Functions
158//===----------------------------------------------------------------------===//
159
160Expression ValueTable::create_expression(Instruction *I) {
161  Expression e;
162  e.type = I->getType();
163  e.opcode = I->getOpcode();
164  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
165       OI != OE; ++OI)
166    e.varargs.push_back(lookup_or_add(*OI));
167  if (I->isCommutative()) {
168    // Ensure that commutative instructions that only differ by a permutation
169    // of their operands get the same value number by sorting the operand value
170    // numbers.  Since all commutative instructions have two operands it is more
171    // efficient to sort by hand rather than using, say, std::sort.
172    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
173    if (e.varargs[0] > e.varargs[1])
174      std::swap(e.varargs[0], e.varargs[1]);
175  }
176
177  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
178    // Sort the operand value numbers so x<y and y>x get the same value number.
179    CmpInst::Predicate Predicate = C->getPredicate();
180    if (e.varargs[0] > e.varargs[1]) {
181      std::swap(e.varargs[0], e.varargs[1]);
182      Predicate = CmpInst::getSwappedPredicate(Predicate);
183    }
184    e.opcode = (C->getOpcode() << 8) | Predicate;
185  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
186    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
187         II != IE; ++II)
188      e.varargs.push_back(*II);
189  }
190
191  return e;
192}
193
194Expression ValueTable::create_cmp_expression(unsigned Opcode,
195                                             CmpInst::Predicate Predicate,
196                                             Value *LHS, Value *RHS) {
197  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
198         "Not a comparison!");
199  Expression e;
200  e.type = CmpInst::makeCmpResultType(LHS->getType());
201  e.varargs.push_back(lookup_or_add(LHS));
202  e.varargs.push_back(lookup_or_add(RHS));
203
204  // Sort the operand value numbers so x<y and y>x get the same value number.
205  if (e.varargs[0] > e.varargs[1]) {
206    std::swap(e.varargs[0], e.varargs[1]);
207    Predicate = CmpInst::getSwappedPredicate(Predicate);
208  }
209  e.opcode = (Opcode << 8) | Predicate;
210  return e;
211}
212
213Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
214  assert(EI != 0 && "Not an ExtractValueInst?");
215  Expression e;
216  e.type = EI->getType();
217  e.opcode = 0;
218
219  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
220  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
221    // EI might be an extract from one of our recognised intrinsics. If it
222    // is we'll synthesize a semantically equivalent expression instead on
223    // an extract value expression.
224    switch (I->getIntrinsicID()) {
225      case Intrinsic::sadd_with_overflow:
226      case Intrinsic::uadd_with_overflow:
227        e.opcode = Instruction::Add;
228        break;
229      case Intrinsic::ssub_with_overflow:
230      case Intrinsic::usub_with_overflow:
231        e.opcode = Instruction::Sub;
232        break;
233      case Intrinsic::smul_with_overflow:
234      case Intrinsic::umul_with_overflow:
235        e.opcode = Instruction::Mul;
236        break;
237      default:
238        break;
239    }
240
241    if (e.opcode != 0) {
242      // Intrinsic recognized. Grab its args to finish building the expression.
243      assert(I->getNumArgOperands() == 2 &&
244             "Expect two args for recognised intrinsics.");
245      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
246      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
247      return e;
248    }
249  }
250
251  // Not a recognised intrinsic. Fall back to producing an extract value
252  // expression.
253  e.opcode = EI->getOpcode();
254  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
255       OI != OE; ++OI)
256    e.varargs.push_back(lookup_or_add(*OI));
257
258  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
259         II != IE; ++II)
260    e.varargs.push_back(*II);
261
262  return e;
263}
264
265//===----------------------------------------------------------------------===//
266//                     ValueTable External Functions
267//===----------------------------------------------------------------------===//
268
269/// add - Insert a value into the table with a specified value number.
270void ValueTable::add(Value *V, uint32_t num) {
271  valueNumbering.insert(std::make_pair(V, num));
272}
273
274uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
275  if (AA->doesNotAccessMemory(C)) {
276    Expression exp = create_expression(C);
277    uint32_t &e = expressionNumbering[exp];
278    if (!e) e = nextValueNumber++;
279    valueNumbering[C] = e;
280    return e;
281  } else if (AA->onlyReadsMemory(C)) {
282    Expression exp = create_expression(C);
283    uint32_t &e = expressionNumbering[exp];
284    if (!e) {
285      e = nextValueNumber++;
286      valueNumbering[C] = e;
287      return e;
288    }
289    if (!MD) {
290      e = nextValueNumber++;
291      valueNumbering[C] = e;
292      return e;
293    }
294
295    MemDepResult local_dep = MD->getDependency(C);
296
297    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
298      valueNumbering[C] =  nextValueNumber;
299      return nextValueNumber++;
300    }
301
302    if (local_dep.isDef()) {
303      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
304
305      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
306        valueNumbering[C] = nextValueNumber;
307        return nextValueNumber++;
308      }
309
310      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
311        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
312        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
313        if (c_vn != cd_vn) {
314          valueNumbering[C] = nextValueNumber;
315          return nextValueNumber++;
316        }
317      }
318
319      uint32_t v = lookup_or_add(local_cdep);
320      valueNumbering[C] = v;
321      return v;
322    }
323
324    // Non-local case.
325    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
326      MD->getNonLocalCallDependency(CallSite(C));
327    // FIXME: Move the checking logic to MemDep!
328    CallInst* cdep = 0;
329
330    // Check to see if we have a single dominating call instruction that is
331    // identical to C.
332    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
333      const NonLocalDepEntry *I = &deps[i];
334      if (I->getResult().isNonLocal())
335        continue;
336
337      // We don't handle non-definitions.  If we already have a call, reject
338      // instruction dependencies.
339      if (!I->getResult().isDef() || cdep != 0) {
340        cdep = 0;
341        break;
342      }
343
344      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
345      // FIXME: All duplicated with non-local case.
346      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
347        cdep = NonLocalDepCall;
348        continue;
349      }
350
351      cdep = 0;
352      break;
353    }
354
355    if (!cdep) {
356      valueNumbering[C] = nextValueNumber;
357      return nextValueNumber++;
358    }
359
360    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
361      valueNumbering[C] = nextValueNumber;
362      return nextValueNumber++;
363    }
364    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
365      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
366      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
367      if (c_vn != cd_vn) {
368        valueNumbering[C] = nextValueNumber;
369        return nextValueNumber++;
370      }
371    }
372
373    uint32_t v = lookup_or_add(cdep);
374    valueNumbering[C] = v;
375    return v;
376
377  } else {
378    valueNumbering[C] = nextValueNumber;
379    return nextValueNumber++;
380  }
381}
382
383/// lookup_or_add - Returns the value number for the specified value, assigning
384/// it a new number if it did not have one before.
385uint32_t ValueTable::lookup_or_add(Value *V) {
386  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
387  if (VI != valueNumbering.end())
388    return VI->second;
389
390  if (!isa<Instruction>(V)) {
391    valueNumbering[V] = nextValueNumber;
392    return nextValueNumber++;
393  }
394
395  Instruction* I = cast<Instruction>(V);
396  Expression exp;
397  switch (I->getOpcode()) {
398    case Instruction::Call:
399      return lookup_or_add_call(cast<CallInst>(I));
400    case Instruction::Add:
401    case Instruction::FAdd:
402    case Instruction::Sub:
403    case Instruction::FSub:
404    case Instruction::Mul:
405    case Instruction::FMul:
406    case Instruction::UDiv:
407    case Instruction::SDiv:
408    case Instruction::FDiv:
409    case Instruction::URem:
410    case Instruction::SRem:
411    case Instruction::FRem:
412    case Instruction::Shl:
413    case Instruction::LShr:
414    case Instruction::AShr:
415    case Instruction::And:
416    case Instruction::Or:
417    case Instruction::Xor:
418    case Instruction::ICmp:
419    case Instruction::FCmp:
420    case Instruction::Trunc:
421    case Instruction::ZExt:
422    case Instruction::SExt:
423    case Instruction::FPToUI:
424    case Instruction::FPToSI:
425    case Instruction::UIToFP:
426    case Instruction::SIToFP:
427    case Instruction::FPTrunc:
428    case Instruction::FPExt:
429    case Instruction::PtrToInt:
430    case Instruction::IntToPtr:
431    case Instruction::BitCast:
432    case Instruction::Select:
433    case Instruction::ExtractElement:
434    case Instruction::InsertElement:
435    case Instruction::ShuffleVector:
436    case Instruction::InsertValue:
437    case Instruction::GetElementPtr:
438      exp = create_expression(I);
439      break;
440    case Instruction::ExtractValue:
441      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
442      break;
443    default:
444      valueNumbering[V] = nextValueNumber;
445      return nextValueNumber++;
446  }
447
448  uint32_t& e = expressionNumbering[exp];
449  if (!e) e = nextValueNumber++;
450  valueNumbering[V] = e;
451  return e;
452}
453
454/// lookup - Returns the value number of the specified value. Fails if
455/// the value has not yet been numbered.
456uint32_t ValueTable::lookup(Value *V) const {
457  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
458  assert(VI != valueNumbering.end() && "Value not numbered?");
459  return VI->second;
460}
461
462/// lookup_or_add_cmp - Returns the value number of the given comparison,
463/// assigning it a new number if it did not have one before.  Useful when
464/// we deduced the result of a comparison, but don't immediately have an
465/// instruction realizing that comparison to hand.
466uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
467                                       CmpInst::Predicate Predicate,
468                                       Value *LHS, Value *RHS) {
469  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
470  uint32_t& e = expressionNumbering[exp];
471  if (!e) e = nextValueNumber++;
472  return e;
473}
474
475/// clear - Remove all entries from the ValueTable.
476void ValueTable::clear() {
477  valueNumbering.clear();
478  expressionNumbering.clear();
479  nextValueNumber = 1;
480}
481
482/// erase - Remove a value from the value numbering.
483void ValueTable::erase(Value *V) {
484  valueNumbering.erase(V);
485}
486
487/// verifyRemoved - Verify that the value is removed from all internal data
488/// structures.
489void ValueTable::verifyRemoved(const Value *V) const {
490  for (DenseMap<Value*, uint32_t>::const_iterator
491         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
492    assert(I->first != V && "Inst still occurs in value numbering map!");
493  }
494}
495
496//===----------------------------------------------------------------------===//
497//                                GVN Pass
498//===----------------------------------------------------------------------===//
499
500namespace {
501  class GVN;
502  struct AvailableValueInBlock {
503    /// BB - The basic block in question.
504    BasicBlock *BB;
505    enum ValType {
506      SimpleVal,  // A simple offsetted value that is accessed.
507      LoadVal,    // A value produced by a load.
508      MemIntrin   // A memory intrinsic which is loaded from.
509    };
510
511    /// V - The value that is live out of the block.
512    PointerIntPair<Value *, 2, ValType> Val;
513
514    /// Offset - The byte offset in Val that is interesting for the load query.
515    unsigned Offset;
516
517    static AvailableValueInBlock get(BasicBlock *BB, Value *V,
518                                     unsigned Offset = 0) {
519      AvailableValueInBlock Res;
520      Res.BB = BB;
521      Res.Val.setPointer(V);
522      Res.Val.setInt(SimpleVal);
523      Res.Offset = Offset;
524      return Res;
525    }
526
527    static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
528                                       unsigned Offset = 0) {
529      AvailableValueInBlock Res;
530      Res.BB = BB;
531      Res.Val.setPointer(MI);
532      Res.Val.setInt(MemIntrin);
533      Res.Offset = Offset;
534      return Res;
535    }
536
537    static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
538                                         unsigned Offset = 0) {
539      AvailableValueInBlock Res;
540      Res.BB = BB;
541      Res.Val.setPointer(LI);
542      Res.Val.setInt(LoadVal);
543      Res.Offset = Offset;
544      return Res;
545    }
546
547    bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
548    bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
549    bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
550
551    Value *getSimpleValue() const {
552      assert(isSimpleValue() && "Wrong accessor");
553      return Val.getPointer();
554    }
555
556    LoadInst *getCoercedLoadValue() const {
557      assert(isCoercedLoadValue() && "Wrong accessor");
558      return cast<LoadInst>(Val.getPointer());
559    }
560
561    MemIntrinsic *getMemIntrinValue() const {
562      assert(isMemIntrinValue() && "Wrong accessor");
563      return cast<MemIntrinsic>(Val.getPointer());
564    }
565
566    /// MaterializeAdjustedValue - Emit code into this block to adjust the value
567    /// defined here to the specified type.  This handles various coercion cases.
568    Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
569  };
570
571  class GVN : public FunctionPass {
572    bool NoLoads;
573    MemoryDependenceAnalysis *MD;
574    DominatorTree *DT;
575    const DataLayout *TD;
576    const TargetLibraryInfo *TLI;
577
578    ValueTable VN;
579
580    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
581    /// have that value number.  Use findLeader to query it.
582    struct LeaderTableEntry {
583      Value *Val;
584      const BasicBlock *BB;
585      LeaderTableEntry *Next;
586    };
587    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
588    BumpPtrAllocator TableAllocator;
589
590    SmallVector<Instruction*, 8> InstrsToErase;
591
592    typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
593    typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
594    typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
595
596  public:
597    static char ID; // Pass identification, replacement for typeid
598    explicit GVN(bool noloads = false)
599        : FunctionPass(ID), NoLoads(noloads), MD(0) {
600      initializeGVNPass(*PassRegistry::getPassRegistry());
601    }
602
603    bool runOnFunction(Function &F);
604
605    /// markInstructionForDeletion - This removes the specified instruction from
606    /// our various maps and marks it for deletion.
607    void markInstructionForDeletion(Instruction *I) {
608      VN.erase(I);
609      InstrsToErase.push_back(I);
610    }
611
612    const DataLayout *getDataLayout() const { return TD; }
613    DominatorTree &getDominatorTree() const { return *DT; }
614    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
615    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
616  private:
617    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
618    /// its value number.
619    void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
620      LeaderTableEntry &Curr = LeaderTable[N];
621      if (!Curr.Val) {
622        Curr.Val = V;
623        Curr.BB = BB;
624        return;
625      }
626
627      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
628      Node->Val = V;
629      Node->BB = BB;
630      Node->Next = Curr.Next;
631      Curr.Next = Node;
632    }
633
634    /// removeFromLeaderTable - Scan the list of values corresponding to a given
635    /// value number, and remove the given instruction if encountered.
636    void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
637      LeaderTableEntry* Prev = 0;
638      LeaderTableEntry* Curr = &LeaderTable[N];
639
640      while (Curr->Val != I || Curr->BB != BB) {
641        Prev = Curr;
642        Curr = Curr->Next;
643      }
644
645      if (Prev) {
646        Prev->Next = Curr->Next;
647      } else {
648        if (!Curr->Next) {
649          Curr->Val = 0;
650          Curr->BB = 0;
651        } else {
652          LeaderTableEntry* Next = Curr->Next;
653          Curr->Val = Next->Val;
654          Curr->BB = Next->BB;
655          Curr->Next = Next->Next;
656        }
657      }
658    }
659
660    // List of critical edges to be split between iterations.
661    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
662
663    // This transformation requires dominator postdominator info
664    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
665      AU.addRequired<DominatorTree>();
666      AU.addRequired<TargetLibraryInfo>();
667      if (!NoLoads)
668        AU.addRequired<MemoryDependenceAnalysis>();
669      AU.addRequired<AliasAnalysis>();
670
671      AU.addPreserved<DominatorTree>();
672      AU.addPreserved<AliasAnalysis>();
673    }
674
675
676    // Helper fuctions of redundant load elimination
677    bool processLoad(LoadInst *L);
678    bool processNonLocalLoad(LoadInst *L);
679    void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
680                                 AvailValInBlkVect &ValuesPerBlock,
681                                 UnavailBlkVect &UnavailableBlocks);
682    bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
683                        UnavailBlkVect &UnavailableBlocks);
684
685    // Other helper routines
686    bool processInstruction(Instruction *I);
687    bool processBlock(BasicBlock *BB);
688    void dump(DenseMap<uint32_t, Value*> &d);
689    bool iterateOnFunction(Function &F);
690    bool performPRE(Function &F);
691    Value *findLeader(const BasicBlock *BB, uint32_t num);
692    void cleanupGlobalSets();
693    void verifyRemoved(const Instruction *I) const;
694    bool splitCriticalEdges();
695    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
696                                         const BasicBlockEdge &Root);
697    bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
698  };
699
700  char GVN::ID = 0;
701}
702
703// createGVNPass - The public interface to this file...
704FunctionPass *llvm::createGVNPass(bool NoLoads) {
705  return new GVN(NoLoads);
706}
707
708INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
709INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
710INITIALIZE_PASS_DEPENDENCY(DominatorTree)
711INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
712INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
713INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
714
715#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
716void GVN::dump(DenseMap<uint32_t, Value*>& d) {
717  errs() << "{\n";
718  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
719       E = d.end(); I != E; ++I) {
720      errs() << I->first << "\n";
721      I->second->dump();
722  }
723  errs() << "}\n";
724}
725#endif
726
727/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
728/// we're analyzing is fully available in the specified block.  As we go, keep
729/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
730/// map is actually a tri-state map with the following values:
731///   0) we know the block *is not* fully available.
732///   1) we know the block *is* fully available.
733///   2) we do not know whether the block is fully available or not, but we are
734///      currently speculating that it will be.
735///   3) we are speculating for this block and have used that to speculate for
736///      other blocks.
737static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
738                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
739                            uint32_t RecurseDepth) {
740  if (RecurseDepth > MaxRecurseDepth)
741    return false;
742
743  // Optimistically assume that the block is fully available and check to see
744  // if we already know about this block in one lookup.
745  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
746    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
747
748  // If the entry already existed for this block, return the precomputed value.
749  if (!IV.second) {
750    // If this is a speculative "available" value, mark it as being used for
751    // speculation of other blocks.
752    if (IV.first->second == 2)
753      IV.first->second = 3;
754    return IV.first->second != 0;
755  }
756
757  // Otherwise, see if it is fully available in all predecessors.
758  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
759
760  // If this block has no predecessors, it isn't live-in here.
761  if (PI == PE)
762    goto SpeculationFailure;
763
764  for (; PI != PE; ++PI)
765    // If the value isn't fully available in one of our predecessors, then it
766    // isn't fully available in this block either.  Undo our previous
767    // optimistic assumption and bail out.
768    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
769      goto SpeculationFailure;
770
771  return true;
772
773// SpeculationFailure - If we get here, we found out that this is not, after
774// all, a fully-available block.  We have a problem if we speculated on this and
775// used the speculation to mark other blocks as available.
776SpeculationFailure:
777  char &BBVal = FullyAvailableBlocks[BB];
778
779  // If we didn't speculate on this, just return with it set to false.
780  if (BBVal == 2) {
781    BBVal = 0;
782    return false;
783  }
784
785  // If we did speculate on this value, we could have blocks set to 1 that are
786  // incorrect.  Walk the (transitive) successors of this block and mark them as
787  // 0 if set to one.
788  SmallVector<BasicBlock*, 32> BBWorklist;
789  BBWorklist.push_back(BB);
790
791  do {
792    BasicBlock *Entry = BBWorklist.pop_back_val();
793    // Note that this sets blocks to 0 (unavailable) if they happen to not
794    // already be in FullyAvailableBlocks.  This is safe.
795    char &EntryVal = FullyAvailableBlocks[Entry];
796    if (EntryVal == 0) continue;  // Already unavailable.
797
798    // Mark as unavailable.
799    EntryVal = 0;
800
801    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
802      BBWorklist.push_back(*I);
803  } while (!BBWorklist.empty());
804
805  return false;
806}
807
808
809/// CanCoerceMustAliasedValueToLoad - Return true if
810/// CoerceAvailableValueToLoadType will succeed.
811static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
812                                            Type *LoadTy,
813                                            const DataLayout &TD) {
814  // If the loaded or stored value is an first class array or struct, don't try
815  // to transform them.  We need to be able to bitcast to integer.
816  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
817      StoredVal->getType()->isStructTy() ||
818      StoredVal->getType()->isArrayTy())
819    return false;
820
821  // The store has to be at least as big as the load.
822  if (TD.getTypeSizeInBits(StoredVal->getType()) <
823        TD.getTypeSizeInBits(LoadTy))
824    return false;
825
826  return true;
827}
828
829/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
830/// then a load from a must-aliased pointer of a different type, try to coerce
831/// the stored value.  LoadedTy is the type of the load we want to replace and
832/// InsertPt is the place to insert new instructions.
833///
834/// If we can't do it, return null.
835static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
836                                             Type *LoadedTy,
837                                             Instruction *InsertPt,
838                                             const DataLayout &TD) {
839  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
840    return 0;
841
842  // If this is already the right type, just return it.
843  Type *StoredValTy = StoredVal->getType();
844
845  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
846  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
847
848  // If the store and reload are the same size, we can always reuse it.
849  if (StoreSize == LoadSize) {
850    // Pointer to Pointer -> use bitcast.
851    if (StoredValTy->getScalarType()->isPointerTy() &&
852        LoadedTy->getScalarType()->isPointerTy())
853      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
854
855    // Convert source pointers to integers, which can be bitcast.
856    if (StoredValTy->getScalarType()->isPointerTy()) {
857      StoredValTy = TD.getIntPtrType(StoredValTy);
858      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
859    }
860
861    Type *TypeToCastTo = LoadedTy;
862    if (TypeToCastTo->getScalarType()->isPointerTy())
863      TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
864
865    if (StoredValTy != TypeToCastTo)
866      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
867
868    // Cast to pointer if the load needs a pointer type.
869    if (LoadedTy->getScalarType()->isPointerTy())
870      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
871
872    return StoredVal;
873  }
874
875  // If the loaded value is smaller than the available value, then we can
876  // extract out a piece from it.  If the available value is too small, then we
877  // can't do anything.
878  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
879
880  // Convert source pointers to integers, which can be manipulated.
881  if (StoredValTy->getScalarType()->isPointerTy()) {
882    StoredValTy = TD.getIntPtrType(StoredValTy);
883    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
884  }
885
886  // Convert vectors and fp to integer, which can be manipulated.
887  if (!StoredValTy->isIntegerTy()) {
888    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
889    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
890  }
891
892  // If this is a big-endian system, we need to shift the value down to the low
893  // bits so that a truncate will work.
894  if (TD.isBigEndian()) {
895    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
896    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
897  }
898
899  // Truncate the integer to the right size now.
900  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
901  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
902
903  if (LoadedTy == NewIntTy)
904    return StoredVal;
905
906  // If the result is a pointer, inttoptr.
907  if (LoadedTy->getScalarType()->isPointerTy())
908    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
909
910  // Otherwise, bitcast.
911  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
912}
913
914/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
915/// memdep query of a load that ends up being a clobbering memory write (store,
916/// memset, memcpy, memmove).  This means that the write *may* provide bits used
917/// by the load but we can't be sure because the pointers don't mustalias.
918///
919/// Check this case to see if there is anything more we can do before we give
920/// up.  This returns -1 if we have to give up, or a byte number in the stored
921/// value of the piece that feeds the load.
922static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
923                                          Value *WritePtr,
924                                          uint64_t WriteSizeInBits,
925                                          const DataLayout &TD) {
926  // If the loaded or stored value is a first class array or struct, don't try
927  // to transform them.  We need to be able to bitcast to integer.
928  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
929    return -1;
930
931  int64_t StoreOffset = 0, LoadOffset = 0;
932  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
933  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
934  if (StoreBase != LoadBase)
935    return -1;
936
937  // If the load and store are to the exact same address, they should have been
938  // a must alias.  AA must have gotten confused.
939  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
940  // to a load from the base of the memset.
941#if 0
942  if (LoadOffset == StoreOffset) {
943    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
944    << "Base       = " << *StoreBase << "\n"
945    << "Store Ptr  = " << *WritePtr << "\n"
946    << "Store Offs = " << StoreOffset << "\n"
947    << "Load Ptr   = " << *LoadPtr << "\n";
948    abort();
949  }
950#endif
951
952  // If the load and store don't overlap at all, the store doesn't provide
953  // anything to the load.  In this case, they really don't alias at all, AA
954  // must have gotten confused.
955  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
956
957  if ((WriteSizeInBits & 7) | (LoadSize & 7))
958    return -1;
959  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
960  LoadSize >>= 3;
961
962
963  bool isAAFailure = false;
964  if (StoreOffset < LoadOffset)
965    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
966  else
967    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
968
969  if (isAAFailure) {
970#if 0
971    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
972    << "Base       = " << *StoreBase << "\n"
973    << "Store Ptr  = " << *WritePtr << "\n"
974    << "Store Offs = " << StoreOffset << "\n"
975    << "Load Ptr   = " << *LoadPtr << "\n";
976    abort();
977#endif
978    return -1;
979  }
980
981  // If the Load isn't completely contained within the stored bits, we don't
982  // have all the bits to feed it.  We could do something crazy in the future
983  // (issue a smaller load then merge the bits in) but this seems unlikely to be
984  // valuable.
985  if (StoreOffset > LoadOffset ||
986      StoreOffset+StoreSize < LoadOffset+LoadSize)
987    return -1;
988
989  // Okay, we can do this transformation.  Return the number of bytes into the
990  // store that the load is.
991  return LoadOffset-StoreOffset;
992}
993
994/// AnalyzeLoadFromClobberingStore - This function is called when we have a
995/// memdep query of a load that ends up being a clobbering store.
996static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
997                                          StoreInst *DepSI,
998                                          const DataLayout &TD) {
999  // Cannot handle reading from store of first-class aggregate yet.
1000  if (DepSI->getValueOperand()->getType()->isStructTy() ||
1001      DepSI->getValueOperand()->getType()->isArrayTy())
1002    return -1;
1003
1004  Value *StorePtr = DepSI->getPointerOperand();
1005  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1006  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1007                                        StorePtr, StoreSize, TD);
1008}
1009
1010/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
1011/// memdep query of a load that ends up being clobbered by another load.  See if
1012/// the other load can feed into the second load.
1013static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1014                                         LoadInst *DepLI, const DataLayout &TD){
1015  // Cannot handle reading from store of first-class aggregate yet.
1016  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1017    return -1;
1018
1019  Value *DepPtr = DepLI->getPointerOperand();
1020  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
1021  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
1022  if (R != -1) return R;
1023
1024  // If we have a load/load clobber an DepLI can be widened to cover this load,
1025  // then we should widen it!
1026  int64_t LoadOffs = 0;
1027  const Value *LoadBase =
1028    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
1029  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1030
1031  unsigned Size = MemoryDependenceAnalysis::
1032    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
1033  if (Size == 0) return -1;
1034
1035  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
1036}
1037
1038
1039
1040static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1041                                            MemIntrinsic *MI,
1042                                            const DataLayout &TD) {
1043  // If the mem operation is a non-constant size, we can't handle it.
1044  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1045  if (SizeCst == 0) return -1;
1046  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1047
1048  // If this is memset, we just need to see if the offset is valid in the size
1049  // of the memset..
1050  if (MI->getIntrinsicID() == Intrinsic::memset)
1051    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1052                                          MemSizeInBits, TD);
1053
1054  // If we have a memcpy/memmove, the only case we can handle is if this is a
1055  // copy from constant memory.  In that case, we can read directly from the
1056  // constant memory.
1057  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1058
1059  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1060  if (Src == 0) return -1;
1061
1062  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
1063  if (GV == 0 || !GV->isConstant()) return -1;
1064
1065  // See if the access is within the bounds of the transfer.
1066  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1067                                              MI->getDest(), MemSizeInBits, TD);
1068  if (Offset == -1)
1069    return Offset;
1070
1071  // Otherwise, see if we can constant fold a load from the constant with the
1072  // offset applied as appropriate.
1073  Src = ConstantExpr::getBitCast(Src,
1074                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1075  Constant *OffsetCst =
1076    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1077  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1078  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1079  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1080    return Offset;
1081  return -1;
1082}
1083
1084
1085/// GetStoreValueForLoad - This function is called when we have a
1086/// memdep query of a load that ends up being a clobbering store.  This means
1087/// that the store provides bits used by the load but we the pointers don't
1088/// mustalias.  Check this case to see if there is anything more we can do
1089/// before we give up.
1090static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1091                                   Type *LoadTy,
1092                                   Instruction *InsertPt, const DataLayout &TD){
1093  LLVMContext &Ctx = SrcVal->getType()->getContext();
1094
1095  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1096  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1097
1098  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1099
1100  // Compute which bits of the stored value are being used by the load.  Convert
1101  // to an integer type to start with.
1102  if (SrcVal->getType()->getScalarType()->isPointerTy())
1103    SrcVal = Builder.CreatePtrToInt(SrcVal,
1104        TD.getIntPtrType(SrcVal->getType()));
1105  if (!SrcVal->getType()->isIntegerTy())
1106    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1107
1108  // Shift the bits to the least significant depending on endianness.
1109  unsigned ShiftAmt;
1110  if (TD.isLittleEndian())
1111    ShiftAmt = Offset*8;
1112  else
1113    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1114
1115  if (ShiftAmt)
1116    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1117
1118  if (LoadSize != StoreSize)
1119    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1120
1121  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1122}
1123
1124/// GetLoadValueForLoad - This function is called when we have a
1125/// memdep query of a load that ends up being a clobbering load.  This means
1126/// that the load *may* provide bits used by the load but we can't be sure
1127/// because the pointers don't mustalias.  Check this case to see if there is
1128/// anything more we can do before we give up.
1129static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1130                                  Type *LoadTy, Instruction *InsertPt,
1131                                  GVN &gvn) {
1132  const DataLayout &TD = *gvn.getDataLayout();
1133  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1134  // widen SrcVal out to a larger load.
1135  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1136  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1137  if (Offset+LoadSize > SrcValSize) {
1138    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1139    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1140    // If we have a load/load clobber an DepLI can be widened to cover this
1141    // load, then we should widen it to the next power of 2 size big enough!
1142    unsigned NewLoadSize = Offset+LoadSize;
1143    if (!isPowerOf2_32(NewLoadSize))
1144      NewLoadSize = NextPowerOf2(NewLoadSize);
1145
1146    Value *PtrVal = SrcVal->getPointerOperand();
1147
1148    // Insert the new load after the old load.  This ensures that subsequent
1149    // memdep queries will find the new load.  We can't easily remove the old
1150    // load completely because it is already in the value numbering table.
1151    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1152    Type *DestPTy =
1153      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1154    DestPTy = PointerType::get(DestPTy,
1155                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1156    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1157    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1158    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1159    NewLoad->takeName(SrcVal);
1160    NewLoad->setAlignment(SrcVal->getAlignment());
1161
1162    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1163    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1164
1165    // Replace uses of the original load with the wider load.  On a big endian
1166    // system, we need to shift down to get the relevant bits.
1167    Value *RV = NewLoad;
1168    if (TD.isBigEndian())
1169      RV = Builder.CreateLShr(RV,
1170                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1171    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1172    SrcVal->replaceAllUsesWith(RV);
1173
1174    // We would like to use gvn.markInstructionForDeletion here, but we can't
1175    // because the load is already memoized into the leader map table that GVN
1176    // tracks.  It is potentially possible to remove the load from the table,
1177    // but then there all of the operations based on it would need to be
1178    // rehashed.  Just leave the dead load around.
1179    gvn.getMemDep().removeInstruction(SrcVal);
1180    SrcVal = NewLoad;
1181  }
1182
1183  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1184}
1185
1186
1187/// GetMemInstValueForLoad - This function is called when we have a
1188/// memdep query of a load that ends up being a clobbering mem intrinsic.
1189static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1190                                     Type *LoadTy, Instruction *InsertPt,
1191                                     const DataLayout &TD){
1192  LLVMContext &Ctx = LoadTy->getContext();
1193  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1194
1195  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1196
1197  // We know that this method is only called when the mem transfer fully
1198  // provides the bits for the load.
1199  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1200    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1201    // independently of what the offset is.
1202    Value *Val = MSI->getValue();
1203    if (LoadSize != 1)
1204      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1205
1206    Value *OneElt = Val;
1207
1208    // Splat the value out to the right number of bits.
1209    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1210      // If we can double the number of bytes set, do it.
1211      if (NumBytesSet*2 <= LoadSize) {
1212        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1213        Val = Builder.CreateOr(Val, ShVal);
1214        NumBytesSet <<= 1;
1215        continue;
1216      }
1217
1218      // Otherwise insert one byte at a time.
1219      Value *ShVal = Builder.CreateShl(Val, 1*8);
1220      Val = Builder.CreateOr(OneElt, ShVal);
1221      ++NumBytesSet;
1222    }
1223
1224    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1225  }
1226
1227  // Otherwise, this is a memcpy/memmove from a constant global.
1228  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1229  Constant *Src = cast<Constant>(MTI->getSource());
1230
1231  // Otherwise, see if we can constant fold a load from the constant with the
1232  // offset applied as appropriate.
1233  Src = ConstantExpr::getBitCast(Src,
1234                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1235  Constant *OffsetCst =
1236  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1237  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1238  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1239  return ConstantFoldLoadFromConstPtr(Src, &TD);
1240}
1241
1242
1243/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1244/// construct SSA form, allowing us to eliminate LI.  This returns the value
1245/// that should be used at LI's definition site.
1246static Value *ConstructSSAForLoadSet(LoadInst *LI,
1247                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1248                                     GVN &gvn) {
1249  // Check for the fully redundant, dominating load case.  In this case, we can
1250  // just use the dominating value directly.
1251  if (ValuesPerBlock.size() == 1 &&
1252      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1253                                               LI->getParent()))
1254    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1255
1256  // Otherwise, we have to construct SSA form.
1257  SmallVector<PHINode*, 8> NewPHIs;
1258  SSAUpdater SSAUpdate(&NewPHIs);
1259  SSAUpdate.Initialize(LI->getType(), LI->getName());
1260
1261  Type *LoadTy = LI->getType();
1262
1263  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1264    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1265    BasicBlock *BB = AV.BB;
1266
1267    if (SSAUpdate.HasValueForBlock(BB))
1268      continue;
1269
1270    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1271  }
1272
1273  // Perform PHI construction.
1274  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1275
1276  // If new PHI nodes were created, notify alias analysis.
1277  if (V->getType()->getScalarType()->isPointerTy()) {
1278    AliasAnalysis *AA = gvn.getAliasAnalysis();
1279
1280    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1281      AA->copyValue(LI, NewPHIs[i]);
1282
1283    // Now that we've copied information to the new PHIs, scan through
1284    // them again and inform alias analysis that we've added potentially
1285    // escaping uses to any values that are operands to these PHIs.
1286    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1287      PHINode *P = NewPHIs[i];
1288      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1289        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1290        AA->addEscapingUse(P->getOperandUse(jj));
1291      }
1292    }
1293  }
1294
1295  return V;
1296}
1297
1298Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1299  Value *Res;
1300  if (isSimpleValue()) {
1301    Res = getSimpleValue();
1302    if (Res->getType() != LoadTy) {
1303      const DataLayout *TD = gvn.getDataLayout();
1304      assert(TD && "Need target data to handle type mismatch case");
1305      Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1306                                 *TD);
1307
1308      DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1309                   << *getSimpleValue() << '\n'
1310                   << *Res << '\n' << "\n\n\n");
1311    }
1312  } else if (isCoercedLoadValue()) {
1313    LoadInst *Load = getCoercedLoadValue();
1314    if (Load->getType() == LoadTy && Offset == 0) {
1315      Res = Load;
1316    } else {
1317      Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1318                                gvn);
1319
1320      DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1321                   << *getCoercedLoadValue() << '\n'
1322                   << *Res << '\n' << "\n\n\n");
1323    }
1324  } else {
1325    const DataLayout *TD = gvn.getDataLayout();
1326    assert(TD && "Need target data to handle type mismatch case");
1327    Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1328                                 LoadTy, BB->getTerminator(), *TD);
1329    DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1330                 << "  " << *getMemIntrinValue() << '\n'
1331                 << *Res << '\n' << "\n\n\n");
1332  }
1333  return Res;
1334}
1335
1336static bool isLifetimeStart(const Instruction *Inst) {
1337  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1338    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1339  return false;
1340}
1341
1342void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1343                                  AvailValInBlkVect &ValuesPerBlock,
1344                                  UnavailBlkVect &UnavailableBlocks) {
1345
1346  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1347  // where we have a value available in repl, also keep track of whether we see
1348  // dependencies that produce an unknown value for the load (such as a call
1349  // that could potentially clobber the load).
1350  unsigned NumDeps = Deps.size();
1351  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1352    BasicBlock *DepBB = Deps[i].getBB();
1353    MemDepResult DepInfo = Deps[i].getResult();
1354
1355    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1356      UnavailableBlocks.push_back(DepBB);
1357      continue;
1358    }
1359
1360    if (DepInfo.isClobber()) {
1361      // The address being loaded in this non-local block may not be the same as
1362      // the pointer operand of the load if PHI translation occurs.  Make sure
1363      // to consider the right address.
1364      Value *Address = Deps[i].getAddress();
1365
1366      // If the dependence is to a store that writes to a superset of the bits
1367      // read by the load, we can extract the bits we need for the load from the
1368      // stored value.
1369      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1370        if (TD && Address) {
1371          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1372                                                      DepSI, *TD);
1373          if (Offset != -1) {
1374            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1375                                                       DepSI->getValueOperand(),
1376                                                                Offset));
1377            continue;
1378          }
1379        }
1380      }
1381
1382      // Check to see if we have something like this:
1383      //    load i32* P
1384      //    load i8* (P+1)
1385      // if we have this, replace the later with an extraction from the former.
1386      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1387        // If this is a clobber and L is the first instruction in its block, then
1388        // we have the first instruction in the entry block.
1389        if (DepLI != LI && Address && TD) {
1390          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1391                                                     LI->getPointerOperand(),
1392                                                     DepLI, *TD);
1393
1394          if (Offset != -1) {
1395            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1396                                                                    Offset));
1397            continue;
1398          }
1399        }
1400      }
1401
1402      // If the clobbering value is a memset/memcpy/memmove, see if we can
1403      // forward a value on from it.
1404      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1405        if (TD && Address) {
1406          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1407                                                        DepMI, *TD);
1408          if (Offset != -1) {
1409            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1410                                                                  Offset));
1411            continue;
1412          }
1413        }
1414      }
1415
1416      UnavailableBlocks.push_back(DepBB);
1417      continue;
1418    }
1419
1420    // DepInfo.isDef() here
1421
1422    Instruction *DepInst = DepInfo.getInst();
1423
1424    // Loading the allocation -> undef.
1425    if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1426        // Loading immediately after lifetime begin -> undef.
1427        isLifetimeStart(DepInst)) {
1428      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1429                                             UndefValue::get(LI->getType())));
1430      continue;
1431    }
1432
1433    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1434      // Reject loads and stores that are to the same address but are of
1435      // different types if we have to.
1436      if (S->getValueOperand()->getType() != LI->getType()) {
1437        // If the stored value is larger or equal to the loaded value, we can
1438        // reuse it.
1439        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1440                                                        LI->getType(), *TD)) {
1441          UnavailableBlocks.push_back(DepBB);
1442          continue;
1443        }
1444      }
1445
1446      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1447                                                         S->getValueOperand()));
1448      continue;
1449    }
1450
1451    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1452      // If the types mismatch and we can't handle it, reject reuse of the load.
1453      if (LD->getType() != LI->getType()) {
1454        // If the stored value is larger or equal to the loaded value, we can
1455        // reuse it.
1456        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1457          UnavailableBlocks.push_back(DepBB);
1458          continue;
1459        }
1460      }
1461      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1462      continue;
1463    }
1464
1465    UnavailableBlocks.push_back(DepBB);
1466  }
1467}
1468
1469bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1470                         UnavailBlkVect &UnavailableBlocks) {
1471  // Okay, we have *some* definitions of the value.  This means that the value
1472  // is available in some of our (transitive) predecessors.  Lets think about
1473  // doing PRE of this load.  This will involve inserting a new load into the
1474  // predecessor when it's not available.  We could do this in general, but
1475  // prefer to not increase code size.  As such, we only do this when we know
1476  // that we only have to insert *one* load (which means we're basically moving
1477  // the load, not inserting a new one).
1478
1479  SmallPtrSet<BasicBlock *, 4> Blockers;
1480  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1481    Blockers.insert(UnavailableBlocks[i]);
1482
1483  // Let's find the first basic block with more than one predecessor.  Walk
1484  // backwards through predecessors if needed.
1485  BasicBlock *LoadBB = LI->getParent();
1486  BasicBlock *TmpBB = LoadBB;
1487
1488  while (TmpBB->getSinglePredecessor()) {
1489    TmpBB = TmpBB->getSinglePredecessor();
1490    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1491      return false;
1492    if (Blockers.count(TmpBB))
1493      return false;
1494
1495    // If any of these blocks has more than one successor (i.e. if the edge we
1496    // just traversed was critical), then there are other paths through this
1497    // block along which the load may not be anticipated.  Hoisting the load
1498    // above this block would be adding the load to execution paths along
1499    // which it was not previously executed.
1500    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1501      return false;
1502  }
1503
1504  assert(TmpBB);
1505  LoadBB = TmpBB;
1506
1507  // Check to see how many predecessors have the loaded value fully
1508  // available.
1509  DenseMap<BasicBlock*, Value*> PredLoads;
1510  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1511  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1512    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1513  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1514    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1515
1516  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1517  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1518       PI != E; ++PI) {
1519    BasicBlock *Pred = *PI;
1520    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1521      continue;
1522    }
1523    PredLoads[Pred] = 0;
1524
1525    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1526      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1527        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1528              << Pred->getName() << "': " << *LI << '\n');
1529        return false;
1530      }
1531
1532      if (LoadBB->isLandingPad()) {
1533        DEBUG(dbgs()
1534              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1535              << Pred->getName() << "': " << *LI << '\n');
1536        return false;
1537      }
1538
1539      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1540      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1541    }
1542  }
1543
1544  if (!NeedToSplit.empty()) {
1545    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1546    return false;
1547  }
1548
1549  // Decide whether PRE is profitable for this load.
1550  unsigned NumUnavailablePreds = PredLoads.size();
1551  assert(NumUnavailablePreds != 0 &&
1552         "Fully available value should be eliminated above!");
1553
1554  // If this load is unavailable in multiple predecessors, reject it.
1555  // FIXME: If we could restructure the CFG, we could make a common pred with
1556  // all the preds that don't have an available LI and insert a new load into
1557  // that one block.
1558  if (NumUnavailablePreds != 1)
1559      return false;
1560
1561  // Check if the load can safely be moved to all the unavailable predecessors.
1562  bool CanDoPRE = true;
1563  SmallVector<Instruction*, 8> NewInsts;
1564  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1565         E = PredLoads.end(); I != E; ++I) {
1566    BasicBlock *UnavailablePred = I->first;
1567
1568    // Do PHI translation to get its value in the predecessor if necessary.  The
1569    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1570
1571    // If all preds have a single successor, then we know it is safe to insert
1572    // the load on the pred (?!?), so we can insert code to materialize the
1573    // pointer if it is not available.
1574    PHITransAddr Address(LI->getPointerOperand(), TD);
1575    Value *LoadPtr = 0;
1576    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1577                                                *DT, NewInsts);
1578
1579    // If we couldn't find or insert a computation of this phi translated value,
1580    // we fail PRE.
1581    if (LoadPtr == 0) {
1582      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1583            << *LI->getPointerOperand() << "\n");
1584      CanDoPRE = false;
1585      break;
1586    }
1587
1588    I->second = LoadPtr;
1589  }
1590
1591  if (!CanDoPRE) {
1592    while (!NewInsts.empty()) {
1593      Instruction *I = NewInsts.pop_back_val();
1594      if (MD) MD->removeInstruction(I);
1595      I->eraseFromParent();
1596    }
1597    return false;
1598  }
1599
1600  // Okay, we can eliminate this load by inserting a reload in the predecessor
1601  // and using PHI construction to get the value in the other predecessors, do
1602  // it.
1603  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1604  DEBUG(if (!NewInsts.empty())
1605          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1606                 << *NewInsts.back() << '\n');
1607
1608  // Assign value numbers to the new instructions.
1609  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1610    // FIXME: We really _ought_ to insert these value numbers into their
1611    // parent's availability map.  However, in doing so, we risk getting into
1612    // ordering issues.  If a block hasn't been processed yet, we would be
1613    // marking a value as AVAIL-IN, which isn't what we intend.
1614    VN.lookup_or_add(NewInsts[i]);
1615  }
1616
1617  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1618         E = PredLoads.end(); I != E; ++I) {
1619    BasicBlock *UnavailablePred = I->first;
1620    Value *LoadPtr = I->second;
1621
1622    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1623                                        LI->getAlignment(),
1624                                        UnavailablePred->getTerminator());
1625
1626    // Transfer the old load's TBAA tag to the new load.
1627    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1628      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1629
1630    // Transfer DebugLoc.
1631    NewLoad->setDebugLoc(LI->getDebugLoc());
1632
1633    // Add the newly created load.
1634    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1635                                                        NewLoad));
1636    MD->invalidateCachedPointerInfo(LoadPtr);
1637    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1638  }
1639
1640  // Perform PHI construction.
1641  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1642  LI->replaceAllUsesWith(V);
1643  if (isa<PHINode>(V))
1644    V->takeName(LI);
1645  if (V->getType()->getScalarType()->isPointerTy())
1646    MD->invalidateCachedPointerInfo(V);
1647  markInstructionForDeletion(LI);
1648  ++NumPRELoad;
1649  return true;
1650}
1651
1652/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1653/// non-local by performing PHI construction.
1654bool GVN::processNonLocalLoad(LoadInst *LI) {
1655  // Step 1: Find the non-local dependencies of the load.
1656  LoadDepVect Deps;
1657  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1658  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1659
1660  // If we had to process more than one hundred blocks to find the
1661  // dependencies, this load isn't worth worrying about.  Optimizing
1662  // it will be too expensive.
1663  unsigned NumDeps = Deps.size();
1664  if (NumDeps > 100)
1665    return false;
1666
1667  // If we had a phi translation failure, we'll have a single entry which is a
1668  // clobber in the current block.  Reject this early.
1669  if (NumDeps == 1 &&
1670      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1671    DEBUG(
1672      dbgs() << "GVN: non-local load ";
1673      WriteAsOperand(dbgs(), LI);
1674      dbgs() << " has unknown dependencies\n";
1675    );
1676    return false;
1677  }
1678
1679  // Step 2: Analyze the availability of the load
1680  AvailValInBlkVect ValuesPerBlock;
1681  UnavailBlkVect UnavailableBlocks;
1682  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1683
1684  // If we have no predecessors that produce a known value for this load, exit
1685  // early.
1686  if (ValuesPerBlock.empty())
1687    return false;
1688
1689  // Step 3: Eliminate fully redundancy.
1690  //
1691  // If all of the instructions we depend on produce a known value for this
1692  // load, then it is fully redundant and we can use PHI insertion to compute
1693  // its value.  Insert PHIs and remove the fully redundant value now.
1694  if (UnavailableBlocks.empty()) {
1695    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1696
1697    // Perform PHI construction.
1698    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1699    LI->replaceAllUsesWith(V);
1700
1701    if (isa<PHINode>(V))
1702      V->takeName(LI);
1703    if (V->getType()->getScalarType()->isPointerTy())
1704      MD->invalidateCachedPointerInfo(V);
1705    markInstructionForDeletion(LI);
1706    ++NumGVNLoad;
1707    return true;
1708  }
1709
1710  // Step 4: Eliminate partial redundancy.
1711  if (!EnablePRE || !EnableLoadPRE)
1712    return false;
1713
1714  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1715}
1716
1717
1718static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1719  // Patch the replacement so that it is not more restrictive than the value
1720  // being replaced.
1721  BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1722  BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1723  if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1724      isa<OverflowingBinaryOperator>(ReplOp)) {
1725    if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1726      ReplOp->setHasNoSignedWrap(false);
1727    if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1728      ReplOp->setHasNoUnsignedWrap(false);
1729  }
1730  if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1731    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1732    ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1733    for (int i = 0, n = Metadata.size(); i < n; ++i) {
1734      unsigned Kind = Metadata[i].first;
1735      MDNode *IMD = I->getMetadata(Kind);
1736      MDNode *ReplMD = Metadata[i].second;
1737      switch(Kind) {
1738      default:
1739        ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
1740        break;
1741      case LLVMContext::MD_dbg:
1742        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1743      case LLVMContext::MD_tbaa:
1744        ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1745        break;
1746      case LLVMContext::MD_range:
1747        ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1748        break;
1749      case LLVMContext::MD_prof:
1750        llvm_unreachable("MD_prof in a non terminator instruction");
1751        break;
1752      case LLVMContext::MD_fpmath:
1753        ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1754        break;
1755      }
1756    }
1757  }
1758}
1759
1760static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1761  patchReplacementInstruction(I, Repl);
1762  I->replaceAllUsesWith(Repl);
1763}
1764
1765/// processLoad - Attempt to eliminate a load, first by eliminating it
1766/// locally, and then attempting non-local elimination if that fails.
1767bool GVN::processLoad(LoadInst *L) {
1768  if (!MD)
1769    return false;
1770
1771  if (!L->isSimple())
1772    return false;
1773
1774  if (L->use_empty()) {
1775    markInstructionForDeletion(L);
1776    return true;
1777  }
1778
1779  // ... to a pointer that has been loaded from before...
1780  MemDepResult Dep = MD->getDependency(L);
1781
1782  // If we have a clobber and target data is around, see if this is a clobber
1783  // that we can fix up through code synthesis.
1784  if (Dep.isClobber() && TD) {
1785    // Check to see if we have something like this:
1786    //   store i32 123, i32* %P
1787    //   %A = bitcast i32* %P to i8*
1788    //   %B = gep i8* %A, i32 1
1789    //   %C = load i8* %B
1790    //
1791    // We could do that by recognizing if the clobber instructions are obviously
1792    // a common base + constant offset, and if the previous store (or memset)
1793    // completely covers this load.  This sort of thing can happen in bitfield
1794    // access code.
1795    Value *AvailVal = 0;
1796    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1797      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1798                                                  L->getPointerOperand(),
1799                                                  DepSI, *TD);
1800      if (Offset != -1)
1801        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1802                                        L->getType(), L, *TD);
1803    }
1804
1805    // Check to see if we have something like this:
1806    //    load i32* P
1807    //    load i8* (P+1)
1808    // if we have this, replace the later with an extraction from the former.
1809    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1810      // If this is a clobber and L is the first instruction in its block, then
1811      // we have the first instruction in the entry block.
1812      if (DepLI == L)
1813        return false;
1814
1815      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1816                                                 L->getPointerOperand(),
1817                                                 DepLI, *TD);
1818      if (Offset != -1)
1819        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1820    }
1821
1822    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1823    // a value on from it.
1824    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1825      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1826                                                    L->getPointerOperand(),
1827                                                    DepMI, *TD);
1828      if (Offset != -1)
1829        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1830    }
1831
1832    if (AvailVal) {
1833      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1834            << *AvailVal << '\n' << *L << "\n\n\n");
1835
1836      // Replace the load!
1837      L->replaceAllUsesWith(AvailVal);
1838      if (AvailVal->getType()->getScalarType()->isPointerTy())
1839        MD->invalidateCachedPointerInfo(AvailVal);
1840      markInstructionForDeletion(L);
1841      ++NumGVNLoad;
1842      return true;
1843    }
1844  }
1845
1846  // If the value isn't available, don't do anything!
1847  if (Dep.isClobber()) {
1848    DEBUG(
1849      // fast print dep, using operator<< on instruction is too slow.
1850      dbgs() << "GVN: load ";
1851      WriteAsOperand(dbgs(), L);
1852      Instruction *I = Dep.getInst();
1853      dbgs() << " is clobbered by " << *I << '\n';
1854    );
1855    return false;
1856  }
1857
1858  // If it is defined in another block, try harder.
1859  if (Dep.isNonLocal())
1860    return processNonLocalLoad(L);
1861
1862  if (!Dep.isDef()) {
1863    DEBUG(
1864      // fast print dep, using operator<< on instruction is too slow.
1865      dbgs() << "GVN: load ";
1866      WriteAsOperand(dbgs(), L);
1867      dbgs() << " has unknown dependence\n";
1868    );
1869    return false;
1870  }
1871
1872  Instruction *DepInst = Dep.getInst();
1873  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1874    Value *StoredVal = DepSI->getValueOperand();
1875
1876    // The store and load are to a must-aliased pointer, but they may not
1877    // actually have the same type.  See if we know how to reuse the stored
1878    // value (depending on its type).
1879    if (StoredVal->getType() != L->getType()) {
1880      if (TD) {
1881        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1882                                                   L, *TD);
1883        if (StoredVal == 0)
1884          return false;
1885
1886        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1887                     << '\n' << *L << "\n\n\n");
1888      }
1889      else
1890        return false;
1891    }
1892
1893    // Remove it!
1894    L->replaceAllUsesWith(StoredVal);
1895    if (StoredVal->getType()->getScalarType()->isPointerTy())
1896      MD->invalidateCachedPointerInfo(StoredVal);
1897    markInstructionForDeletion(L);
1898    ++NumGVNLoad;
1899    return true;
1900  }
1901
1902  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1903    Value *AvailableVal = DepLI;
1904
1905    // The loads are of a must-aliased pointer, but they may not actually have
1906    // the same type.  See if we know how to reuse the previously loaded value
1907    // (depending on its type).
1908    if (DepLI->getType() != L->getType()) {
1909      if (TD) {
1910        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1911                                                      L, *TD);
1912        if (AvailableVal == 0)
1913          return false;
1914
1915        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1916                     << "\n" << *L << "\n\n\n");
1917      }
1918      else
1919        return false;
1920    }
1921
1922    // Remove it!
1923    patchAndReplaceAllUsesWith(L, AvailableVal);
1924    if (DepLI->getType()->getScalarType()->isPointerTy())
1925      MD->invalidateCachedPointerInfo(DepLI);
1926    markInstructionForDeletion(L);
1927    ++NumGVNLoad;
1928    return true;
1929  }
1930
1931  // If this load really doesn't depend on anything, then we must be loading an
1932  // undef value.  This can happen when loading for a fresh allocation with no
1933  // intervening stores, for example.
1934  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1935    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1936    markInstructionForDeletion(L);
1937    ++NumGVNLoad;
1938    return true;
1939  }
1940
1941  // If this load occurs either right after a lifetime begin,
1942  // then the loaded value is undefined.
1943  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1944    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1945      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1946      markInstructionForDeletion(L);
1947      ++NumGVNLoad;
1948      return true;
1949    }
1950  }
1951
1952  return false;
1953}
1954
1955// findLeader - In order to find a leader for a given value number at a
1956// specific basic block, we first obtain the list of all Values for that number,
1957// and then scan the list to find one whose block dominates the block in
1958// question.  This is fast because dominator tree queries consist of only
1959// a few comparisons of DFS numbers.
1960Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1961  LeaderTableEntry Vals = LeaderTable[num];
1962  if (!Vals.Val) return 0;
1963
1964  Value *Val = 0;
1965  if (DT->dominates(Vals.BB, BB)) {
1966    Val = Vals.Val;
1967    if (isa<Constant>(Val)) return Val;
1968  }
1969
1970  LeaderTableEntry* Next = Vals.Next;
1971  while (Next) {
1972    if (DT->dominates(Next->BB, BB)) {
1973      if (isa<Constant>(Next->Val)) return Next->Val;
1974      if (!Val) Val = Next->Val;
1975    }
1976
1977    Next = Next->Next;
1978  }
1979
1980  return Val;
1981}
1982
1983/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1984/// use is dominated by the given basic block.  Returns the number of uses that
1985/// were replaced.
1986unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1987                                          const BasicBlockEdge &Root) {
1988  unsigned Count = 0;
1989  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1990       UI != UE; ) {
1991    Use &U = (UI++).getUse();
1992
1993    if (DT->dominates(Root, U)) {
1994      U.set(To);
1995      ++Count;
1996    }
1997  }
1998  return Count;
1999}
2000
2001/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2002/// true if every path from the entry block to 'Dst' passes via this edge.  In
2003/// particular 'Dst' must not be reachable via another edge from 'Src'.
2004static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2005                                       DominatorTree *DT) {
2006  // While in theory it is interesting to consider the case in which Dst has
2007  // more than one predecessor, because Dst might be part of a loop which is
2008  // only reachable from Src, in practice it is pointless since at the time
2009  // GVN runs all such loops have preheaders, which means that Dst will have
2010  // been changed to have only one predecessor, namely Src.
2011  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2012  const BasicBlock *Src = E.getStart();
2013  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2014  (void)Src;
2015  return Pred != 0;
2016}
2017
2018/// propagateEquality - The given values are known to be equal in every block
2019/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2020/// 'RHS' everywhere in the scope.  Returns whether a change was made.
2021bool GVN::propagateEquality(Value *LHS, Value *RHS,
2022                            const BasicBlockEdge &Root) {
2023  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2024  Worklist.push_back(std::make_pair(LHS, RHS));
2025  bool Changed = false;
2026  // For speed, compute a conservative fast approximation to
2027  // DT->dominates(Root, Root.getEnd());
2028  bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2029
2030  while (!Worklist.empty()) {
2031    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2032    LHS = Item.first; RHS = Item.second;
2033
2034    if (LHS == RHS) continue;
2035    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2036
2037    // Don't try to propagate equalities between constants.
2038    if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2039
2040    // Prefer a constant on the right-hand side, or an Argument if no constants.
2041    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2042      std::swap(LHS, RHS);
2043    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2044
2045    // If there is no obvious reason to prefer the left-hand side over the right-
2046    // hand side, ensure the longest lived term is on the right-hand side, so the
2047    // shortest lived term will be replaced by the longest lived.  This tends to
2048    // expose more simplifications.
2049    uint32_t LVN = VN.lookup_or_add(LHS);
2050    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2051        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2052      // Move the 'oldest' value to the right-hand side, using the value number as
2053      // a proxy for age.
2054      uint32_t RVN = VN.lookup_or_add(RHS);
2055      if (LVN < RVN) {
2056        std::swap(LHS, RHS);
2057        LVN = RVN;
2058      }
2059    }
2060
2061    // If value numbering later sees that an instruction in the scope is equal
2062    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2063    // the invariant that instructions only occur in the leader table for their
2064    // own value number (this is used by removeFromLeaderTable), do not do this
2065    // if RHS is an instruction (if an instruction in the scope is morphed into
2066    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2067    // using the leader table is about compiling faster, not optimizing better).
2068    // The leader table only tracks basic blocks, not edges. Only add to if we
2069    // have the simple case where the edge dominates the end.
2070    if (RootDominatesEnd && !isa<Instruction>(RHS))
2071      addToLeaderTable(LVN, RHS, Root.getEnd());
2072
2073    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2074    // LHS always has at least one use that is not dominated by Root, this will
2075    // never do anything if LHS has only one use.
2076    if (!LHS->hasOneUse()) {
2077      unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2078      Changed |= NumReplacements > 0;
2079      NumGVNEqProp += NumReplacements;
2080    }
2081
2082    // Now try to deduce additional equalities from this one.  For example, if the
2083    // known equality was "(A != B)" == "false" then it follows that A and B are
2084    // equal in the scope.  Only boolean equalities with an explicit true or false
2085    // RHS are currently supported.
2086    if (!RHS->getType()->isIntegerTy(1))
2087      // Not a boolean equality - bail out.
2088      continue;
2089    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2090    if (!CI)
2091      // RHS neither 'true' nor 'false' - bail out.
2092      continue;
2093    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2094    bool isKnownTrue = CI->isAllOnesValue();
2095    bool isKnownFalse = !isKnownTrue;
2096
2097    // If "A && B" is known true then both A and B are known true.  If "A || B"
2098    // is known false then both A and B are known false.
2099    Value *A, *B;
2100    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2101        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2102      Worklist.push_back(std::make_pair(A, RHS));
2103      Worklist.push_back(std::make_pair(B, RHS));
2104      continue;
2105    }
2106
2107    // If we are propagating an equality like "(A == B)" == "true" then also
2108    // propagate the equality A == B.  When propagating a comparison such as
2109    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2110    if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2111      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2112
2113      // If "A == B" is known true, or "A != B" is known false, then replace
2114      // A with B everywhere in the scope.
2115      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2116          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2117        Worklist.push_back(std::make_pair(Op0, Op1));
2118
2119      // If "A >= B" is known true, replace "A < B" with false everywhere.
2120      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2121      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2122      // Since we don't have the instruction "A < B" immediately to hand, work out
2123      // the value number that it would have and use that to find an appropriate
2124      // instruction (if any).
2125      uint32_t NextNum = VN.getNextUnusedValueNumber();
2126      uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2127      // If the number we were assigned was brand new then there is no point in
2128      // looking for an instruction realizing it: there cannot be one!
2129      if (Num < NextNum) {
2130        Value *NotCmp = findLeader(Root.getEnd(), Num);
2131        if (NotCmp && isa<Instruction>(NotCmp)) {
2132          unsigned NumReplacements =
2133            replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2134          Changed |= NumReplacements > 0;
2135          NumGVNEqProp += NumReplacements;
2136        }
2137      }
2138      // Ensure that any instruction in scope that gets the "A < B" value number
2139      // is replaced with false.
2140      // The leader table only tracks basic blocks, not edges. Only add to if we
2141      // have the simple case where the edge dominates the end.
2142      if (RootDominatesEnd)
2143        addToLeaderTable(Num, NotVal, Root.getEnd());
2144
2145      continue;
2146    }
2147  }
2148
2149  return Changed;
2150}
2151
2152/// processInstruction - When calculating availability, handle an instruction
2153/// by inserting it into the appropriate sets
2154bool GVN::processInstruction(Instruction *I) {
2155  // Ignore dbg info intrinsics.
2156  if (isa<DbgInfoIntrinsic>(I))
2157    return false;
2158
2159  // If the instruction can be easily simplified then do so now in preference
2160  // to value numbering it.  Value numbering often exposes redundancies, for
2161  // example if it determines that %y is equal to %x then the instruction
2162  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2163  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2164    I->replaceAllUsesWith(V);
2165    if (MD && V->getType()->getScalarType()->isPointerTy())
2166      MD->invalidateCachedPointerInfo(V);
2167    markInstructionForDeletion(I);
2168    ++NumGVNSimpl;
2169    return true;
2170  }
2171
2172  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2173    if (processLoad(LI))
2174      return true;
2175
2176    unsigned Num = VN.lookup_or_add(LI);
2177    addToLeaderTable(Num, LI, LI->getParent());
2178    return false;
2179  }
2180
2181  // For conditional branches, we can perform simple conditional propagation on
2182  // the condition value itself.
2183  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2184    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2185      return false;
2186
2187    Value *BranchCond = BI->getCondition();
2188
2189    BasicBlock *TrueSucc = BI->getSuccessor(0);
2190    BasicBlock *FalseSucc = BI->getSuccessor(1);
2191    // Avoid multiple edges early.
2192    if (TrueSucc == FalseSucc)
2193      return false;
2194
2195    BasicBlock *Parent = BI->getParent();
2196    bool Changed = false;
2197
2198    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2199    BasicBlockEdge TrueE(Parent, TrueSucc);
2200    Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2201
2202    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2203    BasicBlockEdge FalseE(Parent, FalseSucc);
2204    Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2205
2206    return Changed;
2207  }
2208
2209  // For switches, propagate the case values into the case destinations.
2210  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2211    Value *SwitchCond = SI->getCondition();
2212    BasicBlock *Parent = SI->getParent();
2213    bool Changed = false;
2214
2215    // Remember how many outgoing edges there are to every successor.
2216    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2217    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2218      ++SwitchEdges[SI->getSuccessor(i)];
2219
2220    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2221         i != e; ++i) {
2222      BasicBlock *Dst = i.getCaseSuccessor();
2223      // If there is only a single edge, propagate the case value into it.
2224      if (SwitchEdges.lookup(Dst) == 1) {
2225        BasicBlockEdge E(Parent, Dst);
2226        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2227      }
2228    }
2229    return Changed;
2230  }
2231
2232  // Instructions with void type don't return a value, so there's
2233  // no point in trying to find redundancies in them.
2234  if (I->getType()->isVoidTy()) return false;
2235
2236  uint32_t NextNum = VN.getNextUnusedValueNumber();
2237  unsigned Num = VN.lookup_or_add(I);
2238
2239  // Allocations are always uniquely numbered, so we can save time and memory
2240  // by fast failing them.
2241  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2242    addToLeaderTable(Num, I, I->getParent());
2243    return false;
2244  }
2245
2246  // If the number we were assigned was a brand new VN, then we don't
2247  // need to do a lookup to see if the number already exists
2248  // somewhere in the domtree: it can't!
2249  if (Num >= NextNum) {
2250    addToLeaderTable(Num, I, I->getParent());
2251    return false;
2252  }
2253
2254  // Perform fast-path value-number based elimination of values inherited from
2255  // dominators.
2256  Value *repl = findLeader(I->getParent(), Num);
2257  if (repl == 0) {
2258    // Failure, just remember this instance for future use.
2259    addToLeaderTable(Num, I, I->getParent());
2260    return false;
2261  }
2262
2263  // Remove it!
2264  patchAndReplaceAllUsesWith(I, repl);
2265  if (MD && repl->getType()->getScalarType()->isPointerTy())
2266    MD->invalidateCachedPointerInfo(repl);
2267  markInstructionForDeletion(I);
2268  return true;
2269}
2270
2271/// runOnFunction - This is the main transformation entry point for a function.
2272bool GVN::runOnFunction(Function& F) {
2273  if (!NoLoads)
2274    MD = &getAnalysis<MemoryDependenceAnalysis>();
2275  DT = &getAnalysis<DominatorTree>();
2276  TD = getAnalysisIfAvailable<DataLayout>();
2277  TLI = &getAnalysis<TargetLibraryInfo>();
2278  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2279  VN.setMemDep(MD);
2280  VN.setDomTree(DT);
2281
2282  bool Changed = false;
2283  bool ShouldContinue = true;
2284
2285  // Merge unconditional branches, allowing PRE to catch more
2286  // optimization opportunities.
2287  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2288    BasicBlock *BB = FI++;
2289
2290    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2291    if (removedBlock) ++NumGVNBlocks;
2292
2293    Changed |= removedBlock;
2294  }
2295
2296  unsigned Iteration = 0;
2297  while (ShouldContinue) {
2298    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2299    ShouldContinue = iterateOnFunction(F);
2300    if (splitCriticalEdges())
2301      ShouldContinue = true;
2302    Changed |= ShouldContinue;
2303    ++Iteration;
2304  }
2305
2306  if (EnablePRE) {
2307    bool PREChanged = true;
2308    while (PREChanged) {
2309      PREChanged = performPRE(F);
2310      Changed |= PREChanged;
2311    }
2312  }
2313  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2314  // computations into blocks where they become fully redundant.  Note that
2315  // we can't do this until PRE's critical edge splitting updates memdep.
2316  // Actually, when this happens, we should just fully integrate PRE into GVN.
2317
2318  cleanupGlobalSets();
2319
2320  return Changed;
2321}
2322
2323
2324bool GVN::processBlock(BasicBlock *BB) {
2325  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2326  // (and incrementing BI before processing an instruction).
2327  assert(InstrsToErase.empty() &&
2328         "We expect InstrsToErase to be empty across iterations");
2329  bool ChangedFunction = false;
2330
2331  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2332       BI != BE;) {
2333    ChangedFunction |= processInstruction(BI);
2334    if (InstrsToErase.empty()) {
2335      ++BI;
2336      continue;
2337    }
2338
2339    // If we need some instructions deleted, do it now.
2340    NumGVNInstr += InstrsToErase.size();
2341
2342    // Avoid iterator invalidation.
2343    bool AtStart = BI == BB->begin();
2344    if (!AtStart)
2345      --BI;
2346
2347    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2348         E = InstrsToErase.end(); I != E; ++I) {
2349      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2350      if (MD) MD->removeInstruction(*I);
2351      DEBUG(verifyRemoved(*I));
2352      (*I)->eraseFromParent();
2353    }
2354    InstrsToErase.clear();
2355
2356    if (AtStart)
2357      BI = BB->begin();
2358    else
2359      ++BI;
2360  }
2361
2362  return ChangedFunction;
2363}
2364
2365/// performPRE - Perform a purely local form of PRE that looks for diamond
2366/// control flow patterns and attempts to perform simple PRE at the join point.
2367bool GVN::performPRE(Function &F) {
2368  bool Changed = false;
2369  SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
2370  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2371       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2372    BasicBlock *CurrentBlock = *DI;
2373
2374    // Nothing to PRE in the entry block.
2375    if (CurrentBlock == &F.getEntryBlock()) continue;
2376
2377    // Don't perform PRE on a landing pad.
2378    if (CurrentBlock->isLandingPad()) continue;
2379
2380    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2381         BE = CurrentBlock->end(); BI != BE; ) {
2382      Instruction *CurInst = BI++;
2383
2384      if (isa<AllocaInst>(CurInst) ||
2385          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2386          CurInst->getType()->isVoidTy() ||
2387          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2388          isa<DbgInfoIntrinsic>(CurInst))
2389        continue;
2390
2391      // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2392      // sinking the compare again, and it would force the code generator to
2393      // move the i1 from processor flags or predicate registers into a general
2394      // purpose register.
2395      if (isa<CmpInst>(CurInst))
2396        continue;
2397
2398      // We don't currently value number ANY inline asm calls.
2399      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2400        if (CallI->isInlineAsm())
2401          continue;
2402
2403      uint32_t ValNo = VN.lookup(CurInst);
2404
2405      // Look for the predecessors for PRE opportunities.  We're
2406      // only trying to solve the basic diamond case, where
2407      // a value is computed in the successor and one predecessor,
2408      // but not the other.  We also explicitly disallow cases
2409      // where the successor is its own predecessor, because they're
2410      // more complicated to get right.
2411      unsigned NumWith = 0;
2412      unsigned NumWithout = 0;
2413      BasicBlock *PREPred = 0;
2414      predMap.clear();
2415
2416      for (pred_iterator PI = pred_begin(CurrentBlock),
2417           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2418        BasicBlock *P = *PI;
2419        // We're not interested in PRE where the block is its
2420        // own predecessor, or in blocks with predecessors
2421        // that are not reachable.
2422        if (P == CurrentBlock) {
2423          NumWithout = 2;
2424          break;
2425        } else if (!DT->isReachableFromEntry(P))  {
2426          NumWithout = 2;
2427          break;
2428        }
2429
2430        Value* predV = findLeader(P, ValNo);
2431        if (predV == 0) {
2432          predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
2433          PREPred = P;
2434          ++NumWithout;
2435        } else if (predV == CurInst) {
2436          /* CurInst dominates this predecessor. */
2437          NumWithout = 2;
2438          break;
2439        } else {
2440          predMap.push_back(std::make_pair(predV, P));
2441          ++NumWith;
2442        }
2443      }
2444
2445      // Don't do PRE when it might increase code size, i.e. when
2446      // we would need to insert instructions in more than one pred.
2447      if (NumWithout != 1 || NumWith == 0)
2448        continue;
2449
2450      // Don't do PRE across indirect branch.
2451      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2452        continue;
2453
2454      // We can't do PRE safely on a critical edge, so instead we schedule
2455      // the edge to be split and perform the PRE the next time we iterate
2456      // on the function.
2457      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2458      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2459        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2460        continue;
2461      }
2462
2463      // Instantiate the expression in the predecessor that lacked it.
2464      // Because we are going top-down through the block, all value numbers
2465      // will be available in the predecessor by the time we need them.  Any
2466      // that weren't originally present will have been instantiated earlier
2467      // in this loop.
2468      Instruction *PREInstr = CurInst->clone();
2469      bool success = true;
2470      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2471        Value *Op = PREInstr->getOperand(i);
2472        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2473          continue;
2474
2475        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2476          PREInstr->setOperand(i, V);
2477        } else {
2478          success = false;
2479          break;
2480        }
2481      }
2482
2483      // Fail out if we encounter an operand that is not available in
2484      // the PRE predecessor.  This is typically because of loads which
2485      // are not value numbered precisely.
2486      if (!success) {
2487        DEBUG(verifyRemoved(PREInstr));
2488        delete PREInstr;
2489        continue;
2490      }
2491
2492      PREInstr->insertBefore(PREPred->getTerminator());
2493      PREInstr->setName(CurInst->getName() + ".pre");
2494      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2495      VN.add(PREInstr, ValNo);
2496      ++NumGVNPRE;
2497
2498      // Update the availability map to include the new instruction.
2499      addToLeaderTable(ValNo, PREInstr, PREPred);
2500
2501      // Create a PHI to make the value available in this block.
2502      PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2503                                     CurInst->getName() + ".pre-phi",
2504                                     CurrentBlock->begin());
2505      for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2506        if (Value *V = predMap[i].first)
2507          Phi->addIncoming(V, predMap[i].second);
2508        else
2509          Phi->addIncoming(PREInstr, PREPred);
2510      }
2511
2512      VN.add(Phi, ValNo);
2513      addToLeaderTable(ValNo, Phi, CurrentBlock);
2514      Phi->setDebugLoc(CurInst->getDebugLoc());
2515      CurInst->replaceAllUsesWith(Phi);
2516      if (Phi->getType()->getScalarType()->isPointerTy()) {
2517        // Because we have added a PHI-use of the pointer value, it has now
2518        // "escaped" from alias analysis' perspective.  We need to inform
2519        // AA of this.
2520        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2521             ++ii) {
2522          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2523          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2524        }
2525
2526        if (MD)
2527          MD->invalidateCachedPointerInfo(Phi);
2528      }
2529      VN.erase(CurInst);
2530      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2531
2532      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2533      if (MD) MD->removeInstruction(CurInst);
2534      DEBUG(verifyRemoved(CurInst));
2535      CurInst->eraseFromParent();
2536      Changed = true;
2537    }
2538  }
2539
2540  if (splitCriticalEdges())
2541    Changed = true;
2542
2543  return Changed;
2544}
2545
2546/// splitCriticalEdges - Split critical edges found during the previous
2547/// iteration that may enable further optimization.
2548bool GVN::splitCriticalEdges() {
2549  if (toSplit.empty())
2550    return false;
2551  do {
2552    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2553    SplitCriticalEdge(Edge.first, Edge.second, this);
2554  } while (!toSplit.empty());
2555  if (MD) MD->invalidateCachedPredecessors();
2556  return true;
2557}
2558
2559/// iterateOnFunction - Executes one iteration of GVN
2560bool GVN::iterateOnFunction(Function &F) {
2561  cleanupGlobalSets();
2562
2563  // Top-down walk of the dominator tree
2564  bool Changed = false;
2565#if 0
2566  // Needed for value numbering with phi construction to work.
2567  ReversePostOrderTraversal<Function*> RPOT(&F);
2568  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2569       RE = RPOT.end(); RI != RE; ++RI)
2570    Changed |= processBlock(*RI);
2571#else
2572  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2573       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2574    Changed |= processBlock(DI->getBlock());
2575#endif
2576
2577  return Changed;
2578}
2579
2580void GVN::cleanupGlobalSets() {
2581  VN.clear();
2582  LeaderTable.clear();
2583  TableAllocator.Reset();
2584}
2585
2586/// verifyRemoved - Verify that the specified instruction does not occur in our
2587/// internal data structures.
2588void GVN::verifyRemoved(const Instruction *Inst) const {
2589  VN.verifyRemoved(Inst);
2590
2591  // Walk through the value number scope to make sure the instruction isn't
2592  // ferreted away in it.
2593  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2594       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2595    const LeaderTableEntry *Node = &I->second;
2596    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2597
2598    while (Node->Next) {
2599      Node = Node->Next;
2600      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2601    }
2602  }
2603}
2604