GVN.cpp revision a52fce49eb3ee08a4829faf68e32476ff717893b
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/MallocHelper.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include <cstdio>
49using namespace llvm;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumPRELoad,   "Number of loads PRE'd");
56
57static cl::opt<bool> EnablePRE("enable-pre",
58                               cl::init(true), cl::Hidden);
59static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
60
61//===----------------------------------------------------------------------===//
62//                         ValueTable Class
63//===----------------------------------------------------------------------===//
64
65/// This class holds the mapping between values and value numbers.  It is used
66/// as an efficient mechanism to determine the expression-wise equivalence of
67/// two values.
68namespace {
69  struct Expression {
70    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
71                            UDIV, SDIV, FDIV, UREM, SREM,
72                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
73                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
74                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
75                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
76                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
77                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
78                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
79                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
80                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
81                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
82
83    ExpressionOpcode opcode;
84    const Type* type;
85    SmallVector<uint32_t, 4> varargs;
86    Value *function;
87
88    Expression() { }
89    Expression(ExpressionOpcode o) : opcode(o) { }
90
91    bool operator==(const Expression &other) const {
92      if (opcode != other.opcode)
93        return false;
94      else if (opcode == EMPTY || opcode == TOMBSTONE)
95        return true;
96      else if (type != other.type)
97        return false;
98      else if (function != other.function)
99        return false;
100      else {
101        if (varargs.size() != other.varargs.size())
102          return false;
103
104        for (size_t i = 0; i < varargs.size(); ++i)
105          if (varargs[i] != other.varargs[i])
106            return false;
107
108        return true;
109      }
110    }
111
112    bool operator!=(const Expression &other) const {
113      return !(*this == other);
114    }
115  };
116
117  class ValueTable {
118    private:
119      DenseMap<Value*, uint32_t> valueNumbering;
120      DenseMap<Expression, uint32_t> expressionNumbering;
121      AliasAnalysis* AA;
122      MemoryDependenceAnalysis* MD;
123      DominatorTree* DT;
124
125      uint32_t nextValueNumber;
126
127      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
128      Expression::ExpressionOpcode getOpcode(CmpInst* C);
129      Expression::ExpressionOpcode getOpcode(CastInst* C);
130      Expression create_expression(BinaryOperator* BO);
131      Expression create_expression(CmpInst* C);
132      Expression create_expression(ShuffleVectorInst* V);
133      Expression create_expression(ExtractElementInst* C);
134      Expression create_expression(InsertElementInst* V);
135      Expression create_expression(SelectInst* V);
136      Expression create_expression(CastInst* C);
137      Expression create_expression(GetElementPtrInst* G);
138      Expression create_expression(CallInst* C);
139      Expression create_expression(Constant* C);
140      Expression create_expression(ExtractValueInst* C);
141      Expression create_expression(InsertValueInst* C);
142
143      uint32_t lookup_or_add_call(CallInst* C);
144    public:
145      ValueTable() : nextValueNumber(1) { }
146      uint32_t lookup_or_add(Value *V);
147      uint32_t lookup(Value *V) const;
148      void add(Value *V, uint32_t num);
149      void clear();
150      void erase(Value *v);
151      unsigned size();
152      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
153      AliasAnalysis *getAliasAnalysis() const { return AA; }
154      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
155      void setDomTree(DominatorTree* D) { DT = D; }
156      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
157      void verifyRemoved(const Value *) const;
158  };
159}
160
161namespace llvm {
162template <> struct DenseMapInfo<Expression> {
163  static inline Expression getEmptyKey() {
164    return Expression(Expression::EMPTY);
165  }
166
167  static inline Expression getTombstoneKey() {
168    return Expression(Expression::TOMBSTONE);
169  }
170
171  static unsigned getHashValue(const Expression e) {
172    unsigned hash = e.opcode;
173
174    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
175            (unsigned)((uintptr_t)e.type >> 9));
176
177    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
178         E = e.varargs.end(); I != E; ++I)
179      hash = *I + hash * 37;
180
181    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
182            (unsigned)((uintptr_t)e.function >> 9)) +
183           hash * 37;
184
185    return hash;
186  }
187  static bool isEqual(const Expression &LHS, const Expression &RHS) {
188    return LHS == RHS;
189  }
190  static bool isPod() { return true; }
191};
192}
193
194//===----------------------------------------------------------------------===//
195//                     ValueTable Internal Functions
196//===----------------------------------------------------------------------===//
197Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
198  switch(BO->getOpcode()) {
199  default: // THIS SHOULD NEVER HAPPEN
200    llvm_unreachable("Binary operator with unknown opcode?");
201  case Instruction::Add:  return Expression::ADD;
202  case Instruction::FAdd: return Expression::FADD;
203  case Instruction::Sub:  return Expression::SUB;
204  case Instruction::FSub: return Expression::FSUB;
205  case Instruction::Mul:  return Expression::MUL;
206  case Instruction::FMul: return Expression::FMUL;
207  case Instruction::UDiv: return Expression::UDIV;
208  case Instruction::SDiv: return Expression::SDIV;
209  case Instruction::FDiv: return Expression::FDIV;
210  case Instruction::URem: return Expression::UREM;
211  case Instruction::SRem: return Expression::SREM;
212  case Instruction::FRem: return Expression::FREM;
213  case Instruction::Shl:  return Expression::SHL;
214  case Instruction::LShr: return Expression::LSHR;
215  case Instruction::AShr: return Expression::ASHR;
216  case Instruction::And:  return Expression::AND;
217  case Instruction::Or:   return Expression::OR;
218  case Instruction::Xor:  return Expression::XOR;
219  }
220}
221
222Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
223  if (isa<ICmpInst>(C)) {
224    switch (C->getPredicate()) {
225    default:  // THIS SHOULD NEVER HAPPEN
226      llvm_unreachable("Comparison with unknown predicate?");
227    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
228    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
229    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
230    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
231    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
232    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
233    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
234    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
235    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
236    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
237    }
238  } else {
239    switch (C->getPredicate()) {
240    default: // THIS SHOULD NEVER HAPPEN
241      llvm_unreachable("Comparison with unknown predicate?");
242    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
243    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
244    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
245    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
246    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
247    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
248    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
249    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
250    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
251    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
252    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
253    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
254    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
255    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
256    }
257  }
258}
259
260Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
261  switch(C->getOpcode()) {
262  default: // THIS SHOULD NEVER HAPPEN
263    llvm_unreachable("Cast operator with unknown opcode?");
264  case Instruction::Trunc:    return Expression::TRUNC;
265  case Instruction::ZExt:     return Expression::ZEXT;
266  case Instruction::SExt:     return Expression::SEXT;
267  case Instruction::FPToUI:   return Expression::FPTOUI;
268  case Instruction::FPToSI:   return Expression::FPTOSI;
269  case Instruction::UIToFP:   return Expression::UITOFP;
270  case Instruction::SIToFP:   return Expression::SITOFP;
271  case Instruction::FPTrunc:  return Expression::FPTRUNC;
272  case Instruction::FPExt:    return Expression::FPEXT;
273  case Instruction::PtrToInt: return Expression::PTRTOINT;
274  case Instruction::IntToPtr: return Expression::INTTOPTR;
275  case Instruction::BitCast:  return Expression::BITCAST;
276  }
277}
278
279Expression ValueTable::create_expression(CallInst* C) {
280  Expression e;
281
282  e.type = C->getType();
283  e.function = C->getCalledFunction();
284  e.opcode = Expression::CALL;
285
286  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
287       I != E; ++I)
288    e.varargs.push_back(lookup_or_add(*I));
289
290  return e;
291}
292
293Expression ValueTable::create_expression(BinaryOperator* BO) {
294  Expression e;
295  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
296  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
297  e.function = 0;
298  e.type = BO->getType();
299  e.opcode = getOpcode(BO);
300
301  return e;
302}
303
304Expression ValueTable::create_expression(CmpInst* C) {
305  Expression e;
306
307  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
308  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
309  e.function = 0;
310  e.type = C->getType();
311  e.opcode = getOpcode(C);
312
313  return e;
314}
315
316Expression ValueTable::create_expression(CastInst* C) {
317  Expression e;
318
319  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
320  e.function = 0;
321  e.type = C->getType();
322  e.opcode = getOpcode(C);
323
324  return e;
325}
326
327Expression ValueTable::create_expression(ShuffleVectorInst* S) {
328  Expression e;
329
330  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
331  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
332  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
333  e.function = 0;
334  e.type = S->getType();
335  e.opcode = Expression::SHUFFLE;
336
337  return e;
338}
339
340Expression ValueTable::create_expression(ExtractElementInst* E) {
341  Expression e;
342
343  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
344  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
345  e.function = 0;
346  e.type = E->getType();
347  e.opcode = Expression::EXTRACT;
348
349  return e;
350}
351
352Expression ValueTable::create_expression(InsertElementInst* I) {
353  Expression e;
354
355  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
356  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
357  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
358  e.function = 0;
359  e.type = I->getType();
360  e.opcode = Expression::INSERT;
361
362  return e;
363}
364
365Expression ValueTable::create_expression(SelectInst* I) {
366  Expression e;
367
368  e.varargs.push_back(lookup_or_add(I->getCondition()));
369  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
370  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
371  e.function = 0;
372  e.type = I->getType();
373  e.opcode = Expression::SELECT;
374
375  return e;
376}
377
378Expression ValueTable::create_expression(GetElementPtrInst* G) {
379  Expression e;
380
381  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
382  e.function = 0;
383  e.type = G->getType();
384  e.opcode = Expression::GEP;
385
386  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
387       I != E; ++I)
388    e.varargs.push_back(lookup_or_add(*I));
389
390  return e;
391}
392
393Expression ValueTable::create_expression(ExtractValueInst* E) {
394  Expression e;
395
396  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
397  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
398       II != IE; ++II)
399    e.varargs.push_back(*II);
400  e.function = 0;
401  e.type = E->getType();
402  e.opcode = Expression::EXTRACTVALUE;
403
404  return e;
405}
406
407Expression ValueTable::create_expression(InsertValueInst* E) {
408  Expression e;
409
410  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
411  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
412  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
413       II != IE; ++II)
414    e.varargs.push_back(*II);
415  e.function = 0;
416  e.type = E->getType();
417  e.opcode = Expression::INSERTVALUE;
418
419  return e;
420}
421
422//===----------------------------------------------------------------------===//
423//                     ValueTable External Functions
424//===----------------------------------------------------------------------===//
425
426/// add - Insert a value into the table with a specified value number.
427void ValueTable::add(Value *V, uint32_t num) {
428  valueNumbering.insert(std::make_pair(V, num));
429}
430
431uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
432  if (AA->doesNotAccessMemory(C)) {
433    Expression exp = create_expression(C);
434    uint32_t& e = expressionNumbering[exp];
435    if (!e) e = nextValueNumber++;
436    valueNumbering[C] = e;
437    return e;
438  } else if (AA->onlyReadsMemory(C)) {
439    Expression exp = create_expression(C);
440    uint32_t& e = expressionNumbering[exp];
441    if (!e) {
442      e = nextValueNumber++;
443      valueNumbering[C] = e;
444      return e;
445    }
446
447    MemDepResult local_dep = MD->getDependency(C);
448
449    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
450      valueNumbering[C] =  nextValueNumber;
451      return nextValueNumber++;
452    }
453
454    if (local_dep.isDef()) {
455      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
456
457      if (local_cdep->getNumOperands() != C->getNumOperands()) {
458        valueNumbering[C] = nextValueNumber;
459        return nextValueNumber++;
460      }
461
462      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
463        uint32_t c_vn = lookup_or_add(C->getOperand(i));
464        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
465        if (c_vn != cd_vn) {
466          valueNumbering[C] = nextValueNumber;
467          return nextValueNumber++;
468        }
469      }
470
471      uint32_t v = lookup_or_add(local_cdep);
472      valueNumbering[C] = v;
473      return v;
474    }
475
476    // Non-local case.
477    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
478      MD->getNonLocalCallDependency(CallSite(C));
479    // FIXME: call/call dependencies for readonly calls should return def, not
480    // clobber!  Move the checking logic to MemDep!
481    CallInst* cdep = 0;
482
483    // Check to see if we have a single dominating call instruction that is
484    // identical to C.
485    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
486      const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
487      // Ignore non-local dependencies.
488      if (I->second.isNonLocal())
489        continue;
490
491      // We don't handle non-depedencies.  If we already have a call, reject
492      // instruction dependencies.
493      if (I->second.isClobber() || cdep != 0) {
494        cdep = 0;
495        break;
496      }
497
498      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
499      // FIXME: All duplicated with non-local case.
500      if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
501        cdep = NonLocalDepCall;
502        continue;
503      }
504
505      cdep = 0;
506      break;
507    }
508
509    if (!cdep) {
510      valueNumbering[C] = nextValueNumber;
511      return nextValueNumber++;
512    }
513
514    if (cdep->getNumOperands() != C->getNumOperands()) {
515      valueNumbering[C] = nextValueNumber;
516      return nextValueNumber++;
517    }
518    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
519      uint32_t c_vn = lookup_or_add(C->getOperand(i));
520      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
521      if (c_vn != cd_vn) {
522        valueNumbering[C] = nextValueNumber;
523        return nextValueNumber++;
524      }
525    }
526
527    uint32_t v = lookup_or_add(cdep);
528    valueNumbering[C] = v;
529    return v;
530
531  } else {
532    valueNumbering[C] = nextValueNumber;
533    return nextValueNumber++;
534  }
535}
536
537/// lookup_or_add - Returns the value number for the specified value, assigning
538/// it a new number if it did not have one before.
539uint32_t ValueTable::lookup_or_add(Value *V) {
540  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
541  if (VI != valueNumbering.end())
542    return VI->second;
543
544  if (!isa<Instruction>(V)) {
545    valueNumbering[V] = nextValueNumber;
546    return nextValueNumber++;
547  }
548
549  Instruction* I = cast<Instruction>(V);
550  Expression exp;
551  switch (I->getOpcode()) {
552    case Instruction::Call:
553      return lookup_or_add_call(cast<CallInst>(I));
554    case Instruction::Add:
555    case Instruction::FAdd:
556    case Instruction::Sub:
557    case Instruction::FSub:
558    case Instruction::Mul:
559    case Instruction::FMul:
560    case Instruction::UDiv:
561    case Instruction::SDiv:
562    case Instruction::FDiv:
563    case Instruction::URem:
564    case Instruction::SRem:
565    case Instruction::FRem:
566    case Instruction::Shl:
567    case Instruction::LShr:
568    case Instruction::AShr:
569    case Instruction::And:
570    case Instruction::Or :
571    case Instruction::Xor:
572      exp = create_expression(cast<BinaryOperator>(I));
573      break;
574    case Instruction::ICmp:
575    case Instruction::FCmp:
576      exp = create_expression(cast<CmpInst>(I));
577      break;
578    case Instruction::Trunc:
579    case Instruction::ZExt:
580    case Instruction::SExt:
581    case Instruction::FPToUI:
582    case Instruction::FPToSI:
583    case Instruction::UIToFP:
584    case Instruction::SIToFP:
585    case Instruction::FPTrunc:
586    case Instruction::FPExt:
587    case Instruction::PtrToInt:
588    case Instruction::IntToPtr:
589    case Instruction::BitCast:
590      exp = create_expression(cast<CastInst>(I));
591      break;
592    case Instruction::Select:
593      exp = create_expression(cast<SelectInst>(I));
594      break;
595    case Instruction::ExtractElement:
596      exp = create_expression(cast<ExtractElementInst>(I));
597      break;
598    case Instruction::InsertElement:
599      exp = create_expression(cast<InsertElementInst>(I));
600      break;
601    case Instruction::ShuffleVector:
602      exp = create_expression(cast<ShuffleVectorInst>(I));
603      break;
604    case Instruction::ExtractValue:
605      exp = create_expression(cast<ExtractValueInst>(I));
606      break;
607    case Instruction::InsertValue:
608      exp = create_expression(cast<InsertValueInst>(I));
609      break;
610    case Instruction::GetElementPtr:
611      exp = create_expression(cast<GetElementPtrInst>(I));
612      break;
613    default:
614      valueNumbering[V] = nextValueNumber;
615      return nextValueNumber++;
616  }
617
618  uint32_t& e = expressionNumbering[exp];
619  if (!e) e = nextValueNumber++;
620  valueNumbering[V] = e;
621  return e;
622}
623
624/// lookup - Returns the value number of the specified value. Fails if
625/// the value has not yet been numbered.
626uint32_t ValueTable::lookup(Value *V) const {
627  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
628  assert(VI != valueNumbering.end() && "Value not numbered?");
629  return VI->second;
630}
631
632/// clear - Remove all entries from the ValueTable
633void ValueTable::clear() {
634  valueNumbering.clear();
635  expressionNumbering.clear();
636  nextValueNumber = 1;
637}
638
639/// erase - Remove a value from the value numbering
640void ValueTable::erase(Value *V) {
641  valueNumbering.erase(V);
642}
643
644/// verifyRemoved - Verify that the value is removed from all internal data
645/// structures.
646void ValueTable::verifyRemoved(const Value *V) const {
647  for (DenseMap<Value*, uint32_t>::iterator
648         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
649    assert(I->first != V && "Inst still occurs in value numbering map!");
650  }
651}
652
653//===----------------------------------------------------------------------===//
654//                                GVN Pass
655//===----------------------------------------------------------------------===//
656
657namespace {
658  struct ValueNumberScope {
659    ValueNumberScope* parent;
660    DenseMap<uint32_t, Value*> table;
661
662    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
663  };
664}
665
666namespace {
667
668  class GVN : public FunctionPass {
669    bool runOnFunction(Function &F);
670  public:
671    static char ID; // Pass identification, replacement for typeid
672    GVN() : FunctionPass(&ID) { }
673
674  private:
675    MemoryDependenceAnalysis *MD;
676    DominatorTree *DT;
677
678    ValueTable VN;
679    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
680
681    // This transformation requires dominator postdominator info
682    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
683      AU.addRequired<DominatorTree>();
684      AU.addRequired<MemoryDependenceAnalysis>();
685      AU.addRequired<AliasAnalysis>();
686
687      AU.addPreserved<DominatorTree>();
688      AU.addPreserved<AliasAnalysis>();
689    }
690
691    // Helper fuctions
692    // FIXME: eliminate or document these better
693    bool processLoad(LoadInst* L,
694                     SmallVectorImpl<Instruction*> &toErase);
695    bool processInstruction(Instruction *I,
696                            SmallVectorImpl<Instruction*> &toErase);
697    bool processNonLocalLoad(LoadInst* L,
698                             SmallVectorImpl<Instruction*> &toErase);
699    bool processBlock(BasicBlock *BB);
700    void dump(DenseMap<uint32_t, Value*>& d);
701    bool iterateOnFunction(Function &F);
702    Value *CollapsePhi(PHINode* p);
703    bool performPRE(Function& F);
704    Value *lookupNumber(BasicBlock *BB, uint32_t num);
705    void cleanupGlobalSets();
706    void verifyRemoved(const Instruction *I) const;
707  };
708
709  char GVN::ID = 0;
710}
711
712// createGVNPass - The public interface to this file...
713FunctionPass *llvm::createGVNPass() { return new GVN(); }
714
715static RegisterPass<GVN> X("gvn",
716                           "Global Value Numbering");
717
718void GVN::dump(DenseMap<uint32_t, Value*>& d) {
719  printf("{\n");
720  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
721       E = d.end(); I != E; ++I) {
722      printf("%d\n", I->first);
723      I->second->dump();
724  }
725  printf("}\n");
726}
727
728static bool isSafeReplacement(PHINode* p, Instruction *inst) {
729  if (!isa<PHINode>(inst))
730    return true;
731
732  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
733       UI != E; ++UI)
734    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
735      if (use_phi->getParent() == inst->getParent())
736        return false;
737
738  return true;
739}
740
741Value *GVN::CollapsePhi(PHINode *PN) {
742  Value *ConstVal = PN->hasConstantValue(DT);
743  if (!ConstVal) return 0;
744
745  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
746  if (!Inst)
747    return ConstVal;
748
749  if (DT->dominates(Inst, PN))
750    if (isSafeReplacement(PN, Inst))
751      return Inst;
752  return 0;
753}
754
755/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
756/// we're analyzing is fully available in the specified block.  As we go, keep
757/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
758/// map is actually a tri-state map with the following values:
759///   0) we know the block *is not* fully available.
760///   1) we know the block *is* fully available.
761///   2) we do not know whether the block is fully available or not, but we are
762///      currently speculating that it will be.
763///   3) we are speculating for this block and have used that to speculate for
764///      other blocks.
765static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
766                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
767  // Optimistically assume that the block is fully available and check to see
768  // if we already know about this block in one lookup.
769  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
770    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
771
772  // If the entry already existed for this block, return the precomputed value.
773  if (!IV.second) {
774    // If this is a speculative "available" value, mark it as being used for
775    // speculation of other blocks.
776    if (IV.first->second == 2)
777      IV.first->second = 3;
778    return IV.first->second != 0;
779  }
780
781  // Otherwise, see if it is fully available in all predecessors.
782  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
783
784  // If this block has no predecessors, it isn't live-in here.
785  if (PI == PE)
786    goto SpeculationFailure;
787
788  for (; PI != PE; ++PI)
789    // If the value isn't fully available in one of our predecessors, then it
790    // isn't fully available in this block either.  Undo our previous
791    // optimistic assumption and bail out.
792    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
793      goto SpeculationFailure;
794
795  return true;
796
797// SpeculationFailure - If we get here, we found out that this is not, after
798// all, a fully-available block.  We have a problem if we speculated on this and
799// used the speculation to mark other blocks as available.
800SpeculationFailure:
801  char &BBVal = FullyAvailableBlocks[BB];
802
803  // If we didn't speculate on this, just return with it set to false.
804  if (BBVal == 2) {
805    BBVal = 0;
806    return false;
807  }
808
809  // If we did speculate on this value, we could have blocks set to 1 that are
810  // incorrect.  Walk the (transitive) successors of this block and mark them as
811  // 0 if set to one.
812  SmallVector<BasicBlock*, 32> BBWorklist;
813  BBWorklist.push_back(BB);
814
815  while (!BBWorklist.empty()) {
816    BasicBlock *Entry = BBWorklist.pop_back_val();
817    // Note that this sets blocks to 0 (unavailable) if they happen to not
818    // already be in FullyAvailableBlocks.  This is safe.
819    char &EntryVal = FullyAvailableBlocks[Entry];
820    if (EntryVal == 0) continue;  // Already unavailable.
821
822    // Mark as unavailable.
823    EntryVal = 0;
824
825    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
826      BBWorklist.push_back(*I);
827  }
828
829  return false;
830}
831
832
833/// CanCoerceMustAliasedValueToLoad - Return true if
834/// CoerceAvailableValueToLoadType will succeed.
835static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
836                                            const Type *LoadTy,
837                                            const TargetData &TD) {
838  // If the loaded or stored value is an first class array or struct, don't try
839  // to transform them.  We need to be able to bitcast to integer.
840  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
841      isa<StructType>(StoredVal->getType()) ||
842      isa<ArrayType>(StoredVal->getType()))
843    return false;
844
845  // The store has to be at least as big as the load.
846  if (TD.getTypeSizeInBits(StoredVal->getType()) <
847        TD.getTypeSizeInBits(LoadTy))
848    return false;
849
850  return true;
851}
852
853
854/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
855/// then a load from a must-aliased pointer of a different type, try to coerce
856/// the stored value.  LoadedTy is the type of the load we want to replace and
857/// InsertPt is the place to insert new instructions.
858///
859/// If we can't do it, return null.
860static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
861                                             const Type *LoadedTy,
862                                             Instruction *InsertPt,
863                                             const TargetData &TD) {
864  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
865    return 0;
866
867  const Type *StoredValTy = StoredVal->getType();
868
869  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
870  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
871
872  // If the store and reload are the same size, we can always reuse it.
873  if (StoreSize == LoadSize) {
874    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
875      // Pointer to Pointer -> use bitcast.
876      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
877    }
878
879    // Convert source pointers to integers, which can be bitcast.
880    if (isa<PointerType>(StoredValTy)) {
881      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
882      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
883    }
884
885    const Type *TypeToCastTo = LoadedTy;
886    if (isa<PointerType>(TypeToCastTo))
887      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
888
889    if (StoredValTy != TypeToCastTo)
890      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
891
892    // Cast to pointer if the load needs a pointer type.
893    if (isa<PointerType>(LoadedTy))
894      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
895
896    return StoredVal;
897  }
898
899  // If the loaded value is smaller than the available value, then we can
900  // extract out a piece from it.  If the available value is too small, then we
901  // can't do anything.
902  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
903
904  // Convert source pointers to integers, which can be manipulated.
905  if (isa<PointerType>(StoredValTy)) {
906    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
907    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
908  }
909
910  // Convert vectors and fp to integer, which can be manipulated.
911  if (!isa<IntegerType>(StoredValTy)) {
912    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
913    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
914  }
915
916  // If this is a big-endian system, we need to shift the value down to the low
917  // bits so that a truncate will work.
918  if (TD.isBigEndian()) {
919    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
920    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
921  }
922
923  // Truncate the integer to the right size now.
924  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
925  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
926
927  if (LoadedTy == NewIntTy)
928    return StoredVal;
929
930  // If the result is a pointer, inttoptr.
931  if (isa<PointerType>(LoadedTy))
932    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
933
934  // Otherwise, bitcast.
935  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
936}
937
938/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
939/// be expressed as a base pointer plus a constant offset.  Return the base and
940/// offset to the caller.
941static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
942                                        const TargetData &TD) {
943  Operator *PtrOp = dyn_cast<Operator>(Ptr);
944  if (PtrOp == 0) return Ptr;
945
946  // Just look through bitcasts.
947  if (PtrOp->getOpcode() == Instruction::BitCast)
948    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
949
950  // If this is a GEP with constant indices, we can look through it.
951  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
952  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
953
954  gep_type_iterator GTI = gep_type_begin(GEP);
955  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
956       ++I, ++GTI) {
957    ConstantInt *OpC = cast<ConstantInt>(*I);
958    if (OpC->isZero()) continue;
959
960    // Handle a struct and array indices which add their offset to the pointer.
961    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
962      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
963    } else {
964      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
965      Offset += OpC->getSExtValue()*Size;
966    }
967  }
968
969  // Re-sign extend from the pointer size if needed to get overflow edge cases
970  // right.
971  unsigned PtrSize = TD.getPointerSizeInBits();
972  if (PtrSize < 64)
973    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
974
975  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
976}
977
978
979/// AnalyzeLoadFromClobberingStore - This function is called when we have a
980/// memdep query of a load that ends up being a clobbering store.  This means
981/// that the store *may* provide bits used by the load but we can't be sure
982/// because the pointers don't mustalias.  Check this case to see if there is
983/// anything more we can do before we give up.  This returns -1 if we have to
984/// give up, or a byte number in the stored value of the piece that feeds the
985/// load.
986static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
987                                          const TargetData &TD) {
988  // If the loaded or stored value is an first class array or struct, don't try
989  // to transform them.  We need to be able to bitcast to integer.
990  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
991      isa<StructType>(DepSI->getOperand(0)->getType()) ||
992      isa<ArrayType>(DepSI->getOperand(0)->getType()))
993    return -1;
994
995  int64_t StoreOffset = 0, LoadOffset = 0;
996  Value *StoreBase =
997    GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
998  Value *LoadBase =
999    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1000  if (StoreBase != LoadBase)
1001    return -1;
1002
1003  // If the load and store are to the exact same address, they should have been
1004  // a must alias.  AA must have gotten confused.
1005  // FIXME: Study to see if/when this happens.
1006  if (LoadOffset == StoreOffset) {
1007#if 0
1008    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1009    << "Base       = " << *StoreBase << "\n"
1010    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1011    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1012    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1013    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1014    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1015    << *L->getParent();
1016#endif
1017    return -1;
1018  }
1019
1020  // If the load and store don't overlap at all, the store doesn't provide
1021  // anything to the load.  In this case, they really don't alias at all, AA
1022  // must have gotten confused.
1023  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1024  // remove this check, as it is duplicated with what we have below.
1025  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1026  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
1027
1028  if ((StoreSize & 7) | (LoadSize & 7))
1029    return -1;
1030  StoreSize >>= 3;  // Convert to bytes.
1031  LoadSize >>= 3;
1032
1033
1034  bool isAAFailure = false;
1035  if (StoreOffset < LoadOffset) {
1036    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1037  } else {
1038    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1039  }
1040  if (isAAFailure) {
1041#if 0
1042    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1043    << "Base       = " << *StoreBase << "\n"
1044    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1045    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1046    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1047    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1048    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1049    << *L->getParent();
1050#endif
1051    return -1;
1052  }
1053
1054  // If the Load isn't completely contained within the stored bits, we don't
1055  // have all the bits to feed it.  We could do something crazy in the future
1056  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1057  // valuable.
1058  if (StoreOffset > LoadOffset ||
1059      StoreOffset+StoreSize < LoadOffset+LoadSize)
1060    return -1;
1061
1062  // Okay, we can do this transformation.  Return the number of bytes into the
1063  // store that the load is.
1064  return LoadOffset-StoreOffset;
1065}
1066
1067
1068/// GetStoreValueForLoad - This function is called when we have a
1069/// memdep query of a load that ends up being a clobbering store.  This means
1070/// that the store *may* provide bits used by the load but we can't be sure
1071/// because the pointers don't mustalias.  Check this case to see if there is
1072/// anything more we can do before we give up.
1073static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1074                                   const Type *LoadTy,
1075                                   Instruction *InsertPt, const TargetData &TD){
1076  LLVMContext &Ctx = SrcVal->getType()->getContext();
1077
1078  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1079  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1080
1081
1082  // Compute which bits of the stored value are being used by the load.  Convert
1083  // to an integer type to start with.
1084  if (isa<PointerType>(SrcVal->getType()))
1085    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1086  if (!isa<IntegerType>(SrcVal->getType()))
1087    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1088                             "tmp", InsertPt);
1089
1090  // Shift the bits to the least significant depending on endianness.
1091  unsigned ShiftAmt;
1092  if (TD.isLittleEndian()) {
1093    ShiftAmt = Offset*8;
1094  } else {
1095    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1096  }
1097
1098  if (ShiftAmt)
1099    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1100                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1101
1102  if (LoadSize != StoreSize)
1103    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1104                           "tmp", InsertPt);
1105
1106  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1107}
1108
1109struct AvailableValueInBlock {
1110  /// BB - The basic block in question.
1111  BasicBlock *BB;
1112  /// V - The value that is live out of the block.
1113  Value *V;
1114  /// Offset - The byte offset in V that is interesting for the load query.
1115  unsigned Offset;
1116
1117  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1118                                   unsigned Offset = 0) {
1119    AvailableValueInBlock Res;
1120    Res.BB = BB;
1121    Res.V = V;
1122    Res.Offset = Offset;
1123    return Res;
1124  }
1125};
1126
1127/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1128/// construct SSA form, allowing us to eliminate LI.  This returns the value
1129/// that should be used at LI's definition site.
1130static Value *ConstructSSAForLoadSet(LoadInst *LI,
1131                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1132                                     const TargetData *TD,
1133                                     AliasAnalysis *AA) {
1134  SmallVector<PHINode*, 8> NewPHIs;
1135  SSAUpdater SSAUpdate(&NewPHIs);
1136  SSAUpdate.Initialize(LI);
1137
1138  const Type *LoadTy = LI->getType();
1139
1140  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1141    BasicBlock *BB = ValuesPerBlock[i].BB;
1142    Value *AvailableVal = ValuesPerBlock[i].V;
1143    unsigned Offset = ValuesPerBlock[i].Offset;
1144
1145    if (SSAUpdate.HasValueForBlock(BB))
1146      continue;
1147
1148    if (AvailableVal->getType() != LoadTy) {
1149      assert(TD && "Need target data to handle type mismatch case");
1150      AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1151                                          BB->getTerminator(), *TD);
1152
1153      if (Offset) {
1154        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1155              << *ValuesPerBlock[i].V << '\n'
1156              << *AvailableVal << '\n' << "\n\n\n");
1157      }
1158
1159
1160      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1161            << *ValuesPerBlock[i].V << '\n'
1162            << *AvailableVal << '\n' << "\n\n\n");
1163    }
1164
1165    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1166  }
1167
1168  // Perform PHI construction.
1169  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1170
1171  // If new PHI nodes were created, notify alias analysis.
1172  if (isa<PointerType>(V->getType()))
1173    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1174      AA->copyValue(LI, NewPHIs[i]);
1175
1176  return V;
1177}
1178
1179/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1180/// non-local by performing PHI construction.
1181bool GVN::processNonLocalLoad(LoadInst *LI,
1182                              SmallVectorImpl<Instruction*> &toErase) {
1183  // Find the non-local dependencies of the load.
1184  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1185  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1186                                   Deps);
1187  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1188  //             << Deps.size() << *LI << '\n');
1189
1190  // If we had to process more than one hundred blocks to find the
1191  // dependencies, this load isn't worth worrying about.  Optimizing
1192  // it will be too expensive.
1193  if (Deps.size() > 100)
1194    return false;
1195
1196  // If we had a phi translation failure, we'll have a single entry which is a
1197  // clobber in the current block.  Reject this early.
1198  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1199    DEBUG(
1200      errs() << "GVN: non-local load ";
1201      WriteAsOperand(errs(), LI);
1202      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1203    );
1204    return false;
1205  }
1206
1207  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1208  // where we have a value available in repl, also keep track of whether we see
1209  // dependencies that produce an unknown value for the load (such as a call
1210  // that could potentially clobber the load).
1211  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1212  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1213
1214  const TargetData *TD = 0;
1215
1216  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1217    BasicBlock *DepBB = Deps[i].first;
1218    MemDepResult DepInfo = Deps[i].second;
1219
1220    if (DepInfo.isClobber()) {
1221      // If the dependence is to a store that writes to a superset of the bits
1222      // read by the load, we can extract the bits we need for the load from the
1223      // stored value.
1224      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1225        if (TD == 0)
1226          TD = getAnalysisIfAvailable<TargetData>();
1227        if (TD) {
1228          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1229          if (Offset != -1) {
1230            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1231                                                           DepSI->getOperand(0),
1232                                                                Offset));
1233            continue;
1234          }
1235        }
1236      }
1237
1238      // FIXME: Handle memset/memcpy.
1239      UnavailableBlocks.push_back(DepBB);
1240      continue;
1241    }
1242
1243    Instruction *DepInst = DepInfo.getInst();
1244
1245    // Loading the allocation -> undef.
1246    if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1247      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1248                                             UndefValue::get(LI->getType())));
1249      continue;
1250    }
1251
1252    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1253      // Reject loads and stores that are to the same address but are of
1254      // different types if we have to.
1255      if (S->getOperand(0)->getType() != LI->getType()) {
1256        if (TD == 0)
1257          TD = getAnalysisIfAvailable<TargetData>();
1258
1259        // If the stored value is larger or equal to the loaded value, we can
1260        // reuse it.
1261        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1262                                                        LI->getType(), *TD)) {
1263          UnavailableBlocks.push_back(DepBB);
1264          continue;
1265        }
1266      }
1267
1268      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1269                                                          S->getOperand(0)));
1270      continue;
1271    }
1272
1273    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1274      // If the types mismatch and we can't handle it, reject reuse of the load.
1275      if (LD->getType() != LI->getType()) {
1276        if (TD == 0)
1277          TD = getAnalysisIfAvailable<TargetData>();
1278
1279        // If the stored value is larger or equal to the loaded value, we can
1280        // reuse it.
1281        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1282          UnavailableBlocks.push_back(DepBB);
1283          continue;
1284        }
1285      }
1286      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1287      continue;
1288    }
1289
1290    UnavailableBlocks.push_back(DepBB);
1291    continue;
1292  }
1293
1294  // If we have no predecessors that produce a known value for this load, exit
1295  // early.
1296  if (ValuesPerBlock.empty()) return false;
1297
1298  // If all of the instructions we depend on produce a known value for this
1299  // load, then it is fully redundant and we can use PHI insertion to compute
1300  // its value.  Insert PHIs and remove the fully redundant value now.
1301  if (UnavailableBlocks.empty()) {
1302    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1303
1304    // Perform PHI construction.
1305    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1306                                      VN.getAliasAnalysis());
1307    LI->replaceAllUsesWith(V);
1308
1309    if (isa<PHINode>(V))
1310      V->takeName(LI);
1311    if (isa<PointerType>(V->getType()))
1312      MD->invalidateCachedPointerInfo(V);
1313    toErase.push_back(LI);
1314    NumGVNLoad++;
1315    return true;
1316  }
1317
1318  if (!EnablePRE || !EnableLoadPRE)
1319    return false;
1320
1321  // Okay, we have *some* definitions of the value.  This means that the value
1322  // is available in some of our (transitive) predecessors.  Lets think about
1323  // doing PRE of this load.  This will involve inserting a new load into the
1324  // predecessor when it's not available.  We could do this in general, but
1325  // prefer to not increase code size.  As such, we only do this when we know
1326  // that we only have to insert *one* load (which means we're basically moving
1327  // the load, not inserting a new one).
1328
1329  SmallPtrSet<BasicBlock *, 4> Blockers;
1330  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1331    Blockers.insert(UnavailableBlocks[i]);
1332
1333  // Lets find first basic block with more than one predecessor.  Walk backwards
1334  // through predecessors if needed.
1335  BasicBlock *LoadBB = LI->getParent();
1336  BasicBlock *TmpBB = LoadBB;
1337
1338  bool isSinglePred = false;
1339  bool allSingleSucc = true;
1340  while (TmpBB->getSinglePredecessor()) {
1341    isSinglePred = true;
1342    TmpBB = TmpBB->getSinglePredecessor();
1343    if (!TmpBB) // If haven't found any, bail now.
1344      return false;
1345    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1346      return false;
1347    if (Blockers.count(TmpBB))
1348      return false;
1349    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1350      allSingleSucc = false;
1351  }
1352
1353  assert(TmpBB);
1354  LoadBB = TmpBB;
1355
1356  // If we have a repl set with LI itself in it, this means we have a loop where
1357  // at least one of the values is LI.  Since this means that we won't be able
1358  // to eliminate LI even if we insert uses in the other predecessors, we will
1359  // end up increasing code size.  Reject this by scanning for LI.
1360  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1361    if (ValuesPerBlock[i].V == LI)
1362      return false;
1363
1364  if (isSinglePred) {
1365    bool isHot = false;
1366    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1367      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
1368        // "Hot" Instruction is in some loop (because it dominates its dep.
1369        // instruction).
1370        if (DT->dominates(LI, I)) {
1371          isHot = true;
1372          break;
1373        }
1374
1375    // We are interested only in "hot" instructions. We don't want to do any
1376    // mis-optimizations here.
1377    if (!isHot)
1378      return false;
1379  }
1380
1381  // Okay, we have some hope :).  Check to see if the loaded value is fully
1382  // available in all but one predecessor.
1383  // FIXME: If we could restructure the CFG, we could make a common pred with
1384  // all the preds that don't have an available LI and insert a new load into
1385  // that one block.
1386  BasicBlock *UnavailablePred = 0;
1387
1388  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1389  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1390    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1391  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1392    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1393
1394  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1395       PI != E; ++PI) {
1396    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1397      continue;
1398
1399    // If this load is not available in multiple predecessors, reject it.
1400    if (UnavailablePred && UnavailablePred != *PI)
1401      return false;
1402    UnavailablePred = *PI;
1403  }
1404
1405  assert(UnavailablePred != 0 &&
1406         "Fully available value should be eliminated above!");
1407
1408  // If the loaded pointer is PHI node defined in this block, do PHI translation
1409  // to get its value in the predecessor.
1410  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1411
1412  // Make sure the value is live in the predecessor.  If it was defined by a
1413  // non-PHI instruction in this block, we don't know how to recompute it above.
1414  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1415    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1416      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1417                   << *LPInst << '\n' << *LI << "\n");
1418      return false;
1419    }
1420
1421  // We don't currently handle critical edges :(
1422  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1423    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1424                 << UnavailablePred->getName() << "': " << *LI << '\n');
1425    return false;
1426  }
1427
1428  // Make sure it is valid to move this load here.  We have to watch out for:
1429  //  @1 = getelementptr (i8* p, ...
1430  //  test p and branch if == 0
1431  //  load @1
1432  // It is valid to have the getelementptr before the test, even if p can be 0,
1433  // as getelementptr only does address arithmetic.
1434  // If we are not pushing the value through any multiple-successor blocks
1435  // we do not have this case.  Otherwise, check that the load is safe to
1436  // put anywhere; this can be improved, but should be conservatively safe.
1437  if (!allSingleSucc &&
1438      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1439    return false;
1440
1441  // Okay, we can eliminate this load by inserting a reload in the predecessor
1442  // and using PHI construction to get the value in the other predecessors, do
1443  // it.
1444  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1445
1446  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1447                                LI->getAlignment(),
1448                                UnavailablePred->getTerminator());
1449
1450  // Add the newly created load.
1451  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1452
1453  // Perform PHI construction.
1454  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1455                                    VN.getAliasAnalysis());
1456  LI->replaceAllUsesWith(V);
1457  if (isa<PHINode>(V))
1458    V->takeName(LI);
1459  if (isa<PointerType>(V->getType()))
1460    MD->invalidateCachedPointerInfo(V);
1461  toErase.push_back(LI);
1462  NumPRELoad++;
1463  return true;
1464}
1465
1466/// processLoad - Attempt to eliminate a load, first by eliminating it
1467/// locally, and then attempting non-local elimination if that fails.
1468bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1469  if (L->isVolatile())
1470    return false;
1471
1472  // ... to a pointer that has been loaded from before...
1473  MemDepResult Dep = MD->getDependency(L);
1474
1475  // If the value isn't available, don't do anything!
1476  if (Dep.isClobber()) {
1477    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
1478    // to forward the value if available.
1479    //if (isa<MemIntrinsic>(Dep.getInst()))
1480    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
1481
1482    // Check to see if we have something like this:
1483    //   store i32 123, i32* %P
1484    //   %A = bitcast i32* %P to i8*
1485    //   %B = gep i8* %A, i32 1
1486    //   %C = load i8* %B
1487    //
1488    // We could do that by recognizing if the clobber instructions are obviously
1489    // a common base + constant offset, and if the previous store (or memset)
1490    // completely covers this load.  This sort of thing can happen in bitfield
1491    // access code.
1492    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1493      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1494        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1495        if (Offset != -1) {
1496          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1497                                                 L->getType(), L, *TD);
1498          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
1499                       << *AvailVal << '\n' << *L << "\n\n\n");
1500
1501          // Replace the load!
1502          L->replaceAllUsesWith(AvailVal);
1503          if (isa<PointerType>(AvailVal->getType()))
1504            MD->invalidateCachedPointerInfo(AvailVal);
1505          toErase.push_back(L);
1506          NumGVNLoad++;
1507          return true;
1508        }
1509      }
1510
1511    DEBUG(
1512      // fast print dep, using operator<< on instruction would be too slow
1513      errs() << "GVN: load ";
1514      WriteAsOperand(errs(), L);
1515      Instruction *I = Dep.getInst();
1516      errs() << " is clobbered by " << *I << '\n';
1517    );
1518    return false;
1519  }
1520
1521  // If it is defined in another block, try harder.
1522  if (Dep.isNonLocal())
1523    return processNonLocalLoad(L, toErase);
1524
1525  Instruction *DepInst = Dep.getInst();
1526  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1527    Value *StoredVal = DepSI->getOperand(0);
1528
1529    // The store and load are to a must-aliased pointer, but they may not
1530    // actually have the same type.  See if we know how to reuse the stored
1531    // value (depending on its type).
1532    const TargetData *TD = 0;
1533    if (StoredVal->getType() != L->getType()) {
1534      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1535        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1536                                                   L, *TD);
1537        if (StoredVal == 0)
1538          return false;
1539
1540        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1541                     << '\n' << *L << "\n\n\n");
1542      }
1543      else
1544        return false;
1545    }
1546
1547    // Remove it!
1548    L->replaceAllUsesWith(StoredVal);
1549    if (isa<PointerType>(StoredVal->getType()))
1550      MD->invalidateCachedPointerInfo(StoredVal);
1551    toErase.push_back(L);
1552    NumGVNLoad++;
1553    return true;
1554  }
1555
1556  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1557    Value *AvailableVal = DepLI;
1558
1559    // The loads are of a must-aliased pointer, but they may not actually have
1560    // the same type.  See if we know how to reuse the previously loaded value
1561    // (depending on its type).
1562    const TargetData *TD = 0;
1563    if (DepLI->getType() != L->getType()) {
1564      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1565        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1566        if (AvailableVal == 0)
1567          return false;
1568
1569        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1570                     << "\n" << *L << "\n\n\n");
1571      }
1572      else
1573        return false;
1574    }
1575
1576    // Remove it!
1577    L->replaceAllUsesWith(AvailableVal);
1578    if (isa<PointerType>(DepLI->getType()))
1579      MD->invalidateCachedPointerInfo(DepLI);
1580    toErase.push_back(L);
1581    NumGVNLoad++;
1582    return true;
1583  }
1584
1585  // If this load really doesn't depend on anything, then we must be loading an
1586  // undef value.  This can happen when loading for a fresh allocation with no
1587  // intervening stores, for example.
1588  if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1589    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1590    toErase.push_back(L);
1591    NumGVNLoad++;
1592    return true;
1593  }
1594
1595  return false;
1596}
1597
1598Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1599  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1600  if (I == localAvail.end())
1601    return 0;
1602
1603  ValueNumberScope *Locals = I->second;
1604  while (Locals) {
1605    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1606    if (I != Locals->table.end())
1607      return I->second;
1608    Locals = Locals->parent;
1609  }
1610
1611  return 0;
1612}
1613
1614
1615/// processInstruction - When calculating availability, handle an instruction
1616/// by inserting it into the appropriate sets
1617bool GVN::processInstruction(Instruction *I,
1618                             SmallVectorImpl<Instruction*> &toErase) {
1619  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1620    bool Changed = processLoad(LI, toErase);
1621
1622    if (!Changed) {
1623      unsigned Num = VN.lookup_or_add(LI);
1624      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1625    }
1626
1627    return Changed;
1628  }
1629
1630  uint32_t NextNum = VN.getNextUnusedValueNumber();
1631  unsigned Num = VN.lookup_or_add(I);
1632
1633  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1634    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1635
1636    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1637      return false;
1638
1639    Value *BranchCond = BI->getCondition();
1640    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1641
1642    BasicBlock *TrueSucc = BI->getSuccessor(0);
1643    BasicBlock *FalseSucc = BI->getSuccessor(1);
1644
1645    if (TrueSucc->getSinglePredecessor())
1646      localAvail[TrueSucc]->table[CondVN] =
1647        ConstantInt::getTrue(TrueSucc->getContext());
1648    if (FalseSucc->getSinglePredecessor())
1649      localAvail[FalseSucc]->table[CondVN] =
1650        ConstantInt::getFalse(TrueSucc->getContext());
1651
1652    return false;
1653
1654  // Allocations are always uniquely numbered, so we can save time and memory
1655  // by fast failing them.
1656  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1657    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1658    return false;
1659  }
1660
1661  // Collapse PHI nodes
1662  if (PHINode* p = dyn_cast<PHINode>(I)) {
1663    Value *constVal = CollapsePhi(p);
1664
1665    if (constVal) {
1666      p->replaceAllUsesWith(constVal);
1667      if (isa<PointerType>(constVal->getType()))
1668        MD->invalidateCachedPointerInfo(constVal);
1669      VN.erase(p);
1670
1671      toErase.push_back(p);
1672    } else {
1673      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1674    }
1675
1676  // If the number we were assigned was a brand new VN, then we don't
1677  // need to do a lookup to see if the number already exists
1678  // somewhere in the domtree: it can't!
1679  } else if (Num == NextNum) {
1680    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1681
1682  // Perform fast-path value-number based elimination of values inherited from
1683  // dominators.
1684  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1685    // Remove it!
1686    VN.erase(I);
1687    I->replaceAllUsesWith(repl);
1688    if (isa<PointerType>(repl->getType()))
1689      MD->invalidateCachedPointerInfo(repl);
1690    toErase.push_back(I);
1691    return true;
1692
1693  } else {
1694    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1695  }
1696
1697  return false;
1698}
1699
1700/// runOnFunction - This is the main transformation entry point for a function.
1701bool GVN::runOnFunction(Function& F) {
1702  MD = &getAnalysis<MemoryDependenceAnalysis>();
1703  DT = &getAnalysis<DominatorTree>();
1704  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1705  VN.setMemDep(MD);
1706  VN.setDomTree(DT);
1707
1708  bool Changed = false;
1709  bool ShouldContinue = true;
1710
1711  // Merge unconditional branches, allowing PRE to catch more
1712  // optimization opportunities.
1713  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1714    BasicBlock *BB = FI;
1715    ++FI;
1716    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1717    if (removedBlock) NumGVNBlocks++;
1718
1719    Changed |= removedBlock;
1720  }
1721
1722  unsigned Iteration = 0;
1723
1724  while (ShouldContinue) {
1725    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1726    ShouldContinue = iterateOnFunction(F);
1727    Changed |= ShouldContinue;
1728    ++Iteration;
1729  }
1730
1731  if (EnablePRE) {
1732    bool PREChanged = true;
1733    while (PREChanged) {
1734      PREChanged = performPRE(F);
1735      Changed |= PREChanged;
1736    }
1737  }
1738  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1739  // computations into blocks where they become fully redundant.  Note that
1740  // we can't do this until PRE's critical edge splitting updates memdep.
1741  // Actually, when this happens, we should just fully integrate PRE into GVN.
1742
1743  cleanupGlobalSets();
1744
1745  return Changed;
1746}
1747
1748
1749bool GVN::processBlock(BasicBlock *BB) {
1750  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1751  // incrementing BI before processing an instruction).
1752  SmallVector<Instruction*, 8> toErase;
1753  bool ChangedFunction = false;
1754
1755  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1756       BI != BE;) {
1757    ChangedFunction |= processInstruction(BI, toErase);
1758    if (toErase.empty()) {
1759      ++BI;
1760      continue;
1761    }
1762
1763    // If we need some instructions deleted, do it now.
1764    NumGVNInstr += toErase.size();
1765
1766    // Avoid iterator invalidation.
1767    bool AtStart = BI == BB->begin();
1768    if (!AtStart)
1769      --BI;
1770
1771    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1772         E = toErase.end(); I != E; ++I) {
1773      DEBUG(errs() << "GVN removed: " << **I << '\n');
1774      MD->removeInstruction(*I);
1775      (*I)->eraseFromParent();
1776      DEBUG(verifyRemoved(*I));
1777    }
1778    toErase.clear();
1779
1780    if (AtStart)
1781      BI = BB->begin();
1782    else
1783      ++BI;
1784  }
1785
1786  return ChangedFunction;
1787}
1788
1789/// performPRE - Perform a purely local form of PRE that looks for diamond
1790/// control flow patterns and attempts to perform simple PRE at the join point.
1791bool GVN::performPRE(Function& F) {
1792  bool Changed = false;
1793  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1794  DenseMap<BasicBlock*, Value*> predMap;
1795  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1796       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1797    BasicBlock *CurrentBlock = *DI;
1798
1799    // Nothing to PRE in the entry block.
1800    if (CurrentBlock == &F.getEntryBlock()) continue;
1801
1802    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1803         BE = CurrentBlock->end(); BI != BE; ) {
1804      Instruction *CurInst = BI++;
1805
1806      if (isa<AllocationInst>(CurInst) ||
1807          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1808          CurInst->getType()->isVoidTy() ||
1809          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1810          isa<DbgInfoIntrinsic>(CurInst))
1811        continue;
1812
1813      uint32_t ValNo = VN.lookup(CurInst);
1814
1815      // Look for the predecessors for PRE opportunities.  We're
1816      // only trying to solve the basic diamond case, where
1817      // a value is computed in the successor and one predecessor,
1818      // but not the other.  We also explicitly disallow cases
1819      // where the successor is its own predecessor, because they're
1820      // more complicated to get right.
1821      unsigned NumWith = 0;
1822      unsigned NumWithout = 0;
1823      BasicBlock *PREPred = 0;
1824      predMap.clear();
1825
1826      for (pred_iterator PI = pred_begin(CurrentBlock),
1827           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1828        // We're not interested in PRE where the block is its
1829        // own predecessor, on in blocks with predecessors
1830        // that are not reachable.
1831        if (*PI == CurrentBlock) {
1832          NumWithout = 2;
1833          break;
1834        } else if (!localAvail.count(*PI))  {
1835          NumWithout = 2;
1836          break;
1837        }
1838
1839        DenseMap<uint32_t, Value*>::iterator predV =
1840                                            localAvail[*PI]->table.find(ValNo);
1841        if (predV == localAvail[*PI]->table.end()) {
1842          PREPred = *PI;
1843          NumWithout++;
1844        } else if (predV->second == CurInst) {
1845          NumWithout = 2;
1846        } else {
1847          predMap[*PI] = predV->second;
1848          NumWith++;
1849        }
1850      }
1851
1852      // Don't do PRE when it might increase code size, i.e. when
1853      // we would need to insert instructions in more than one pred.
1854      if (NumWithout != 1 || NumWith == 0)
1855        continue;
1856
1857      // We can't do PRE safely on a critical edge, so instead we schedule
1858      // the edge to be split and perform the PRE the next time we iterate
1859      // on the function.
1860      unsigned SuccNum = 0;
1861      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1862           i != e; ++i)
1863        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1864          SuccNum = i;
1865          break;
1866        }
1867
1868      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1869        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1870        continue;
1871      }
1872
1873      // Instantiate the expression the in predecessor that lacked it.
1874      // Because we are going top-down through the block, all value numbers
1875      // will be available in the predecessor by the time we need them.  Any
1876      // that weren't original present will have been instantiated earlier
1877      // in this loop.
1878      Instruction *PREInstr = CurInst->clone();
1879      bool success = true;
1880      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1881        Value *Op = PREInstr->getOperand(i);
1882        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1883          continue;
1884
1885        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1886          PREInstr->setOperand(i, V);
1887        } else {
1888          success = false;
1889          break;
1890        }
1891      }
1892
1893      // Fail out if we encounter an operand that is not available in
1894      // the PRE predecessor.  This is typically because of loads which
1895      // are not value numbered precisely.
1896      if (!success) {
1897        delete PREInstr;
1898        DEBUG(verifyRemoved(PREInstr));
1899        continue;
1900      }
1901
1902      PREInstr->insertBefore(PREPred->getTerminator());
1903      PREInstr->setName(CurInst->getName() + ".pre");
1904      predMap[PREPred] = PREInstr;
1905      VN.add(PREInstr, ValNo);
1906      NumGVNPRE++;
1907
1908      // Update the availability map to include the new instruction.
1909      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
1910
1911      // Create a PHI to make the value available in this block.
1912      PHINode* Phi = PHINode::Create(CurInst->getType(),
1913                                     CurInst->getName() + ".pre-phi",
1914                                     CurrentBlock->begin());
1915      for (pred_iterator PI = pred_begin(CurrentBlock),
1916           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1917        Phi->addIncoming(predMap[*PI], *PI);
1918
1919      VN.add(Phi, ValNo);
1920      localAvail[CurrentBlock]->table[ValNo] = Phi;
1921
1922      CurInst->replaceAllUsesWith(Phi);
1923      if (isa<PointerType>(Phi->getType()))
1924        MD->invalidateCachedPointerInfo(Phi);
1925      VN.erase(CurInst);
1926
1927      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1928      MD->removeInstruction(CurInst);
1929      CurInst->eraseFromParent();
1930      DEBUG(verifyRemoved(CurInst));
1931      Changed = true;
1932    }
1933  }
1934
1935  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1936       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1937    SplitCriticalEdge(I->first, I->second, this);
1938
1939  return Changed || toSplit.size();
1940}
1941
1942/// iterateOnFunction - Executes one iteration of GVN
1943bool GVN::iterateOnFunction(Function &F) {
1944  cleanupGlobalSets();
1945
1946  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1947       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1948    if (DI->getIDom())
1949      localAvail[DI->getBlock()] =
1950                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1951    else
1952      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1953  }
1954
1955  // Top-down walk of the dominator tree
1956  bool Changed = false;
1957#if 0
1958  // Needed for value numbering with phi construction to work.
1959  ReversePostOrderTraversal<Function*> RPOT(&F);
1960  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1961       RE = RPOT.end(); RI != RE; ++RI)
1962    Changed |= processBlock(*RI);
1963#else
1964  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1965       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1966    Changed |= processBlock(DI->getBlock());
1967#endif
1968
1969  return Changed;
1970}
1971
1972void GVN::cleanupGlobalSets() {
1973  VN.clear();
1974
1975  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1976       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1977    delete I->second;
1978  localAvail.clear();
1979}
1980
1981/// verifyRemoved - Verify that the specified instruction does not occur in our
1982/// internal data structures.
1983void GVN::verifyRemoved(const Instruction *Inst) const {
1984  VN.verifyRemoved(Inst);
1985
1986  // Walk through the value number scope to make sure the instruction isn't
1987  // ferreted away in it.
1988  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1989         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1990    const ValueNumberScope *VNS = I->second;
1991
1992    while (VNS) {
1993      for (DenseMap<uint32_t, Value*>::iterator
1994             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1995        assert(II->second != Inst && "Inst still in value numbering scope!");
1996      }
1997
1998      VNS = VNS->parent;
1999    }
2000  }
2001}
2002