GVN.cpp revision aa76e9e2cf50af190de90bc778b7f7e42ef9ceff
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IRBuilder.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Metadata.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/Hashing.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/Analysis/ConstantFolding.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/InstructionSimplify.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/MemoryBuiltins.h"
36#include "llvm/Analysis/MemoryDependenceAnalysis.h"
37#include "llvm/Analysis/PHITransAddr.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/Assembly/Writer.h"
40#include "llvm/Support/Allocator.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/PatternMatch.h"
44#include "llvm/DataLayout.h"
45#include "llvm/Target/TargetLibraryInfo.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48using namespace llvm;
49using namespace PatternMatch;
50
51STATISTIC(NumGVNInstr,  "Number of instructions deleted");
52STATISTIC(NumGVNLoad,   "Number of loads deleted");
53STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
54STATISTIC(NumGVNBlocks, "Number of blocks merged");
55STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
56STATISTIC(NumGVNEqProp, "Number of equalities propagated");
57STATISTIC(NumPRELoad,   "Number of loads PRE'd");
58
59static cl::opt<bool> EnablePRE("enable-pre",
60                               cl::init(true), cl::Hidden);
61static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
62
63// Maximum allowed recursion depth.
64static cl::opt<uint32_t>
65MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
66                cl::desc("Max recurse depth (default = 1000)"));
67
68//===----------------------------------------------------------------------===//
69//                         ValueTable Class
70//===----------------------------------------------------------------------===//
71
72/// This class holds the mapping between values and value numbers.  It is used
73/// as an efficient mechanism to determine the expression-wise equivalence of
74/// two values.
75namespace {
76  struct Expression {
77    uint32_t opcode;
78    Type *type;
79    SmallVector<uint32_t, 4> varargs;
80
81    Expression(uint32_t o = ~2U) : opcode(o) { }
82
83    bool operator==(const Expression &other) const {
84      if (opcode != other.opcode)
85        return false;
86      if (opcode == ~0U || opcode == ~1U)
87        return true;
88      if (type != other.type)
89        return false;
90      if (varargs != other.varargs)
91        return false;
92      return true;
93    }
94
95    friend hash_code hash_value(const Expression &Value) {
96      return hash_combine(Value.opcode, Value.type,
97                          hash_combine_range(Value.varargs.begin(),
98                                             Value.varargs.end()));
99    }
100  };
101
102  class ValueTable {
103    DenseMap<Value*, uint32_t> valueNumbering;
104    DenseMap<Expression, uint32_t> expressionNumbering;
105    AliasAnalysis *AA;
106    MemoryDependenceAnalysis *MD;
107    DominatorTree *DT;
108
109    uint32_t nextValueNumber;
110
111    Expression create_expression(Instruction* I);
112    Expression create_cmp_expression(unsigned Opcode,
113                                     CmpInst::Predicate Predicate,
114                                     Value *LHS, Value *RHS);
115    Expression create_extractvalue_expression(ExtractValueInst* EI);
116    uint32_t lookup_or_add_call(CallInst* C);
117  public:
118    ValueTable() : nextValueNumber(1) { }
119    uint32_t lookup_or_add(Value *V);
120    uint32_t lookup(Value *V) const;
121    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
122                               Value *LHS, Value *RHS);
123    void add(Value *V, uint32_t num);
124    void clear();
125    void erase(Value *v);
126    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
127    AliasAnalysis *getAliasAnalysis() const { return AA; }
128    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
129    void setDomTree(DominatorTree* D) { DT = D; }
130    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
131    void verifyRemoved(const Value *) const;
132  };
133}
134
135namespace llvm {
136template <> struct DenseMapInfo<Expression> {
137  static inline Expression getEmptyKey() {
138    return ~0U;
139  }
140
141  static inline Expression getTombstoneKey() {
142    return ~1U;
143  }
144
145  static unsigned getHashValue(const Expression e) {
146    using llvm::hash_value;
147    return static_cast<unsigned>(hash_value(e));
148  }
149  static bool isEqual(const Expression &LHS, const Expression &RHS) {
150    return LHS == RHS;
151  }
152};
153
154}
155
156//===----------------------------------------------------------------------===//
157//                     ValueTable Internal Functions
158//===----------------------------------------------------------------------===//
159
160Expression ValueTable::create_expression(Instruction *I) {
161  Expression e;
162  e.type = I->getType();
163  e.opcode = I->getOpcode();
164  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
165       OI != OE; ++OI)
166    e.varargs.push_back(lookup_or_add(*OI));
167  if (I->isCommutative()) {
168    // Ensure that commutative instructions that only differ by a permutation
169    // of their operands get the same value number by sorting the operand value
170    // numbers.  Since all commutative instructions have two operands it is more
171    // efficient to sort by hand rather than using, say, std::sort.
172    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
173    if (e.varargs[0] > e.varargs[1])
174      std::swap(e.varargs[0], e.varargs[1]);
175  }
176
177  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
178    // Sort the operand value numbers so x<y and y>x get the same value number.
179    CmpInst::Predicate Predicate = C->getPredicate();
180    if (e.varargs[0] > e.varargs[1]) {
181      std::swap(e.varargs[0], e.varargs[1]);
182      Predicate = CmpInst::getSwappedPredicate(Predicate);
183    }
184    e.opcode = (C->getOpcode() << 8) | Predicate;
185  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
186    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
187         II != IE; ++II)
188      e.varargs.push_back(*II);
189  }
190
191  return e;
192}
193
194Expression ValueTable::create_cmp_expression(unsigned Opcode,
195                                             CmpInst::Predicate Predicate,
196                                             Value *LHS, Value *RHS) {
197  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
198         "Not a comparison!");
199  Expression e;
200  e.type = CmpInst::makeCmpResultType(LHS->getType());
201  e.varargs.push_back(lookup_or_add(LHS));
202  e.varargs.push_back(lookup_or_add(RHS));
203
204  // Sort the operand value numbers so x<y and y>x get the same value number.
205  if (e.varargs[0] > e.varargs[1]) {
206    std::swap(e.varargs[0], e.varargs[1]);
207    Predicate = CmpInst::getSwappedPredicate(Predicate);
208  }
209  e.opcode = (Opcode << 8) | Predicate;
210  return e;
211}
212
213Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
214  assert(EI != 0 && "Not an ExtractValueInst?");
215  Expression e;
216  e.type = EI->getType();
217  e.opcode = 0;
218
219  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
220  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
221    // EI might be an extract from one of our recognised intrinsics. If it
222    // is we'll synthesize a semantically equivalent expression instead on
223    // an extract value expression.
224    switch (I->getIntrinsicID()) {
225      case Intrinsic::sadd_with_overflow:
226      case Intrinsic::uadd_with_overflow:
227        e.opcode = Instruction::Add;
228        break;
229      case Intrinsic::ssub_with_overflow:
230      case Intrinsic::usub_with_overflow:
231        e.opcode = Instruction::Sub;
232        break;
233      case Intrinsic::smul_with_overflow:
234      case Intrinsic::umul_with_overflow:
235        e.opcode = Instruction::Mul;
236        break;
237      default:
238        break;
239    }
240
241    if (e.opcode != 0) {
242      // Intrinsic recognized. Grab its args to finish building the expression.
243      assert(I->getNumArgOperands() == 2 &&
244             "Expect two args for recognised intrinsics.");
245      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
246      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
247      return e;
248    }
249  }
250
251  // Not a recognised intrinsic. Fall back to producing an extract value
252  // expression.
253  e.opcode = EI->getOpcode();
254  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
255       OI != OE; ++OI)
256    e.varargs.push_back(lookup_or_add(*OI));
257
258  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
259         II != IE; ++II)
260    e.varargs.push_back(*II);
261
262  return e;
263}
264
265//===----------------------------------------------------------------------===//
266//                     ValueTable External Functions
267//===----------------------------------------------------------------------===//
268
269/// add - Insert a value into the table with a specified value number.
270void ValueTable::add(Value *V, uint32_t num) {
271  valueNumbering.insert(std::make_pair(V, num));
272}
273
274uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
275  if (AA->doesNotAccessMemory(C)) {
276    Expression exp = create_expression(C);
277    uint32_t &e = expressionNumbering[exp];
278    if (!e) e = nextValueNumber++;
279    valueNumbering[C] = e;
280    return e;
281  } else if (AA->onlyReadsMemory(C)) {
282    Expression exp = create_expression(C);
283    uint32_t &e = expressionNumbering[exp];
284    if (!e) {
285      e = nextValueNumber++;
286      valueNumbering[C] = e;
287      return e;
288    }
289    if (!MD) {
290      e = nextValueNumber++;
291      valueNumbering[C] = e;
292      return e;
293    }
294
295    MemDepResult local_dep = MD->getDependency(C);
296
297    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
298      valueNumbering[C] =  nextValueNumber;
299      return nextValueNumber++;
300    }
301
302    if (local_dep.isDef()) {
303      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
304
305      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
306        valueNumbering[C] = nextValueNumber;
307        return nextValueNumber++;
308      }
309
310      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
311        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
312        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
313        if (c_vn != cd_vn) {
314          valueNumbering[C] = nextValueNumber;
315          return nextValueNumber++;
316        }
317      }
318
319      uint32_t v = lookup_or_add(local_cdep);
320      valueNumbering[C] = v;
321      return v;
322    }
323
324    // Non-local case.
325    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
326      MD->getNonLocalCallDependency(CallSite(C));
327    // FIXME: Move the checking logic to MemDep!
328    CallInst* cdep = 0;
329
330    // Check to see if we have a single dominating call instruction that is
331    // identical to C.
332    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
333      const NonLocalDepEntry *I = &deps[i];
334      if (I->getResult().isNonLocal())
335        continue;
336
337      // We don't handle non-definitions.  If we already have a call, reject
338      // instruction dependencies.
339      if (!I->getResult().isDef() || cdep != 0) {
340        cdep = 0;
341        break;
342      }
343
344      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
345      // FIXME: All duplicated with non-local case.
346      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
347        cdep = NonLocalDepCall;
348        continue;
349      }
350
351      cdep = 0;
352      break;
353    }
354
355    if (!cdep) {
356      valueNumbering[C] = nextValueNumber;
357      return nextValueNumber++;
358    }
359
360    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
361      valueNumbering[C] = nextValueNumber;
362      return nextValueNumber++;
363    }
364    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
365      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
366      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
367      if (c_vn != cd_vn) {
368        valueNumbering[C] = nextValueNumber;
369        return nextValueNumber++;
370      }
371    }
372
373    uint32_t v = lookup_or_add(cdep);
374    valueNumbering[C] = v;
375    return v;
376
377  } else {
378    valueNumbering[C] = nextValueNumber;
379    return nextValueNumber++;
380  }
381}
382
383/// lookup_or_add - Returns the value number for the specified value, assigning
384/// it a new number if it did not have one before.
385uint32_t ValueTable::lookup_or_add(Value *V) {
386  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
387  if (VI != valueNumbering.end())
388    return VI->second;
389
390  if (!isa<Instruction>(V)) {
391    valueNumbering[V] = nextValueNumber;
392    return nextValueNumber++;
393  }
394
395  Instruction* I = cast<Instruction>(V);
396  Expression exp;
397  switch (I->getOpcode()) {
398    case Instruction::Call:
399      return lookup_or_add_call(cast<CallInst>(I));
400    case Instruction::Add:
401    case Instruction::FAdd:
402    case Instruction::Sub:
403    case Instruction::FSub:
404    case Instruction::Mul:
405    case Instruction::FMul:
406    case Instruction::UDiv:
407    case Instruction::SDiv:
408    case Instruction::FDiv:
409    case Instruction::URem:
410    case Instruction::SRem:
411    case Instruction::FRem:
412    case Instruction::Shl:
413    case Instruction::LShr:
414    case Instruction::AShr:
415    case Instruction::And:
416    case Instruction::Or:
417    case Instruction::Xor:
418    case Instruction::ICmp:
419    case Instruction::FCmp:
420    case Instruction::Trunc:
421    case Instruction::ZExt:
422    case Instruction::SExt:
423    case Instruction::FPToUI:
424    case Instruction::FPToSI:
425    case Instruction::UIToFP:
426    case Instruction::SIToFP:
427    case Instruction::FPTrunc:
428    case Instruction::FPExt:
429    case Instruction::PtrToInt:
430    case Instruction::IntToPtr:
431    case Instruction::BitCast:
432    case Instruction::Select:
433    case Instruction::ExtractElement:
434    case Instruction::InsertElement:
435    case Instruction::ShuffleVector:
436    case Instruction::InsertValue:
437    case Instruction::GetElementPtr:
438      exp = create_expression(I);
439      break;
440    case Instruction::ExtractValue:
441      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
442      break;
443    default:
444      valueNumbering[V] = nextValueNumber;
445      return nextValueNumber++;
446  }
447
448  uint32_t& e = expressionNumbering[exp];
449  if (!e) e = nextValueNumber++;
450  valueNumbering[V] = e;
451  return e;
452}
453
454/// lookup - Returns the value number of the specified value. Fails if
455/// the value has not yet been numbered.
456uint32_t ValueTable::lookup(Value *V) const {
457  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
458  assert(VI != valueNumbering.end() && "Value not numbered?");
459  return VI->second;
460}
461
462/// lookup_or_add_cmp - Returns the value number of the given comparison,
463/// assigning it a new number if it did not have one before.  Useful when
464/// we deduced the result of a comparison, but don't immediately have an
465/// instruction realizing that comparison to hand.
466uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
467                                       CmpInst::Predicate Predicate,
468                                       Value *LHS, Value *RHS) {
469  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
470  uint32_t& e = expressionNumbering[exp];
471  if (!e) e = nextValueNumber++;
472  return e;
473}
474
475/// clear - Remove all entries from the ValueTable.
476void ValueTable::clear() {
477  valueNumbering.clear();
478  expressionNumbering.clear();
479  nextValueNumber = 1;
480}
481
482/// erase - Remove a value from the value numbering.
483void ValueTable::erase(Value *V) {
484  valueNumbering.erase(V);
485}
486
487/// verifyRemoved - Verify that the value is removed from all internal data
488/// structures.
489void ValueTable::verifyRemoved(const Value *V) const {
490  for (DenseMap<Value*, uint32_t>::const_iterator
491         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
492    assert(I->first != V && "Inst still occurs in value numbering map!");
493  }
494}
495
496//===----------------------------------------------------------------------===//
497//                                GVN Pass
498//===----------------------------------------------------------------------===//
499
500namespace {
501
502  class GVN : public FunctionPass {
503    bool NoLoads;
504    MemoryDependenceAnalysis *MD;
505    DominatorTree *DT;
506    const DataLayout *TD;
507    const TargetLibraryInfo *TLI;
508
509    ValueTable VN;
510
511    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
512    /// have that value number.  Use findLeader to query it.
513    struct LeaderTableEntry {
514      Value *Val;
515      const BasicBlock *BB;
516      LeaderTableEntry *Next;
517    };
518    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
519    BumpPtrAllocator TableAllocator;
520
521    SmallVector<Instruction*, 8> InstrsToErase;
522  public:
523    static char ID; // Pass identification, replacement for typeid
524    explicit GVN(bool noloads = false)
525        : FunctionPass(ID), NoLoads(noloads), MD(0) {
526      initializeGVNPass(*PassRegistry::getPassRegistry());
527    }
528
529    bool runOnFunction(Function &F);
530
531    /// markInstructionForDeletion - This removes the specified instruction from
532    /// our various maps and marks it for deletion.
533    void markInstructionForDeletion(Instruction *I) {
534      VN.erase(I);
535      InstrsToErase.push_back(I);
536    }
537
538    const DataLayout *getDataLayout() const { return TD; }
539    DominatorTree &getDominatorTree() const { return *DT; }
540    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
541    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
542  private:
543    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
544    /// its value number.
545    void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
546      LeaderTableEntry &Curr = LeaderTable[N];
547      if (!Curr.Val) {
548        Curr.Val = V;
549        Curr.BB = BB;
550        return;
551      }
552
553      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
554      Node->Val = V;
555      Node->BB = BB;
556      Node->Next = Curr.Next;
557      Curr.Next = Node;
558    }
559
560    /// removeFromLeaderTable - Scan the list of values corresponding to a given
561    /// value number, and remove the given instruction if encountered.
562    void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
563      LeaderTableEntry* Prev = 0;
564      LeaderTableEntry* Curr = &LeaderTable[N];
565
566      while (Curr->Val != I || Curr->BB != BB) {
567        Prev = Curr;
568        Curr = Curr->Next;
569      }
570
571      if (Prev) {
572        Prev->Next = Curr->Next;
573      } else {
574        if (!Curr->Next) {
575          Curr->Val = 0;
576          Curr->BB = 0;
577        } else {
578          LeaderTableEntry* Next = Curr->Next;
579          Curr->Val = Next->Val;
580          Curr->BB = Next->BB;
581          Curr->Next = Next->Next;
582        }
583      }
584    }
585
586    // List of critical edges to be split between iterations.
587    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
588
589    // This transformation requires dominator postdominator info
590    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
591      AU.addRequired<DominatorTree>();
592      AU.addRequired<TargetLibraryInfo>();
593      if (!NoLoads)
594        AU.addRequired<MemoryDependenceAnalysis>();
595      AU.addRequired<AliasAnalysis>();
596
597      AU.addPreserved<DominatorTree>();
598      AU.addPreserved<AliasAnalysis>();
599    }
600
601
602    // Helper fuctions
603    // FIXME: eliminate or document these better
604    bool processLoad(LoadInst *L);
605    bool processInstruction(Instruction *I);
606    bool processNonLocalLoad(LoadInst *L);
607    bool processBlock(BasicBlock *BB);
608    void dump(DenseMap<uint32_t, Value*> &d);
609    bool iterateOnFunction(Function &F);
610    bool performPRE(Function &F);
611    Value *findLeader(const BasicBlock *BB, uint32_t num);
612    void cleanupGlobalSets();
613    void verifyRemoved(const Instruction *I) const;
614    bool splitCriticalEdges();
615    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
616                                         const BasicBlockEdge &Root);
617    bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
618  };
619
620  char GVN::ID = 0;
621}
622
623// createGVNPass - The public interface to this file...
624FunctionPass *llvm::createGVNPass(bool NoLoads) {
625  return new GVN(NoLoads);
626}
627
628INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
629INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
630INITIALIZE_PASS_DEPENDENCY(DominatorTree)
631INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
632INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
633INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
634
635#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
636void GVN::dump(DenseMap<uint32_t, Value*>& d) {
637  errs() << "{\n";
638  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
639       E = d.end(); I != E; ++I) {
640      errs() << I->first << "\n";
641      I->second->dump();
642  }
643  errs() << "}\n";
644}
645#endif
646
647/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
648/// we're analyzing is fully available in the specified block.  As we go, keep
649/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
650/// map is actually a tri-state map with the following values:
651///   0) we know the block *is not* fully available.
652///   1) we know the block *is* fully available.
653///   2) we do not know whether the block is fully available or not, but we are
654///      currently speculating that it will be.
655///   3) we are speculating for this block and have used that to speculate for
656///      other blocks.
657static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
658                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
659                            uint32_t RecurseDepth) {
660  if (RecurseDepth > MaxRecurseDepth)
661    return false;
662
663  // Optimistically assume that the block is fully available and check to see
664  // if we already know about this block in one lookup.
665  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
666    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
667
668  // If the entry already existed for this block, return the precomputed value.
669  if (!IV.second) {
670    // If this is a speculative "available" value, mark it as being used for
671    // speculation of other blocks.
672    if (IV.first->second == 2)
673      IV.first->second = 3;
674    return IV.first->second != 0;
675  }
676
677  // Otherwise, see if it is fully available in all predecessors.
678  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
679
680  // If this block has no predecessors, it isn't live-in here.
681  if (PI == PE)
682    goto SpeculationFailure;
683
684  for (; PI != PE; ++PI)
685    // If the value isn't fully available in one of our predecessors, then it
686    // isn't fully available in this block either.  Undo our previous
687    // optimistic assumption and bail out.
688    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
689      goto SpeculationFailure;
690
691  return true;
692
693// SpeculationFailure - If we get here, we found out that this is not, after
694// all, a fully-available block.  We have a problem if we speculated on this and
695// used the speculation to mark other blocks as available.
696SpeculationFailure:
697  char &BBVal = FullyAvailableBlocks[BB];
698
699  // If we didn't speculate on this, just return with it set to false.
700  if (BBVal == 2) {
701    BBVal = 0;
702    return false;
703  }
704
705  // If we did speculate on this value, we could have blocks set to 1 that are
706  // incorrect.  Walk the (transitive) successors of this block and mark them as
707  // 0 if set to one.
708  SmallVector<BasicBlock*, 32> BBWorklist;
709  BBWorklist.push_back(BB);
710
711  do {
712    BasicBlock *Entry = BBWorklist.pop_back_val();
713    // Note that this sets blocks to 0 (unavailable) if they happen to not
714    // already be in FullyAvailableBlocks.  This is safe.
715    char &EntryVal = FullyAvailableBlocks[Entry];
716    if (EntryVal == 0) continue;  // Already unavailable.
717
718    // Mark as unavailable.
719    EntryVal = 0;
720
721    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
722      BBWorklist.push_back(*I);
723  } while (!BBWorklist.empty());
724
725  return false;
726}
727
728
729/// CanCoerceMustAliasedValueToLoad - Return true if
730/// CoerceAvailableValueToLoadType will succeed.
731static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
732                                            Type *LoadTy,
733                                            const DataLayout &TD) {
734  // If the loaded or stored value is an first class array or struct, don't try
735  // to transform them.  We need to be able to bitcast to integer.
736  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
737      StoredVal->getType()->isStructTy() ||
738      StoredVal->getType()->isArrayTy())
739    return false;
740
741  // The store has to be at least as big as the load.
742  if (TD.getTypeSizeInBits(StoredVal->getType()) <
743        TD.getTypeSizeInBits(LoadTy))
744    return false;
745
746  return true;
747}
748
749
750/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
751/// then a load from a must-aliased pointer of a different type, try to coerce
752/// the stored value.  LoadedTy is the type of the load we want to replace and
753/// InsertPt is the place to insert new instructions.
754///
755/// If we can't do it, return null.
756static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
757                                             Type *LoadedTy,
758                                             Instruction *InsertPt,
759                                             const DataLayout &TD) {
760  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
761    return 0;
762
763  // If this is already the right type, just return it.
764  Type *StoredValTy = StoredVal->getType();
765
766  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
767  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
768
769  // If the store and reload are the same size, we can always reuse it.
770  if (StoreSize == LoadSize) {
771    // Pointer to Pointer -> use bitcast.
772    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
773      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
774
775    // Convert source pointers to integers, which can be bitcast.
776    if (StoredValTy->isPointerTy()) {
777      StoredValTy = TD.getIntPtrType(StoredValTy);
778      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
779    }
780
781    Type *TypeToCastTo = LoadedTy;
782    if (TypeToCastTo->isPointerTy())
783      TypeToCastTo = TD.getIntPtrType(StoredValTy);
784
785    if (StoredValTy != TypeToCastTo)
786      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
787
788    // Cast to pointer if the load needs a pointer type.
789    if (LoadedTy->isPointerTy())
790      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
791
792    return StoredVal;
793  }
794
795  // If the loaded value is smaller than the available value, then we can
796  // extract out a piece from it.  If the available value is too small, then we
797  // can't do anything.
798  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
799
800  // Convert source pointers to integers, which can be manipulated.
801  if (StoredValTy->isPointerTy()) {
802    StoredValTy = TD.getIntPtrType(StoredValTy);
803    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
804  }
805
806  // Convert vectors and fp to integer, which can be manipulated.
807  if (!StoredValTy->isIntegerTy()) {
808    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
809    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
810  }
811
812  // If this is a big-endian system, we need to shift the value down to the low
813  // bits so that a truncate will work.
814  if (TD.isBigEndian()) {
815    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
816    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
817  }
818
819  // Truncate the integer to the right size now.
820  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
821  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
822
823  if (LoadedTy == NewIntTy)
824    return StoredVal;
825
826  // If the result is a pointer, inttoptr.
827  if (LoadedTy->isPointerTy())
828    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
829
830  // Otherwise, bitcast.
831  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
832}
833
834/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
835/// memdep query of a load that ends up being a clobbering memory write (store,
836/// memset, memcpy, memmove).  This means that the write *may* provide bits used
837/// by the load but we can't be sure because the pointers don't mustalias.
838///
839/// Check this case to see if there is anything more we can do before we give
840/// up.  This returns -1 if we have to give up, or a byte number in the stored
841/// value of the piece that feeds the load.
842static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
843                                          Value *WritePtr,
844                                          uint64_t WriteSizeInBits,
845                                          const DataLayout &TD) {
846  // If the loaded or stored value is a first class array or struct, don't try
847  // to transform them.  We need to be able to bitcast to integer.
848  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
849    return -1;
850
851  int64_t StoreOffset = 0, LoadOffset = 0;
852  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
853  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
854  if (StoreBase != LoadBase)
855    return -1;
856
857  // If the load and store are to the exact same address, they should have been
858  // a must alias.  AA must have gotten confused.
859  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
860  // to a load from the base of the memset.
861#if 0
862  if (LoadOffset == StoreOffset) {
863    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
864    << "Base       = " << *StoreBase << "\n"
865    << "Store Ptr  = " << *WritePtr << "\n"
866    << "Store Offs = " << StoreOffset << "\n"
867    << "Load Ptr   = " << *LoadPtr << "\n";
868    abort();
869  }
870#endif
871
872  // If the load and store don't overlap at all, the store doesn't provide
873  // anything to the load.  In this case, they really don't alias at all, AA
874  // must have gotten confused.
875  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
876
877  if ((WriteSizeInBits & 7) | (LoadSize & 7))
878    return -1;
879  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
880  LoadSize >>= 3;
881
882
883  bool isAAFailure = false;
884  if (StoreOffset < LoadOffset)
885    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
886  else
887    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
888
889  if (isAAFailure) {
890#if 0
891    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
892    << "Base       = " << *StoreBase << "\n"
893    << "Store Ptr  = " << *WritePtr << "\n"
894    << "Store Offs = " << StoreOffset << "\n"
895    << "Load Ptr   = " << *LoadPtr << "\n";
896    abort();
897#endif
898    return -1;
899  }
900
901  // If the Load isn't completely contained within the stored bits, we don't
902  // have all the bits to feed it.  We could do something crazy in the future
903  // (issue a smaller load then merge the bits in) but this seems unlikely to be
904  // valuable.
905  if (StoreOffset > LoadOffset ||
906      StoreOffset+StoreSize < LoadOffset+LoadSize)
907    return -1;
908
909  // Okay, we can do this transformation.  Return the number of bytes into the
910  // store that the load is.
911  return LoadOffset-StoreOffset;
912}
913
914/// AnalyzeLoadFromClobberingStore - This function is called when we have a
915/// memdep query of a load that ends up being a clobbering store.
916static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
917                                          StoreInst *DepSI,
918                                          const DataLayout &TD) {
919  // Cannot handle reading from store of first-class aggregate yet.
920  if (DepSI->getValueOperand()->getType()->isStructTy() ||
921      DepSI->getValueOperand()->getType()->isArrayTy())
922    return -1;
923
924  Value *StorePtr = DepSI->getPointerOperand();
925  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
926  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
927                                        StorePtr, StoreSize, TD);
928}
929
930/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
931/// memdep query of a load that ends up being clobbered by another load.  See if
932/// the other load can feed into the second load.
933static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
934                                         LoadInst *DepLI, const DataLayout &TD){
935  // Cannot handle reading from store of first-class aggregate yet.
936  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
937    return -1;
938
939  Value *DepPtr = DepLI->getPointerOperand();
940  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
941  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
942  if (R != -1) return R;
943
944  // If we have a load/load clobber an DepLI can be widened to cover this load,
945  // then we should widen it!
946  int64_t LoadOffs = 0;
947  const Value *LoadBase =
948    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
949  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
950
951  unsigned Size = MemoryDependenceAnalysis::
952    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
953  if (Size == 0) return -1;
954
955  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
956}
957
958
959
960static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
961                                            MemIntrinsic *MI,
962                                            const DataLayout &TD) {
963  // If the mem operation is a non-constant size, we can't handle it.
964  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
965  if (SizeCst == 0) return -1;
966  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
967
968  // If this is memset, we just need to see if the offset is valid in the size
969  // of the memset..
970  if (MI->getIntrinsicID() == Intrinsic::memset)
971    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
972                                          MemSizeInBits, TD);
973
974  // If we have a memcpy/memmove, the only case we can handle is if this is a
975  // copy from constant memory.  In that case, we can read directly from the
976  // constant memory.
977  MemTransferInst *MTI = cast<MemTransferInst>(MI);
978
979  Constant *Src = dyn_cast<Constant>(MTI->getSource());
980  if (Src == 0) return -1;
981
982  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
983  if (GV == 0 || !GV->isConstant()) return -1;
984
985  // See if the access is within the bounds of the transfer.
986  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
987                                              MI->getDest(), MemSizeInBits, TD);
988  if (Offset == -1)
989    return Offset;
990
991  // Otherwise, see if we can constant fold a load from the constant with the
992  // offset applied as appropriate.
993  Src = ConstantExpr::getBitCast(Src,
994                                 llvm::Type::getInt8PtrTy(Src->getContext()));
995  Constant *OffsetCst =
996    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
997  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
998  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
999  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1000    return Offset;
1001  return -1;
1002}
1003
1004
1005/// GetStoreValueForLoad - This function is called when we have a
1006/// memdep query of a load that ends up being a clobbering store.  This means
1007/// that the store provides bits used by the load but we the pointers don't
1008/// mustalias.  Check this case to see if there is anything more we can do
1009/// before we give up.
1010static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1011                                   Type *LoadTy,
1012                                   Instruction *InsertPt, const DataLayout &TD){
1013  LLVMContext &Ctx = SrcVal->getType()->getContext();
1014
1015  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1016  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1017
1018  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1019
1020  // Compute which bits of the stored value are being used by the load.  Convert
1021  // to an integer type to start with.
1022  if (SrcVal->getType()->isPointerTy())
1023    SrcVal = Builder.CreatePtrToInt(SrcVal,
1024        TD.getIntPtrType(SrcVal->getType()));
1025  if (!SrcVal->getType()->isIntegerTy())
1026    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1027
1028  // Shift the bits to the least significant depending on endianness.
1029  unsigned ShiftAmt;
1030  if (TD.isLittleEndian())
1031    ShiftAmt = Offset*8;
1032  else
1033    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1034
1035  if (ShiftAmt)
1036    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1037
1038  if (LoadSize != StoreSize)
1039    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1040
1041  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1042}
1043
1044/// GetLoadValueForLoad - This function is called when we have a
1045/// memdep query of a load that ends up being a clobbering load.  This means
1046/// that the load *may* provide bits used by the load but we can't be sure
1047/// because the pointers don't mustalias.  Check this case to see if there is
1048/// anything more we can do before we give up.
1049static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1050                                  Type *LoadTy, Instruction *InsertPt,
1051                                  GVN &gvn) {
1052  const DataLayout &TD = *gvn.getDataLayout();
1053  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1054  // widen SrcVal out to a larger load.
1055  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1056  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1057  if (Offset+LoadSize > SrcValSize) {
1058    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1059    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1060    // If we have a load/load clobber an DepLI can be widened to cover this
1061    // load, then we should widen it to the next power of 2 size big enough!
1062    unsigned NewLoadSize = Offset+LoadSize;
1063    if (!isPowerOf2_32(NewLoadSize))
1064      NewLoadSize = NextPowerOf2(NewLoadSize);
1065
1066    Value *PtrVal = SrcVal->getPointerOperand();
1067
1068    // Insert the new load after the old load.  This ensures that subsequent
1069    // memdep queries will find the new load.  We can't easily remove the old
1070    // load completely because it is already in the value numbering table.
1071    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1072    Type *DestPTy =
1073      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1074    DestPTy = PointerType::get(DestPTy,
1075                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1076    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1077    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1078    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1079    NewLoad->takeName(SrcVal);
1080    NewLoad->setAlignment(SrcVal->getAlignment());
1081
1082    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1083    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1084
1085    // Replace uses of the original load with the wider load.  On a big endian
1086    // system, we need to shift down to get the relevant bits.
1087    Value *RV = NewLoad;
1088    if (TD.isBigEndian())
1089      RV = Builder.CreateLShr(RV,
1090                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1091    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1092    SrcVal->replaceAllUsesWith(RV);
1093
1094    // We would like to use gvn.markInstructionForDeletion here, but we can't
1095    // because the load is already memoized into the leader map table that GVN
1096    // tracks.  It is potentially possible to remove the load from the table,
1097    // but then there all of the operations based on it would need to be
1098    // rehashed.  Just leave the dead load around.
1099    gvn.getMemDep().removeInstruction(SrcVal);
1100    SrcVal = NewLoad;
1101  }
1102
1103  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1104}
1105
1106
1107/// GetMemInstValueForLoad - This function is called when we have a
1108/// memdep query of a load that ends up being a clobbering mem intrinsic.
1109static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1110                                     Type *LoadTy, Instruction *InsertPt,
1111                                     const DataLayout &TD){
1112  LLVMContext &Ctx = LoadTy->getContext();
1113  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1114
1115  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1116
1117  // We know that this method is only called when the mem transfer fully
1118  // provides the bits for the load.
1119  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1120    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1121    // independently of what the offset is.
1122    Value *Val = MSI->getValue();
1123    if (LoadSize != 1)
1124      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1125
1126    Value *OneElt = Val;
1127
1128    // Splat the value out to the right number of bits.
1129    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1130      // If we can double the number of bytes set, do it.
1131      if (NumBytesSet*2 <= LoadSize) {
1132        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1133        Val = Builder.CreateOr(Val, ShVal);
1134        NumBytesSet <<= 1;
1135        continue;
1136      }
1137
1138      // Otherwise insert one byte at a time.
1139      Value *ShVal = Builder.CreateShl(Val, 1*8);
1140      Val = Builder.CreateOr(OneElt, ShVal);
1141      ++NumBytesSet;
1142    }
1143
1144    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1145  }
1146
1147  // Otherwise, this is a memcpy/memmove from a constant global.
1148  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1149  Constant *Src = cast<Constant>(MTI->getSource());
1150
1151  // Otherwise, see if we can constant fold a load from the constant with the
1152  // offset applied as appropriate.
1153  Src = ConstantExpr::getBitCast(Src,
1154                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1155  Constant *OffsetCst =
1156  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1157  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1158  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1159  return ConstantFoldLoadFromConstPtr(Src, &TD);
1160}
1161
1162namespace {
1163
1164struct AvailableValueInBlock {
1165  /// BB - The basic block in question.
1166  BasicBlock *BB;
1167  enum ValType {
1168    SimpleVal,  // A simple offsetted value that is accessed.
1169    LoadVal,    // A value produced by a load.
1170    MemIntrin   // A memory intrinsic which is loaded from.
1171  };
1172
1173  /// V - The value that is live out of the block.
1174  PointerIntPair<Value *, 2, ValType> Val;
1175
1176  /// Offset - The byte offset in Val that is interesting for the load query.
1177  unsigned Offset;
1178
1179  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1180                                   unsigned Offset = 0) {
1181    AvailableValueInBlock Res;
1182    Res.BB = BB;
1183    Res.Val.setPointer(V);
1184    Res.Val.setInt(SimpleVal);
1185    Res.Offset = Offset;
1186    return Res;
1187  }
1188
1189  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1190                                     unsigned Offset = 0) {
1191    AvailableValueInBlock Res;
1192    Res.BB = BB;
1193    Res.Val.setPointer(MI);
1194    Res.Val.setInt(MemIntrin);
1195    Res.Offset = Offset;
1196    return Res;
1197  }
1198
1199  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1200                                       unsigned Offset = 0) {
1201    AvailableValueInBlock Res;
1202    Res.BB = BB;
1203    Res.Val.setPointer(LI);
1204    Res.Val.setInt(LoadVal);
1205    Res.Offset = Offset;
1206    return Res;
1207  }
1208
1209  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1210  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1211  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1212
1213  Value *getSimpleValue() const {
1214    assert(isSimpleValue() && "Wrong accessor");
1215    return Val.getPointer();
1216  }
1217
1218  LoadInst *getCoercedLoadValue() const {
1219    assert(isCoercedLoadValue() && "Wrong accessor");
1220    return cast<LoadInst>(Val.getPointer());
1221  }
1222
1223  MemIntrinsic *getMemIntrinValue() const {
1224    assert(isMemIntrinValue() && "Wrong accessor");
1225    return cast<MemIntrinsic>(Val.getPointer());
1226  }
1227
1228  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1229  /// defined here to the specified type.  This handles various coercion cases.
1230  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1231    Value *Res;
1232    if (isSimpleValue()) {
1233      Res = getSimpleValue();
1234      if (Res->getType() != LoadTy) {
1235        const DataLayout *TD = gvn.getDataLayout();
1236        assert(TD && "Need target data to handle type mismatch case");
1237        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1238                                   *TD);
1239
1240        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1241                     << *getSimpleValue() << '\n'
1242                     << *Res << '\n' << "\n\n\n");
1243      }
1244    } else if (isCoercedLoadValue()) {
1245      LoadInst *Load = getCoercedLoadValue();
1246      if (Load->getType() == LoadTy && Offset == 0) {
1247        Res = Load;
1248      } else {
1249        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1250                                  gvn);
1251
1252        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1253                     << *getCoercedLoadValue() << '\n'
1254                     << *Res << '\n' << "\n\n\n");
1255      }
1256    } else {
1257      const DataLayout *TD = gvn.getDataLayout();
1258      assert(TD && "Need target data to handle type mismatch case");
1259      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1260                                   LoadTy, BB->getTerminator(), *TD);
1261      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1262                   << "  " << *getMemIntrinValue() << '\n'
1263                   << *Res << '\n' << "\n\n\n");
1264    }
1265    return Res;
1266  }
1267};
1268
1269} // end anonymous namespace
1270
1271/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1272/// construct SSA form, allowing us to eliminate LI.  This returns the value
1273/// that should be used at LI's definition site.
1274static Value *ConstructSSAForLoadSet(LoadInst *LI,
1275                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1276                                     GVN &gvn) {
1277  // Check for the fully redundant, dominating load case.  In this case, we can
1278  // just use the dominating value directly.
1279  if (ValuesPerBlock.size() == 1 &&
1280      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1281                                               LI->getParent()))
1282    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1283
1284  // Otherwise, we have to construct SSA form.
1285  SmallVector<PHINode*, 8> NewPHIs;
1286  SSAUpdater SSAUpdate(&NewPHIs);
1287  SSAUpdate.Initialize(LI->getType(), LI->getName());
1288
1289  Type *LoadTy = LI->getType();
1290
1291  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1292    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1293    BasicBlock *BB = AV.BB;
1294
1295    if (SSAUpdate.HasValueForBlock(BB))
1296      continue;
1297
1298    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1299  }
1300
1301  // Perform PHI construction.
1302  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1303
1304  // If new PHI nodes were created, notify alias analysis.
1305  if (V->getType()->isPointerTy()) {
1306    AliasAnalysis *AA = gvn.getAliasAnalysis();
1307
1308    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1309      AA->copyValue(LI, NewPHIs[i]);
1310
1311    // Now that we've copied information to the new PHIs, scan through
1312    // them again and inform alias analysis that we've added potentially
1313    // escaping uses to any values that are operands to these PHIs.
1314    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1315      PHINode *P = NewPHIs[i];
1316      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1317        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1318        AA->addEscapingUse(P->getOperandUse(jj));
1319      }
1320    }
1321  }
1322
1323  return V;
1324}
1325
1326static bool isLifetimeStart(const Instruction *Inst) {
1327  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1328    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1329  return false;
1330}
1331
1332/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1333/// non-local by performing PHI construction.
1334bool GVN::processNonLocalLoad(LoadInst *LI) {
1335  // Find the non-local dependencies of the load.
1336  SmallVector<NonLocalDepResult, 64> Deps;
1337  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1338  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1339  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1340  //             << Deps.size() << *LI << '\n');
1341
1342  // If we had to process more than one hundred blocks to find the
1343  // dependencies, this load isn't worth worrying about.  Optimizing
1344  // it will be too expensive.
1345  unsigned NumDeps = Deps.size();
1346  if (NumDeps > 100)
1347    return false;
1348
1349  // If we had a phi translation failure, we'll have a single entry which is a
1350  // clobber in the current block.  Reject this early.
1351  if (NumDeps == 1 &&
1352      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1353    DEBUG(
1354      dbgs() << "GVN: non-local load ";
1355      WriteAsOperand(dbgs(), LI);
1356      dbgs() << " has unknown dependencies\n";
1357    );
1358    return false;
1359  }
1360
1361  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1362  // where we have a value available in repl, also keep track of whether we see
1363  // dependencies that produce an unknown value for the load (such as a call
1364  // that could potentially clobber the load).
1365  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1366  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1367
1368  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1369    BasicBlock *DepBB = Deps[i].getBB();
1370    MemDepResult DepInfo = Deps[i].getResult();
1371
1372    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1373      UnavailableBlocks.push_back(DepBB);
1374      continue;
1375    }
1376
1377    if (DepInfo.isClobber()) {
1378      // The address being loaded in this non-local block may not be the same as
1379      // the pointer operand of the load if PHI translation occurs.  Make sure
1380      // to consider the right address.
1381      Value *Address = Deps[i].getAddress();
1382
1383      // If the dependence is to a store that writes to a superset of the bits
1384      // read by the load, we can extract the bits we need for the load from the
1385      // stored value.
1386      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1387        if (TD && Address) {
1388          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1389                                                      DepSI, *TD);
1390          if (Offset != -1) {
1391            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1392                                                       DepSI->getValueOperand(),
1393                                                                Offset));
1394            continue;
1395          }
1396        }
1397      }
1398
1399      // Check to see if we have something like this:
1400      //    load i32* P
1401      //    load i8* (P+1)
1402      // if we have this, replace the later with an extraction from the former.
1403      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1404        // If this is a clobber and L is the first instruction in its block, then
1405        // we have the first instruction in the entry block.
1406        if (DepLI != LI && Address && TD) {
1407          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1408                                                     LI->getPointerOperand(),
1409                                                     DepLI, *TD);
1410
1411          if (Offset != -1) {
1412            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1413                                                                    Offset));
1414            continue;
1415          }
1416        }
1417      }
1418
1419      // If the clobbering value is a memset/memcpy/memmove, see if we can
1420      // forward a value on from it.
1421      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1422        if (TD && Address) {
1423          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1424                                                        DepMI, *TD);
1425          if (Offset != -1) {
1426            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1427                                                                  Offset));
1428            continue;
1429          }
1430        }
1431      }
1432
1433      UnavailableBlocks.push_back(DepBB);
1434      continue;
1435    }
1436
1437    // DepInfo.isDef() here
1438
1439    Instruction *DepInst = DepInfo.getInst();
1440
1441    // Loading the allocation -> undef.
1442    if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1443        // Loading immediately after lifetime begin -> undef.
1444        isLifetimeStart(DepInst)) {
1445      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1446                                             UndefValue::get(LI->getType())));
1447      continue;
1448    }
1449
1450    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1451      // Reject loads and stores that are to the same address but are of
1452      // different types if we have to.
1453      if (S->getValueOperand()->getType() != LI->getType()) {
1454        // If the stored value is larger or equal to the loaded value, we can
1455        // reuse it.
1456        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1457                                                        LI->getType(), *TD)) {
1458          UnavailableBlocks.push_back(DepBB);
1459          continue;
1460        }
1461      }
1462
1463      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1464                                                         S->getValueOperand()));
1465      continue;
1466    }
1467
1468    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1469      // If the types mismatch and we can't handle it, reject reuse of the load.
1470      if (LD->getType() != LI->getType()) {
1471        // If the stored value is larger or equal to the loaded value, we can
1472        // reuse it.
1473        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1474          UnavailableBlocks.push_back(DepBB);
1475          continue;
1476        }
1477      }
1478      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1479      continue;
1480    }
1481
1482    UnavailableBlocks.push_back(DepBB);
1483    continue;
1484  }
1485
1486  // If we have no predecessors that produce a known value for this load, exit
1487  // early.
1488  if (ValuesPerBlock.empty()) return false;
1489
1490  // If all of the instructions we depend on produce a known value for this
1491  // load, then it is fully redundant and we can use PHI insertion to compute
1492  // its value.  Insert PHIs and remove the fully redundant value now.
1493  if (UnavailableBlocks.empty()) {
1494    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1495
1496    // Perform PHI construction.
1497    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1498    LI->replaceAllUsesWith(V);
1499
1500    if (isa<PHINode>(V))
1501      V->takeName(LI);
1502    if (V->getType()->isPointerTy())
1503      MD->invalidateCachedPointerInfo(V);
1504    markInstructionForDeletion(LI);
1505    ++NumGVNLoad;
1506    return true;
1507  }
1508
1509  if (!EnablePRE || !EnableLoadPRE)
1510    return false;
1511
1512  // Okay, we have *some* definitions of the value.  This means that the value
1513  // is available in some of our (transitive) predecessors.  Lets think about
1514  // doing PRE of this load.  This will involve inserting a new load into the
1515  // predecessor when it's not available.  We could do this in general, but
1516  // prefer to not increase code size.  As such, we only do this when we know
1517  // that we only have to insert *one* load (which means we're basically moving
1518  // the load, not inserting a new one).
1519
1520  SmallPtrSet<BasicBlock *, 4> Blockers;
1521  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1522    Blockers.insert(UnavailableBlocks[i]);
1523
1524  // Let's find the first basic block with more than one predecessor.  Walk
1525  // backwards through predecessors if needed.
1526  BasicBlock *LoadBB = LI->getParent();
1527  BasicBlock *TmpBB = LoadBB;
1528
1529  bool isSinglePred = false;
1530  bool allSingleSucc = true;
1531  while (TmpBB->getSinglePredecessor()) {
1532    isSinglePred = true;
1533    TmpBB = TmpBB->getSinglePredecessor();
1534    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1535      return false;
1536    if (Blockers.count(TmpBB))
1537      return false;
1538
1539    // If any of these blocks has more than one successor (i.e. if the edge we
1540    // just traversed was critical), then there are other paths through this
1541    // block along which the load may not be anticipated.  Hoisting the load
1542    // above this block would be adding the load to execution paths along
1543    // which it was not previously executed.
1544    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1545      return false;
1546  }
1547
1548  assert(TmpBB);
1549  LoadBB = TmpBB;
1550
1551  // FIXME: It is extremely unclear what this loop is doing, other than
1552  // artificially restricting loadpre.
1553  if (isSinglePred) {
1554    bool isHot = false;
1555    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1556      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1557      if (AV.isSimpleValue())
1558        // "Hot" Instruction is in some loop (because it dominates its dep.
1559        // instruction).
1560        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1561          if (DT->dominates(LI, I)) {
1562            isHot = true;
1563            break;
1564          }
1565    }
1566
1567    // We are interested only in "hot" instructions. We don't want to do any
1568    // mis-optimizations here.
1569    if (!isHot)
1570      return false;
1571  }
1572
1573  // Check to see how many predecessors have the loaded value fully
1574  // available.
1575  DenseMap<BasicBlock*, Value*> PredLoads;
1576  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1577  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1578    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1579  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1580    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1581
1582  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1583  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1584       PI != E; ++PI) {
1585    BasicBlock *Pred = *PI;
1586    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1587      continue;
1588    }
1589    PredLoads[Pred] = 0;
1590
1591    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1592      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1593        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1594              << Pred->getName() << "': " << *LI << '\n');
1595        return false;
1596      }
1597
1598      if (LoadBB->isLandingPad()) {
1599        DEBUG(dbgs()
1600              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1601              << Pred->getName() << "': " << *LI << '\n');
1602        return false;
1603      }
1604
1605      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1606      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1607    }
1608  }
1609
1610  if (!NeedToSplit.empty()) {
1611    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1612    return false;
1613  }
1614
1615  // Decide whether PRE is profitable for this load.
1616  unsigned NumUnavailablePreds = PredLoads.size();
1617  assert(NumUnavailablePreds != 0 &&
1618         "Fully available value should be eliminated above!");
1619
1620  // If this load is unavailable in multiple predecessors, reject it.
1621  // FIXME: If we could restructure the CFG, we could make a common pred with
1622  // all the preds that don't have an available LI and insert a new load into
1623  // that one block.
1624  if (NumUnavailablePreds != 1)
1625      return false;
1626
1627  // Check if the load can safely be moved to all the unavailable predecessors.
1628  bool CanDoPRE = true;
1629  SmallVector<Instruction*, 8> NewInsts;
1630  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1631         E = PredLoads.end(); I != E; ++I) {
1632    BasicBlock *UnavailablePred = I->first;
1633
1634    // Do PHI translation to get its value in the predecessor if necessary.  The
1635    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1636
1637    // If all preds have a single successor, then we know it is safe to insert
1638    // the load on the pred (?!?), so we can insert code to materialize the
1639    // pointer if it is not available.
1640    PHITransAddr Address(LI->getPointerOperand(), TD);
1641    Value *LoadPtr = 0;
1642    if (allSingleSucc) {
1643      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1644                                                  *DT, NewInsts);
1645    } else {
1646      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1647      LoadPtr = Address.getAddr();
1648    }
1649
1650    // If we couldn't find or insert a computation of this phi translated value,
1651    // we fail PRE.
1652    if (LoadPtr == 0) {
1653      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1654            << *LI->getPointerOperand() << "\n");
1655      CanDoPRE = false;
1656      break;
1657    }
1658
1659    // Make sure it is valid to move this load here.  We have to watch out for:
1660    //  @1 = getelementptr (i8* p, ...
1661    //  test p and branch if == 0
1662    //  load @1
1663    // It is valid to have the getelementptr before the test, even if p can
1664    // be 0, as getelementptr only does address arithmetic.
1665    // If we are not pushing the value through any multiple-successor blocks
1666    // we do not have this case.  Otherwise, check that the load is safe to
1667    // put anywhere; this can be improved, but should be conservatively safe.
1668    if (!allSingleSucc &&
1669        // FIXME: REEVALUTE THIS.
1670        !isSafeToLoadUnconditionally(LoadPtr,
1671                                     UnavailablePred->getTerminator(),
1672                                     LI->getAlignment(), TD)) {
1673      CanDoPRE = false;
1674      break;
1675    }
1676
1677    I->second = LoadPtr;
1678  }
1679
1680  if (!CanDoPRE) {
1681    while (!NewInsts.empty()) {
1682      Instruction *I = NewInsts.pop_back_val();
1683      if (MD) MD->removeInstruction(I);
1684      I->eraseFromParent();
1685    }
1686    return false;
1687  }
1688
1689  // Okay, we can eliminate this load by inserting a reload in the predecessor
1690  // and using PHI construction to get the value in the other predecessors, do
1691  // it.
1692  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1693  DEBUG(if (!NewInsts.empty())
1694          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1695                 << *NewInsts.back() << '\n');
1696
1697  // Assign value numbers to the new instructions.
1698  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1699    // FIXME: We really _ought_ to insert these value numbers into their
1700    // parent's availability map.  However, in doing so, we risk getting into
1701    // ordering issues.  If a block hasn't been processed yet, we would be
1702    // marking a value as AVAIL-IN, which isn't what we intend.
1703    VN.lookup_or_add(NewInsts[i]);
1704  }
1705
1706  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1707         E = PredLoads.end(); I != E; ++I) {
1708    BasicBlock *UnavailablePred = I->first;
1709    Value *LoadPtr = I->second;
1710
1711    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1712                                        LI->getAlignment(),
1713                                        UnavailablePred->getTerminator());
1714
1715    // Transfer the old load's TBAA tag to the new load.
1716    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1717      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1718
1719    // Transfer DebugLoc.
1720    NewLoad->setDebugLoc(LI->getDebugLoc());
1721
1722    // Add the newly created load.
1723    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1724                                                        NewLoad));
1725    MD->invalidateCachedPointerInfo(LoadPtr);
1726    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1727  }
1728
1729  // Perform PHI construction.
1730  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1731  LI->replaceAllUsesWith(V);
1732  if (isa<PHINode>(V))
1733    V->takeName(LI);
1734  if (V->getType()->isPointerTy())
1735    MD->invalidateCachedPointerInfo(V);
1736  markInstructionForDeletion(LI);
1737  ++NumPRELoad;
1738  return true;
1739}
1740
1741static void patchReplacementInstruction(Value *Repl, Instruction *I) {
1742  // Patch the replacement so that it is not more restrictive than the value
1743  // being replaced.
1744  BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1745  BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1746  if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1747      isa<OverflowingBinaryOperator>(ReplOp)) {
1748    if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1749      ReplOp->setHasNoSignedWrap(false);
1750    if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1751      ReplOp->setHasNoUnsignedWrap(false);
1752  }
1753  if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1754    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1755    ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1756    for (int i = 0, n = Metadata.size(); i < n; ++i) {
1757      unsigned Kind = Metadata[i].first;
1758      MDNode *IMD = I->getMetadata(Kind);
1759      MDNode *ReplMD = Metadata[i].second;
1760      switch(Kind) {
1761      default:
1762        ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
1763        break;
1764      case LLVMContext::MD_dbg:
1765        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1766      case LLVMContext::MD_tbaa:
1767        ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1768        break;
1769      case LLVMContext::MD_range:
1770        ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1771        break;
1772      case LLVMContext::MD_prof:
1773        llvm_unreachable("MD_prof in a non terminator instruction");
1774        break;
1775      case LLVMContext::MD_fpmath:
1776        ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1777        break;
1778      }
1779    }
1780  }
1781}
1782
1783static void patchAndReplaceAllUsesWith(Value *Repl, Instruction *I) {
1784  patchReplacementInstruction(Repl, I);
1785  I->replaceAllUsesWith(Repl);
1786}
1787
1788/// processLoad - Attempt to eliminate a load, first by eliminating it
1789/// locally, and then attempting non-local elimination if that fails.
1790bool GVN::processLoad(LoadInst *L) {
1791  if (!MD)
1792    return false;
1793
1794  if (!L->isSimple())
1795    return false;
1796
1797  if (L->use_empty()) {
1798    markInstructionForDeletion(L);
1799    return true;
1800  }
1801
1802  // ... to a pointer that has been loaded from before...
1803  MemDepResult Dep = MD->getDependency(L);
1804
1805  // If we have a clobber and target data is around, see if this is a clobber
1806  // that we can fix up through code synthesis.
1807  if (Dep.isClobber() && TD) {
1808    // Check to see if we have something like this:
1809    //   store i32 123, i32* %P
1810    //   %A = bitcast i32* %P to i8*
1811    //   %B = gep i8* %A, i32 1
1812    //   %C = load i8* %B
1813    //
1814    // We could do that by recognizing if the clobber instructions are obviously
1815    // a common base + constant offset, and if the previous store (or memset)
1816    // completely covers this load.  This sort of thing can happen in bitfield
1817    // access code.
1818    Value *AvailVal = 0;
1819    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1820      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1821                                                  L->getPointerOperand(),
1822                                                  DepSI, *TD);
1823      if (Offset != -1)
1824        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1825                                        L->getType(), L, *TD);
1826    }
1827
1828    // Check to see if we have something like this:
1829    //    load i32* P
1830    //    load i8* (P+1)
1831    // if we have this, replace the later with an extraction from the former.
1832    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1833      // If this is a clobber and L is the first instruction in its block, then
1834      // we have the first instruction in the entry block.
1835      if (DepLI == L)
1836        return false;
1837
1838      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1839                                                 L->getPointerOperand(),
1840                                                 DepLI, *TD);
1841      if (Offset != -1)
1842        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1843    }
1844
1845    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1846    // a value on from it.
1847    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1848      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1849                                                    L->getPointerOperand(),
1850                                                    DepMI, *TD);
1851      if (Offset != -1)
1852        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1853    }
1854
1855    if (AvailVal) {
1856      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1857            << *AvailVal << '\n' << *L << "\n\n\n");
1858
1859      // Replace the load!
1860      L->replaceAllUsesWith(AvailVal);
1861      if (AvailVal->getType()->isPointerTy())
1862        MD->invalidateCachedPointerInfo(AvailVal);
1863      markInstructionForDeletion(L);
1864      ++NumGVNLoad;
1865      return true;
1866    }
1867  }
1868
1869  // If the value isn't available, don't do anything!
1870  if (Dep.isClobber()) {
1871    DEBUG(
1872      // fast print dep, using operator<< on instruction is too slow.
1873      dbgs() << "GVN: load ";
1874      WriteAsOperand(dbgs(), L);
1875      Instruction *I = Dep.getInst();
1876      dbgs() << " is clobbered by " << *I << '\n';
1877    );
1878    return false;
1879  }
1880
1881  // If it is defined in another block, try harder.
1882  if (Dep.isNonLocal())
1883    return processNonLocalLoad(L);
1884
1885  if (!Dep.isDef()) {
1886    DEBUG(
1887      // fast print dep, using operator<< on instruction is too slow.
1888      dbgs() << "GVN: load ";
1889      WriteAsOperand(dbgs(), L);
1890      dbgs() << " has unknown dependence\n";
1891    );
1892    return false;
1893  }
1894
1895  Instruction *DepInst = Dep.getInst();
1896  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1897    Value *StoredVal = DepSI->getValueOperand();
1898
1899    // The store and load are to a must-aliased pointer, but they may not
1900    // actually have the same type.  See if we know how to reuse the stored
1901    // value (depending on its type).
1902    if (StoredVal->getType() != L->getType()) {
1903      if (TD) {
1904        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1905                                                   L, *TD);
1906        if (StoredVal == 0)
1907          return false;
1908
1909        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1910                     << '\n' << *L << "\n\n\n");
1911      }
1912      else
1913        return false;
1914    }
1915
1916    // Remove it!
1917    L->replaceAllUsesWith(StoredVal);
1918    if (StoredVal->getType()->isPointerTy())
1919      MD->invalidateCachedPointerInfo(StoredVal);
1920    markInstructionForDeletion(L);
1921    ++NumGVNLoad;
1922    return true;
1923  }
1924
1925  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1926    Value *AvailableVal = DepLI;
1927
1928    // The loads are of a must-aliased pointer, but they may not actually have
1929    // the same type.  See if we know how to reuse the previously loaded value
1930    // (depending on its type).
1931    if (DepLI->getType() != L->getType()) {
1932      if (TD) {
1933        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1934                                                      L, *TD);
1935        if (AvailableVal == 0)
1936          return false;
1937
1938        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1939                     << "\n" << *L << "\n\n\n");
1940      }
1941      else
1942        return false;
1943    }
1944
1945    // Remove it!
1946    patchAndReplaceAllUsesWith(AvailableVal, L);
1947    if (DepLI->getType()->isPointerTy())
1948      MD->invalidateCachedPointerInfo(DepLI);
1949    markInstructionForDeletion(L);
1950    ++NumGVNLoad;
1951    return true;
1952  }
1953
1954  // If this load really doesn't depend on anything, then we must be loading an
1955  // undef value.  This can happen when loading for a fresh allocation with no
1956  // intervening stores, for example.
1957  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1958    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1959    markInstructionForDeletion(L);
1960    ++NumGVNLoad;
1961    return true;
1962  }
1963
1964  // If this load occurs either right after a lifetime begin,
1965  // then the loaded value is undefined.
1966  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1967    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1968      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1969      markInstructionForDeletion(L);
1970      ++NumGVNLoad;
1971      return true;
1972    }
1973  }
1974
1975  return false;
1976}
1977
1978// findLeader - In order to find a leader for a given value number at a
1979// specific basic block, we first obtain the list of all Values for that number,
1980// and then scan the list to find one whose block dominates the block in
1981// question.  This is fast because dominator tree queries consist of only
1982// a few comparisons of DFS numbers.
1983Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1984  LeaderTableEntry Vals = LeaderTable[num];
1985  if (!Vals.Val) return 0;
1986
1987  Value *Val = 0;
1988  if (DT->dominates(Vals.BB, BB)) {
1989    Val = Vals.Val;
1990    if (isa<Constant>(Val)) return Val;
1991  }
1992
1993  LeaderTableEntry* Next = Vals.Next;
1994  while (Next) {
1995    if (DT->dominates(Next->BB, BB)) {
1996      if (isa<Constant>(Next->Val)) return Next->Val;
1997      if (!Val) Val = Next->Val;
1998    }
1999
2000    Next = Next->Next;
2001  }
2002
2003  return Val;
2004}
2005
2006/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
2007/// use is dominated by the given basic block.  Returns the number of uses that
2008/// were replaced.
2009unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
2010                                          const BasicBlockEdge &Root) {
2011  unsigned Count = 0;
2012  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2013       UI != UE; ) {
2014    Use &U = (UI++).getUse();
2015
2016    if (DT->dominates(Root, U)) {
2017      U.set(To);
2018      ++Count;
2019    }
2020  }
2021  return Count;
2022}
2023
2024/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2025/// true if every path from the entry block to 'Dst' passes via this edge.  In
2026/// particular 'Dst' must not be reachable via another edge from 'Src'.
2027static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2028                                       DominatorTree *DT) {
2029  // While in theory it is interesting to consider the case in which Dst has
2030  // more than one predecessor, because Dst might be part of a loop which is
2031  // only reachable from Src, in practice it is pointless since at the time
2032  // GVN runs all such loops have preheaders, which means that Dst will have
2033  // been changed to have only one predecessor, namely Src.
2034  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2035  const BasicBlock *Src = E.getStart();
2036  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2037  (void)Src;
2038  return Pred != 0;
2039}
2040
2041/// propagateEquality - The given values are known to be equal in every block
2042/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2043/// 'RHS' everywhere in the scope.  Returns whether a change was made.
2044bool GVN::propagateEquality(Value *LHS, Value *RHS,
2045                            const BasicBlockEdge &Root) {
2046  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2047  Worklist.push_back(std::make_pair(LHS, RHS));
2048  bool Changed = false;
2049  // For speed, compute a conservative fast approximation to
2050  // DT->dominates(Root, Root.getEnd());
2051  bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2052
2053  while (!Worklist.empty()) {
2054    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2055    LHS = Item.first; RHS = Item.second;
2056
2057    if (LHS == RHS) continue;
2058    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2059
2060    // Don't try to propagate equalities between constants.
2061    if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2062
2063    // Prefer a constant on the right-hand side, or an Argument if no constants.
2064    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2065      std::swap(LHS, RHS);
2066    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2067
2068    // If there is no obvious reason to prefer the left-hand side over the right-
2069    // hand side, ensure the longest lived term is on the right-hand side, so the
2070    // shortest lived term will be replaced by the longest lived.  This tends to
2071    // expose more simplifications.
2072    uint32_t LVN = VN.lookup_or_add(LHS);
2073    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2074        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2075      // Move the 'oldest' value to the right-hand side, using the value number as
2076      // a proxy for age.
2077      uint32_t RVN = VN.lookup_or_add(RHS);
2078      if (LVN < RVN) {
2079        std::swap(LHS, RHS);
2080        LVN = RVN;
2081      }
2082    }
2083
2084    // If value numbering later sees that an instruction in the scope is equal
2085    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2086    // the invariant that instructions only occur in the leader table for their
2087    // own value number (this is used by removeFromLeaderTable), do not do this
2088    // if RHS is an instruction (if an instruction in the scope is morphed into
2089    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2090    // using the leader table is about compiling faster, not optimizing better).
2091    // The leader table only tracks basic blocks, not edges. Only add to if we
2092    // have the simple case where the edge dominates the end.
2093    if (RootDominatesEnd && !isa<Instruction>(RHS))
2094      addToLeaderTable(LVN, RHS, Root.getEnd());
2095
2096    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2097    // LHS always has at least one use that is not dominated by Root, this will
2098    // never do anything if LHS has only one use.
2099    if (!LHS->hasOneUse()) {
2100      unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2101      Changed |= NumReplacements > 0;
2102      NumGVNEqProp += NumReplacements;
2103    }
2104
2105    // Now try to deduce additional equalities from this one.  For example, if the
2106    // known equality was "(A != B)" == "false" then it follows that A and B are
2107    // equal in the scope.  Only boolean equalities with an explicit true or false
2108    // RHS are currently supported.
2109    if (!RHS->getType()->isIntegerTy(1))
2110      // Not a boolean equality - bail out.
2111      continue;
2112    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2113    if (!CI)
2114      // RHS neither 'true' nor 'false' - bail out.
2115      continue;
2116    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2117    bool isKnownTrue = CI->isAllOnesValue();
2118    bool isKnownFalse = !isKnownTrue;
2119
2120    // If "A && B" is known true then both A and B are known true.  If "A || B"
2121    // is known false then both A and B are known false.
2122    Value *A, *B;
2123    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2124        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2125      Worklist.push_back(std::make_pair(A, RHS));
2126      Worklist.push_back(std::make_pair(B, RHS));
2127      continue;
2128    }
2129
2130    // If we are propagating an equality like "(A == B)" == "true" then also
2131    // propagate the equality A == B.  When propagating a comparison such as
2132    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2133    if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2134      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2135
2136      // If "A == B" is known true, or "A != B" is known false, then replace
2137      // A with B everywhere in the scope.
2138      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2139          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2140        Worklist.push_back(std::make_pair(Op0, Op1));
2141
2142      // If "A >= B" is known true, replace "A < B" with false everywhere.
2143      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2144      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2145      // Since we don't have the instruction "A < B" immediately to hand, work out
2146      // the value number that it would have and use that to find an appropriate
2147      // instruction (if any).
2148      uint32_t NextNum = VN.getNextUnusedValueNumber();
2149      uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2150      // If the number we were assigned was brand new then there is no point in
2151      // looking for an instruction realizing it: there cannot be one!
2152      if (Num < NextNum) {
2153        Value *NotCmp = findLeader(Root.getEnd(), Num);
2154        if (NotCmp && isa<Instruction>(NotCmp)) {
2155          unsigned NumReplacements =
2156            replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2157          Changed |= NumReplacements > 0;
2158          NumGVNEqProp += NumReplacements;
2159        }
2160      }
2161      // Ensure that any instruction in scope that gets the "A < B" value number
2162      // is replaced with false.
2163      // The leader table only tracks basic blocks, not edges. Only add to if we
2164      // have the simple case where the edge dominates the end.
2165      if (RootDominatesEnd)
2166        addToLeaderTable(Num, NotVal, Root.getEnd());
2167
2168      continue;
2169    }
2170  }
2171
2172  return Changed;
2173}
2174
2175/// processInstruction - When calculating availability, handle an instruction
2176/// by inserting it into the appropriate sets
2177bool GVN::processInstruction(Instruction *I) {
2178  // Ignore dbg info intrinsics.
2179  if (isa<DbgInfoIntrinsic>(I))
2180    return false;
2181
2182  // If the instruction can be easily simplified then do so now in preference
2183  // to value numbering it.  Value numbering often exposes redundancies, for
2184  // example if it determines that %y is equal to %x then the instruction
2185  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2186  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2187    I->replaceAllUsesWith(V);
2188    if (MD && V->getType()->isPointerTy())
2189      MD->invalidateCachedPointerInfo(V);
2190    markInstructionForDeletion(I);
2191    ++NumGVNSimpl;
2192    return true;
2193  }
2194
2195  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2196    if (processLoad(LI))
2197      return true;
2198
2199    unsigned Num = VN.lookup_or_add(LI);
2200    addToLeaderTable(Num, LI, LI->getParent());
2201    return false;
2202  }
2203
2204  // For conditional branches, we can perform simple conditional propagation on
2205  // the condition value itself.
2206  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2207    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2208      return false;
2209
2210    Value *BranchCond = BI->getCondition();
2211
2212    BasicBlock *TrueSucc = BI->getSuccessor(0);
2213    BasicBlock *FalseSucc = BI->getSuccessor(1);
2214    // Avoid multiple edges early.
2215    if (TrueSucc == FalseSucc)
2216      return false;
2217
2218    BasicBlock *Parent = BI->getParent();
2219    bool Changed = false;
2220
2221    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2222    BasicBlockEdge TrueE(Parent, TrueSucc);
2223    Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2224
2225    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2226    BasicBlockEdge FalseE(Parent, FalseSucc);
2227    Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2228
2229    return Changed;
2230  }
2231
2232  // For switches, propagate the case values into the case destinations.
2233  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2234    Value *SwitchCond = SI->getCondition();
2235    BasicBlock *Parent = SI->getParent();
2236    bool Changed = false;
2237
2238    // Remember how many outgoing edges there are to every successor.
2239    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2240    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2241      ++SwitchEdges[SI->getSuccessor(i)];
2242
2243    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2244         i != e; ++i) {
2245      BasicBlock *Dst = i.getCaseSuccessor();
2246      // If there is only a single edge, propagate the case value into it.
2247      if (SwitchEdges.lookup(Dst) == 1) {
2248        BasicBlockEdge E(Parent, Dst);
2249        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2250      }
2251    }
2252    return Changed;
2253  }
2254
2255  // Instructions with void type don't return a value, so there's
2256  // no point in trying to find redundancies in them.
2257  if (I->getType()->isVoidTy()) return false;
2258
2259  uint32_t NextNum = VN.getNextUnusedValueNumber();
2260  unsigned Num = VN.lookup_or_add(I);
2261
2262  // Allocations are always uniquely numbered, so we can save time and memory
2263  // by fast failing them.
2264  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2265    addToLeaderTable(Num, I, I->getParent());
2266    return false;
2267  }
2268
2269  // If the number we were assigned was a brand new VN, then we don't
2270  // need to do a lookup to see if the number already exists
2271  // somewhere in the domtree: it can't!
2272  if (Num >= NextNum) {
2273    addToLeaderTable(Num, I, I->getParent());
2274    return false;
2275  }
2276
2277  // Perform fast-path value-number based elimination of values inherited from
2278  // dominators.
2279  Value *repl = findLeader(I->getParent(), Num);
2280  if (repl == 0) {
2281    // Failure, just remember this instance for future use.
2282    addToLeaderTable(Num, I, I->getParent());
2283    return false;
2284  }
2285
2286  // Remove it!
2287  patchAndReplaceAllUsesWith(repl, I);
2288  if (MD && repl->getType()->isPointerTy())
2289    MD->invalidateCachedPointerInfo(repl);
2290  markInstructionForDeletion(I);
2291  return true;
2292}
2293
2294/// runOnFunction - This is the main transformation entry point for a function.
2295bool GVN::runOnFunction(Function& F) {
2296  if (!NoLoads)
2297    MD = &getAnalysis<MemoryDependenceAnalysis>();
2298  DT = &getAnalysis<DominatorTree>();
2299  TD = getAnalysisIfAvailable<DataLayout>();
2300  TLI = &getAnalysis<TargetLibraryInfo>();
2301  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2302  VN.setMemDep(MD);
2303  VN.setDomTree(DT);
2304
2305  bool Changed = false;
2306  bool ShouldContinue = true;
2307
2308  // Merge unconditional branches, allowing PRE to catch more
2309  // optimization opportunities.
2310  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2311    BasicBlock *BB = FI++;
2312
2313    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2314    if (removedBlock) ++NumGVNBlocks;
2315
2316    Changed |= removedBlock;
2317  }
2318
2319  unsigned Iteration = 0;
2320  while (ShouldContinue) {
2321    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2322    ShouldContinue = iterateOnFunction(F);
2323    if (splitCriticalEdges())
2324      ShouldContinue = true;
2325    Changed |= ShouldContinue;
2326    ++Iteration;
2327  }
2328
2329  if (EnablePRE) {
2330    bool PREChanged = true;
2331    while (PREChanged) {
2332      PREChanged = performPRE(F);
2333      Changed |= PREChanged;
2334    }
2335  }
2336  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2337  // computations into blocks where they become fully redundant.  Note that
2338  // we can't do this until PRE's critical edge splitting updates memdep.
2339  // Actually, when this happens, we should just fully integrate PRE into GVN.
2340
2341  cleanupGlobalSets();
2342
2343  return Changed;
2344}
2345
2346
2347bool GVN::processBlock(BasicBlock *BB) {
2348  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2349  // (and incrementing BI before processing an instruction).
2350  assert(InstrsToErase.empty() &&
2351         "We expect InstrsToErase to be empty across iterations");
2352  bool ChangedFunction = false;
2353
2354  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2355       BI != BE;) {
2356    ChangedFunction |= processInstruction(BI);
2357    if (InstrsToErase.empty()) {
2358      ++BI;
2359      continue;
2360    }
2361
2362    // If we need some instructions deleted, do it now.
2363    NumGVNInstr += InstrsToErase.size();
2364
2365    // Avoid iterator invalidation.
2366    bool AtStart = BI == BB->begin();
2367    if (!AtStart)
2368      --BI;
2369
2370    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2371         E = InstrsToErase.end(); I != E; ++I) {
2372      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2373      if (MD) MD->removeInstruction(*I);
2374      (*I)->eraseFromParent();
2375      DEBUG(verifyRemoved(*I));
2376    }
2377    InstrsToErase.clear();
2378
2379    if (AtStart)
2380      BI = BB->begin();
2381    else
2382      ++BI;
2383  }
2384
2385  return ChangedFunction;
2386}
2387
2388/// performPRE - Perform a purely local form of PRE that looks for diamond
2389/// control flow patterns and attempts to perform simple PRE at the join point.
2390bool GVN::performPRE(Function &F) {
2391  bool Changed = false;
2392  DenseMap<BasicBlock*, Value*> predMap;
2393  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2394       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2395    BasicBlock *CurrentBlock = *DI;
2396
2397    // Nothing to PRE in the entry block.
2398    if (CurrentBlock == &F.getEntryBlock()) continue;
2399
2400    // Don't perform PRE on a landing pad.
2401    if (CurrentBlock->isLandingPad()) continue;
2402
2403    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2404         BE = CurrentBlock->end(); BI != BE; ) {
2405      Instruction *CurInst = BI++;
2406
2407      if (isa<AllocaInst>(CurInst) ||
2408          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2409          CurInst->getType()->isVoidTy() ||
2410          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2411          isa<DbgInfoIntrinsic>(CurInst))
2412        continue;
2413
2414      // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2415      // sinking the compare again, and it would force the code generator to
2416      // move the i1 from processor flags or predicate registers into a general
2417      // purpose register.
2418      if (isa<CmpInst>(CurInst))
2419        continue;
2420
2421      // We don't currently value number ANY inline asm calls.
2422      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2423        if (CallI->isInlineAsm())
2424          continue;
2425
2426      uint32_t ValNo = VN.lookup(CurInst);
2427
2428      // Look for the predecessors for PRE opportunities.  We're
2429      // only trying to solve the basic diamond case, where
2430      // a value is computed in the successor and one predecessor,
2431      // but not the other.  We also explicitly disallow cases
2432      // where the successor is its own predecessor, because they're
2433      // more complicated to get right.
2434      unsigned NumWith = 0;
2435      unsigned NumWithout = 0;
2436      BasicBlock *PREPred = 0;
2437      predMap.clear();
2438
2439      for (pred_iterator PI = pred_begin(CurrentBlock),
2440           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2441        BasicBlock *P = *PI;
2442        // We're not interested in PRE where the block is its
2443        // own predecessor, or in blocks with predecessors
2444        // that are not reachable.
2445        if (P == CurrentBlock) {
2446          NumWithout = 2;
2447          break;
2448        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2449          NumWithout = 2;
2450          break;
2451        }
2452
2453        Value* predV = findLeader(P, ValNo);
2454        if (predV == 0) {
2455          PREPred = P;
2456          ++NumWithout;
2457        } else if (predV == CurInst) {
2458          NumWithout = 2;
2459        } else {
2460          predMap[P] = predV;
2461          ++NumWith;
2462        }
2463      }
2464
2465      // Don't do PRE when it might increase code size, i.e. when
2466      // we would need to insert instructions in more than one pred.
2467      if (NumWithout != 1 || NumWith == 0)
2468        continue;
2469
2470      // Don't do PRE across indirect branch.
2471      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2472        continue;
2473
2474      // We can't do PRE safely on a critical edge, so instead we schedule
2475      // the edge to be split and perform the PRE the next time we iterate
2476      // on the function.
2477      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2478      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2479        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2480        continue;
2481      }
2482
2483      // Instantiate the expression in the predecessor that lacked it.
2484      // Because we are going top-down through the block, all value numbers
2485      // will be available in the predecessor by the time we need them.  Any
2486      // that weren't originally present will have been instantiated earlier
2487      // in this loop.
2488      Instruction *PREInstr = CurInst->clone();
2489      bool success = true;
2490      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2491        Value *Op = PREInstr->getOperand(i);
2492        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2493          continue;
2494
2495        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2496          PREInstr->setOperand(i, V);
2497        } else {
2498          success = false;
2499          break;
2500        }
2501      }
2502
2503      // Fail out if we encounter an operand that is not available in
2504      // the PRE predecessor.  This is typically because of loads which
2505      // are not value numbered precisely.
2506      if (!success) {
2507        delete PREInstr;
2508        DEBUG(verifyRemoved(PREInstr));
2509        continue;
2510      }
2511
2512      PREInstr->insertBefore(PREPred->getTerminator());
2513      PREInstr->setName(CurInst->getName() + ".pre");
2514      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2515      predMap[PREPred] = PREInstr;
2516      VN.add(PREInstr, ValNo);
2517      ++NumGVNPRE;
2518
2519      // Update the availability map to include the new instruction.
2520      addToLeaderTable(ValNo, PREInstr, PREPred);
2521
2522      // Create a PHI to make the value available in this block.
2523      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2524      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2525                                     CurInst->getName() + ".pre-phi",
2526                                     CurrentBlock->begin());
2527      for (pred_iterator PI = PB; PI != PE; ++PI) {
2528        BasicBlock *P = *PI;
2529        Phi->addIncoming(predMap[P], P);
2530      }
2531
2532      VN.add(Phi, ValNo);
2533      addToLeaderTable(ValNo, Phi, CurrentBlock);
2534      Phi->setDebugLoc(CurInst->getDebugLoc());
2535      CurInst->replaceAllUsesWith(Phi);
2536      if (Phi->getType()->isPointerTy()) {
2537        // Because we have added a PHI-use of the pointer value, it has now
2538        // "escaped" from alias analysis' perspective.  We need to inform
2539        // AA of this.
2540        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2541             ++ii) {
2542          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2543          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2544        }
2545
2546        if (MD)
2547          MD->invalidateCachedPointerInfo(Phi);
2548      }
2549      VN.erase(CurInst);
2550      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2551
2552      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2553      if (MD) MD->removeInstruction(CurInst);
2554      CurInst->eraseFromParent();
2555      DEBUG(verifyRemoved(CurInst));
2556      Changed = true;
2557    }
2558  }
2559
2560  if (splitCriticalEdges())
2561    Changed = true;
2562
2563  return Changed;
2564}
2565
2566/// splitCriticalEdges - Split critical edges found during the previous
2567/// iteration that may enable further optimization.
2568bool GVN::splitCriticalEdges() {
2569  if (toSplit.empty())
2570    return false;
2571  do {
2572    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2573    SplitCriticalEdge(Edge.first, Edge.second, this);
2574  } while (!toSplit.empty());
2575  if (MD) MD->invalidateCachedPredecessors();
2576  return true;
2577}
2578
2579/// iterateOnFunction - Executes one iteration of GVN
2580bool GVN::iterateOnFunction(Function &F) {
2581  cleanupGlobalSets();
2582
2583  // Top-down walk of the dominator tree
2584  bool Changed = false;
2585#if 0
2586  // Needed for value numbering with phi construction to work.
2587  ReversePostOrderTraversal<Function*> RPOT(&F);
2588  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2589       RE = RPOT.end(); RI != RE; ++RI)
2590    Changed |= processBlock(*RI);
2591#else
2592  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2593       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2594    Changed |= processBlock(DI->getBlock());
2595#endif
2596
2597  return Changed;
2598}
2599
2600void GVN::cleanupGlobalSets() {
2601  VN.clear();
2602  LeaderTable.clear();
2603  TableAllocator.Reset();
2604}
2605
2606/// verifyRemoved - Verify that the specified instruction does not occur in our
2607/// internal data structures.
2608void GVN::verifyRemoved(const Instruction *Inst) const {
2609  VN.verifyRemoved(Inst);
2610
2611  // Walk through the value number scope to make sure the instruction isn't
2612  // ferreted away in it.
2613  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2614       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2615    const LeaderTableEntry *Node = &I->second;
2616    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2617
2618    while (Node->Next) {
2619      Node = Node->Next;
2620      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2621    }
2622  }
2623}
2624