GVN.cpp revision b3f927f6ddde88e12ec74dd7622d28df587e768b
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/Dominators.h"
37#include "llvm/Analysis/MemoryBuiltins.h"
38#include "llvm/Analysis/MemoryDependenceAnalysis.h"
39#include "llvm/Analysis/PHITransAddr.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SSAUpdater.h"
51#include <cstdio>
52using namespace llvm;
53
54STATISTIC(NumGVNInstr,  "Number of instructions deleted");
55STATISTIC(NumGVNLoad,   "Number of loads deleted");
56STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
57STATISTIC(NumGVNBlocks, "Number of blocks merged");
58STATISTIC(NumPRELoad,   "Number of loads PRE'd");
59
60static cl::opt<bool> EnablePRE("enable-pre",
61                               cl::init(true), cl::Hidden);
62static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
63
64//===----------------------------------------------------------------------===//
65//                         ValueTable Class
66//===----------------------------------------------------------------------===//
67
68/// This class holds the mapping between values and value numbers.  It is used
69/// as an efficient mechanism to determine the expression-wise equivalence of
70/// two values.
71namespace {
72  struct Expression {
73    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
74                            UDIV, SDIV, FDIV, UREM, SREM,
75                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
76                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
77                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
78                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
79                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
80                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
81                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
82                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
83                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
84                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
85
86    ExpressionOpcode opcode;
87    const Type* type;
88    SmallVector<uint32_t, 4> varargs;
89    Value *function;
90
91    Expression() { }
92    Expression(ExpressionOpcode o) : opcode(o) { }
93
94    bool operator==(const Expression &other) const {
95      if (opcode != other.opcode)
96        return false;
97      else if (opcode == EMPTY || opcode == TOMBSTONE)
98        return true;
99      else if (type != other.type)
100        return false;
101      else if (function != other.function)
102        return false;
103      else {
104        if (varargs.size() != other.varargs.size())
105          return false;
106
107        for (size_t i = 0; i < varargs.size(); ++i)
108          if (varargs[i] != other.varargs[i])
109            return false;
110
111        return true;
112      }
113    }
114
115    bool operator!=(const Expression &other) const {
116      return !(*this == other);
117    }
118  };
119
120  class ValueTable {
121    private:
122      DenseMap<Value*, uint32_t> valueNumbering;
123      DenseMap<Expression, uint32_t> expressionNumbering;
124      AliasAnalysis* AA;
125      MemoryDependenceAnalysis* MD;
126      DominatorTree* DT;
127
128      uint32_t nextValueNumber;
129
130      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
131      Expression::ExpressionOpcode getOpcode(CmpInst* C);
132      Expression::ExpressionOpcode getOpcode(CastInst* C);
133      Expression create_expression(BinaryOperator* BO);
134      Expression create_expression(CmpInst* C);
135      Expression create_expression(ShuffleVectorInst* V);
136      Expression create_expression(ExtractElementInst* C);
137      Expression create_expression(InsertElementInst* V);
138      Expression create_expression(SelectInst* V);
139      Expression create_expression(CastInst* C);
140      Expression create_expression(GetElementPtrInst* G);
141      Expression create_expression(CallInst* C);
142      Expression create_expression(Constant* C);
143      Expression create_expression(ExtractValueInst* C);
144      Expression create_expression(InsertValueInst* C);
145
146      uint32_t lookup_or_add_call(CallInst* C);
147    public:
148      ValueTable() : nextValueNumber(1) { }
149      uint32_t lookup_or_add(Value *V);
150      uint32_t lookup(Value *V) const;
151      void add(Value *V, uint32_t num);
152      void clear();
153      void erase(Value *v);
154      unsigned size();
155      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
156      AliasAnalysis *getAliasAnalysis() const { return AA; }
157      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
158      void setDomTree(DominatorTree* D) { DT = D; }
159      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
160      void verifyRemoved(const Value *) const;
161  };
162}
163
164namespace llvm {
165template <> struct DenseMapInfo<Expression> {
166  static inline Expression getEmptyKey() {
167    return Expression(Expression::EMPTY);
168  }
169
170  static inline Expression getTombstoneKey() {
171    return Expression(Expression::TOMBSTONE);
172  }
173
174  static unsigned getHashValue(const Expression e) {
175    unsigned hash = e.opcode;
176
177    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
178            (unsigned)((uintptr_t)e.type >> 9));
179
180    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
181         E = e.varargs.end(); I != E; ++I)
182      hash = *I + hash * 37;
183
184    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
185            (unsigned)((uintptr_t)e.function >> 9)) +
186           hash * 37;
187
188    return hash;
189  }
190  static bool isEqual(const Expression &LHS, const Expression &RHS) {
191    return LHS == RHS;
192  }
193  static bool isPod() { return true; }
194};
195}
196
197//===----------------------------------------------------------------------===//
198//                     ValueTable Internal Functions
199//===----------------------------------------------------------------------===//
200Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
201  switch(BO->getOpcode()) {
202  default: // THIS SHOULD NEVER HAPPEN
203    llvm_unreachable("Binary operator with unknown opcode?");
204  case Instruction::Add:  return Expression::ADD;
205  case Instruction::FAdd: return Expression::FADD;
206  case Instruction::Sub:  return Expression::SUB;
207  case Instruction::FSub: return Expression::FSUB;
208  case Instruction::Mul:  return Expression::MUL;
209  case Instruction::FMul: return Expression::FMUL;
210  case Instruction::UDiv: return Expression::UDIV;
211  case Instruction::SDiv: return Expression::SDIV;
212  case Instruction::FDiv: return Expression::FDIV;
213  case Instruction::URem: return Expression::UREM;
214  case Instruction::SRem: return Expression::SREM;
215  case Instruction::FRem: return Expression::FREM;
216  case Instruction::Shl:  return Expression::SHL;
217  case Instruction::LShr: return Expression::LSHR;
218  case Instruction::AShr: return Expression::ASHR;
219  case Instruction::And:  return Expression::AND;
220  case Instruction::Or:   return Expression::OR;
221  case Instruction::Xor:  return Expression::XOR;
222  }
223}
224
225Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
226  if (isa<ICmpInst>(C)) {
227    switch (C->getPredicate()) {
228    default:  // THIS SHOULD NEVER HAPPEN
229      llvm_unreachable("Comparison with unknown predicate?");
230    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
231    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
232    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
233    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
234    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
235    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
236    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
237    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
238    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
239    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
240    }
241  } else {
242    switch (C->getPredicate()) {
243    default: // THIS SHOULD NEVER HAPPEN
244      llvm_unreachable("Comparison with unknown predicate?");
245    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
246    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
247    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
248    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
249    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
250    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
251    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
252    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
253    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
254    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
255    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
256    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
257    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
258    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
259    }
260  }
261}
262
263Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
264  switch(C->getOpcode()) {
265  default: // THIS SHOULD NEVER HAPPEN
266    llvm_unreachable("Cast operator with unknown opcode?");
267  case Instruction::Trunc:    return Expression::TRUNC;
268  case Instruction::ZExt:     return Expression::ZEXT;
269  case Instruction::SExt:     return Expression::SEXT;
270  case Instruction::FPToUI:   return Expression::FPTOUI;
271  case Instruction::FPToSI:   return Expression::FPTOSI;
272  case Instruction::UIToFP:   return Expression::UITOFP;
273  case Instruction::SIToFP:   return Expression::SITOFP;
274  case Instruction::FPTrunc:  return Expression::FPTRUNC;
275  case Instruction::FPExt:    return Expression::FPEXT;
276  case Instruction::PtrToInt: return Expression::PTRTOINT;
277  case Instruction::IntToPtr: return Expression::INTTOPTR;
278  case Instruction::BitCast:  return Expression::BITCAST;
279  }
280}
281
282Expression ValueTable::create_expression(CallInst* C) {
283  Expression e;
284
285  e.type = C->getType();
286  e.function = C->getCalledFunction();
287  e.opcode = Expression::CALL;
288
289  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
290       I != E; ++I)
291    e.varargs.push_back(lookup_or_add(*I));
292
293  return e;
294}
295
296Expression ValueTable::create_expression(BinaryOperator* BO) {
297  Expression e;
298  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
299  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
300  e.function = 0;
301  e.type = BO->getType();
302  e.opcode = getOpcode(BO);
303
304  return e;
305}
306
307Expression ValueTable::create_expression(CmpInst* C) {
308  Expression e;
309
310  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
311  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
312  e.function = 0;
313  e.type = C->getType();
314  e.opcode = getOpcode(C);
315
316  return e;
317}
318
319Expression ValueTable::create_expression(CastInst* C) {
320  Expression e;
321
322  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
323  e.function = 0;
324  e.type = C->getType();
325  e.opcode = getOpcode(C);
326
327  return e;
328}
329
330Expression ValueTable::create_expression(ShuffleVectorInst* S) {
331  Expression e;
332
333  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
334  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
335  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
336  e.function = 0;
337  e.type = S->getType();
338  e.opcode = Expression::SHUFFLE;
339
340  return e;
341}
342
343Expression ValueTable::create_expression(ExtractElementInst* E) {
344  Expression e;
345
346  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
347  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
348  e.function = 0;
349  e.type = E->getType();
350  e.opcode = Expression::EXTRACT;
351
352  return e;
353}
354
355Expression ValueTable::create_expression(InsertElementInst* I) {
356  Expression e;
357
358  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
359  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
360  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
361  e.function = 0;
362  e.type = I->getType();
363  e.opcode = Expression::INSERT;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(SelectInst* I) {
369  Expression e;
370
371  e.varargs.push_back(lookup_or_add(I->getCondition()));
372  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
373  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
374  e.function = 0;
375  e.type = I->getType();
376  e.opcode = Expression::SELECT;
377
378  return e;
379}
380
381Expression ValueTable::create_expression(GetElementPtrInst* G) {
382  Expression e;
383
384  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
385  e.function = 0;
386  e.type = G->getType();
387  e.opcode = Expression::GEP;
388
389  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
390       I != E; ++I)
391    e.varargs.push_back(lookup_or_add(*I));
392
393  return e;
394}
395
396Expression ValueTable::create_expression(ExtractValueInst* E) {
397  Expression e;
398
399  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
400  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
401       II != IE; ++II)
402    e.varargs.push_back(*II);
403  e.function = 0;
404  e.type = E->getType();
405  e.opcode = Expression::EXTRACTVALUE;
406
407  return e;
408}
409
410Expression ValueTable::create_expression(InsertValueInst* E) {
411  Expression e;
412
413  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
414  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
415  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
416       II != IE; ++II)
417    e.varargs.push_back(*II);
418  e.function = 0;
419  e.type = E->getType();
420  e.opcode = Expression::INSERTVALUE;
421
422  return e;
423}
424
425//===----------------------------------------------------------------------===//
426//                     ValueTable External Functions
427//===----------------------------------------------------------------------===//
428
429/// add - Insert a value into the table with a specified value number.
430void ValueTable::add(Value *V, uint32_t num) {
431  valueNumbering.insert(std::make_pair(V, num));
432}
433
434uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
435  if (AA->doesNotAccessMemory(C)) {
436    Expression exp = create_expression(C);
437    uint32_t& e = expressionNumbering[exp];
438    if (!e) e = nextValueNumber++;
439    valueNumbering[C] = e;
440    return e;
441  } else if (AA->onlyReadsMemory(C)) {
442    Expression exp = create_expression(C);
443    uint32_t& e = expressionNumbering[exp];
444    if (!e) {
445      e = nextValueNumber++;
446      valueNumbering[C] = e;
447      return e;
448    }
449    if (!MD) {
450      e = nextValueNumber++;
451      valueNumbering[C] = e;
452      return e;
453    }
454
455    MemDepResult local_dep = MD->getDependency(C);
456
457    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
458      valueNumbering[C] =  nextValueNumber;
459      return nextValueNumber++;
460    }
461
462    if (local_dep.isDef()) {
463      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
464
465      if (local_cdep->getNumOperands() != C->getNumOperands()) {
466        valueNumbering[C] = nextValueNumber;
467        return nextValueNumber++;
468      }
469
470      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
471        uint32_t c_vn = lookup_or_add(C->getOperand(i));
472        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
473        if (c_vn != cd_vn) {
474          valueNumbering[C] = nextValueNumber;
475          return nextValueNumber++;
476        }
477      }
478
479      uint32_t v = lookup_or_add(local_cdep);
480      valueNumbering[C] = v;
481      return v;
482    }
483
484    // Non-local case.
485    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
486      MD->getNonLocalCallDependency(CallSite(C));
487    // FIXME: call/call dependencies for readonly calls should return def, not
488    // clobber!  Move the checking logic to MemDep!
489    CallInst* cdep = 0;
490
491    // Check to see if we have a single dominating call instruction that is
492    // identical to C.
493    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
494      const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
495      // Ignore non-local dependencies.
496      if (I->second.isNonLocal())
497        continue;
498
499      // We don't handle non-depedencies.  If we already have a call, reject
500      // instruction dependencies.
501      if (I->second.isClobber() || cdep != 0) {
502        cdep = 0;
503        break;
504      }
505
506      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
507      // FIXME: All duplicated with non-local case.
508      if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
509        cdep = NonLocalDepCall;
510        continue;
511      }
512
513      cdep = 0;
514      break;
515    }
516
517    if (!cdep) {
518      valueNumbering[C] = nextValueNumber;
519      return nextValueNumber++;
520    }
521
522    if (cdep->getNumOperands() != C->getNumOperands()) {
523      valueNumbering[C] = nextValueNumber;
524      return nextValueNumber++;
525    }
526    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
527      uint32_t c_vn = lookup_or_add(C->getOperand(i));
528      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
529      if (c_vn != cd_vn) {
530        valueNumbering[C] = nextValueNumber;
531        return nextValueNumber++;
532      }
533    }
534
535    uint32_t v = lookup_or_add(cdep);
536    valueNumbering[C] = v;
537    return v;
538
539  } else {
540    valueNumbering[C] = nextValueNumber;
541    return nextValueNumber++;
542  }
543}
544
545/// lookup_or_add - Returns the value number for the specified value, assigning
546/// it a new number if it did not have one before.
547uint32_t ValueTable::lookup_or_add(Value *V) {
548  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
549  if (VI != valueNumbering.end())
550    return VI->second;
551
552  if (!isa<Instruction>(V)) {
553    valueNumbering[V] = nextValueNumber;
554    return nextValueNumber++;
555  }
556
557  Instruction* I = cast<Instruction>(V);
558  Expression exp;
559  switch (I->getOpcode()) {
560    case Instruction::Call:
561      return lookup_or_add_call(cast<CallInst>(I));
562    case Instruction::Add:
563    case Instruction::FAdd:
564    case Instruction::Sub:
565    case Instruction::FSub:
566    case Instruction::Mul:
567    case Instruction::FMul:
568    case Instruction::UDiv:
569    case Instruction::SDiv:
570    case Instruction::FDiv:
571    case Instruction::URem:
572    case Instruction::SRem:
573    case Instruction::FRem:
574    case Instruction::Shl:
575    case Instruction::LShr:
576    case Instruction::AShr:
577    case Instruction::And:
578    case Instruction::Or :
579    case Instruction::Xor:
580      exp = create_expression(cast<BinaryOperator>(I));
581      break;
582    case Instruction::ICmp:
583    case Instruction::FCmp:
584      exp = create_expression(cast<CmpInst>(I));
585      break;
586    case Instruction::Trunc:
587    case Instruction::ZExt:
588    case Instruction::SExt:
589    case Instruction::FPToUI:
590    case Instruction::FPToSI:
591    case Instruction::UIToFP:
592    case Instruction::SIToFP:
593    case Instruction::FPTrunc:
594    case Instruction::FPExt:
595    case Instruction::PtrToInt:
596    case Instruction::IntToPtr:
597    case Instruction::BitCast:
598      exp = create_expression(cast<CastInst>(I));
599      break;
600    case Instruction::Select:
601      exp = create_expression(cast<SelectInst>(I));
602      break;
603    case Instruction::ExtractElement:
604      exp = create_expression(cast<ExtractElementInst>(I));
605      break;
606    case Instruction::InsertElement:
607      exp = create_expression(cast<InsertElementInst>(I));
608      break;
609    case Instruction::ShuffleVector:
610      exp = create_expression(cast<ShuffleVectorInst>(I));
611      break;
612    case Instruction::ExtractValue:
613      exp = create_expression(cast<ExtractValueInst>(I));
614      break;
615    case Instruction::InsertValue:
616      exp = create_expression(cast<InsertValueInst>(I));
617      break;
618    case Instruction::GetElementPtr:
619      exp = create_expression(cast<GetElementPtrInst>(I));
620      break;
621    default:
622      valueNumbering[V] = nextValueNumber;
623      return nextValueNumber++;
624  }
625
626  uint32_t& e = expressionNumbering[exp];
627  if (!e) e = nextValueNumber++;
628  valueNumbering[V] = e;
629  return e;
630}
631
632/// lookup - Returns the value number of the specified value. Fails if
633/// the value has not yet been numbered.
634uint32_t ValueTable::lookup(Value *V) const {
635  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
636  assert(VI != valueNumbering.end() && "Value not numbered?");
637  return VI->second;
638}
639
640/// clear - Remove all entries from the ValueTable
641void ValueTable::clear() {
642  valueNumbering.clear();
643  expressionNumbering.clear();
644  nextValueNumber = 1;
645}
646
647/// erase - Remove a value from the value numbering
648void ValueTable::erase(Value *V) {
649  valueNumbering.erase(V);
650}
651
652/// verifyRemoved - Verify that the value is removed from all internal data
653/// structures.
654void ValueTable::verifyRemoved(const Value *V) const {
655  for (DenseMap<Value*, uint32_t>::const_iterator
656         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
657    assert(I->first != V && "Inst still occurs in value numbering map!");
658  }
659}
660
661//===----------------------------------------------------------------------===//
662//                                GVN Pass
663//===----------------------------------------------------------------------===//
664
665namespace {
666  struct ValueNumberScope {
667    ValueNumberScope* parent;
668    DenseMap<uint32_t, Value*> table;
669
670    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
671  };
672}
673
674namespace {
675
676  class GVN : public FunctionPass {
677    bool runOnFunction(Function &F);
678  public:
679    static char ID; // Pass identification, replacement for typeid
680    explicit GVN(bool nopre = false, bool noloads = false)
681      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
682
683  private:
684    bool NoPRE;
685    bool NoLoads;
686    MemoryDependenceAnalysis *MD;
687    DominatorTree *DT;
688
689    ValueTable VN;
690    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
691
692    // This transformation requires dominator postdominator info
693    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
694      AU.addRequired<DominatorTree>();
695      if (!NoLoads)
696        AU.addRequired<MemoryDependenceAnalysis>();
697      AU.addRequired<AliasAnalysis>();
698
699      AU.addPreserved<DominatorTree>();
700      AU.addPreserved<AliasAnalysis>();
701    }
702
703    // Helper fuctions
704    // FIXME: eliminate or document these better
705    bool processLoad(LoadInst* L,
706                     SmallVectorImpl<Instruction*> &toErase);
707    bool processInstruction(Instruction *I,
708                            SmallVectorImpl<Instruction*> &toErase);
709    bool processNonLocalLoad(LoadInst* L,
710                             SmallVectorImpl<Instruction*> &toErase);
711    bool processBlock(BasicBlock *BB);
712    void dump(DenseMap<uint32_t, Value*>& d);
713    bool iterateOnFunction(Function &F);
714    Value *CollapsePhi(PHINode* p);
715    bool performPRE(Function& F);
716    Value *lookupNumber(BasicBlock *BB, uint32_t num);
717    void cleanupGlobalSets();
718    void verifyRemoved(const Instruction *I) const;
719  };
720
721  char GVN::ID = 0;
722}
723
724// createGVNPass - The public interface to this file...
725FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
726  return new GVN(NoPRE, NoLoads);
727}
728
729static RegisterPass<GVN> X("gvn",
730                           "Global Value Numbering");
731
732void GVN::dump(DenseMap<uint32_t, Value*>& d) {
733  printf("{\n");
734  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
735       E = d.end(); I != E; ++I) {
736      printf("%d\n", I->first);
737      I->second->dump();
738  }
739  printf("}\n");
740}
741
742static bool isSafeReplacement(PHINode* p, Instruction *inst) {
743  if (!isa<PHINode>(inst))
744    return true;
745
746  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
747       UI != E; ++UI)
748    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
749      if (use_phi->getParent() == inst->getParent())
750        return false;
751
752  return true;
753}
754
755Value *GVN::CollapsePhi(PHINode *PN) {
756  Value *ConstVal = PN->hasConstantValue(DT);
757  if (!ConstVal) return 0;
758
759  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
760  if (!Inst)
761    return ConstVal;
762
763  if (DT->dominates(Inst, PN))
764    if (isSafeReplacement(PN, Inst))
765      return Inst;
766  return 0;
767}
768
769/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
770/// we're analyzing is fully available in the specified block.  As we go, keep
771/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
772/// map is actually a tri-state map with the following values:
773///   0) we know the block *is not* fully available.
774///   1) we know the block *is* fully available.
775///   2) we do not know whether the block is fully available or not, but we are
776///      currently speculating that it will be.
777///   3) we are speculating for this block and have used that to speculate for
778///      other blocks.
779static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
780                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
781  // Optimistically assume that the block is fully available and check to see
782  // if we already know about this block in one lookup.
783  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
784    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
785
786  // If the entry already existed for this block, return the precomputed value.
787  if (!IV.second) {
788    // If this is a speculative "available" value, mark it as being used for
789    // speculation of other blocks.
790    if (IV.first->second == 2)
791      IV.first->second = 3;
792    return IV.first->second != 0;
793  }
794
795  // Otherwise, see if it is fully available in all predecessors.
796  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
797
798  // If this block has no predecessors, it isn't live-in here.
799  if (PI == PE)
800    goto SpeculationFailure;
801
802  for (; PI != PE; ++PI)
803    // If the value isn't fully available in one of our predecessors, then it
804    // isn't fully available in this block either.  Undo our previous
805    // optimistic assumption and bail out.
806    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
807      goto SpeculationFailure;
808
809  return true;
810
811// SpeculationFailure - If we get here, we found out that this is not, after
812// all, a fully-available block.  We have a problem if we speculated on this and
813// used the speculation to mark other blocks as available.
814SpeculationFailure:
815  char &BBVal = FullyAvailableBlocks[BB];
816
817  // If we didn't speculate on this, just return with it set to false.
818  if (BBVal == 2) {
819    BBVal = 0;
820    return false;
821  }
822
823  // If we did speculate on this value, we could have blocks set to 1 that are
824  // incorrect.  Walk the (transitive) successors of this block and mark them as
825  // 0 if set to one.
826  SmallVector<BasicBlock*, 32> BBWorklist;
827  BBWorklist.push_back(BB);
828
829  while (!BBWorklist.empty()) {
830    BasicBlock *Entry = BBWorklist.pop_back_val();
831    // Note that this sets blocks to 0 (unavailable) if they happen to not
832    // already be in FullyAvailableBlocks.  This is safe.
833    char &EntryVal = FullyAvailableBlocks[Entry];
834    if (EntryVal == 0) continue;  // Already unavailable.
835
836    // Mark as unavailable.
837    EntryVal = 0;
838
839    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
840      BBWorklist.push_back(*I);
841  }
842
843  return false;
844}
845
846
847/// CanCoerceMustAliasedValueToLoad - Return true if
848/// CoerceAvailableValueToLoadType will succeed.
849static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
850                                            const Type *LoadTy,
851                                            const TargetData &TD) {
852  // If the loaded or stored value is an first class array or struct, don't try
853  // to transform them.  We need to be able to bitcast to integer.
854  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
855      isa<StructType>(StoredVal->getType()) ||
856      isa<ArrayType>(StoredVal->getType()))
857    return false;
858
859  // The store has to be at least as big as the load.
860  if (TD.getTypeSizeInBits(StoredVal->getType()) <
861        TD.getTypeSizeInBits(LoadTy))
862    return false;
863
864  return true;
865}
866
867
868/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
869/// then a load from a must-aliased pointer of a different type, try to coerce
870/// the stored value.  LoadedTy is the type of the load we want to replace and
871/// InsertPt is the place to insert new instructions.
872///
873/// If we can't do it, return null.
874static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
875                                             const Type *LoadedTy,
876                                             Instruction *InsertPt,
877                                             const TargetData &TD) {
878  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
879    return 0;
880
881  const Type *StoredValTy = StoredVal->getType();
882
883  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
884  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
885
886  // If the store and reload are the same size, we can always reuse it.
887  if (StoreSize == LoadSize) {
888    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
889      // Pointer to Pointer -> use bitcast.
890      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
891    }
892
893    // Convert source pointers to integers, which can be bitcast.
894    if (isa<PointerType>(StoredValTy)) {
895      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
896      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
897    }
898
899    const Type *TypeToCastTo = LoadedTy;
900    if (isa<PointerType>(TypeToCastTo))
901      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
902
903    if (StoredValTy != TypeToCastTo)
904      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
905
906    // Cast to pointer if the load needs a pointer type.
907    if (isa<PointerType>(LoadedTy))
908      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
909
910    return StoredVal;
911  }
912
913  // If the loaded value is smaller than the available value, then we can
914  // extract out a piece from it.  If the available value is too small, then we
915  // can't do anything.
916  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
917
918  // Convert source pointers to integers, which can be manipulated.
919  if (isa<PointerType>(StoredValTy)) {
920    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
921    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
922  }
923
924  // Convert vectors and fp to integer, which can be manipulated.
925  if (!isa<IntegerType>(StoredValTy)) {
926    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
927    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
928  }
929
930  // If this is a big-endian system, we need to shift the value down to the low
931  // bits so that a truncate will work.
932  if (TD.isBigEndian()) {
933    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
934    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
935  }
936
937  // Truncate the integer to the right size now.
938  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
939  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
940
941  if (LoadedTy == NewIntTy)
942    return StoredVal;
943
944  // If the result is a pointer, inttoptr.
945  if (isa<PointerType>(LoadedTy))
946    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
947
948  // Otherwise, bitcast.
949  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
950}
951
952/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
953/// be expressed as a base pointer plus a constant offset.  Return the base and
954/// offset to the caller.
955static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
956                                        const TargetData &TD) {
957  Operator *PtrOp = dyn_cast<Operator>(Ptr);
958  if (PtrOp == 0) return Ptr;
959
960  // Just look through bitcasts.
961  if (PtrOp->getOpcode() == Instruction::BitCast)
962    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
963
964  // If this is a GEP with constant indices, we can look through it.
965  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
966  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
967
968  gep_type_iterator GTI = gep_type_begin(GEP);
969  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
970       ++I, ++GTI) {
971    ConstantInt *OpC = cast<ConstantInt>(*I);
972    if (OpC->isZero()) continue;
973
974    // Handle a struct and array indices which add their offset to the pointer.
975    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
976      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
977    } else {
978      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
979      Offset += OpC->getSExtValue()*Size;
980    }
981  }
982
983  // Re-sign extend from the pointer size if needed to get overflow edge cases
984  // right.
985  unsigned PtrSize = TD.getPointerSizeInBits();
986  if (PtrSize < 64)
987    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
988
989  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
990}
991
992
993/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
994/// memdep query of a load that ends up being a clobbering memory write (store,
995/// memset, memcpy, memmove).  This means that the write *may* provide bits used
996/// by the load but we can't be sure because the pointers don't mustalias.
997///
998/// Check this case to see if there is anything more we can do before we give
999/// up.  This returns -1 if we have to give up, or a byte number in the stored
1000/// value of the piece that feeds the load.
1001static int AnalyzeLoadFromClobberingWrite(LoadInst *L, Value *WritePtr,
1002                                          uint64_t WriteSizeInBits,
1003                                          const TargetData &TD) {
1004  // If the loaded or stored value is an first class array or struct, don't try
1005  // to transform them.  We need to be able to bitcast to integer.
1006  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()))
1007    return -1;
1008
1009  int64_t StoreOffset = 0, LoadOffset = 0;
1010  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1011  Value *LoadBase =
1012    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1013  if (StoreBase != LoadBase)
1014    return -1;
1015
1016  // If the load and store are to the exact same address, they should have been
1017  // a must alias.  AA must have gotten confused.
1018  // FIXME: Study to see if/when this happens.
1019  if (LoadOffset == StoreOffset) {
1020#if 0
1021    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1022    << "Base       = " << *StoreBase << "\n"
1023    << "Store Ptr  = " << *WritePtr << "\n"
1024    << "Store Offs = " << StoreOffset << "\n"
1025    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1026    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1027    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1028    << *L->getParent();
1029    abort();
1030#endif
1031    return -1;
1032  }
1033
1034  // If the load and store don't overlap at all, the store doesn't provide
1035  // anything to the load.  In this case, they really don't alias at all, AA
1036  // must have gotten confused.
1037  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1038  // remove this check, as it is duplicated with what we have below.
1039  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
1040
1041  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1042    return -1;
1043  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1044  LoadSize >>= 3;
1045
1046
1047  bool isAAFailure = false;
1048  if (StoreOffset < LoadOffset) {
1049    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1050  } else {
1051    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1052  }
1053  if (isAAFailure) {
1054#if 0
1055    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1056    << "Base       = " << *StoreBase << "\n"
1057    << "Store Ptr  = " << *WritePtr << "\n"
1058    << "Store Offs = " << StoreOffset << "\n"
1059    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1060    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1061    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1062    << *L->getParent();
1063    abort();
1064#endif
1065    return -1;
1066  }
1067
1068  // If the Load isn't completely contained within the stored bits, we don't
1069  // have all the bits to feed it.  We could do something crazy in the future
1070  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1071  // valuable.
1072  if (StoreOffset > LoadOffset ||
1073      StoreOffset+StoreSize < LoadOffset+LoadSize)
1074    return -1;
1075
1076  // Okay, we can do this transformation.  Return the number of bytes into the
1077  // store that the load is.
1078  return LoadOffset-StoreOffset;
1079}
1080
1081/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1082/// memdep query of a load that ends up being a clobbering store.
1083static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
1084                                          const TargetData &TD) {
1085  // Cannot handle reading from store of first-class aggregate yet.
1086  if (isa<StructType>(DepSI->getOperand(0)->getType()) ||
1087      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1088    return -1;
1089
1090  Value *StorePtr = DepSI->getPointerOperand();
1091  uint64_t StoreSize = TD.getTypeSizeInBits(StorePtr->getType());
1092  return AnalyzeLoadFromClobberingWrite(L, StorePtr, StoreSize, TD);
1093}
1094
1095static int AnalyzeLoadFromClobberingMemInst(LoadInst *L, MemIntrinsic *MI,
1096                                            const TargetData &TD) {
1097  // If the mem operation is a non-constant size, we can't handle it.
1098  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1099  if (SizeCst == 0) return -1;
1100  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1101
1102  // If this is memset, we just need to see if the offset is valid in the size
1103  // of the memset..
1104  if (MI->getIntrinsicID() == Intrinsic::memset)
1105    return AnalyzeLoadFromClobberingWrite(L, MI->getDest(), MemSizeInBits, TD);
1106
1107  // If we have a memcpy/memmove, the only case we can handle is if this is a
1108  // copy from constant memory.  In that case, we can read directly from the
1109  // constant memory.
1110  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1111
1112  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1113  if (Src == 0) return -1;
1114
1115  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1116  if (GV == 0 || !GV->isConstant()) return -1;
1117
1118  // See if the access is within the bounds of the transfer.
1119  int Offset =
1120    AnalyzeLoadFromClobberingWrite(L, MI->getDest(), MemSizeInBits, TD);
1121  if (Offset == -1)
1122    return Offset;
1123
1124  // Otherwise, see if we can constant fold a load from the constant with the
1125  // offset applied as appropriate.
1126  Src = ConstantExpr::getBitCast(Src,
1127                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1128  Constant *OffsetCst =
1129    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1130  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1131  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(L->getType()));
1132  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1133    return Offset;
1134  return -1;
1135}
1136
1137
1138/// GetStoreValueForLoad - This function is called when we have a
1139/// memdep query of a load that ends up being a clobbering store.  This means
1140/// that the store *may* provide bits used by the load but we can't be sure
1141/// because the pointers don't mustalias.  Check this case to see if there is
1142/// anything more we can do before we give up.
1143static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1144                                   const Type *LoadTy,
1145                                   Instruction *InsertPt, const TargetData &TD){
1146  LLVMContext &Ctx = SrcVal->getType()->getContext();
1147
1148  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1149  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1150
1151
1152  // Compute which bits of the stored value are being used by the load.  Convert
1153  // to an integer type to start with.
1154  if (isa<PointerType>(SrcVal->getType()))
1155    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1156  if (!isa<IntegerType>(SrcVal->getType()))
1157    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1158                             "tmp", InsertPt);
1159
1160  // Shift the bits to the least significant depending on endianness.
1161  unsigned ShiftAmt;
1162  if (TD.isLittleEndian())
1163    ShiftAmt = Offset*8;
1164  else
1165    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1166
1167  if (ShiftAmt)
1168    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1169                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1170
1171  if (LoadSize != StoreSize)
1172    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1173                           "tmp", InsertPt);
1174
1175  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1176}
1177
1178/// GetMemInstValueForLoad - This function is called when we have a
1179/// memdep query of a load that ends up being a clobbering mem intrinsic.
1180static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1181                                     const Type *LoadTy, Instruction *InsertPt,
1182                                     const TargetData &TD){
1183  LLVMContext &Ctx = LoadTy->getContext();
1184  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1185
1186  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1187
1188  // We know that this method is only called when the mem transfer fully
1189  // provides the bits for the load.
1190  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1191    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1192    // independently of what the offset is.
1193    Value *Val = MSI->getValue();
1194    if (LoadSize != 1)
1195      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1196
1197    Value *OneElt = Val;
1198
1199    // Splat the value out to the right number of bits.
1200    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1201      // If we can double the number of bytes set, do it.
1202      if (NumBytesSet*2 <= LoadSize) {
1203        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1204        Val = Builder.CreateOr(Val, ShVal);
1205        NumBytesSet <<= 1;
1206        continue;
1207      }
1208
1209      // Otherwise insert one byte at a time.
1210      Value *ShVal = Builder.CreateShl(Val, 1*8);
1211      Val = Builder.CreateOr(OneElt, ShVal);
1212      ++NumBytesSet;
1213    }
1214
1215    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1216  }
1217
1218  // Otherwise, this is a memcpy/memmove from a constant global.
1219  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1220  Constant *Src = cast<Constant>(MTI->getSource());
1221
1222  // Otherwise, see if we can constant fold a load from the constant with the
1223  // offset applied as appropriate.
1224  Src = ConstantExpr::getBitCast(Src,
1225                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1226  Constant *OffsetCst =
1227  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1228  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1229  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1230  return ConstantFoldLoadFromConstPtr(Src, &TD);
1231}
1232
1233
1234
1235struct AvailableValueInBlock {
1236  /// BB - The basic block in question.
1237  BasicBlock *BB;
1238  enum ValType {
1239    SimpleVal,  // A simple offsetted value that is accessed.
1240    MemIntrin   // A memory intrinsic which is loaded from.
1241  };
1242
1243  /// V - The value that is live out of the block.
1244  PointerIntPair<Value *, 1, ValType> Val;
1245
1246  /// Offset - The byte offset in Val that is interesting for the load query.
1247  unsigned Offset;
1248
1249  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1250                                   unsigned Offset = 0) {
1251    AvailableValueInBlock Res;
1252    Res.BB = BB;
1253    Res.Val.setPointer(V);
1254    Res.Val.setInt(SimpleVal);
1255    Res.Offset = Offset;
1256    return Res;
1257  }
1258
1259  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1260                                     unsigned Offset = 0) {
1261    AvailableValueInBlock Res;
1262    Res.BB = BB;
1263    Res.Val.setPointer(MI);
1264    Res.Val.setInt(MemIntrin);
1265    Res.Offset = Offset;
1266    return Res;
1267  }
1268
1269  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1270  Value *getSimpleValue() const {
1271    assert(isSimpleValue() && "Wrong accessor");
1272    return Val.getPointer();
1273  }
1274
1275  MemIntrinsic *getMemIntrinValue() const {
1276    assert(!isSimpleValue() && "Wrong accessor");
1277    return cast<MemIntrinsic>(Val.getPointer());
1278  }
1279};
1280
1281/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1282/// construct SSA form, allowing us to eliminate LI.  This returns the value
1283/// that should be used at LI's definition site.
1284static Value *ConstructSSAForLoadSet(LoadInst *LI,
1285                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1286                                     const TargetData *TD,
1287                                     AliasAnalysis *AA) {
1288  SmallVector<PHINode*, 8> NewPHIs;
1289  SSAUpdater SSAUpdate(&NewPHIs);
1290  SSAUpdate.Initialize(LI);
1291
1292  const Type *LoadTy = LI->getType();
1293
1294  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1295    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1296    BasicBlock *BB = AV.BB;
1297
1298    if (SSAUpdate.HasValueForBlock(BB))
1299      continue;
1300
1301    unsigned Offset = AV.Offset;
1302
1303    Value *AvailableVal;
1304    if (AV.isSimpleValue()) {
1305      AvailableVal = AV.getSimpleValue();
1306      if (AvailableVal->getType() != LoadTy) {
1307        assert(TD && "Need target data to handle type mismatch case");
1308        AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1309                                            BB->getTerminator(), *TD);
1310
1311        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1312              << *AV.getSimpleValue() << '\n'
1313              << *AvailableVal << '\n' << "\n\n\n");
1314      }
1315    } else {
1316      AvailableVal = GetMemInstValueForLoad(AV.getMemIntrinValue(), Offset,
1317                                            LoadTy, BB->getTerminator(), *TD);
1318      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1319            << "  " << *AV.getMemIntrinValue() << '\n'
1320            << *AvailableVal << '\n' << "\n\n\n");
1321    }
1322    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1323  }
1324
1325  // Perform PHI construction.
1326  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1327
1328  // If new PHI nodes were created, notify alias analysis.
1329  if (isa<PointerType>(V->getType()))
1330    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1331      AA->copyValue(LI, NewPHIs[i]);
1332
1333  return V;
1334}
1335
1336static bool isLifetimeStart(Instruction *Inst) {
1337  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1338    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1339  return false;
1340}
1341
1342/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1343/// non-local by performing PHI construction.
1344bool GVN::processNonLocalLoad(LoadInst *LI,
1345                              SmallVectorImpl<Instruction*> &toErase) {
1346  // Find the non-local dependencies of the load.
1347  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1348  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1349                                   Deps);
1350  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1351  //             << Deps.size() << *LI << '\n');
1352
1353  // If we had to process more than one hundred blocks to find the
1354  // dependencies, this load isn't worth worrying about.  Optimizing
1355  // it will be too expensive.
1356  if (Deps.size() > 100)
1357    return false;
1358
1359  // If we had a phi translation failure, we'll have a single entry which is a
1360  // clobber in the current block.  Reject this early.
1361  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1362    DEBUG(
1363      errs() << "GVN: non-local load ";
1364      WriteAsOperand(errs(), LI);
1365      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1366    );
1367    return false;
1368  }
1369
1370  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1371  // where we have a value available in repl, also keep track of whether we see
1372  // dependencies that produce an unknown value for the load (such as a call
1373  // that could potentially clobber the load).
1374  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1375  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1376
1377  const TargetData *TD = 0;
1378
1379  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1380    BasicBlock *DepBB = Deps[i].first;
1381    MemDepResult DepInfo = Deps[i].second;
1382
1383    if (DepInfo.isClobber()) {
1384      // If the dependence is to a store that writes to a superset of the bits
1385      // read by the load, we can extract the bits we need for the load from the
1386      // stored value.
1387      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1388        if (TD == 0)
1389          TD = getAnalysisIfAvailable<TargetData>();
1390        if (TD) {
1391          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1392          if (Offset != -1) {
1393            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1394                                                           DepSI->getOperand(0),
1395                                                                Offset));
1396            continue;
1397          }
1398        }
1399      }
1400
1401      // If the clobbering value is a memset/memcpy/memmove, see if we can
1402      // forward a value on from it.
1403      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1404        if (TD == 0)
1405          TD = getAnalysisIfAvailable<TargetData>();
1406        if (TD) {
1407          int Offset = AnalyzeLoadFromClobberingMemInst(LI, DepMI, *TD);
1408          if (Offset != -1) {
1409            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1410                                                                  Offset));
1411            continue;
1412          }
1413        }
1414      }
1415
1416      UnavailableBlocks.push_back(DepBB);
1417      continue;
1418    }
1419
1420    Instruction *DepInst = DepInfo.getInst();
1421
1422    // Loading the allocation -> undef.
1423    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1424        // Loading immediately after lifetime begin -> undef.
1425        isLifetimeStart(DepInst)) {
1426      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1427                                             UndefValue::get(LI->getType())));
1428      continue;
1429    }
1430
1431    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1432      // Reject loads and stores that are to the same address but are of
1433      // different types if we have to.
1434      if (S->getOperand(0)->getType() != LI->getType()) {
1435        if (TD == 0)
1436          TD = getAnalysisIfAvailable<TargetData>();
1437
1438        // If the stored value is larger or equal to the loaded value, we can
1439        // reuse it.
1440        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1441                                                        LI->getType(), *TD)) {
1442          UnavailableBlocks.push_back(DepBB);
1443          continue;
1444        }
1445      }
1446
1447      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1448                                                          S->getOperand(0)));
1449      continue;
1450    }
1451
1452    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1453      // If the types mismatch and we can't handle it, reject reuse of the load.
1454      if (LD->getType() != LI->getType()) {
1455        if (TD == 0)
1456          TD = getAnalysisIfAvailable<TargetData>();
1457
1458        // If the stored value is larger or equal to the loaded value, we can
1459        // reuse it.
1460        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1461          UnavailableBlocks.push_back(DepBB);
1462          continue;
1463        }
1464      }
1465      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1466      continue;
1467    }
1468
1469    UnavailableBlocks.push_back(DepBB);
1470    continue;
1471  }
1472
1473  // If we have no predecessors that produce a known value for this load, exit
1474  // early.
1475  if (ValuesPerBlock.empty()) return false;
1476
1477  // If all of the instructions we depend on produce a known value for this
1478  // load, then it is fully redundant and we can use PHI insertion to compute
1479  // its value.  Insert PHIs and remove the fully redundant value now.
1480  if (UnavailableBlocks.empty()) {
1481    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1482
1483    // Perform PHI construction.
1484    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1485                                      VN.getAliasAnalysis());
1486    LI->replaceAllUsesWith(V);
1487
1488    if (isa<PHINode>(V))
1489      V->takeName(LI);
1490    if (isa<PointerType>(V->getType()))
1491      MD->invalidateCachedPointerInfo(V);
1492    toErase.push_back(LI);
1493    NumGVNLoad++;
1494    return true;
1495  }
1496
1497  if (!EnablePRE || !EnableLoadPRE)
1498    return false;
1499
1500  // Okay, we have *some* definitions of the value.  This means that the value
1501  // is available in some of our (transitive) predecessors.  Lets think about
1502  // doing PRE of this load.  This will involve inserting a new load into the
1503  // predecessor when it's not available.  We could do this in general, but
1504  // prefer to not increase code size.  As such, we only do this when we know
1505  // that we only have to insert *one* load (which means we're basically moving
1506  // the load, not inserting a new one).
1507
1508  SmallPtrSet<BasicBlock *, 4> Blockers;
1509  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1510    Blockers.insert(UnavailableBlocks[i]);
1511
1512  // Lets find first basic block with more than one predecessor.  Walk backwards
1513  // through predecessors if needed.
1514  BasicBlock *LoadBB = LI->getParent();
1515  BasicBlock *TmpBB = LoadBB;
1516
1517  bool isSinglePred = false;
1518  bool allSingleSucc = true;
1519  while (TmpBB->getSinglePredecessor()) {
1520    isSinglePred = true;
1521    TmpBB = TmpBB->getSinglePredecessor();
1522    if (!TmpBB) // If haven't found any, bail now.
1523      return false;
1524    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1525      return false;
1526    if (Blockers.count(TmpBB))
1527      return false;
1528    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1529      allSingleSucc = false;
1530  }
1531
1532  assert(TmpBB);
1533  LoadBB = TmpBB;
1534
1535  // If we have a repl set with LI itself in it, this means we have a loop where
1536  // at least one of the values is LI.  Since this means that we won't be able
1537  // to eliminate LI even if we insert uses in the other predecessors, we will
1538  // end up increasing code size.  Reject this by scanning for LI.
1539  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1540    if (ValuesPerBlock[i].isSimpleValue() &&
1541        ValuesPerBlock[i].getSimpleValue() == LI)
1542      return false;
1543
1544  // FIXME: It is extremely unclear what this loop is doing, other than
1545  // artificially restricting loadpre.
1546  if (isSinglePred) {
1547    bool isHot = false;
1548    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1549      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1550      if (AV.isSimpleValue())
1551        // "Hot" Instruction is in some loop (because it dominates its dep.
1552        // instruction).
1553        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1554          if (DT->dominates(LI, I)) {
1555            isHot = true;
1556            break;
1557          }
1558    }
1559
1560    // We are interested only in "hot" instructions. We don't want to do any
1561    // mis-optimizations here.
1562    if (!isHot)
1563      return false;
1564  }
1565
1566  // Okay, we have some hope :).  Check to see if the loaded value is fully
1567  // available in all but one predecessor.
1568  // FIXME: If we could restructure the CFG, we could make a common pred with
1569  // all the preds that don't have an available LI and insert a new load into
1570  // that one block.
1571  BasicBlock *UnavailablePred = 0;
1572
1573  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1574  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1575    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1576  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1577    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1578
1579  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1580       PI != E; ++PI) {
1581    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1582      continue;
1583
1584    // If this load is not available in multiple predecessors, reject it.
1585    if (UnavailablePred && UnavailablePred != *PI)
1586      return false;
1587    UnavailablePred = *PI;
1588  }
1589
1590  assert(UnavailablePred != 0 &&
1591         "Fully available value should be eliminated above!");
1592
1593  // We don't currently handle critical edges :(
1594  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1595    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1596                 << UnavailablePred->getName() << "': " << *LI << '\n');
1597    return false;
1598  }
1599
1600  // Do PHI translation to get its value in the predecessor if necessary.  The
1601  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1602  //
1603  SmallVector<Instruction*, 8> NewInsts;
1604
1605  // If all preds have a single successor, then we know it is safe to insert the
1606  // load on the pred (?!?), so we can insert code to materialize the pointer if
1607  // it is not available.
1608  PHITransAddr Address(LI->getOperand(0), TD);
1609  Value *LoadPtr = 0;
1610  if (allSingleSucc) {
1611    LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1612                                                *DT, NewInsts);
1613  } else {
1614    Address.PHITranslateValue(LoadBB, UnavailablePred);
1615    LoadPtr = Address.getAddr();
1616
1617    // Make sure the value is live in the predecessor.
1618    if (Instruction *Inst = dyn_cast_or_null<Instruction>(LoadPtr))
1619      if (!DT->dominates(Inst->getParent(), UnavailablePred))
1620        LoadPtr = 0;
1621  }
1622
1623  // If we couldn't find or insert a computation of this phi translated value,
1624  // we fail PRE.
1625  if (LoadPtr == 0) {
1626    assert(NewInsts.empty() && "Shouldn't insert insts on failure");
1627    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1628                 << *LI->getOperand(0) << "\n");
1629    return false;
1630  }
1631
1632  // Assign value numbers to these new instructions.
1633  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1634    // FIXME: We really _ought_ to insert these value numbers into their
1635    // parent's availability map.  However, in doing so, we risk getting into
1636    // ordering issues.  If a block hasn't been processed yet, we would be
1637    // marking a value as AVAIL-IN, which isn't what we intend.
1638    VN.lookup_or_add(NewInsts[i]);
1639  }
1640
1641  // Make sure it is valid to move this load here.  We have to watch out for:
1642  //  @1 = getelementptr (i8* p, ...
1643  //  test p and branch if == 0
1644  //  load @1
1645  // It is valid to have the getelementptr before the test, even if p can be 0,
1646  // as getelementptr only does address arithmetic.
1647  // If we are not pushing the value through any multiple-successor blocks
1648  // we do not have this case.  Otherwise, check that the load is safe to
1649  // put anywhere; this can be improved, but should be conservatively safe.
1650  if (!allSingleSucc &&
1651      // FIXME: REEVALUTE THIS.
1652      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
1653    assert(NewInsts.empty() && "Should not have inserted instructions");
1654    return false;
1655  }
1656
1657  // Okay, we can eliminate this load by inserting a reload in the predecessor
1658  // and using PHI construction to get the value in the other predecessors, do
1659  // it.
1660  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1661  DEBUG(if (!NewInsts.empty())
1662          errs() << "INSERTED " << NewInsts.size() << " INSTS: "
1663                 << *NewInsts.back() << '\n');
1664
1665  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1666                                LI->getAlignment(),
1667                                UnavailablePred->getTerminator());
1668
1669  // Add the newly created load.
1670  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1671
1672  // Perform PHI construction.
1673  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1674                                    VN.getAliasAnalysis());
1675  LI->replaceAllUsesWith(V);
1676  if (isa<PHINode>(V))
1677    V->takeName(LI);
1678  if (isa<PointerType>(V->getType()))
1679    MD->invalidateCachedPointerInfo(V);
1680  toErase.push_back(LI);
1681  NumPRELoad++;
1682  return true;
1683}
1684
1685/// processLoad - Attempt to eliminate a load, first by eliminating it
1686/// locally, and then attempting non-local elimination if that fails.
1687bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1688  if (!MD)
1689    return false;
1690
1691  if (L->isVolatile())
1692    return false;
1693
1694  // ... to a pointer that has been loaded from before...
1695  MemDepResult Dep = MD->getDependency(L);
1696
1697  // If the value isn't available, don't do anything!
1698  if (Dep.isClobber()) {
1699    // Check to see if we have something like this:
1700    //   store i32 123, i32* %P
1701    //   %A = bitcast i32* %P to i8*
1702    //   %B = gep i8* %A, i32 1
1703    //   %C = load i8* %B
1704    //
1705    // We could do that by recognizing if the clobber instructions are obviously
1706    // a common base + constant offset, and if the previous store (or memset)
1707    // completely covers this load.  This sort of thing can happen in bitfield
1708    // access code.
1709    Value *AvailVal = 0;
1710    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1711      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1712        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1713        if (Offset != -1)
1714          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1715                                          L->getType(), L, *TD);
1716      }
1717
1718    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1719    // a value on from it.
1720    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1721      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1722        int Offset = AnalyzeLoadFromClobberingMemInst(L, DepMI, *TD);
1723        if (Offset != -1)
1724          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1725      }
1726    }
1727
1728    if (AvailVal) {
1729      DEBUG(errs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1730            << *AvailVal << '\n' << *L << "\n\n\n");
1731
1732      // Replace the load!
1733      L->replaceAllUsesWith(AvailVal);
1734      if (isa<PointerType>(AvailVal->getType()))
1735        MD->invalidateCachedPointerInfo(AvailVal);
1736      toErase.push_back(L);
1737      NumGVNLoad++;
1738      return true;
1739    }
1740
1741    DEBUG(
1742      // fast print dep, using operator<< on instruction would be too slow
1743      errs() << "GVN: load ";
1744      WriteAsOperand(errs(), L);
1745      Instruction *I = Dep.getInst();
1746      errs() << " is clobbered by " << *I << '\n';
1747    );
1748    return false;
1749  }
1750
1751  // If it is defined in another block, try harder.
1752  if (Dep.isNonLocal())
1753    return processNonLocalLoad(L, toErase);
1754
1755  Instruction *DepInst = Dep.getInst();
1756  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1757    Value *StoredVal = DepSI->getOperand(0);
1758
1759    // The store and load are to a must-aliased pointer, but they may not
1760    // actually have the same type.  See if we know how to reuse the stored
1761    // value (depending on its type).
1762    const TargetData *TD = 0;
1763    if (StoredVal->getType() != L->getType()) {
1764      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1765        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1766                                                   L, *TD);
1767        if (StoredVal == 0)
1768          return false;
1769
1770        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1771                     << '\n' << *L << "\n\n\n");
1772      }
1773      else
1774        return false;
1775    }
1776
1777    // Remove it!
1778    L->replaceAllUsesWith(StoredVal);
1779    if (isa<PointerType>(StoredVal->getType()))
1780      MD->invalidateCachedPointerInfo(StoredVal);
1781    toErase.push_back(L);
1782    NumGVNLoad++;
1783    return true;
1784  }
1785
1786  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1787    Value *AvailableVal = DepLI;
1788
1789    // The loads are of a must-aliased pointer, but they may not actually have
1790    // the same type.  See if we know how to reuse the previously loaded value
1791    // (depending on its type).
1792    const TargetData *TD = 0;
1793    if (DepLI->getType() != L->getType()) {
1794      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1795        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1796        if (AvailableVal == 0)
1797          return false;
1798
1799        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1800                     << "\n" << *L << "\n\n\n");
1801      }
1802      else
1803        return false;
1804    }
1805
1806    // Remove it!
1807    L->replaceAllUsesWith(AvailableVal);
1808    if (isa<PointerType>(DepLI->getType()))
1809      MD->invalidateCachedPointerInfo(DepLI);
1810    toErase.push_back(L);
1811    NumGVNLoad++;
1812    return true;
1813  }
1814
1815  // If this load really doesn't depend on anything, then we must be loading an
1816  // undef value.  This can happen when loading for a fresh allocation with no
1817  // intervening stores, for example.
1818  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1819    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1820    toErase.push_back(L);
1821    NumGVNLoad++;
1822    return true;
1823  }
1824
1825  // If this load occurs either right after a lifetime begin,
1826  // then the loaded value is undefined.
1827  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1828    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1829      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1830      toErase.push_back(L);
1831      NumGVNLoad++;
1832      return true;
1833    }
1834  }
1835
1836  return false;
1837}
1838
1839Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1840  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1841  if (I == localAvail.end())
1842    return 0;
1843
1844  ValueNumberScope *Locals = I->second;
1845  while (Locals) {
1846    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1847    if (I != Locals->table.end())
1848      return I->second;
1849    Locals = Locals->parent;
1850  }
1851
1852  return 0;
1853}
1854
1855
1856/// processInstruction - When calculating availability, handle an instruction
1857/// by inserting it into the appropriate sets
1858bool GVN::processInstruction(Instruction *I,
1859                             SmallVectorImpl<Instruction*> &toErase) {
1860  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1861    bool Changed = processLoad(LI, toErase);
1862
1863    if (!Changed) {
1864      unsigned Num = VN.lookup_or_add(LI);
1865      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1866    }
1867
1868    return Changed;
1869  }
1870
1871  uint32_t NextNum = VN.getNextUnusedValueNumber();
1872  unsigned Num = VN.lookup_or_add(I);
1873
1874  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1875    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1876
1877    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1878      return false;
1879
1880    Value *BranchCond = BI->getCondition();
1881    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1882
1883    BasicBlock *TrueSucc = BI->getSuccessor(0);
1884    BasicBlock *FalseSucc = BI->getSuccessor(1);
1885
1886    if (TrueSucc->getSinglePredecessor())
1887      localAvail[TrueSucc]->table[CondVN] =
1888        ConstantInt::getTrue(TrueSucc->getContext());
1889    if (FalseSucc->getSinglePredecessor())
1890      localAvail[FalseSucc]->table[CondVN] =
1891        ConstantInt::getFalse(TrueSucc->getContext());
1892
1893    return false;
1894
1895  // Allocations are always uniquely numbered, so we can save time and memory
1896  // by fast failing them.
1897  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1898    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1899    return false;
1900  }
1901
1902  // Collapse PHI nodes
1903  if (PHINode* p = dyn_cast<PHINode>(I)) {
1904    Value *constVal = CollapsePhi(p);
1905
1906    if (constVal) {
1907      p->replaceAllUsesWith(constVal);
1908      if (MD && isa<PointerType>(constVal->getType()))
1909        MD->invalidateCachedPointerInfo(constVal);
1910      VN.erase(p);
1911
1912      toErase.push_back(p);
1913    } else {
1914      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1915    }
1916
1917  // If the number we were assigned was a brand new VN, then we don't
1918  // need to do a lookup to see if the number already exists
1919  // somewhere in the domtree: it can't!
1920  } else if (Num == NextNum) {
1921    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1922
1923  // Perform fast-path value-number based elimination of values inherited from
1924  // dominators.
1925  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1926    // Remove it!
1927    VN.erase(I);
1928    I->replaceAllUsesWith(repl);
1929    if (MD && isa<PointerType>(repl->getType()))
1930      MD->invalidateCachedPointerInfo(repl);
1931    toErase.push_back(I);
1932    return true;
1933
1934  } else {
1935    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1936  }
1937
1938  return false;
1939}
1940
1941/// runOnFunction - This is the main transformation entry point for a function.
1942bool GVN::runOnFunction(Function& F) {
1943  if (!NoLoads)
1944    MD = &getAnalysis<MemoryDependenceAnalysis>();
1945  DT = &getAnalysis<DominatorTree>();
1946  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1947  VN.setMemDep(MD);
1948  VN.setDomTree(DT);
1949
1950  bool Changed = false;
1951  bool ShouldContinue = true;
1952
1953  // Merge unconditional branches, allowing PRE to catch more
1954  // optimization opportunities.
1955  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1956    BasicBlock *BB = FI;
1957    ++FI;
1958    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1959    if (removedBlock) NumGVNBlocks++;
1960
1961    Changed |= removedBlock;
1962  }
1963
1964  unsigned Iteration = 0;
1965
1966  while (ShouldContinue) {
1967    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1968    ShouldContinue = iterateOnFunction(F);
1969    Changed |= ShouldContinue;
1970    ++Iteration;
1971  }
1972
1973  if (EnablePRE) {
1974    bool PREChanged = true;
1975    while (PREChanged) {
1976      PREChanged = performPRE(F);
1977      Changed |= PREChanged;
1978    }
1979  }
1980  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1981  // computations into blocks where they become fully redundant.  Note that
1982  // we can't do this until PRE's critical edge splitting updates memdep.
1983  // Actually, when this happens, we should just fully integrate PRE into GVN.
1984
1985  cleanupGlobalSets();
1986
1987  return Changed;
1988}
1989
1990
1991bool GVN::processBlock(BasicBlock *BB) {
1992  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1993  // incrementing BI before processing an instruction).
1994  SmallVector<Instruction*, 8> toErase;
1995  bool ChangedFunction = false;
1996
1997  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1998       BI != BE;) {
1999    ChangedFunction |= processInstruction(BI, toErase);
2000    if (toErase.empty()) {
2001      ++BI;
2002      continue;
2003    }
2004
2005    // If we need some instructions deleted, do it now.
2006    NumGVNInstr += toErase.size();
2007
2008    // Avoid iterator invalidation.
2009    bool AtStart = BI == BB->begin();
2010    if (!AtStart)
2011      --BI;
2012
2013    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2014         E = toErase.end(); I != E; ++I) {
2015      DEBUG(errs() << "GVN removed: " << **I << '\n');
2016      if (MD) MD->removeInstruction(*I);
2017      (*I)->eraseFromParent();
2018      DEBUG(verifyRemoved(*I));
2019    }
2020    toErase.clear();
2021
2022    if (AtStart)
2023      BI = BB->begin();
2024    else
2025      ++BI;
2026  }
2027
2028  return ChangedFunction;
2029}
2030
2031/// performPRE - Perform a purely local form of PRE that looks for diamond
2032/// control flow patterns and attempts to perform simple PRE at the join point.
2033bool GVN::performPRE(Function &F) {
2034  bool Changed = false;
2035  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
2036  DenseMap<BasicBlock*, Value*> predMap;
2037  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2038       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2039    BasicBlock *CurrentBlock = *DI;
2040
2041    // Nothing to PRE in the entry block.
2042    if (CurrentBlock == &F.getEntryBlock()) continue;
2043
2044    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2045         BE = CurrentBlock->end(); BI != BE; ) {
2046      Instruction *CurInst = BI++;
2047
2048      if (isa<AllocaInst>(CurInst) ||
2049          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2050          CurInst->getType()->isVoidTy() ||
2051          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2052          isa<DbgInfoIntrinsic>(CurInst))
2053        continue;
2054
2055      uint32_t ValNo = VN.lookup(CurInst);
2056
2057      // Look for the predecessors for PRE opportunities.  We're
2058      // only trying to solve the basic diamond case, where
2059      // a value is computed in the successor and one predecessor,
2060      // but not the other.  We also explicitly disallow cases
2061      // where the successor is its own predecessor, because they're
2062      // more complicated to get right.
2063      unsigned NumWith = 0;
2064      unsigned NumWithout = 0;
2065      BasicBlock *PREPred = 0;
2066      predMap.clear();
2067
2068      for (pred_iterator PI = pred_begin(CurrentBlock),
2069           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2070        // We're not interested in PRE where the block is its
2071        // own predecessor, on in blocks with predecessors
2072        // that are not reachable.
2073        if (*PI == CurrentBlock) {
2074          NumWithout = 2;
2075          break;
2076        } else if (!localAvail.count(*PI))  {
2077          NumWithout = 2;
2078          break;
2079        }
2080
2081        DenseMap<uint32_t, Value*>::iterator predV =
2082                                            localAvail[*PI]->table.find(ValNo);
2083        if (predV == localAvail[*PI]->table.end()) {
2084          PREPred = *PI;
2085          NumWithout++;
2086        } else if (predV->second == CurInst) {
2087          NumWithout = 2;
2088        } else {
2089          predMap[*PI] = predV->second;
2090          NumWith++;
2091        }
2092      }
2093
2094      // Don't do PRE when it might increase code size, i.e. when
2095      // we would need to insert instructions in more than one pred.
2096      if (NumWithout != 1 || NumWith == 0)
2097        continue;
2098
2099      // Don't do PRE across indirect branch.
2100      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2101        continue;
2102
2103      // We can't do PRE safely on a critical edge, so instead we schedule
2104      // the edge to be split and perform the PRE the next time we iterate
2105      // on the function.
2106      unsigned SuccNum = 0;
2107      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2108           i != e; ++i)
2109        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2110          SuccNum = i;
2111          break;
2112        }
2113
2114      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2115        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2116        continue;
2117      }
2118
2119      // Instantiate the expression the in predecessor that lacked it.
2120      // Because we are going top-down through the block, all value numbers
2121      // will be available in the predecessor by the time we need them.  Any
2122      // that weren't original present will have been instantiated earlier
2123      // in this loop.
2124      Instruction *PREInstr = CurInst->clone();
2125      bool success = true;
2126      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2127        Value *Op = PREInstr->getOperand(i);
2128        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2129          continue;
2130
2131        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2132          PREInstr->setOperand(i, V);
2133        } else {
2134          success = false;
2135          break;
2136        }
2137      }
2138
2139      // Fail out if we encounter an operand that is not available in
2140      // the PRE predecessor.  This is typically because of loads which
2141      // are not value numbered precisely.
2142      if (!success) {
2143        delete PREInstr;
2144        DEBUG(verifyRemoved(PREInstr));
2145        continue;
2146      }
2147
2148      PREInstr->insertBefore(PREPred->getTerminator());
2149      PREInstr->setName(CurInst->getName() + ".pre");
2150      predMap[PREPred] = PREInstr;
2151      VN.add(PREInstr, ValNo);
2152      NumGVNPRE++;
2153
2154      // Update the availability map to include the new instruction.
2155      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2156
2157      // Create a PHI to make the value available in this block.
2158      PHINode* Phi = PHINode::Create(CurInst->getType(),
2159                                     CurInst->getName() + ".pre-phi",
2160                                     CurrentBlock->begin());
2161      for (pred_iterator PI = pred_begin(CurrentBlock),
2162           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2163        Phi->addIncoming(predMap[*PI], *PI);
2164
2165      VN.add(Phi, ValNo);
2166      localAvail[CurrentBlock]->table[ValNo] = Phi;
2167
2168      CurInst->replaceAllUsesWith(Phi);
2169      if (MD && isa<PointerType>(Phi->getType()))
2170        MD->invalidateCachedPointerInfo(Phi);
2171      VN.erase(CurInst);
2172
2173      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2174      if (MD) MD->removeInstruction(CurInst);
2175      CurInst->eraseFromParent();
2176      DEBUG(verifyRemoved(CurInst));
2177      Changed = true;
2178    }
2179  }
2180
2181  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2182       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2183    SplitCriticalEdge(I->first, I->second, this);
2184
2185  return Changed || toSplit.size();
2186}
2187
2188/// iterateOnFunction - Executes one iteration of GVN
2189bool GVN::iterateOnFunction(Function &F) {
2190  cleanupGlobalSets();
2191
2192  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2193       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2194    if (DI->getIDom())
2195      localAvail[DI->getBlock()] =
2196                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2197    else
2198      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2199  }
2200
2201  // Top-down walk of the dominator tree
2202  bool Changed = false;
2203#if 0
2204  // Needed for value numbering with phi construction to work.
2205  ReversePostOrderTraversal<Function*> RPOT(&F);
2206  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2207       RE = RPOT.end(); RI != RE; ++RI)
2208    Changed |= processBlock(*RI);
2209#else
2210  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2211       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2212    Changed |= processBlock(DI->getBlock());
2213#endif
2214
2215  return Changed;
2216}
2217
2218void GVN::cleanupGlobalSets() {
2219  VN.clear();
2220
2221  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2222       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2223    delete I->second;
2224  localAvail.clear();
2225}
2226
2227/// verifyRemoved - Verify that the specified instruction does not occur in our
2228/// internal data structures.
2229void GVN::verifyRemoved(const Instruction *Inst) const {
2230  VN.verifyRemoved(Inst);
2231
2232  // Walk through the value number scope to make sure the instruction isn't
2233  // ferreted away in it.
2234  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2235         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2236    const ValueNumberScope *VNS = I->second;
2237
2238    while (VNS) {
2239      for (DenseMap<uint32_t, Value*>::const_iterator
2240             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2241        assert(II->second != Inst && "Inst still in value numbering scope!");
2242      }
2243
2244      VNS = VNS->parent;
2245    }
2246  }
2247}
2248