GVN.cpp revision bc9a28dd544e37074693333ea96c508a3d3bc3b4
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/Dominators.h"
37#include "llvm/Analysis/MemoryBuiltins.h"
38#include "llvm/Analysis/MemoryDependenceAnalysis.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Transforms/Utils/BasicBlockUtils.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include "llvm/Transforms/Utils/SSAUpdater.h"
50#include <cstdio>
51using namespace llvm;
52
53STATISTIC(NumGVNInstr,  "Number of instructions deleted");
54STATISTIC(NumGVNLoad,   "Number of loads deleted");
55STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
56STATISTIC(NumGVNBlocks, "Number of blocks merged");
57STATISTIC(NumPRELoad,   "Number of loads PRE'd");
58
59static cl::opt<bool> EnablePRE("enable-pre",
60                               cl::init(true), cl::Hidden);
61static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
62
63//===----------------------------------------------------------------------===//
64//                         ValueTable Class
65//===----------------------------------------------------------------------===//
66
67/// This class holds the mapping between values and value numbers.  It is used
68/// as an efficient mechanism to determine the expression-wise equivalence of
69/// two values.
70namespace {
71  struct Expression {
72    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
73                            UDIV, SDIV, FDIV, UREM, SREM,
74                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
75                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
76                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
77                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
78                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
79                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
80                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
81                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
82                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
83                            INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
84
85    ExpressionOpcode opcode;
86    const Type* type;
87    SmallVector<uint32_t, 4> varargs;
88    Value *function;
89
90    Expression() { }
91    Expression(ExpressionOpcode o) : opcode(o) { }
92
93    bool operator==(const Expression &other) const {
94      if (opcode != other.opcode)
95        return false;
96      else if (opcode == EMPTY || opcode == TOMBSTONE)
97        return true;
98      else if (type != other.type)
99        return false;
100      else if (function != other.function)
101        return false;
102      else {
103        if (varargs.size() != other.varargs.size())
104          return false;
105
106        for (size_t i = 0; i < varargs.size(); ++i)
107          if (varargs[i] != other.varargs[i])
108            return false;
109
110        return true;
111      }
112    }
113
114    bool operator!=(const Expression &other) const {
115      return !(*this == other);
116    }
117  };
118
119  class ValueTable {
120    private:
121      DenseMap<Value*, uint32_t> valueNumbering;
122      DenseMap<Expression, uint32_t> expressionNumbering;
123      AliasAnalysis* AA;
124      MemoryDependenceAnalysis* MD;
125      DominatorTree* DT;
126
127      uint32_t nextValueNumber;
128
129      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
130      Expression::ExpressionOpcode getOpcode(CmpInst* C);
131      Expression::ExpressionOpcode getOpcode(CastInst* C);
132      Expression create_expression(BinaryOperator* BO);
133      Expression create_expression(CmpInst* C);
134      Expression create_expression(ShuffleVectorInst* V);
135      Expression create_expression(ExtractElementInst* C);
136      Expression create_expression(InsertElementInst* V);
137      Expression create_expression(SelectInst* V);
138      Expression create_expression(CastInst* C);
139      Expression create_expression(GetElementPtrInst* G);
140      Expression create_expression(CallInst* C);
141      Expression create_expression(Constant* C);
142      Expression create_expression(ExtractValueInst* C);
143      Expression create_expression(InsertValueInst* C);
144
145      uint32_t lookup_or_add_call(CallInst* C);
146    public:
147      ValueTable() : nextValueNumber(1) { }
148      uint32_t lookup_or_add(Value *V);
149      uint32_t lookup(Value *V) const;
150      void add(Value *V, uint32_t num);
151      void clear();
152      void erase(Value *v);
153      unsigned size();
154      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
155      AliasAnalysis *getAliasAnalysis() const { return AA; }
156      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
157      void setDomTree(DominatorTree* D) { DT = D; }
158      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
159      void verifyRemoved(const Value *) const;
160  };
161}
162
163namespace llvm {
164template <> struct DenseMapInfo<Expression> {
165  static inline Expression getEmptyKey() {
166    return Expression(Expression::EMPTY);
167  }
168
169  static inline Expression getTombstoneKey() {
170    return Expression(Expression::TOMBSTONE);
171  }
172
173  static unsigned getHashValue(const Expression e) {
174    unsigned hash = e.opcode;
175
176    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
177            (unsigned)((uintptr_t)e.type >> 9));
178
179    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
180         E = e.varargs.end(); I != E; ++I)
181      hash = *I + hash * 37;
182
183    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
184            (unsigned)((uintptr_t)e.function >> 9)) +
185           hash * 37;
186
187    return hash;
188  }
189  static bool isEqual(const Expression &LHS, const Expression &RHS) {
190    return LHS == RHS;
191  }
192  static bool isPod() { return true; }
193};
194}
195
196//===----------------------------------------------------------------------===//
197//                     ValueTable Internal Functions
198//===----------------------------------------------------------------------===//
199Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
200  switch(BO->getOpcode()) {
201  default: // THIS SHOULD NEVER HAPPEN
202    llvm_unreachable("Binary operator with unknown opcode?");
203  case Instruction::Add:  return Expression::ADD;
204  case Instruction::FAdd: return Expression::FADD;
205  case Instruction::Sub:  return Expression::SUB;
206  case Instruction::FSub: return Expression::FSUB;
207  case Instruction::Mul:  return Expression::MUL;
208  case Instruction::FMul: return Expression::FMUL;
209  case Instruction::UDiv: return Expression::UDIV;
210  case Instruction::SDiv: return Expression::SDIV;
211  case Instruction::FDiv: return Expression::FDIV;
212  case Instruction::URem: return Expression::UREM;
213  case Instruction::SRem: return Expression::SREM;
214  case Instruction::FRem: return Expression::FREM;
215  case Instruction::Shl:  return Expression::SHL;
216  case Instruction::LShr: return Expression::LSHR;
217  case Instruction::AShr: return Expression::ASHR;
218  case Instruction::And:  return Expression::AND;
219  case Instruction::Or:   return Expression::OR;
220  case Instruction::Xor:  return Expression::XOR;
221  }
222}
223
224Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
225  if (isa<ICmpInst>(C)) {
226    switch (C->getPredicate()) {
227    default:  // THIS SHOULD NEVER HAPPEN
228      llvm_unreachable("Comparison with unknown predicate?");
229    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
230    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
231    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
232    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
233    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
234    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
235    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
236    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
237    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
238    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
239    }
240  } else {
241    switch (C->getPredicate()) {
242    default: // THIS SHOULD NEVER HAPPEN
243      llvm_unreachable("Comparison with unknown predicate?");
244    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
245    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
246    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
247    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
248    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
249    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
250    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
251    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
252    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
253    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
254    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
255    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
256    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
257    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
258    }
259  }
260}
261
262Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
263  switch(C->getOpcode()) {
264  default: // THIS SHOULD NEVER HAPPEN
265    llvm_unreachable("Cast operator with unknown opcode?");
266  case Instruction::Trunc:    return Expression::TRUNC;
267  case Instruction::ZExt:     return Expression::ZEXT;
268  case Instruction::SExt:     return Expression::SEXT;
269  case Instruction::FPToUI:   return Expression::FPTOUI;
270  case Instruction::FPToSI:   return Expression::FPTOSI;
271  case Instruction::UIToFP:   return Expression::UITOFP;
272  case Instruction::SIToFP:   return Expression::SITOFP;
273  case Instruction::FPTrunc:  return Expression::FPTRUNC;
274  case Instruction::FPExt:    return Expression::FPEXT;
275  case Instruction::PtrToInt: return Expression::PTRTOINT;
276  case Instruction::IntToPtr: return Expression::INTTOPTR;
277  case Instruction::BitCast:  return Expression::BITCAST;
278  }
279}
280
281Expression ValueTable::create_expression(CallInst* C) {
282  Expression e;
283
284  e.type = C->getType();
285  e.function = C->getCalledFunction();
286  e.opcode = Expression::CALL;
287
288  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
289       I != E; ++I)
290    e.varargs.push_back(lookup_or_add(*I));
291
292  return e;
293}
294
295Expression ValueTable::create_expression(BinaryOperator* BO) {
296  Expression e;
297  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
298  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
299  e.function = 0;
300  e.type = BO->getType();
301  e.opcode = getOpcode(BO);
302
303  return e;
304}
305
306Expression ValueTable::create_expression(CmpInst* C) {
307  Expression e;
308
309  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
310  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
311  e.function = 0;
312  e.type = C->getType();
313  e.opcode = getOpcode(C);
314
315  return e;
316}
317
318Expression ValueTable::create_expression(CastInst* C) {
319  Expression e;
320
321  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
322  e.function = 0;
323  e.type = C->getType();
324  e.opcode = getOpcode(C);
325
326  return e;
327}
328
329Expression ValueTable::create_expression(ShuffleVectorInst* S) {
330  Expression e;
331
332  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
333  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
334  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
335  e.function = 0;
336  e.type = S->getType();
337  e.opcode = Expression::SHUFFLE;
338
339  return e;
340}
341
342Expression ValueTable::create_expression(ExtractElementInst* E) {
343  Expression e;
344
345  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
346  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
347  e.function = 0;
348  e.type = E->getType();
349  e.opcode = Expression::EXTRACT;
350
351  return e;
352}
353
354Expression ValueTable::create_expression(InsertElementInst* I) {
355  Expression e;
356
357  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
358  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
359  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
360  e.function = 0;
361  e.type = I->getType();
362  e.opcode = Expression::INSERT;
363
364  return e;
365}
366
367Expression ValueTable::create_expression(SelectInst* I) {
368  Expression e;
369
370  e.varargs.push_back(lookup_or_add(I->getCondition()));
371  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
372  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
373  e.function = 0;
374  e.type = I->getType();
375  e.opcode = Expression::SELECT;
376
377  return e;
378}
379
380Expression ValueTable::create_expression(GetElementPtrInst* G) {
381  Expression e;
382
383  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
384  e.function = 0;
385  e.type = G->getType();
386  e.opcode = Expression::GEP;
387
388  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
389       I != E; ++I)
390    e.varargs.push_back(lookup_or_add(*I));
391
392  return e;
393}
394
395Expression ValueTable::create_expression(ExtractValueInst* E) {
396  Expression e;
397
398  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
399  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
400       II != IE; ++II)
401    e.varargs.push_back(*II);
402  e.function = 0;
403  e.type = E->getType();
404  e.opcode = Expression::EXTRACTVALUE;
405
406  return e;
407}
408
409Expression ValueTable::create_expression(InsertValueInst* E) {
410  Expression e;
411
412  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
413  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
414  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
415       II != IE; ++II)
416    e.varargs.push_back(*II);
417  e.function = 0;
418  e.type = E->getType();
419  e.opcode = Expression::INSERTVALUE;
420
421  return e;
422}
423
424//===----------------------------------------------------------------------===//
425//                     ValueTable External Functions
426//===----------------------------------------------------------------------===//
427
428/// add - Insert a value into the table with a specified value number.
429void ValueTable::add(Value *V, uint32_t num) {
430  valueNumbering.insert(std::make_pair(V, num));
431}
432
433uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
434  if (AA->doesNotAccessMemory(C)) {
435    Expression exp = create_expression(C);
436    uint32_t& e = expressionNumbering[exp];
437    if (!e) e = nextValueNumber++;
438    valueNumbering[C] = e;
439    return e;
440  } else if (AA->onlyReadsMemory(C)) {
441    Expression exp = create_expression(C);
442    uint32_t& e = expressionNumbering[exp];
443    if (!e) {
444      e = nextValueNumber++;
445      valueNumbering[C] = e;
446      return e;
447    }
448    if (!MD) {
449      e = nextValueNumber++;
450      valueNumbering[C] = e;
451      return e;
452    }
453
454    MemDepResult local_dep = MD->getDependency(C);
455
456    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
457      valueNumbering[C] =  nextValueNumber;
458      return nextValueNumber++;
459    }
460
461    if (local_dep.isDef()) {
462      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
463
464      if (local_cdep->getNumOperands() != C->getNumOperands()) {
465        valueNumbering[C] = nextValueNumber;
466        return nextValueNumber++;
467      }
468
469      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
470        uint32_t c_vn = lookup_or_add(C->getOperand(i));
471        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
472        if (c_vn != cd_vn) {
473          valueNumbering[C] = nextValueNumber;
474          return nextValueNumber++;
475        }
476      }
477
478      uint32_t v = lookup_or_add(local_cdep);
479      valueNumbering[C] = v;
480      return v;
481    }
482
483    // Non-local case.
484    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
485      MD->getNonLocalCallDependency(CallSite(C));
486    // FIXME: call/call dependencies for readonly calls should return def, not
487    // clobber!  Move the checking logic to MemDep!
488    CallInst* cdep = 0;
489
490    // Check to see if we have a single dominating call instruction that is
491    // identical to C.
492    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
493      const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
494      // Ignore non-local dependencies.
495      if (I->second.isNonLocal())
496        continue;
497
498      // We don't handle non-depedencies.  If we already have a call, reject
499      // instruction dependencies.
500      if (I->second.isClobber() || cdep != 0) {
501        cdep = 0;
502        break;
503      }
504
505      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
506      // FIXME: All duplicated with non-local case.
507      if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
508        cdep = NonLocalDepCall;
509        continue;
510      }
511
512      cdep = 0;
513      break;
514    }
515
516    if (!cdep) {
517      valueNumbering[C] = nextValueNumber;
518      return nextValueNumber++;
519    }
520
521    if (cdep->getNumOperands() != C->getNumOperands()) {
522      valueNumbering[C] = nextValueNumber;
523      return nextValueNumber++;
524    }
525    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
526      uint32_t c_vn = lookup_or_add(C->getOperand(i));
527      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
528      if (c_vn != cd_vn) {
529        valueNumbering[C] = nextValueNumber;
530        return nextValueNumber++;
531      }
532    }
533
534    uint32_t v = lookup_or_add(cdep);
535    valueNumbering[C] = v;
536    return v;
537
538  } else {
539    valueNumbering[C] = nextValueNumber;
540    return nextValueNumber++;
541  }
542}
543
544/// lookup_or_add - Returns the value number for the specified value, assigning
545/// it a new number if it did not have one before.
546uint32_t ValueTable::lookup_or_add(Value *V) {
547  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
548  if (VI != valueNumbering.end())
549    return VI->second;
550
551  if (!isa<Instruction>(V)) {
552    valueNumbering[V] = nextValueNumber;
553    return nextValueNumber++;
554  }
555
556  Instruction* I = cast<Instruction>(V);
557  Expression exp;
558  switch (I->getOpcode()) {
559    case Instruction::Call:
560      return lookup_or_add_call(cast<CallInst>(I));
561    case Instruction::Add:
562    case Instruction::FAdd:
563    case Instruction::Sub:
564    case Instruction::FSub:
565    case Instruction::Mul:
566    case Instruction::FMul:
567    case Instruction::UDiv:
568    case Instruction::SDiv:
569    case Instruction::FDiv:
570    case Instruction::URem:
571    case Instruction::SRem:
572    case Instruction::FRem:
573    case Instruction::Shl:
574    case Instruction::LShr:
575    case Instruction::AShr:
576    case Instruction::And:
577    case Instruction::Or :
578    case Instruction::Xor:
579      exp = create_expression(cast<BinaryOperator>(I));
580      break;
581    case Instruction::ICmp:
582    case Instruction::FCmp:
583      exp = create_expression(cast<CmpInst>(I));
584      break;
585    case Instruction::Trunc:
586    case Instruction::ZExt:
587    case Instruction::SExt:
588    case Instruction::FPToUI:
589    case Instruction::FPToSI:
590    case Instruction::UIToFP:
591    case Instruction::SIToFP:
592    case Instruction::FPTrunc:
593    case Instruction::FPExt:
594    case Instruction::PtrToInt:
595    case Instruction::IntToPtr:
596    case Instruction::BitCast:
597      exp = create_expression(cast<CastInst>(I));
598      break;
599    case Instruction::Select:
600      exp = create_expression(cast<SelectInst>(I));
601      break;
602    case Instruction::ExtractElement:
603      exp = create_expression(cast<ExtractElementInst>(I));
604      break;
605    case Instruction::InsertElement:
606      exp = create_expression(cast<InsertElementInst>(I));
607      break;
608    case Instruction::ShuffleVector:
609      exp = create_expression(cast<ShuffleVectorInst>(I));
610      break;
611    case Instruction::ExtractValue:
612      exp = create_expression(cast<ExtractValueInst>(I));
613      break;
614    case Instruction::InsertValue:
615      exp = create_expression(cast<InsertValueInst>(I));
616      break;
617    case Instruction::GetElementPtr:
618      exp = create_expression(cast<GetElementPtrInst>(I));
619      break;
620    default:
621      valueNumbering[V] = nextValueNumber;
622      return nextValueNumber++;
623  }
624
625  uint32_t& e = expressionNumbering[exp];
626  if (!e) e = nextValueNumber++;
627  valueNumbering[V] = e;
628  return e;
629}
630
631/// lookup - Returns the value number of the specified value. Fails if
632/// the value has not yet been numbered.
633uint32_t ValueTable::lookup(Value *V) const {
634  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
635  assert(VI != valueNumbering.end() && "Value not numbered?");
636  return VI->second;
637}
638
639/// clear - Remove all entries from the ValueTable
640void ValueTable::clear() {
641  valueNumbering.clear();
642  expressionNumbering.clear();
643  nextValueNumber = 1;
644}
645
646/// erase - Remove a value from the value numbering
647void ValueTable::erase(Value *V) {
648  valueNumbering.erase(V);
649}
650
651/// verifyRemoved - Verify that the value is removed from all internal data
652/// structures.
653void ValueTable::verifyRemoved(const Value *V) const {
654  for (DenseMap<Value*, uint32_t>::const_iterator
655         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
656    assert(I->first != V && "Inst still occurs in value numbering map!");
657  }
658}
659
660//===----------------------------------------------------------------------===//
661//                                GVN Pass
662//===----------------------------------------------------------------------===//
663
664namespace {
665  struct ValueNumberScope {
666    ValueNumberScope* parent;
667    DenseMap<uint32_t, Value*> table;
668
669    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
670  };
671}
672
673namespace {
674
675  class GVN : public FunctionPass {
676    bool runOnFunction(Function &F);
677  public:
678    static char ID; // Pass identification, replacement for typeid
679    explicit GVN(bool nopre = false, bool noloads = false)
680      : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
681
682  private:
683    bool NoPRE;
684    bool NoLoads;
685    MemoryDependenceAnalysis *MD;
686    DominatorTree *DT;
687
688    ValueTable VN;
689    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
690
691    // This transformation requires dominator postdominator info
692    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
693      AU.addRequired<DominatorTree>();
694      if (!NoLoads)
695        AU.addRequired<MemoryDependenceAnalysis>();
696      AU.addRequired<AliasAnalysis>();
697
698      AU.addPreserved<DominatorTree>();
699      AU.addPreserved<AliasAnalysis>();
700    }
701
702    // Helper fuctions
703    // FIXME: eliminate or document these better
704    bool processLoad(LoadInst* L,
705                     SmallVectorImpl<Instruction*> &toErase);
706    bool processInstruction(Instruction *I,
707                            SmallVectorImpl<Instruction*> &toErase);
708    bool processNonLocalLoad(LoadInst* L,
709                             SmallVectorImpl<Instruction*> &toErase);
710    bool processBlock(BasicBlock *BB);
711    void dump(DenseMap<uint32_t, Value*>& d);
712    bool iterateOnFunction(Function &F);
713    Value *CollapsePhi(PHINode* p);
714    bool performPRE(Function& F);
715    Value *lookupNumber(BasicBlock *BB, uint32_t num);
716    void cleanupGlobalSets();
717    void verifyRemoved(const Instruction *I) const;
718  };
719
720  char GVN::ID = 0;
721}
722
723// createGVNPass - The public interface to this file...
724FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
725  return new GVN(NoPRE, NoLoads);
726}
727
728static RegisterPass<GVN> X("gvn",
729                           "Global Value Numbering");
730
731void GVN::dump(DenseMap<uint32_t, Value*>& d) {
732  printf("{\n");
733  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
734       E = d.end(); I != E; ++I) {
735      printf("%d\n", I->first);
736      I->second->dump();
737  }
738  printf("}\n");
739}
740
741static bool isSafeReplacement(PHINode* p, Instruction *inst) {
742  if (!isa<PHINode>(inst))
743    return true;
744
745  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
746       UI != E; ++UI)
747    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
748      if (use_phi->getParent() == inst->getParent())
749        return false;
750
751  return true;
752}
753
754Value *GVN::CollapsePhi(PHINode *PN) {
755  Value *ConstVal = PN->hasConstantValue(DT);
756  if (!ConstVal) return 0;
757
758  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
759  if (!Inst)
760    return ConstVal;
761
762  if (DT->dominates(Inst, PN))
763    if (isSafeReplacement(PN, Inst))
764      return Inst;
765  return 0;
766}
767
768/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
769/// we're analyzing is fully available in the specified block.  As we go, keep
770/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
771/// map is actually a tri-state map with the following values:
772///   0) we know the block *is not* fully available.
773///   1) we know the block *is* fully available.
774///   2) we do not know whether the block is fully available or not, but we are
775///      currently speculating that it will be.
776///   3) we are speculating for this block and have used that to speculate for
777///      other blocks.
778static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
779                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
780  // Optimistically assume that the block is fully available and check to see
781  // if we already know about this block in one lookup.
782  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
783    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
784
785  // If the entry already existed for this block, return the precomputed value.
786  if (!IV.second) {
787    // If this is a speculative "available" value, mark it as being used for
788    // speculation of other blocks.
789    if (IV.first->second == 2)
790      IV.first->second = 3;
791    return IV.first->second != 0;
792  }
793
794  // Otherwise, see if it is fully available in all predecessors.
795  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
796
797  // If this block has no predecessors, it isn't live-in here.
798  if (PI == PE)
799    goto SpeculationFailure;
800
801  for (; PI != PE; ++PI)
802    // If the value isn't fully available in one of our predecessors, then it
803    // isn't fully available in this block either.  Undo our previous
804    // optimistic assumption and bail out.
805    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
806      goto SpeculationFailure;
807
808  return true;
809
810// SpeculationFailure - If we get here, we found out that this is not, after
811// all, a fully-available block.  We have a problem if we speculated on this and
812// used the speculation to mark other blocks as available.
813SpeculationFailure:
814  char &BBVal = FullyAvailableBlocks[BB];
815
816  // If we didn't speculate on this, just return with it set to false.
817  if (BBVal == 2) {
818    BBVal = 0;
819    return false;
820  }
821
822  // If we did speculate on this value, we could have blocks set to 1 that are
823  // incorrect.  Walk the (transitive) successors of this block and mark them as
824  // 0 if set to one.
825  SmallVector<BasicBlock*, 32> BBWorklist;
826  BBWorklist.push_back(BB);
827
828  while (!BBWorklist.empty()) {
829    BasicBlock *Entry = BBWorklist.pop_back_val();
830    // Note that this sets blocks to 0 (unavailable) if they happen to not
831    // already be in FullyAvailableBlocks.  This is safe.
832    char &EntryVal = FullyAvailableBlocks[Entry];
833    if (EntryVal == 0) continue;  // Already unavailable.
834
835    // Mark as unavailable.
836    EntryVal = 0;
837
838    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
839      BBWorklist.push_back(*I);
840  }
841
842  return false;
843}
844
845
846/// CanCoerceMustAliasedValueToLoad - Return true if
847/// CoerceAvailableValueToLoadType will succeed.
848static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
849                                            const Type *LoadTy,
850                                            const TargetData &TD) {
851  // If the loaded or stored value is an first class array or struct, don't try
852  // to transform them.  We need to be able to bitcast to integer.
853  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
854      isa<StructType>(StoredVal->getType()) ||
855      isa<ArrayType>(StoredVal->getType()))
856    return false;
857
858  // The store has to be at least as big as the load.
859  if (TD.getTypeSizeInBits(StoredVal->getType()) <
860        TD.getTypeSizeInBits(LoadTy))
861    return false;
862
863  return true;
864}
865
866
867/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
868/// then a load from a must-aliased pointer of a different type, try to coerce
869/// the stored value.  LoadedTy is the type of the load we want to replace and
870/// InsertPt is the place to insert new instructions.
871///
872/// If we can't do it, return null.
873static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
874                                             const Type *LoadedTy,
875                                             Instruction *InsertPt,
876                                             const TargetData &TD) {
877  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
878    return 0;
879
880  const Type *StoredValTy = StoredVal->getType();
881
882  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
883  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
884
885  // If the store and reload are the same size, we can always reuse it.
886  if (StoreSize == LoadSize) {
887    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
888      // Pointer to Pointer -> use bitcast.
889      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
890    }
891
892    // Convert source pointers to integers, which can be bitcast.
893    if (isa<PointerType>(StoredValTy)) {
894      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
895      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
896    }
897
898    const Type *TypeToCastTo = LoadedTy;
899    if (isa<PointerType>(TypeToCastTo))
900      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
901
902    if (StoredValTy != TypeToCastTo)
903      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
904
905    // Cast to pointer if the load needs a pointer type.
906    if (isa<PointerType>(LoadedTy))
907      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
908
909    return StoredVal;
910  }
911
912  // If the loaded value is smaller than the available value, then we can
913  // extract out a piece from it.  If the available value is too small, then we
914  // can't do anything.
915  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
916
917  // Convert source pointers to integers, which can be manipulated.
918  if (isa<PointerType>(StoredValTy)) {
919    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
920    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
921  }
922
923  // Convert vectors and fp to integer, which can be manipulated.
924  if (!isa<IntegerType>(StoredValTy)) {
925    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
926    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
927  }
928
929  // If this is a big-endian system, we need to shift the value down to the low
930  // bits so that a truncate will work.
931  if (TD.isBigEndian()) {
932    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
933    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
934  }
935
936  // Truncate the integer to the right size now.
937  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
938  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
939
940  if (LoadedTy == NewIntTy)
941    return StoredVal;
942
943  // If the result is a pointer, inttoptr.
944  if (isa<PointerType>(LoadedTy))
945    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
946
947  // Otherwise, bitcast.
948  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
949}
950
951/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
952/// be expressed as a base pointer plus a constant offset.  Return the base and
953/// offset to the caller.
954static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
955                                        const TargetData &TD) {
956  Operator *PtrOp = dyn_cast<Operator>(Ptr);
957  if (PtrOp == 0) return Ptr;
958
959  // Just look through bitcasts.
960  if (PtrOp->getOpcode() == Instruction::BitCast)
961    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
962
963  // If this is a GEP with constant indices, we can look through it.
964  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
965  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
966
967  gep_type_iterator GTI = gep_type_begin(GEP);
968  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
969       ++I, ++GTI) {
970    ConstantInt *OpC = cast<ConstantInt>(*I);
971    if (OpC->isZero()) continue;
972
973    // Handle a struct and array indices which add their offset to the pointer.
974    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
975      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
976    } else {
977      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
978      Offset += OpC->getSExtValue()*Size;
979    }
980  }
981
982  // Re-sign extend from the pointer size if needed to get overflow edge cases
983  // right.
984  unsigned PtrSize = TD.getPointerSizeInBits();
985  if (PtrSize < 64)
986    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
987
988  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
989}
990
991
992/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
993/// memdep query of a load that ends up being a clobbering memory write (store,
994/// memset, memcpy, memmove).  This means that the write *may* provide bits used
995/// by the load but we can't be sure because the pointers don't mustalias.
996///
997/// Check this case to see if there is anything more we can do before we give
998/// up.  This returns -1 if we have to give up, or a byte number in the stored
999/// value of the piece that feeds the load.
1000static int AnalyzeLoadFromClobberingWrite(LoadInst *L, Value *WritePtr,
1001                                          uint64_t WriteSizeInBits,
1002                                          const TargetData &TD) {
1003  // If the loaded or stored value is an first class array or struct, don't try
1004  // to transform them.  We need to be able to bitcast to integer.
1005  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()))
1006    return -1;
1007
1008  int64_t StoreOffset = 0, LoadOffset = 0;
1009  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1010  Value *LoadBase =
1011    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1012  if (StoreBase != LoadBase)
1013    return -1;
1014
1015  // If the load and store are to the exact same address, they should have been
1016  // a must alias.  AA must have gotten confused.
1017  // FIXME: Study to see if/when this happens.
1018  if (LoadOffset == StoreOffset) {
1019#if 0
1020    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1021    << "Base       = " << *StoreBase << "\n"
1022    << "Store Ptr  = " << *WritePtr << "\n"
1023    << "Store Offs = " << StoreOffset << "\n"
1024    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1025    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1026    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1027    << *L->getParent();
1028#endif
1029    return -1;
1030  }
1031
1032  // If the load and store don't overlap at all, the store doesn't provide
1033  // anything to the load.  In this case, they really don't alias at all, AA
1034  // must have gotten confused.
1035  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1036  // remove this check, as it is duplicated with what we have below.
1037  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
1038
1039  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1040    return -1;
1041  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1042  LoadSize >>= 3;
1043
1044
1045  bool isAAFailure = false;
1046  if (StoreOffset < LoadOffset) {
1047    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1048  } else {
1049    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1050  }
1051  if (isAAFailure) {
1052#if 0
1053    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1054    << "Base       = " << *StoreBase << "\n"
1055    << "Store Ptr  = " << *WritePtr << "\n"
1056    << "Store Offs = " << StoreOffset << "\n"
1057    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1058    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1059    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1060    << *L->getParent();
1061#endif
1062    return -1;
1063  }
1064
1065  // If the Load isn't completely contained within the stored bits, we don't
1066  // have all the bits to feed it.  We could do something crazy in the future
1067  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1068  // valuable.
1069  if (StoreOffset > LoadOffset ||
1070      StoreOffset+StoreSize < LoadOffset+LoadSize)
1071    return -1;
1072
1073  // Okay, we can do this transformation.  Return the number of bytes into the
1074  // store that the load is.
1075  return LoadOffset-StoreOffset;
1076}
1077
1078/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1079/// memdep query of a load that ends up being a clobbering store.
1080static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
1081                                          const TargetData &TD) {
1082  // Cannot handle reading from store of first-class aggregate yet.
1083  if (isa<StructType>(DepSI->getOperand(0)->getType()) ||
1084      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1085    return -1;
1086
1087  Value *StorePtr = DepSI->getPointerOperand();
1088  uint64_t StoreSize = TD.getTypeSizeInBits(StorePtr->getType());
1089  return AnalyzeLoadFromClobberingWrite(L, StorePtr, StoreSize, TD);
1090}
1091
1092static int AnalyzeLoadFromClobberingMemInst(LoadInst *L, MemIntrinsic *MI,
1093                                            const TargetData &TD) {
1094  // If the mem operation is a non-constant size, we can't handle it.
1095  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1096  if (SizeCst == 0) return -1;
1097  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1098
1099  // If this is memset, we just need to see if the offset is valid in the size
1100  // of the memset..
1101  if (MI->getIntrinsicID() == Intrinsic::memset)
1102    return AnalyzeLoadFromClobberingWrite(L, MI->getDest(), MemSizeInBits, TD);
1103
1104  // If we have a memcpy/memmove, the only case we can handle is if this is a
1105  // copy from constant memory.  In that case, we can read directly from the
1106  // constant memory.
1107  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1108
1109  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1110  if (Src == 0) return -1;
1111
1112  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1113  if (GV == 0 || !GV->isConstant()) return -1;
1114
1115  // See if the access is within the bounds of the transfer.
1116  int Offset =
1117    AnalyzeLoadFromClobberingWrite(L, MI->getDest(), MemSizeInBits, TD);
1118  if (Offset == -1)
1119    return Offset;
1120
1121  // Otherwise, see if we can constant fold a load from the constant with the
1122  // offset applied as appropriate.
1123  Src = ConstantExpr::getBitCast(Src,
1124                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1125  Constant *OffsetCst =
1126    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1127  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1128  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(L->getType()));
1129  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1130    return Offset;
1131  return -1;
1132}
1133
1134
1135/// GetStoreValueForLoad - This function is called when we have a
1136/// memdep query of a load that ends up being a clobbering store.  This means
1137/// that the store *may* provide bits used by the load but we can't be sure
1138/// because the pointers don't mustalias.  Check this case to see if there is
1139/// anything more we can do before we give up.
1140static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1141                                   const Type *LoadTy,
1142                                   Instruction *InsertPt, const TargetData &TD){
1143  LLVMContext &Ctx = SrcVal->getType()->getContext();
1144
1145  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1146  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1147
1148
1149  // Compute which bits of the stored value are being used by the load.  Convert
1150  // to an integer type to start with.
1151  if (isa<PointerType>(SrcVal->getType()))
1152    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1153  if (!isa<IntegerType>(SrcVal->getType()))
1154    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1155                             "tmp", InsertPt);
1156
1157  // Shift the bits to the least significant depending on endianness.
1158  unsigned ShiftAmt;
1159  if (TD.isLittleEndian())
1160    ShiftAmt = Offset*8;
1161  else
1162    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1163
1164  if (ShiftAmt)
1165    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1166                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1167
1168  if (LoadSize != StoreSize)
1169    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1170                           "tmp", InsertPt);
1171
1172  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1173}
1174
1175/// GetMemInstValueForLoad - This function is called when we have a
1176/// memdep query of a load that ends up being a clobbering mem intrinsic.
1177static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1178                                     const Type *LoadTy, Instruction *InsertPt,
1179                                     const TargetData &TD){
1180  LLVMContext &Ctx = LoadTy->getContext();
1181  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1182
1183  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1184
1185  // We know that this method is only called when the mem transfer fully
1186  // provides the bits for the load.
1187  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1188    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1189    // independently of what the offset is.
1190    Value *Val = MSI->getValue();
1191    if (LoadSize != 1)
1192      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1193
1194    Value *OneElt = Val;
1195
1196    // Splat the value out to the right number of bits.
1197    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1198      // If we can double the number of bytes set, do it.
1199      if (NumBytesSet*2 <= LoadSize) {
1200        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1201        Val = Builder.CreateOr(Val, ShVal);
1202        NumBytesSet <<= 1;
1203        continue;
1204      }
1205
1206      // Otherwise insert one byte at a time.
1207      Value *ShVal = Builder.CreateShl(Val, 1*8);
1208      Val = Builder.CreateOr(OneElt, ShVal);
1209      ++NumBytesSet;
1210    }
1211
1212    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1213  }
1214
1215  // Otherwise, this is a memcpy/memmove from a constant global.
1216  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1217  Constant *Src = cast<Constant>(MTI->getSource());
1218
1219  // Otherwise, see if we can constant fold a load from the constant with the
1220  // offset applied as appropriate.
1221  Src = ConstantExpr::getBitCast(Src,
1222                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1223  Constant *OffsetCst =
1224  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1225  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1226  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1227  return ConstantFoldLoadFromConstPtr(Src, &TD);
1228}
1229
1230
1231
1232struct AvailableValueInBlock {
1233  /// BB - The basic block in question.
1234  BasicBlock *BB;
1235  enum ValType {
1236    SimpleVal,  // A simple offsetted value that is accessed.
1237    MemIntrin   // A memory intrinsic which is loaded from.
1238  };
1239
1240  /// V - The value that is live out of the block.
1241  PointerIntPair<Value *, 1, ValType> Val;
1242
1243  /// Offset - The byte offset in Val that is interesting for the load query.
1244  unsigned Offset;
1245
1246  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1247                                   unsigned Offset = 0) {
1248    AvailableValueInBlock Res;
1249    Res.BB = BB;
1250    Res.Val.setPointer(V);
1251    Res.Val.setInt(SimpleVal);
1252    Res.Offset = Offset;
1253    return Res;
1254  }
1255
1256  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1257                                     unsigned Offset = 0) {
1258    AvailableValueInBlock Res;
1259    Res.BB = BB;
1260    Res.Val.setPointer(MI);
1261    Res.Val.setInt(MemIntrin);
1262    Res.Offset = Offset;
1263    return Res;
1264  }
1265
1266  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1267  Value *getSimpleValue() const {
1268    assert(isSimpleValue() && "Wrong accessor");
1269    return Val.getPointer();
1270  }
1271
1272  MemIntrinsic *getMemIntrinValue() const {
1273    assert(!isSimpleValue() && "Wrong accessor");
1274    return cast<MemIntrinsic>(Val.getPointer());
1275  }
1276};
1277
1278/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1279/// construct SSA form, allowing us to eliminate LI.  This returns the value
1280/// that should be used at LI's definition site.
1281static Value *ConstructSSAForLoadSet(LoadInst *LI,
1282                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1283                                     const TargetData *TD,
1284                                     AliasAnalysis *AA) {
1285  SmallVector<PHINode*, 8> NewPHIs;
1286  SSAUpdater SSAUpdate(&NewPHIs);
1287  SSAUpdate.Initialize(LI);
1288
1289  const Type *LoadTy = LI->getType();
1290
1291  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1292    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1293    BasicBlock *BB = AV.BB;
1294
1295    if (SSAUpdate.HasValueForBlock(BB))
1296      continue;
1297
1298    unsigned Offset = AV.Offset;
1299
1300    Value *AvailableVal;
1301    if (AV.isSimpleValue()) {
1302      AvailableVal = AV.getSimpleValue();
1303      if (AvailableVal->getType() != LoadTy) {
1304        assert(TD && "Need target data to handle type mismatch case");
1305        AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1306                                            BB->getTerminator(), *TD);
1307
1308        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1309              << *AV.getSimpleValue() << '\n'
1310              << *AvailableVal << '\n' << "\n\n\n");
1311      }
1312    } else {
1313      AvailableVal = GetMemInstValueForLoad(AV.getMemIntrinValue(), Offset,
1314                                            LoadTy, BB->getTerminator(), *TD);
1315      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1316            << "  " << *AV.getMemIntrinValue() << '\n'
1317            << *AvailableVal << '\n' << "\n\n\n");
1318    }
1319    SSAUpdate.AddAvailableValue(BB, AvailableVal);
1320  }
1321
1322  // Perform PHI construction.
1323  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1324
1325  // If new PHI nodes were created, notify alias analysis.
1326  if (isa<PointerType>(V->getType()))
1327    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1328      AA->copyValue(LI, NewPHIs[i]);
1329
1330  return V;
1331}
1332
1333static bool isLifetimeStart(Instruction *Inst) {
1334  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1335    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1336  return false;
1337}
1338
1339/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1340/// non-local by performing PHI construction.
1341bool GVN::processNonLocalLoad(LoadInst *LI,
1342                              SmallVectorImpl<Instruction*> &toErase) {
1343  // Find the non-local dependencies of the load.
1344  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1345  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1346                                   Deps);
1347  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1348  //             << Deps.size() << *LI << '\n');
1349
1350  // If we had to process more than one hundred blocks to find the
1351  // dependencies, this load isn't worth worrying about.  Optimizing
1352  // it will be too expensive.
1353  if (Deps.size() > 100)
1354    return false;
1355
1356  // If we had a phi translation failure, we'll have a single entry which is a
1357  // clobber in the current block.  Reject this early.
1358  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1359    DEBUG(
1360      errs() << "GVN: non-local load ";
1361      WriteAsOperand(errs(), LI);
1362      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1363    );
1364    return false;
1365  }
1366
1367  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1368  // where we have a value available in repl, also keep track of whether we see
1369  // dependencies that produce an unknown value for the load (such as a call
1370  // that could potentially clobber the load).
1371  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1372  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1373
1374  const TargetData *TD = 0;
1375
1376  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1377    BasicBlock *DepBB = Deps[i].first;
1378    MemDepResult DepInfo = Deps[i].second;
1379
1380    if (DepInfo.isClobber()) {
1381      // If the dependence is to a store that writes to a superset of the bits
1382      // read by the load, we can extract the bits we need for the load from the
1383      // stored value.
1384      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1385        if (TD == 0)
1386          TD = getAnalysisIfAvailable<TargetData>();
1387        if (TD) {
1388          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1389          if (Offset != -1) {
1390            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1391                                                           DepSI->getOperand(0),
1392                                                                Offset));
1393            continue;
1394          }
1395        }
1396      }
1397
1398      // If the clobbering value is a memset/memcpy/memmove, see if we can
1399      // forward a value on from it.
1400      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1401        if (TD == 0)
1402          TD = getAnalysisIfAvailable<TargetData>();
1403        if (TD) {
1404          int Offset = AnalyzeLoadFromClobberingMemInst(LI, DepMI, *TD);
1405          if (Offset != -1) {
1406            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1407                                                                  Offset));
1408            continue;
1409          }
1410        }
1411      }
1412
1413      UnavailableBlocks.push_back(DepBB);
1414      continue;
1415    }
1416
1417    Instruction *DepInst = DepInfo.getInst();
1418
1419    // Loading the allocation -> undef.
1420    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1421        // Loading immediately after lifetime begin -> undef.
1422        isLifetimeStart(DepInst)) {
1423      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1424                                             UndefValue::get(LI->getType())));
1425      continue;
1426    }
1427
1428    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1429      // Reject loads and stores that are to the same address but are of
1430      // different types if we have to.
1431      if (S->getOperand(0)->getType() != LI->getType()) {
1432        if (TD == 0)
1433          TD = getAnalysisIfAvailable<TargetData>();
1434
1435        // If the stored value is larger or equal to the loaded value, we can
1436        // reuse it.
1437        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1438                                                        LI->getType(), *TD)) {
1439          UnavailableBlocks.push_back(DepBB);
1440          continue;
1441        }
1442      }
1443
1444      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1445                                                          S->getOperand(0)));
1446      continue;
1447    }
1448
1449    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1450      // If the types mismatch and we can't handle it, reject reuse of the load.
1451      if (LD->getType() != LI->getType()) {
1452        if (TD == 0)
1453          TD = getAnalysisIfAvailable<TargetData>();
1454
1455        // If the stored value is larger or equal to the loaded value, we can
1456        // reuse it.
1457        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1458          UnavailableBlocks.push_back(DepBB);
1459          continue;
1460        }
1461      }
1462      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1463      continue;
1464    }
1465
1466    UnavailableBlocks.push_back(DepBB);
1467    continue;
1468  }
1469
1470  // If we have no predecessors that produce a known value for this load, exit
1471  // early.
1472  if (ValuesPerBlock.empty()) return false;
1473
1474  // If all of the instructions we depend on produce a known value for this
1475  // load, then it is fully redundant and we can use PHI insertion to compute
1476  // its value.  Insert PHIs and remove the fully redundant value now.
1477  if (UnavailableBlocks.empty()) {
1478    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1479
1480    // Perform PHI construction.
1481    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1482                                      VN.getAliasAnalysis());
1483    LI->replaceAllUsesWith(V);
1484
1485    if (isa<PHINode>(V))
1486      V->takeName(LI);
1487    if (isa<PointerType>(V->getType()))
1488      MD->invalidateCachedPointerInfo(V);
1489    toErase.push_back(LI);
1490    NumGVNLoad++;
1491    return true;
1492  }
1493
1494  if (!EnablePRE || !EnableLoadPRE)
1495    return false;
1496
1497  // Okay, we have *some* definitions of the value.  This means that the value
1498  // is available in some of our (transitive) predecessors.  Lets think about
1499  // doing PRE of this load.  This will involve inserting a new load into the
1500  // predecessor when it's not available.  We could do this in general, but
1501  // prefer to not increase code size.  As such, we only do this when we know
1502  // that we only have to insert *one* load (which means we're basically moving
1503  // the load, not inserting a new one).
1504
1505  SmallPtrSet<BasicBlock *, 4> Blockers;
1506  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1507    Blockers.insert(UnavailableBlocks[i]);
1508
1509  // Lets find first basic block with more than one predecessor.  Walk backwards
1510  // through predecessors if needed.
1511  BasicBlock *LoadBB = LI->getParent();
1512  BasicBlock *TmpBB = LoadBB;
1513
1514  bool isSinglePred = false;
1515  bool allSingleSucc = true;
1516  while (TmpBB->getSinglePredecessor()) {
1517    isSinglePred = true;
1518    TmpBB = TmpBB->getSinglePredecessor();
1519    if (!TmpBB) // If haven't found any, bail now.
1520      return false;
1521    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1522      return false;
1523    if (Blockers.count(TmpBB))
1524      return false;
1525    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1526      allSingleSucc = false;
1527  }
1528
1529  assert(TmpBB);
1530  LoadBB = TmpBB;
1531
1532  // If we have a repl set with LI itself in it, this means we have a loop where
1533  // at least one of the values is LI.  Since this means that we won't be able
1534  // to eliminate LI even if we insert uses in the other predecessors, we will
1535  // end up increasing code size.  Reject this by scanning for LI.
1536  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1537    if (ValuesPerBlock[i].isSimpleValue() &&
1538        ValuesPerBlock[i].getSimpleValue() == LI)
1539      return false;
1540
1541  // FIXME: It is extremely unclear what this loop is doing, other than
1542  // artificially restricting loadpre.
1543  if (isSinglePred) {
1544    bool isHot = false;
1545    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1546      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1547      if (AV.isSimpleValue())
1548        // "Hot" Instruction is in some loop (because it dominates its dep.
1549        // instruction).
1550        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1551          if (DT->dominates(LI, I)) {
1552            isHot = true;
1553            break;
1554          }
1555    }
1556
1557    // We are interested only in "hot" instructions. We don't want to do any
1558    // mis-optimizations here.
1559    if (!isHot)
1560      return false;
1561  }
1562
1563  // Okay, we have some hope :).  Check to see if the loaded value is fully
1564  // available in all but one predecessor.
1565  // FIXME: If we could restructure the CFG, we could make a common pred with
1566  // all the preds that don't have an available LI and insert a new load into
1567  // that one block.
1568  BasicBlock *UnavailablePred = 0;
1569
1570  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1571  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1572    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1573  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1574    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1575
1576  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1577       PI != E; ++PI) {
1578    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1579      continue;
1580
1581    // If this load is not available in multiple predecessors, reject it.
1582    if (UnavailablePred && UnavailablePred != *PI)
1583      return false;
1584    UnavailablePred = *PI;
1585  }
1586
1587  assert(UnavailablePred != 0 &&
1588         "Fully available value should be eliminated above!");
1589
1590  // We don't currently handle critical edges :(
1591  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1592    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1593                 << UnavailablePred->getName() << "': " << *LI << '\n');
1594    return false;
1595  }
1596
1597  // Do PHI translation to get its value in the predecessor if necessary.  The
1598  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1599  //
1600  // FIXME: This may insert a computation, but we don't tell scalar GVN
1601  // optimization stuff about it.  How do we do this?
1602  SmallVector<Instruction*, 8> NewInsts;
1603  Value *LoadPtr = 0;
1604
1605  // If all preds have a single successor, then we know it is safe to insert the
1606  // load on the pred (?!?), so we can insert code to materialize the pointer if
1607  // it is not available.
1608  if (allSingleSucc) {
1609    LoadPtr = MD->InsertPHITranslatedPointer(LI->getOperand(0), LoadBB,
1610                                             UnavailablePred, TD, *DT,NewInsts);
1611  } else {
1612    LoadPtr = MD->GetAvailablePHITranslatedValue(LI->getOperand(0), LoadBB,
1613                                                 UnavailablePred, TD, *DT);
1614  }
1615
1616  // Assign value numbers to these new instructions.
1617  for (SmallVector<Instruction*, 8>::iterator NI = NewInsts.begin(),
1618       NE = NewInsts.end(); NI != NE; ++NI) {
1619    // FIXME: We really _ought_ to insert these value numbers into their
1620    // parent's availability map.  However, in doing so, we risk getting into
1621    // ordering issues.  If a block hasn't been processed yet, we would be
1622    // marking a value as AVAIL-IN, which isn't what we intend.
1623    VN.lookup_or_add(*NI);
1624  }
1625
1626  // If we couldn't find or insert a computation of this phi translated value,
1627  // we fail PRE.
1628  if (LoadPtr == 0) {
1629    DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1630                 << *LI->getOperand(0) << "\n");
1631    return false;
1632  }
1633
1634  // Make sure it is valid to move this load here.  We have to watch out for:
1635  //  @1 = getelementptr (i8* p, ...
1636  //  test p and branch if == 0
1637  //  load @1
1638  // It is valid to have the getelementptr before the test, even if p can be 0,
1639  // as getelementptr only does address arithmetic.
1640  // If we are not pushing the value through any multiple-successor blocks
1641  // we do not have this case.  Otherwise, check that the load is safe to
1642  // put anywhere; this can be improved, but should be conservatively safe.
1643  if (!allSingleSucc &&
1644      // FIXME: REEVALUTE THIS.
1645      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
1646    assert(NewInsts.empty() && "Should not have inserted instructions");
1647    return false;
1648  }
1649
1650  // Okay, we can eliminate this load by inserting a reload in the predecessor
1651  // and using PHI construction to get the value in the other predecessors, do
1652  // it.
1653  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1654  DEBUG(if (!NewInsts.empty())
1655          errs() << "INSERTED " << NewInsts.size() << " INSTS: "
1656                 << *NewInsts.back() << '\n');
1657
1658  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1659                                LI->getAlignment(),
1660                                UnavailablePred->getTerminator());
1661
1662  // Add the newly created load.
1663  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
1664
1665  // Perform PHI construction.
1666  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
1667                                    VN.getAliasAnalysis());
1668  LI->replaceAllUsesWith(V);
1669  if (isa<PHINode>(V))
1670    V->takeName(LI);
1671  if (isa<PointerType>(V->getType()))
1672    MD->invalidateCachedPointerInfo(V);
1673  toErase.push_back(LI);
1674  NumPRELoad++;
1675  return true;
1676}
1677
1678/// processLoad - Attempt to eliminate a load, first by eliminating it
1679/// locally, and then attempting non-local elimination if that fails.
1680bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1681  if (!MD)
1682    return false;
1683
1684  if (L->isVolatile())
1685    return false;
1686
1687  // ... to a pointer that has been loaded from before...
1688  MemDepResult Dep = MD->getDependency(L);
1689
1690  // If the value isn't available, don't do anything!
1691  if (Dep.isClobber()) {
1692    // Check to see if we have something like this:
1693    //   store i32 123, i32* %P
1694    //   %A = bitcast i32* %P to i8*
1695    //   %B = gep i8* %A, i32 1
1696    //   %C = load i8* %B
1697    //
1698    // We could do that by recognizing if the clobber instructions are obviously
1699    // a common base + constant offset, and if the previous store (or memset)
1700    // completely covers this load.  This sort of thing can happen in bitfield
1701    // access code.
1702    Value *AvailVal = 0;
1703    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1704      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1705        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1706        if (Offset != -1)
1707          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1708                                          L->getType(), L, *TD);
1709      }
1710
1711    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1712    // a value on from it.
1713    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1714      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1715        int Offset = AnalyzeLoadFromClobberingMemInst(L, DepMI, *TD);
1716        if (Offset != -1)
1717          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1718      }
1719    }
1720
1721    if (AvailVal) {
1722      DEBUG(errs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1723            << *AvailVal << '\n' << *L << "\n\n\n");
1724
1725      // Replace the load!
1726      L->replaceAllUsesWith(AvailVal);
1727      if (isa<PointerType>(AvailVal->getType()))
1728        MD->invalidateCachedPointerInfo(AvailVal);
1729      toErase.push_back(L);
1730      NumGVNLoad++;
1731      return true;
1732    }
1733
1734    DEBUG(
1735      // fast print dep, using operator<< on instruction would be too slow
1736      errs() << "GVN: load ";
1737      WriteAsOperand(errs(), L);
1738      Instruction *I = Dep.getInst();
1739      errs() << " is clobbered by " << *I << '\n';
1740    );
1741    return false;
1742  }
1743
1744  // If it is defined in another block, try harder.
1745  if (Dep.isNonLocal())
1746    return processNonLocalLoad(L, toErase);
1747
1748  Instruction *DepInst = Dep.getInst();
1749  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1750    Value *StoredVal = DepSI->getOperand(0);
1751
1752    // The store and load are to a must-aliased pointer, but they may not
1753    // actually have the same type.  See if we know how to reuse the stored
1754    // value (depending on its type).
1755    const TargetData *TD = 0;
1756    if (StoredVal->getType() != L->getType()) {
1757      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1758        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1759                                                   L, *TD);
1760        if (StoredVal == 0)
1761          return false;
1762
1763        DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1764                     << '\n' << *L << "\n\n\n");
1765      }
1766      else
1767        return false;
1768    }
1769
1770    // Remove it!
1771    L->replaceAllUsesWith(StoredVal);
1772    if (isa<PointerType>(StoredVal->getType()))
1773      MD->invalidateCachedPointerInfo(StoredVal);
1774    toErase.push_back(L);
1775    NumGVNLoad++;
1776    return true;
1777  }
1778
1779  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1780    Value *AvailableVal = DepLI;
1781
1782    // The loads are of a must-aliased pointer, but they may not actually have
1783    // the same type.  See if we know how to reuse the previously loaded value
1784    // (depending on its type).
1785    const TargetData *TD = 0;
1786    if (DepLI->getType() != L->getType()) {
1787      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1788        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1789        if (AvailableVal == 0)
1790          return false;
1791
1792        DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1793                     << "\n" << *L << "\n\n\n");
1794      }
1795      else
1796        return false;
1797    }
1798
1799    // Remove it!
1800    L->replaceAllUsesWith(AvailableVal);
1801    if (isa<PointerType>(DepLI->getType()))
1802      MD->invalidateCachedPointerInfo(DepLI);
1803    toErase.push_back(L);
1804    NumGVNLoad++;
1805    return true;
1806  }
1807
1808  // If this load really doesn't depend on anything, then we must be loading an
1809  // undef value.  This can happen when loading for a fresh allocation with no
1810  // intervening stores, for example.
1811  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1812    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1813    toErase.push_back(L);
1814    NumGVNLoad++;
1815    return true;
1816  }
1817
1818  // If this load occurs either right after a lifetime begin,
1819  // then the loaded value is undefined.
1820  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1821    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1822      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1823      toErase.push_back(L);
1824      NumGVNLoad++;
1825      return true;
1826    }
1827  }
1828
1829  return false;
1830}
1831
1832Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1833  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1834  if (I == localAvail.end())
1835    return 0;
1836
1837  ValueNumberScope *Locals = I->second;
1838  while (Locals) {
1839    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1840    if (I != Locals->table.end())
1841      return I->second;
1842    Locals = Locals->parent;
1843  }
1844
1845  return 0;
1846}
1847
1848
1849/// processInstruction - When calculating availability, handle an instruction
1850/// by inserting it into the appropriate sets
1851bool GVN::processInstruction(Instruction *I,
1852                             SmallVectorImpl<Instruction*> &toErase) {
1853  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1854    bool Changed = processLoad(LI, toErase);
1855
1856    if (!Changed) {
1857      unsigned Num = VN.lookup_or_add(LI);
1858      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1859    }
1860
1861    return Changed;
1862  }
1863
1864  uint32_t NextNum = VN.getNextUnusedValueNumber();
1865  unsigned Num = VN.lookup_or_add(I);
1866
1867  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1868    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1869
1870    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1871      return false;
1872
1873    Value *BranchCond = BI->getCondition();
1874    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1875
1876    BasicBlock *TrueSucc = BI->getSuccessor(0);
1877    BasicBlock *FalseSucc = BI->getSuccessor(1);
1878
1879    if (TrueSucc->getSinglePredecessor())
1880      localAvail[TrueSucc]->table[CondVN] =
1881        ConstantInt::getTrue(TrueSucc->getContext());
1882    if (FalseSucc->getSinglePredecessor())
1883      localAvail[FalseSucc]->table[CondVN] =
1884        ConstantInt::getFalse(TrueSucc->getContext());
1885
1886    return false;
1887
1888  // Allocations are always uniquely numbered, so we can save time and memory
1889  // by fast failing them.
1890  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1891    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1892    return false;
1893  }
1894
1895  // Collapse PHI nodes
1896  if (PHINode* p = dyn_cast<PHINode>(I)) {
1897    Value *constVal = CollapsePhi(p);
1898
1899    if (constVal) {
1900      p->replaceAllUsesWith(constVal);
1901      if (MD && isa<PointerType>(constVal->getType()))
1902        MD->invalidateCachedPointerInfo(constVal);
1903      VN.erase(p);
1904
1905      toErase.push_back(p);
1906    } else {
1907      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1908    }
1909
1910  // If the number we were assigned was a brand new VN, then we don't
1911  // need to do a lookup to see if the number already exists
1912  // somewhere in the domtree: it can't!
1913  } else if (Num == NextNum) {
1914    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1915
1916  // Perform fast-path value-number based elimination of values inherited from
1917  // dominators.
1918  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1919    // Remove it!
1920    VN.erase(I);
1921    I->replaceAllUsesWith(repl);
1922    if (MD && isa<PointerType>(repl->getType()))
1923      MD->invalidateCachedPointerInfo(repl);
1924    toErase.push_back(I);
1925    return true;
1926
1927  } else {
1928    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1929  }
1930
1931  return false;
1932}
1933
1934/// runOnFunction - This is the main transformation entry point for a function.
1935bool GVN::runOnFunction(Function& F) {
1936  if (!NoLoads)
1937    MD = &getAnalysis<MemoryDependenceAnalysis>();
1938  DT = &getAnalysis<DominatorTree>();
1939  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1940  VN.setMemDep(MD);
1941  VN.setDomTree(DT);
1942
1943  bool Changed = false;
1944  bool ShouldContinue = true;
1945
1946  // Merge unconditional branches, allowing PRE to catch more
1947  // optimization opportunities.
1948  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1949    BasicBlock *BB = FI;
1950    ++FI;
1951    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1952    if (removedBlock) NumGVNBlocks++;
1953
1954    Changed |= removedBlock;
1955  }
1956
1957  unsigned Iteration = 0;
1958
1959  while (ShouldContinue) {
1960    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1961    ShouldContinue = iterateOnFunction(F);
1962    Changed |= ShouldContinue;
1963    ++Iteration;
1964  }
1965
1966  if (EnablePRE) {
1967    bool PREChanged = true;
1968    while (PREChanged) {
1969      PREChanged = performPRE(F);
1970      Changed |= PREChanged;
1971    }
1972  }
1973  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1974  // computations into blocks where they become fully redundant.  Note that
1975  // we can't do this until PRE's critical edge splitting updates memdep.
1976  // Actually, when this happens, we should just fully integrate PRE into GVN.
1977
1978  cleanupGlobalSets();
1979
1980  return Changed;
1981}
1982
1983
1984bool GVN::processBlock(BasicBlock *BB) {
1985  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1986  // incrementing BI before processing an instruction).
1987  SmallVector<Instruction*, 8> toErase;
1988  bool ChangedFunction = false;
1989
1990  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1991       BI != BE;) {
1992    ChangedFunction |= processInstruction(BI, toErase);
1993    if (toErase.empty()) {
1994      ++BI;
1995      continue;
1996    }
1997
1998    // If we need some instructions deleted, do it now.
1999    NumGVNInstr += toErase.size();
2000
2001    // Avoid iterator invalidation.
2002    bool AtStart = BI == BB->begin();
2003    if (!AtStart)
2004      --BI;
2005
2006    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2007         E = toErase.end(); I != E; ++I) {
2008      DEBUG(errs() << "GVN removed: " << **I << '\n');
2009      if (MD) MD->removeInstruction(*I);
2010      (*I)->eraseFromParent();
2011      DEBUG(verifyRemoved(*I));
2012    }
2013    toErase.clear();
2014
2015    if (AtStart)
2016      BI = BB->begin();
2017    else
2018      ++BI;
2019  }
2020
2021  return ChangedFunction;
2022}
2023
2024/// performPRE - Perform a purely local form of PRE that looks for diamond
2025/// control flow patterns and attempts to perform simple PRE at the join point.
2026bool GVN::performPRE(Function &F) {
2027  bool Changed = false;
2028  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
2029  DenseMap<BasicBlock*, Value*> predMap;
2030  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2031       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2032    BasicBlock *CurrentBlock = *DI;
2033
2034    // Nothing to PRE in the entry block.
2035    if (CurrentBlock == &F.getEntryBlock()) continue;
2036
2037    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2038         BE = CurrentBlock->end(); BI != BE; ) {
2039      Instruction *CurInst = BI++;
2040
2041      if (isa<AllocaInst>(CurInst) ||
2042          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2043          CurInst->getType()->isVoidTy() ||
2044          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2045          isa<DbgInfoIntrinsic>(CurInst))
2046        continue;
2047
2048      uint32_t ValNo = VN.lookup(CurInst);
2049
2050      // Look for the predecessors for PRE opportunities.  We're
2051      // only trying to solve the basic diamond case, where
2052      // a value is computed in the successor and one predecessor,
2053      // but not the other.  We also explicitly disallow cases
2054      // where the successor is its own predecessor, because they're
2055      // more complicated to get right.
2056      unsigned NumWith = 0;
2057      unsigned NumWithout = 0;
2058      BasicBlock *PREPred = 0;
2059      predMap.clear();
2060
2061      for (pred_iterator PI = pred_begin(CurrentBlock),
2062           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2063        // We're not interested in PRE where the block is its
2064        // own predecessor, on in blocks with predecessors
2065        // that are not reachable.
2066        if (*PI == CurrentBlock) {
2067          NumWithout = 2;
2068          break;
2069        } else if (!localAvail.count(*PI))  {
2070          NumWithout = 2;
2071          break;
2072        }
2073
2074        DenseMap<uint32_t, Value*>::iterator predV =
2075                                            localAvail[*PI]->table.find(ValNo);
2076        if (predV == localAvail[*PI]->table.end()) {
2077          PREPred = *PI;
2078          NumWithout++;
2079        } else if (predV->second == CurInst) {
2080          NumWithout = 2;
2081        } else {
2082          predMap[*PI] = predV->second;
2083          NumWith++;
2084        }
2085      }
2086
2087      // Don't do PRE when it might increase code size, i.e. when
2088      // we would need to insert instructions in more than one pred.
2089      if (NumWithout != 1 || NumWith == 0)
2090        continue;
2091
2092      // Don't do PRE across indirect branch.
2093      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2094        continue;
2095
2096      // We can't do PRE safely on a critical edge, so instead we schedule
2097      // the edge to be split and perform the PRE the next time we iterate
2098      // on the function.
2099      unsigned SuccNum = 0;
2100      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2101           i != e; ++i)
2102        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2103          SuccNum = i;
2104          break;
2105        }
2106
2107      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2108        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2109        continue;
2110      }
2111
2112      // Instantiate the expression the in predecessor that lacked it.
2113      // Because we are going top-down through the block, all value numbers
2114      // will be available in the predecessor by the time we need them.  Any
2115      // that weren't original present will have been instantiated earlier
2116      // in this loop.
2117      Instruction *PREInstr = CurInst->clone();
2118      bool success = true;
2119      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2120        Value *Op = PREInstr->getOperand(i);
2121        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2122          continue;
2123
2124        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2125          PREInstr->setOperand(i, V);
2126        } else {
2127          success = false;
2128          break;
2129        }
2130      }
2131
2132      // Fail out if we encounter an operand that is not available in
2133      // the PRE predecessor.  This is typically because of loads which
2134      // are not value numbered precisely.
2135      if (!success) {
2136        delete PREInstr;
2137        DEBUG(verifyRemoved(PREInstr));
2138        continue;
2139      }
2140
2141      PREInstr->insertBefore(PREPred->getTerminator());
2142      PREInstr->setName(CurInst->getName() + ".pre");
2143      predMap[PREPred] = PREInstr;
2144      VN.add(PREInstr, ValNo);
2145      NumGVNPRE++;
2146
2147      // Update the availability map to include the new instruction.
2148      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2149
2150      // Create a PHI to make the value available in this block.
2151      PHINode* Phi = PHINode::Create(CurInst->getType(),
2152                                     CurInst->getName() + ".pre-phi",
2153                                     CurrentBlock->begin());
2154      for (pred_iterator PI = pred_begin(CurrentBlock),
2155           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2156        Phi->addIncoming(predMap[*PI], *PI);
2157
2158      VN.add(Phi, ValNo);
2159      localAvail[CurrentBlock]->table[ValNo] = Phi;
2160
2161      CurInst->replaceAllUsesWith(Phi);
2162      if (MD && isa<PointerType>(Phi->getType()))
2163        MD->invalidateCachedPointerInfo(Phi);
2164      VN.erase(CurInst);
2165
2166      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2167      if (MD) MD->removeInstruction(CurInst);
2168      CurInst->eraseFromParent();
2169      DEBUG(verifyRemoved(CurInst));
2170      Changed = true;
2171    }
2172  }
2173
2174  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2175       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2176    SplitCriticalEdge(I->first, I->second, this);
2177
2178  return Changed || toSplit.size();
2179}
2180
2181/// iterateOnFunction - Executes one iteration of GVN
2182bool GVN::iterateOnFunction(Function &F) {
2183  cleanupGlobalSets();
2184
2185  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2186       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2187    if (DI->getIDom())
2188      localAvail[DI->getBlock()] =
2189                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2190    else
2191      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2192  }
2193
2194  // Top-down walk of the dominator tree
2195  bool Changed = false;
2196#if 0
2197  // Needed for value numbering with phi construction to work.
2198  ReversePostOrderTraversal<Function*> RPOT(&F);
2199  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2200       RE = RPOT.end(); RI != RE; ++RI)
2201    Changed |= processBlock(*RI);
2202#else
2203  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2204       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2205    Changed |= processBlock(DI->getBlock());
2206#endif
2207
2208  return Changed;
2209}
2210
2211void GVN::cleanupGlobalSets() {
2212  VN.clear();
2213
2214  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2215       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2216    delete I->second;
2217  localAvail.clear();
2218}
2219
2220/// verifyRemoved - Verify that the specified instruction does not occur in our
2221/// internal data structures.
2222void GVN::verifyRemoved(const Instruction *Inst) const {
2223  VN.verifyRemoved(Inst);
2224
2225  // Walk through the value number scope to make sure the instruction isn't
2226  // ferreted away in it.
2227  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2228         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2229    const ValueNumberScope *VNS = I->second;
2230
2231    while (VNS) {
2232      for (DenseMap<uint32_t, Value*>::const_iterator
2233             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2234        assert(II->second != Inst && "Inst still in value numbering scope!");
2235      }
2236
2237      VNS = VNS->parent;
2238    }
2239  }
2240}
2241