GVN.cpp revision c915c959780ab7de7c61d7cf8c692762d29d1897
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/MemoryDependenceAnalysis.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include <cstdio>
41using namespace llvm;
42
43STATISTIC(NumGVNInstr,  "Number of instructions deleted");
44STATISTIC(NumGVNLoad,   "Number of loads deleted");
45STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
46STATISTIC(NumGVNBlocks, "Number of blocks merged");
47STATISTIC(NumPRELoad,   "Number of loads PRE'd");
48
49static cl::opt<bool> EnablePRE("enable-pre",
50                               cl::init(true), cl::Hidden);
51static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
52
53//===----------------------------------------------------------------------===//
54//                         ValueTable Class
55//===----------------------------------------------------------------------===//
56
57/// This class holds the mapping between values and value numbers.  It is used
58/// as an efficient mechanism to determine the expression-wise equivalence of
59/// two values.
60namespace {
61  struct VISIBILITY_HIDDEN Expression {
62    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
63                            UDIV, SDIV, FDIV, UREM, SREM,
64                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
65                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
66                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
67                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
68                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
69                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
70                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
71                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
72                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
73                            EMPTY, TOMBSTONE };
74
75    ExpressionOpcode opcode;
76    const Type* type;
77    uint32_t firstVN;
78    uint32_t secondVN;
79    uint32_t thirdVN;
80    SmallVector<uint32_t, 4> varargs;
81    Value* function;
82
83    Expression() { }
84    Expression(ExpressionOpcode o) : opcode(o) { }
85
86    bool operator==(const Expression &other) const {
87      if (opcode != other.opcode)
88        return false;
89      else if (opcode == EMPTY || opcode == TOMBSTONE)
90        return true;
91      else if (type != other.type)
92        return false;
93      else if (function != other.function)
94        return false;
95      else if (firstVN != other.firstVN)
96        return false;
97      else if (secondVN != other.secondVN)
98        return false;
99      else if (thirdVN != other.thirdVN)
100        return false;
101      else {
102        if (varargs.size() != other.varargs.size())
103          return false;
104
105        for (size_t i = 0; i < varargs.size(); ++i)
106          if (varargs[i] != other.varargs[i])
107            return false;
108
109        return true;
110      }
111    }
112
113    bool operator!=(const Expression &other) const {
114      return !(*this == other);
115    }
116  };
117
118  class VISIBILITY_HIDDEN ValueTable {
119    private:
120      DenseMap<Value*, uint32_t> valueNumbering;
121      DenseMap<Expression, uint32_t> expressionNumbering;
122      AliasAnalysis* AA;
123      MemoryDependenceAnalysis* MD;
124      DominatorTree* DT;
125
126      uint32_t nextValueNumber;
127
128      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
129      Expression::ExpressionOpcode getOpcode(CmpInst* C);
130      Expression::ExpressionOpcode getOpcode(CastInst* C);
131      Expression create_expression(BinaryOperator* BO);
132      Expression create_expression(CmpInst* C);
133      Expression create_expression(ShuffleVectorInst* V);
134      Expression create_expression(ExtractElementInst* C);
135      Expression create_expression(InsertElementInst* V);
136      Expression create_expression(SelectInst* V);
137      Expression create_expression(CastInst* C);
138      Expression create_expression(GetElementPtrInst* G);
139      Expression create_expression(CallInst* C);
140      Expression create_expression(Constant* C);
141    public:
142      ValueTable() : nextValueNumber(1) { }
143      uint32_t lookup_or_add(Value* V);
144      uint32_t lookup(Value* V) const;
145      void add(Value* V, uint32_t num);
146      void clear();
147      void erase(Value* v);
148      unsigned size();
149      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
150      AliasAnalysis *getAliasAnalysis() const { return AA; }
151      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
152      void setDomTree(DominatorTree* D) { DT = D; }
153      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
154      void verifyRemoved(const Value *) const;
155  };
156}
157
158namespace llvm {
159template <> struct DenseMapInfo<Expression> {
160  static inline Expression getEmptyKey() {
161    return Expression(Expression::EMPTY);
162  }
163
164  static inline Expression getTombstoneKey() {
165    return Expression(Expression::TOMBSTONE);
166  }
167
168  static unsigned getHashValue(const Expression e) {
169    unsigned hash = e.opcode;
170
171    hash = e.firstVN + hash * 37;
172    hash = e.secondVN + hash * 37;
173    hash = e.thirdVN + hash * 37;
174
175    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
176            (unsigned)((uintptr_t)e.type >> 9)) +
177           hash * 37;
178
179    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
180         E = e.varargs.end(); I != E; ++I)
181      hash = *I + hash * 37;
182
183    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
184            (unsigned)((uintptr_t)e.function >> 9)) +
185           hash * 37;
186
187    return hash;
188  }
189  static bool isEqual(const Expression &LHS, const Expression &RHS) {
190    return LHS == RHS;
191  }
192  static bool isPod() { return true; }
193};
194}
195
196//===----------------------------------------------------------------------===//
197//                     ValueTable Internal Functions
198//===----------------------------------------------------------------------===//
199Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
200  switch(BO->getOpcode()) {
201  default: // THIS SHOULD NEVER HAPPEN
202    assert(0 && "Binary operator with unknown opcode?");
203  case Instruction::Add:  return Expression::ADD;
204  case Instruction::FAdd: return Expression::FADD;
205  case Instruction::Sub:  return Expression::SUB;
206  case Instruction::FSub: return Expression::FSUB;
207  case Instruction::Mul:  return Expression::MUL;
208  case Instruction::FMul: return Expression::FMUL;
209  case Instruction::UDiv: return Expression::UDIV;
210  case Instruction::SDiv: return Expression::SDIV;
211  case Instruction::FDiv: return Expression::FDIV;
212  case Instruction::URem: return Expression::UREM;
213  case Instruction::SRem: return Expression::SREM;
214  case Instruction::FRem: return Expression::FREM;
215  case Instruction::Shl:  return Expression::SHL;
216  case Instruction::LShr: return Expression::LSHR;
217  case Instruction::AShr: return Expression::ASHR;
218  case Instruction::And:  return Expression::AND;
219  case Instruction::Or:   return Expression::OR;
220  case Instruction::Xor:  return Expression::XOR;
221  }
222}
223
224Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
225  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
226    switch (C->getPredicate()) {
227    default:  // THIS SHOULD NEVER HAPPEN
228      assert(0 && "Comparison with unknown predicate?");
229    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
230    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
231    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
232    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
233    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
234    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
235    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
236    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
237    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
238    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
239    }
240  }
241  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
242  switch (C->getPredicate()) {
243  default: // THIS SHOULD NEVER HAPPEN
244    assert(0 && "Comparison with unknown predicate?");
245  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
246  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
247  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
248  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
249  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
250  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
251  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
252  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
253  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
254  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
255  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
256  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
257  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
258  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
259  }
260}
261
262Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
263  switch(C->getOpcode()) {
264  default: // THIS SHOULD NEVER HAPPEN
265    assert(0 && "Cast operator with unknown opcode?");
266  case Instruction::Trunc:    return Expression::TRUNC;
267  case Instruction::ZExt:     return Expression::ZEXT;
268  case Instruction::SExt:     return Expression::SEXT;
269  case Instruction::FPToUI:   return Expression::FPTOUI;
270  case Instruction::FPToSI:   return Expression::FPTOSI;
271  case Instruction::UIToFP:   return Expression::UITOFP;
272  case Instruction::SIToFP:   return Expression::SITOFP;
273  case Instruction::FPTrunc:  return Expression::FPTRUNC;
274  case Instruction::FPExt:    return Expression::FPEXT;
275  case Instruction::PtrToInt: return Expression::PTRTOINT;
276  case Instruction::IntToPtr: return Expression::INTTOPTR;
277  case Instruction::BitCast:  return Expression::BITCAST;
278  }
279}
280
281Expression ValueTable::create_expression(CallInst* C) {
282  Expression e;
283
284  e.type = C->getType();
285  e.firstVN = 0;
286  e.secondVN = 0;
287  e.thirdVN = 0;
288  e.function = C->getCalledFunction();
289  e.opcode = Expression::CALL;
290
291  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
292       I != E; ++I)
293    e.varargs.push_back(lookup_or_add(*I));
294
295  return e;
296}
297
298Expression ValueTable::create_expression(BinaryOperator* BO) {
299  Expression e;
300
301  e.firstVN = lookup_or_add(BO->getOperand(0));
302  e.secondVN = lookup_or_add(BO->getOperand(1));
303  e.thirdVN = 0;
304  e.function = 0;
305  e.type = BO->getType();
306  e.opcode = getOpcode(BO);
307
308  return e;
309}
310
311Expression ValueTable::create_expression(CmpInst* C) {
312  Expression e;
313
314  e.firstVN = lookup_or_add(C->getOperand(0));
315  e.secondVN = lookup_or_add(C->getOperand(1));
316  e.thirdVN = 0;
317  e.function = 0;
318  e.type = C->getType();
319  e.opcode = getOpcode(C);
320
321  return e;
322}
323
324Expression ValueTable::create_expression(CastInst* C) {
325  Expression e;
326
327  e.firstVN = lookup_or_add(C->getOperand(0));
328  e.secondVN = 0;
329  e.thirdVN = 0;
330  e.function = 0;
331  e.type = C->getType();
332  e.opcode = getOpcode(C);
333
334  return e;
335}
336
337Expression ValueTable::create_expression(ShuffleVectorInst* S) {
338  Expression e;
339
340  e.firstVN = lookup_or_add(S->getOperand(0));
341  e.secondVN = lookup_or_add(S->getOperand(1));
342  e.thirdVN = lookup_or_add(S->getOperand(2));
343  e.function = 0;
344  e.type = S->getType();
345  e.opcode = Expression::SHUFFLE;
346
347  return e;
348}
349
350Expression ValueTable::create_expression(ExtractElementInst* E) {
351  Expression e;
352
353  e.firstVN = lookup_or_add(E->getOperand(0));
354  e.secondVN = lookup_or_add(E->getOperand(1));
355  e.thirdVN = 0;
356  e.function = 0;
357  e.type = E->getType();
358  e.opcode = Expression::EXTRACT;
359
360  return e;
361}
362
363Expression ValueTable::create_expression(InsertElementInst* I) {
364  Expression e;
365
366  e.firstVN = lookup_or_add(I->getOperand(0));
367  e.secondVN = lookup_or_add(I->getOperand(1));
368  e.thirdVN = lookup_or_add(I->getOperand(2));
369  e.function = 0;
370  e.type = I->getType();
371  e.opcode = Expression::INSERT;
372
373  return e;
374}
375
376Expression ValueTable::create_expression(SelectInst* I) {
377  Expression e;
378
379  e.firstVN = lookup_or_add(I->getCondition());
380  e.secondVN = lookup_or_add(I->getTrueValue());
381  e.thirdVN = lookup_or_add(I->getFalseValue());
382  e.function = 0;
383  e.type = I->getType();
384  e.opcode = Expression::SELECT;
385
386  return e;
387}
388
389Expression ValueTable::create_expression(GetElementPtrInst* G) {
390  Expression e;
391
392  e.firstVN = lookup_or_add(G->getPointerOperand());
393  e.secondVN = 0;
394  e.thirdVN = 0;
395  e.function = 0;
396  e.type = G->getType();
397  e.opcode = Expression::GEP;
398
399  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
400       I != E; ++I)
401    e.varargs.push_back(lookup_or_add(*I));
402
403  return e;
404}
405
406//===----------------------------------------------------------------------===//
407//                     ValueTable External Functions
408//===----------------------------------------------------------------------===//
409
410/// add - Insert a value into the table with a specified value number.
411void ValueTable::add(Value* V, uint32_t num) {
412  valueNumbering.insert(std::make_pair(V, num));
413}
414
415/// lookup_or_add - Returns the value number for the specified value, assigning
416/// it a new number if it did not have one before.
417uint32_t ValueTable::lookup_or_add(Value* V) {
418  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
419  if (VI != valueNumbering.end())
420    return VI->second;
421
422  if (CallInst* C = dyn_cast<CallInst>(V)) {
423    if (AA->doesNotAccessMemory(C)) {
424      Expression e = create_expression(C);
425
426      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
427      if (EI != expressionNumbering.end()) {
428        valueNumbering.insert(std::make_pair(V, EI->second));
429        return EI->second;
430      } else {
431        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
432        valueNumbering.insert(std::make_pair(V, nextValueNumber));
433
434        return nextValueNumber++;
435      }
436    } else if (AA->onlyReadsMemory(C)) {
437      Expression e = create_expression(C);
438
439      if (expressionNumbering.find(e) == expressionNumbering.end()) {
440        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
441        valueNumbering.insert(std::make_pair(V, nextValueNumber));
442        return nextValueNumber++;
443      }
444
445      MemDepResult local_dep = MD->getDependency(C);
446
447      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
448        valueNumbering.insert(std::make_pair(V, nextValueNumber));
449        return nextValueNumber++;
450      }
451
452      if (local_dep.isDef()) {
453        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
454
455        if (local_cdep->getNumOperands() != C->getNumOperands()) {
456          valueNumbering.insert(std::make_pair(V, nextValueNumber));
457          return nextValueNumber++;
458        }
459
460        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
461          uint32_t c_vn = lookup_or_add(C->getOperand(i));
462          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
463          if (c_vn != cd_vn) {
464            valueNumbering.insert(std::make_pair(V, nextValueNumber));
465            return nextValueNumber++;
466          }
467        }
468
469        uint32_t v = lookup_or_add(local_cdep);
470        valueNumbering.insert(std::make_pair(V, v));
471        return v;
472      }
473
474      // Non-local case.
475      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
476        MD->getNonLocalCallDependency(CallSite(C));
477      // FIXME: call/call dependencies for readonly calls should return def, not
478      // clobber!  Move the checking logic to MemDep!
479      CallInst* cdep = 0;
480
481      // Check to see if we have a single dominating call instruction that is
482      // identical to C.
483      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
484        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
485        // Ignore non-local dependencies.
486        if (I->second.isNonLocal())
487          continue;
488
489        // We don't handle non-depedencies.  If we already have a call, reject
490        // instruction dependencies.
491        if (I->second.isClobber() || cdep != 0) {
492          cdep = 0;
493          break;
494        }
495
496        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
497        // FIXME: All duplicated with non-local case.
498        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
499          cdep = NonLocalDepCall;
500          continue;
501        }
502
503        cdep = 0;
504        break;
505      }
506
507      if (!cdep) {
508        valueNumbering.insert(std::make_pair(V, nextValueNumber));
509        return nextValueNumber++;
510      }
511
512      if (cdep->getNumOperands() != C->getNumOperands()) {
513        valueNumbering.insert(std::make_pair(V, nextValueNumber));
514        return nextValueNumber++;
515      }
516      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
517        uint32_t c_vn = lookup_or_add(C->getOperand(i));
518        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
519        if (c_vn != cd_vn) {
520          valueNumbering.insert(std::make_pair(V, nextValueNumber));
521          return nextValueNumber++;
522        }
523      }
524
525      uint32_t v = lookup_or_add(cdep);
526      valueNumbering.insert(std::make_pair(V, v));
527      return v;
528
529    } else {
530      valueNumbering.insert(std::make_pair(V, nextValueNumber));
531      return nextValueNumber++;
532    }
533  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
534    Expression e = create_expression(BO);
535
536    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
537    if (EI != expressionNumbering.end()) {
538      valueNumbering.insert(std::make_pair(V, EI->second));
539      return EI->second;
540    } else {
541      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
542      valueNumbering.insert(std::make_pair(V, nextValueNumber));
543
544      return nextValueNumber++;
545    }
546  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
547    Expression e = create_expression(C);
548
549    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
550    if (EI != expressionNumbering.end()) {
551      valueNumbering.insert(std::make_pair(V, EI->second));
552      return EI->second;
553    } else {
554      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
555      valueNumbering.insert(std::make_pair(V, nextValueNumber));
556
557      return nextValueNumber++;
558    }
559  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
560    Expression e = create_expression(U);
561
562    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
563    if (EI != expressionNumbering.end()) {
564      valueNumbering.insert(std::make_pair(V, EI->second));
565      return EI->second;
566    } else {
567      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
568      valueNumbering.insert(std::make_pair(V, nextValueNumber));
569
570      return nextValueNumber++;
571    }
572  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
573    Expression e = create_expression(U);
574
575    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
576    if (EI != expressionNumbering.end()) {
577      valueNumbering.insert(std::make_pair(V, EI->second));
578      return EI->second;
579    } else {
580      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
581      valueNumbering.insert(std::make_pair(V, nextValueNumber));
582
583      return nextValueNumber++;
584    }
585  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
586    Expression e = create_expression(U);
587
588    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
589    if (EI != expressionNumbering.end()) {
590      valueNumbering.insert(std::make_pair(V, EI->second));
591      return EI->second;
592    } else {
593      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
594      valueNumbering.insert(std::make_pair(V, nextValueNumber));
595
596      return nextValueNumber++;
597    }
598  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
599    Expression e = create_expression(U);
600
601    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
602    if (EI != expressionNumbering.end()) {
603      valueNumbering.insert(std::make_pair(V, EI->second));
604      return EI->second;
605    } else {
606      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
607      valueNumbering.insert(std::make_pair(V, nextValueNumber));
608
609      return nextValueNumber++;
610    }
611  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
612    Expression e = create_expression(U);
613
614    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
615    if (EI != expressionNumbering.end()) {
616      valueNumbering.insert(std::make_pair(V, EI->second));
617      return EI->second;
618    } else {
619      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
620      valueNumbering.insert(std::make_pair(V, nextValueNumber));
621
622      return nextValueNumber++;
623    }
624  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
625    Expression e = create_expression(U);
626
627    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
628    if (EI != expressionNumbering.end()) {
629      valueNumbering.insert(std::make_pair(V, EI->second));
630      return EI->second;
631    } else {
632      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
633      valueNumbering.insert(std::make_pair(V, nextValueNumber));
634
635      return nextValueNumber++;
636    }
637  } else {
638    valueNumbering.insert(std::make_pair(V, nextValueNumber));
639    return nextValueNumber++;
640  }
641}
642
643/// lookup - Returns the value number of the specified value. Fails if
644/// the value has not yet been numbered.
645uint32_t ValueTable::lookup(Value* V) const {
646  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
647  assert(VI != valueNumbering.end() && "Value not numbered?");
648  return VI->second;
649}
650
651/// clear - Remove all entries from the ValueTable
652void ValueTable::clear() {
653  valueNumbering.clear();
654  expressionNumbering.clear();
655  nextValueNumber = 1;
656}
657
658/// erase - Remove a value from the value numbering
659void ValueTable::erase(Value* V) {
660  valueNumbering.erase(V);
661}
662
663/// verifyRemoved - Verify that the value is removed from all internal data
664/// structures.
665void ValueTable::verifyRemoved(const Value *V) const {
666  for (DenseMap<Value*, uint32_t>::iterator
667         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
668    assert(I->first != V && "Inst still occurs in value numbering map!");
669  }
670}
671
672//===----------------------------------------------------------------------===//
673//                                GVN Pass
674//===----------------------------------------------------------------------===//
675
676namespace {
677  struct VISIBILITY_HIDDEN ValueNumberScope {
678    ValueNumberScope* parent;
679    DenseMap<uint32_t, Value*> table;
680
681    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
682  };
683}
684
685namespace {
686
687  class VISIBILITY_HIDDEN GVN : public FunctionPass {
688    bool runOnFunction(Function &F);
689  public:
690    static char ID; // Pass identification, replacement for typeid
691    GVN() : FunctionPass(&ID) { }
692
693  private:
694    MemoryDependenceAnalysis *MD;
695    DominatorTree *DT;
696
697    ValueTable VN;
698    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
699
700    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
701    PhiMapType phiMap;
702
703
704    // This transformation requires dominator postdominator info
705    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
706      AU.addRequired<DominatorTree>();
707      AU.addRequired<MemoryDependenceAnalysis>();
708      AU.addRequired<AliasAnalysis>();
709
710      AU.addPreserved<DominatorTree>();
711      AU.addPreserved<AliasAnalysis>();
712    }
713
714    // Helper fuctions
715    // FIXME: eliminate or document these better
716    bool processLoad(LoadInst* L,
717                     SmallVectorImpl<Instruction*> &toErase);
718    bool processInstruction(Instruction* I,
719                            SmallVectorImpl<Instruction*> &toErase);
720    bool processNonLocalLoad(LoadInst* L,
721                             SmallVectorImpl<Instruction*> &toErase);
722    bool processBlock(BasicBlock* BB);
723    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
724                            DenseMap<BasicBlock*, Value*> &Phis,
725                            bool top_level = false);
726    void dump(DenseMap<uint32_t, Value*>& d);
727    bool iterateOnFunction(Function &F);
728    Value* CollapsePhi(PHINode* p);
729    bool isSafeReplacement(PHINode* p, Instruction* inst);
730    bool performPRE(Function& F);
731    Value* lookupNumber(BasicBlock* BB, uint32_t num);
732    bool mergeBlockIntoPredecessor(BasicBlock* BB);
733    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
734    void cleanupGlobalSets();
735    void verifyRemoved(const Instruction *I) const;
736  };
737
738  char GVN::ID = 0;
739}
740
741// createGVNPass - The public interface to this file...
742FunctionPass *llvm::createGVNPass() { return new GVN(); }
743
744static RegisterPass<GVN> X("gvn",
745                           "Global Value Numbering");
746
747void GVN::dump(DenseMap<uint32_t, Value*>& d) {
748  printf("{\n");
749  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
750       E = d.end(); I != E; ++I) {
751      printf("%d\n", I->first);
752      I->second->dump();
753  }
754  printf("}\n");
755}
756
757Value* GVN::CollapsePhi(PHINode* p) {
758  Value* constVal = p->hasConstantValue();
759  if (!constVal) return 0;
760
761  Instruction* inst = dyn_cast<Instruction>(constVal);
762  if (!inst)
763    return constVal;
764
765  if (DT->dominates(inst, p))
766    if (isSafeReplacement(p, inst))
767      return inst;
768  return 0;
769}
770
771bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
772  if (!isa<PHINode>(inst))
773    return true;
774
775  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
776       UI != E; ++UI)
777    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
778      if (use_phi->getParent() == inst->getParent())
779        return false;
780
781  return true;
782}
783
784/// GetValueForBlock - Get the value to use within the specified basic block.
785/// available values are in Phis.
786Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
787                             DenseMap<BasicBlock*, Value*> &Phis,
788                             bool top_level) {
789
790  // If we have already computed this value, return the previously computed val.
791  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
792  if (V != Phis.end() && !top_level) return V->second;
793
794  // If the block is unreachable, just return undef, since this path
795  // can't actually occur at runtime.
796  if (!DT->isReachableFromEntry(BB))
797    return Phis[BB] = UndefValue::get(orig->getType());
798
799  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
800    Value *ret = GetValueForBlock(Pred, orig, Phis);
801    Phis[BB] = ret;
802    return ret;
803  }
804
805  // Get the number of predecessors of this block so we can reserve space later.
806  // If there is already a PHI in it, use the #preds from it, otherwise count.
807  // Getting it from the PHI is constant time.
808  unsigned NumPreds;
809  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
810    NumPreds = ExistingPN->getNumIncomingValues();
811  else
812    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
813
814  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
815  // now, then get values to fill in the incoming values for the PHI.
816  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
817                                BB->begin());
818  PN->reserveOperandSpace(NumPreds);
819
820  Phis.insert(std::make_pair(BB, PN));
821
822  // Fill in the incoming values for the block.
823  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
824    Value* val = GetValueForBlock(*PI, orig, Phis);
825    PN->addIncoming(val, *PI);
826  }
827
828  VN.getAliasAnalysis()->copyValue(orig, PN);
829
830  // Attempt to collapse PHI nodes that are trivially redundant
831  Value* v = CollapsePhi(PN);
832  if (!v) {
833    // Cache our phi construction results
834    if (LoadInst* L = dyn_cast<LoadInst>(orig))
835      phiMap[L->getPointerOperand()].insert(PN);
836    else
837      phiMap[orig].insert(PN);
838
839    return PN;
840  }
841
842  PN->replaceAllUsesWith(v);
843  if (isa<PointerType>(v->getType()))
844    MD->invalidateCachedPointerInfo(v);
845
846  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
847       E = Phis.end(); I != E; ++I)
848    if (I->second == PN)
849      I->second = v;
850
851  DEBUG(cerr << "GVN removed: " << *PN);
852  MD->removeInstruction(PN);
853  PN->eraseFromParent();
854  DEBUG(verifyRemoved(PN));
855
856  Phis[BB] = v;
857  return v;
858}
859
860/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
861/// we're analyzing is fully available in the specified block.  As we go, keep
862/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
863/// map is actually a tri-state map with the following values:
864///   0) we know the block *is not* fully available.
865///   1) we know the block *is* fully available.
866///   2) we do not know whether the block is fully available or not, but we are
867///      currently speculating that it will be.
868///   3) we are speculating for this block and have used that to speculate for
869///      other blocks.
870static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
871                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
872  // Optimistically assume that the block is fully available and check to see
873  // if we already know about this block in one lookup.
874  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
875    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
876
877  // If the entry already existed for this block, return the precomputed value.
878  if (!IV.second) {
879    // If this is a speculative "available" value, mark it as being used for
880    // speculation of other blocks.
881    if (IV.first->second == 2)
882      IV.first->second = 3;
883    return IV.first->second != 0;
884  }
885
886  // Otherwise, see if it is fully available in all predecessors.
887  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
888
889  // If this block has no predecessors, it isn't live-in here.
890  if (PI == PE)
891    goto SpeculationFailure;
892
893  for (; PI != PE; ++PI)
894    // If the value isn't fully available in one of our predecessors, then it
895    // isn't fully available in this block either.  Undo our previous
896    // optimistic assumption and bail out.
897    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
898      goto SpeculationFailure;
899
900  return true;
901
902// SpeculationFailure - If we get here, we found out that this is not, after
903// all, a fully-available block.  We have a problem if we speculated on this and
904// used the speculation to mark other blocks as available.
905SpeculationFailure:
906  char &BBVal = FullyAvailableBlocks[BB];
907
908  // If we didn't speculate on this, just return with it set to false.
909  if (BBVal == 2) {
910    BBVal = 0;
911    return false;
912  }
913
914  // If we did speculate on this value, we could have blocks set to 1 that are
915  // incorrect.  Walk the (transitive) successors of this block and mark them as
916  // 0 if set to one.
917  SmallVector<BasicBlock*, 32> BBWorklist;
918  BBWorklist.push_back(BB);
919
920  while (!BBWorklist.empty()) {
921    BasicBlock *Entry = BBWorklist.pop_back_val();
922    // Note that this sets blocks to 0 (unavailable) if they happen to not
923    // already be in FullyAvailableBlocks.  This is safe.
924    char &EntryVal = FullyAvailableBlocks[Entry];
925    if (EntryVal == 0) continue;  // Already unavailable.
926
927    // Mark as unavailable.
928    EntryVal = 0;
929
930    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
931      BBWorklist.push_back(*I);
932  }
933
934  return false;
935}
936
937/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
938/// non-local by performing PHI construction.
939bool GVN::processNonLocalLoad(LoadInst *LI,
940                              SmallVectorImpl<Instruction*> &toErase) {
941  // Find the non-local dependencies of the load.
942  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
943  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
944                                   Deps);
945  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
946
947  // If we had to process more than one hundred blocks to find the
948  // dependencies, this load isn't worth worrying about.  Optimizing
949  // it will be too expensive.
950  if (Deps.size() > 100)
951    return false;
952
953  // If we had a phi translation failure, we'll have a single entry which is a
954  // clobber in the current block.  Reject this early.
955  if (Deps.size() == 1 && Deps[0].second.isClobber())
956    return false;
957
958  // Filter out useless results (non-locals, etc).  Keep track of the blocks
959  // where we have a value available in repl, also keep track of whether we see
960  // dependencies that produce an unknown value for the load (such as a call
961  // that could potentially clobber the load).
962  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
963  SmallVector<BasicBlock*, 16> UnavailableBlocks;
964
965  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
966    BasicBlock *DepBB = Deps[i].first;
967    MemDepResult DepInfo = Deps[i].second;
968
969    if (DepInfo.isClobber()) {
970      UnavailableBlocks.push_back(DepBB);
971      continue;
972    }
973
974    Instruction *DepInst = DepInfo.getInst();
975
976    // Loading the allocation -> undef.
977    if (isa<AllocationInst>(DepInst)) {
978      ValuesPerBlock.push_back(std::make_pair(DepBB,
979                                              UndefValue::get(LI->getType())));
980      continue;
981    }
982
983    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
984      // Reject loads and stores that are to the same address but are of
985      // different types.
986      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
987      // of bitfield access, it would be interesting to optimize for it at some
988      // point.
989      if (S->getOperand(0)->getType() != LI->getType()) {
990        UnavailableBlocks.push_back(DepBB);
991        continue;
992      }
993
994      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
995
996    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
997      if (LD->getType() != LI->getType()) {
998        UnavailableBlocks.push_back(DepBB);
999        continue;
1000      }
1001      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1002    } else {
1003      UnavailableBlocks.push_back(DepBB);
1004      continue;
1005    }
1006  }
1007
1008  // If we have no predecessors that produce a known value for this load, exit
1009  // early.
1010  if (ValuesPerBlock.empty()) return false;
1011
1012  // If all of the instructions we depend on produce a known value for this
1013  // load, then it is fully redundant and we can use PHI insertion to compute
1014  // its value.  Insert PHIs and remove the fully redundant value now.
1015  if (UnavailableBlocks.empty()) {
1016    // Use cached PHI construction information from previous runs
1017    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1018    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1019    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1020         I != E; ++I) {
1021      if ((*I)->getParent() == LI->getParent()) {
1022        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1023        LI->replaceAllUsesWith(*I);
1024        if (isa<PointerType>((*I)->getType()))
1025          MD->invalidateCachedPointerInfo(*I);
1026        toErase.push_back(LI);
1027        NumGVNLoad++;
1028        return true;
1029      }
1030
1031      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1032    }
1033
1034    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1035
1036    DenseMap<BasicBlock*, Value*> BlockReplValues;
1037    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1038    // Perform PHI construction.
1039    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1040    LI->replaceAllUsesWith(v);
1041
1042    if (isa<PHINode>(v))
1043      v->takeName(LI);
1044    if (isa<PointerType>(v->getType()))
1045      MD->invalidateCachedPointerInfo(v);
1046    toErase.push_back(LI);
1047    NumGVNLoad++;
1048    return true;
1049  }
1050
1051  if (!EnablePRE || !EnableLoadPRE)
1052    return false;
1053
1054  // Okay, we have *some* definitions of the value.  This means that the value
1055  // is available in some of our (transitive) predecessors.  Lets think about
1056  // doing PRE of this load.  This will involve inserting a new load into the
1057  // predecessor when it's not available.  We could do this in general, but
1058  // prefer to not increase code size.  As such, we only do this when we know
1059  // that we only have to insert *one* load (which means we're basically moving
1060  // the load, not inserting a new one).
1061
1062  SmallPtrSet<BasicBlock *, 4> Blockers;
1063  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1064    Blockers.insert(UnavailableBlocks[i]);
1065
1066  // Lets find first basic block with more than one predecessor.  Walk backwards
1067  // through predecessors if needed.
1068  BasicBlock *LoadBB = LI->getParent();
1069  BasicBlock *TmpBB = LoadBB;
1070
1071  bool isSinglePred = false;
1072  while (TmpBB->getSinglePredecessor()) {
1073    isSinglePred = true;
1074    TmpBB = TmpBB->getSinglePredecessor();
1075    if (!TmpBB) // If haven't found any, bail now.
1076      return false;
1077    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1078      return false;
1079    if (Blockers.count(TmpBB))
1080      return false;
1081  }
1082
1083  assert(TmpBB);
1084  LoadBB = TmpBB;
1085
1086  // If we have a repl set with LI itself in it, this means we have a loop where
1087  // at least one of the values is LI.  Since this means that we won't be able
1088  // to eliminate LI even if we insert uses in the other predecessors, we will
1089  // end up increasing code size.  Reject this by scanning for LI.
1090  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1091    if (ValuesPerBlock[i].second == LI)
1092      return false;
1093
1094  if (isSinglePred) {
1095    bool isHot = false;
1096    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1097      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1098	// "Hot" Instruction is in some loop (because it dominates its dep.
1099	// instruction).
1100	if (DT->dominates(LI, I)) {
1101	  isHot = true;
1102	  break;
1103	}
1104
1105    // We are interested only in "hot" instructions. We don't want to do any
1106    // mis-optimizations here.
1107    if (!isHot)
1108      return false;
1109  }
1110
1111  // Okay, we have some hope :).  Check to see if the loaded value is fully
1112  // available in all but one predecessor.
1113  // FIXME: If we could restructure the CFG, we could make a common pred with
1114  // all the preds that don't have an available LI and insert a new load into
1115  // that one block.
1116  BasicBlock *UnavailablePred = 0;
1117
1118  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1119  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1120    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1121  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1122    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1123
1124  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1125       PI != E; ++PI) {
1126    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1127      continue;
1128
1129    // If this load is not available in multiple predecessors, reject it.
1130    if (UnavailablePred && UnavailablePred != *PI)
1131      return false;
1132    UnavailablePred = *PI;
1133  }
1134
1135  assert(UnavailablePred != 0 &&
1136         "Fully available value should be eliminated above!");
1137
1138  // If the loaded pointer is PHI node defined in this block, do PHI translation
1139  // to get its value in the predecessor.
1140  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1141
1142  // Make sure the value is live in the predecessor.  If it was defined by a
1143  // non-PHI instruction in this block, we don't know how to recompute it above.
1144  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1145    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1146      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1147                 << *LPInst << *LI << "\n");
1148      return false;
1149    }
1150
1151  // We don't currently handle critical edges :(
1152  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1153    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1154                << UnavailablePred->getName() << "': " << *LI);
1155    return false;
1156  }
1157
1158  // Okay, we can eliminate this load by inserting a reload in the predecessor
1159  // and using PHI construction to get the value in the other predecessors, do
1160  // it.
1161  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1162
1163  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1164                                LI->getAlignment(),
1165                                UnavailablePred->getTerminator());
1166
1167  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1168  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1169       I != E; ++I)
1170    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1171
1172  DenseMap<BasicBlock*, Value*> BlockReplValues;
1173  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1174  BlockReplValues[UnavailablePred] = NewLoad;
1175
1176  // Perform PHI construction.
1177  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1178  LI->replaceAllUsesWith(v);
1179  if (isa<PHINode>(v))
1180    v->takeName(LI);
1181  if (isa<PointerType>(v->getType()))
1182    MD->invalidateCachedPointerInfo(v);
1183  toErase.push_back(LI);
1184  NumPRELoad++;
1185  return true;
1186}
1187
1188/// processLoad - Attempt to eliminate a load, first by eliminating it
1189/// locally, and then attempting non-local elimination if that fails.
1190bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1191  if (L->isVolatile())
1192    return false;
1193
1194  Value* pointer = L->getPointerOperand();
1195
1196  // ... to a pointer that has been loaded from before...
1197  MemDepResult dep = MD->getDependency(L);
1198
1199  // If the value isn't available, don't do anything!
1200  if (dep.isClobber()) {
1201    DEBUG(
1202      // fast print dep, using operator<< on instruction would be too slow
1203      DOUT << "GVN: load ";
1204      WriteAsOperand(*DOUT.stream(), L);
1205      Instruction *I = dep.getInst();
1206      DOUT << " is clobbered by " << *I;
1207    );
1208    return false;
1209  }
1210
1211  // If it is defined in another block, try harder.
1212  if (dep.isNonLocal())
1213    return processNonLocalLoad(L, toErase);
1214
1215  Instruction *DepInst = dep.getInst();
1216  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1217    // Only forward substitute stores to loads of the same type.
1218    // FIXME: Could do better!
1219    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1220      return false;
1221
1222    // Remove it!
1223    L->replaceAllUsesWith(DepSI->getOperand(0));
1224    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1225      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1226    toErase.push_back(L);
1227    NumGVNLoad++;
1228    return true;
1229  }
1230
1231  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1232    // Only forward substitute stores to loads of the same type.
1233    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1234    if (DepLI->getType() != L->getType())
1235      return false;
1236
1237    // Remove it!
1238    L->replaceAllUsesWith(DepLI);
1239    if (isa<PointerType>(DepLI->getType()))
1240      MD->invalidateCachedPointerInfo(DepLI);
1241    toErase.push_back(L);
1242    NumGVNLoad++;
1243    return true;
1244  }
1245
1246  // If this load really doesn't depend on anything, then we must be loading an
1247  // undef value.  This can happen when loading for a fresh allocation with no
1248  // intervening stores, for example.
1249  if (isa<AllocationInst>(DepInst)) {
1250    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1251    toErase.push_back(L);
1252    NumGVNLoad++;
1253    return true;
1254  }
1255
1256  return false;
1257}
1258
1259Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1260  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1261  if (I == localAvail.end())
1262    return 0;
1263
1264  ValueNumberScope* locals = I->second;
1265
1266  while (locals) {
1267    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1268    if (I != locals->table.end())
1269      return I->second;
1270    else
1271      locals = locals->parent;
1272  }
1273
1274  return 0;
1275}
1276
1277/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1278/// by inheritance from the dominator fails, see if we can perform phi
1279/// construction to eliminate the redundancy.
1280Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1281  BasicBlock* BaseBlock = orig->getParent();
1282
1283  SmallPtrSet<BasicBlock*, 4> Visited;
1284  SmallVector<BasicBlock*, 8> Stack;
1285  Stack.push_back(BaseBlock);
1286
1287  DenseMap<BasicBlock*, Value*> Results;
1288
1289  // Walk backwards through our predecessors, looking for instances of the
1290  // value number we're looking for.  Instances are recorded in the Results
1291  // map, which is then used to perform phi construction.
1292  while (!Stack.empty()) {
1293    BasicBlock* Current = Stack.back();
1294    Stack.pop_back();
1295
1296    // If we've walked all the way to a proper dominator, then give up. Cases
1297    // where the instance is in the dominator will have been caught by the fast
1298    // path, and any cases that require phi construction further than this are
1299    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1300    // time improvement.
1301    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1302
1303    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1304                                                       localAvail.find(Current);
1305    if (LA == localAvail.end()) return 0;
1306    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1307
1308    if (V != LA->second->table.end()) {
1309      // Found an instance, record it.
1310      Results.insert(std::make_pair(Current, V->second));
1311      continue;
1312    }
1313
1314    // If we reach the beginning of the function, then give up.
1315    if (pred_begin(Current) == pred_end(Current))
1316      return 0;
1317
1318    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1319         PI != PE; ++PI)
1320      if (Visited.insert(*PI))
1321        Stack.push_back(*PI);
1322  }
1323
1324  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1325  if (Results.size() == 0)
1326    return 0;
1327  else
1328    return GetValueForBlock(BaseBlock, orig, Results, true);
1329}
1330
1331/// processInstruction - When calculating availability, handle an instruction
1332/// by inserting it into the appropriate sets
1333bool GVN::processInstruction(Instruction *I,
1334                             SmallVectorImpl<Instruction*> &toErase) {
1335  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1336    bool changed = processLoad(L, toErase);
1337
1338    if (!changed) {
1339      unsigned num = VN.lookup_or_add(L);
1340      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1341    }
1342
1343    return changed;
1344  }
1345
1346  uint32_t nextNum = VN.getNextUnusedValueNumber();
1347  unsigned num = VN.lookup_or_add(I);
1348
1349  if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1350    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1351
1352    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1353      return false;
1354
1355    Value* branchCond = BI->getCondition();
1356    uint32_t condVN = VN.lookup_or_add(branchCond);
1357
1358    BasicBlock* trueSucc = BI->getSuccessor(0);
1359    BasicBlock* falseSucc = BI->getSuccessor(1);
1360
1361    if (trueSucc->getSinglePredecessor())
1362      localAvail[trueSucc]->table[condVN] = ConstantInt::getTrue();
1363    if (falseSucc->getSinglePredecessor())
1364      localAvail[falseSucc]->table[condVN] = ConstantInt::getFalse();
1365
1366    return false;
1367
1368  // Allocations are always uniquely numbered, so we can save time and memory
1369  // by fast failing them.
1370  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1371    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1372    return false;
1373  }
1374
1375  // Collapse PHI nodes
1376  if (PHINode* p = dyn_cast<PHINode>(I)) {
1377    Value* constVal = CollapsePhi(p);
1378
1379    if (constVal) {
1380      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1381           PI != PE; ++PI)
1382        PI->second.erase(p);
1383
1384      p->replaceAllUsesWith(constVal);
1385      if (isa<PointerType>(constVal->getType()))
1386        MD->invalidateCachedPointerInfo(constVal);
1387      VN.erase(p);
1388
1389      toErase.push_back(p);
1390    } else {
1391      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1392    }
1393
1394  // If the number we were assigned was a brand new VN, then we don't
1395  // need to do a lookup to see if the number already exists
1396  // somewhere in the domtree: it can't!
1397  } else if (num == nextNum) {
1398    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1399
1400  // Perform fast-path value-number based elimination of values inherited from
1401  // dominators.
1402  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1403    // Remove it!
1404    VN.erase(I);
1405    I->replaceAllUsesWith(repl);
1406    if (isa<PointerType>(repl->getType()))
1407      MD->invalidateCachedPointerInfo(repl);
1408    toErase.push_back(I);
1409    return true;
1410
1411#if 0
1412  // Perform slow-pathvalue-number based elimination with phi construction.
1413  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1414    // Remove it!
1415    VN.erase(I);
1416    I->replaceAllUsesWith(repl);
1417    if (isa<PointerType>(repl->getType()))
1418      MD->invalidateCachedPointerInfo(repl);
1419    toErase.push_back(I);
1420    return true;
1421#endif
1422  } else {
1423    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1424  }
1425
1426  return false;
1427}
1428
1429/// runOnFunction - This is the main transformation entry point for a function.
1430bool GVN::runOnFunction(Function& F) {
1431  MD = &getAnalysis<MemoryDependenceAnalysis>();
1432  DT = &getAnalysis<DominatorTree>();
1433  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1434  VN.setMemDep(MD);
1435  VN.setDomTree(DT);
1436
1437  bool changed = false;
1438  bool shouldContinue = true;
1439
1440  // Merge unconditional branches, allowing PRE to catch more
1441  // optimization opportunities.
1442  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1443    BasicBlock* BB = FI;
1444    ++FI;
1445    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1446    if (removedBlock) NumGVNBlocks++;
1447
1448    changed |= removedBlock;
1449  }
1450
1451  unsigned Iteration = 0;
1452
1453  while (shouldContinue) {
1454    DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1455    shouldContinue = iterateOnFunction(F);
1456    changed |= shouldContinue;
1457    ++Iteration;
1458  }
1459
1460  if (EnablePRE) {
1461    bool PREChanged = true;
1462    while (PREChanged) {
1463      PREChanged = performPRE(F);
1464      changed |= PREChanged;
1465    }
1466  }
1467  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1468  // computations into blocks where they become fully redundant.  Note that
1469  // we can't do this until PRE's critical edge splitting updates memdep.
1470  // Actually, when this happens, we should just fully integrate PRE into GVN.
1471
1472  cleanupGlobalSets();
1473
1474  return changed;
1475}
1476
1477
1478bool GVN::processBlock(BasicBlock* BB) {
1479  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1480  // incrementing BI before processing an instruction).
1481  SmallVector<Instruction*, 8> toErase;
1482  bool changed_function = false;
1483
1484  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1485       BI != BE;) {
1486    changed_function |= processInstruction(BI, toErase);
1487    if (toErase.empty()) {
1488      ++BI;
1489      continue;
1490    }
1491
1492    // If we need some instructions deleted, do it now.
1493    NumGVNInstr += toErase.size();
1494
1495    // Avoid iterator invalidation.
1496    bool AtStart = BI == BB->begin();
1497    if (!AtStart)
1498      --BI;
1499
1500    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1501         E = toErase.end(); I != E; ++I) {
1502      DEBUG(cerr << "GVN removed: " << **I);
1503      MD->removeInstruction(*I);
1504      (*I)->eraseFromParent();
1505      DEBUG(verifyRemoved(*I));
1506    }
1507    toErase.clear();
1508
1509    if (AtStart)
1510      BI = BB->begin();
1511    else
1512      ++BI;
1513  }
1514
1515  return changed_function;
1516}
1517
1518/// performPRE - Perform a purely local form of PRE that looks for diamond
1519/// control flow patterns and attempts to perform simple PRE at the join point.
1520bool GVN::performPRE(Function& F) {
1521  bool Changed = false;
1522  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1523  DenseMap<BasicBlock*, Value*> predMap;
1524  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1525       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1526    BasicBlock* CurrentBlock = *DI;
1527
1528    // Nothing to PRE in the entry block.
1529    if (CurrentBlock == &F.getEntryBlock()) continue;
1530
1531    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1532         BE = CurrentBlock->end(); BI != BE; ) {
1533      Instruction *CurInst = BI++;
1534
1535      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1536          isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
1537          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1538          isa<DbgInfoIntrinsic>(CurInst))
1539        continue;
1540
1541      uint32_t valno = VN.lookup(CurInst);
1542
1543      // Look for the predecessors for PRE opportunities.  We're
1544      // only trying to solve the basic diamond case, where
1545      // a value is computed in the successor and one predecessor,
1546      // but not the other.  We also explicitly disallow cases
1547      // where the successor is its own predecessor, because they're
1548      // more complicated to get right.
1549      unsigned numWith = 0;
1550      unsigned numWithout = 0;
1551      BasicBlock* PREPred = 0;
1552      predMap.clear();
1553
1554      for (pred_iterator PI = pred_begin(CurrentBlock),
1555           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1556        // We're not interested in PRE where the block is its
1557        // own predecessor, on in blocks with predecessors
1558        // that are not reachable.
1559        if (*PI == CurrentBlock) {
1560          numWithout = 2;
1561          break;
1562        } else if (!localAvail.count(*PI))  {
1563          numWithout = 2;
1564          break;
1565        }
1566
1567        DenseMap<uint32_t, Value*>::iterator predV =
1568                                            localAvail[*PI]->table.find(valno);
1569        if (predV == localAvail[*PI]->table.end()) {
1570          PREPred = *PI;
1571          numWithout++;
1572        } else if (predV->second == CurInst) {
1573          numWithout = 2;
1574        } else {
1575          predMap[*PI] = predV->second;
1576          numWith++;
1577        }
1578      }
1579
1580      // Don't do PRE when it might increase code size, i.e. when
1581      // we would need to insert instructions in more than one pred.
1582      if (numWithout != 1 || numWith == 0)
1583        continue;
1584
1585      // We can't do PRE safely on a critical edge, so instead we schedule
1586      // the edge to be split and perform the PRE the next time we iterate
1587      // on the function.
1588      unsigned succNum = 0;
1589      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1590           i != e; ++i)
1591        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1592          succNum = i;
1593          break;
1594        }
1595
1596      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1597        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1598        continue;
1599      }
1600
1601      // Instantiate the expression the in predecessor that lacked it.
1602      // Because we are going top-down through the block, all value numbers
1603      // will be available in the predecessor by the time we need them.  Any
1604      // that weren't original present will have been instantiated earlier
1605      // in this loop.
1606      Instruction* PREInstr = CurInst->clone();
1607      bool success = true;
1608      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1609        Value *Op = PREInstr->getOperand(i);
1610        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1611          continue;
1612
1613        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1614          PREInstr->setOperand(i, V);
1615        } else {
1616          success = false;
1617          break;
1618        }
1619      }
1620
1621      // Fail out if we encounter an operand that is not available in
1622      // the PRE predecessor.  This is typically because of loads which
1623      // are not value numbered precisely.
1624      if (!success) {
1625        delete PREInstr;
1626        DEBUG(verifyRemoved(PREInstr));
1627        continue;
1628      }
1629
1630      PREInstr->insertBefore(PREPred->getTerminator());
1631      PREInstr->setName(CurInst->getName() + ".pre");
1632      predMap[PREPred] = PREInstr;
1633      VN.add(PREInstr, valno);
1634      NumGVNPRE++;
1635
1636      // Update the availability map to include the new instruction.
1637      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1638
1639      // Create a PHI to make the value available in this block.
1640      PHINode* Phi = PHINode::Create(CurInst->getType(),
1641                                     CurInst->getName() + ".pre-phi",
1642                                     CurrentBlock->begin());
1643      for (pred_iterator PI = pred_begin(CurrentBlock),
1644           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1645        Phi->addIncoming(predMap[*PI], *PI);
1646
1647      VN.add(Phi, valno);
1648      localAvail[CurrentBlock]->table[valno] = Phi;
1649
1650      CurInst->replaceAllUsesWith(Phi);
1651      if (isa<PointerType>(Phi->getType()))
1652        MD->invalidateCachedPointerInfo(Phi);
1653      VN.erase(CurInst);
1654
1655      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1656      MD->removeInstruction(CurInst);
1657      CurInst->eraseFromParent();
1658      DEBUG(verifyRemoved(CurInst));
1659      Changed = true;
1660    }
1661  }
1662
1663  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1664       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1665    SplitCriticalEdge(I->first, I->second, this);
1666
1667  return Changed || toSplit.size();
1668}
1669
1670/// iterateOnFunction - Executes one iteration of GVN
1671bool GVN::iterateOnFunction(Function &F) {
1672  cleanupGlobalSets();
1673
1674  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1675       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1676    if (DI->getIDom())
1677      localAvail[DI->getBlock()] =
1678                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1679    else
1680      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1681  }
1682
1683  // Top-down walk of the dominator tree
1684  bool changed = false;
1685#if 0
1686  // Needed for value numbering with phi construction to work.
1687  ReversePostOrderTraversal<Function*> RPOT(&F);
1688  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1689       RE = RPOT.end(); RI != RE; ++RI)
1690    changed |= processBlock(*RI);
1691#else
1692  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1693       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1694    changed |= processBlock(DI->getBlock());
1695#endif
1696
1697  return changed;
1698}
1699
1700void GVN::cleanupGlobalSets() {
1701  VN.clear();
1702  phiMap.clear();
1703
1704  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1705       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1706    delete I->second;
1707  localAvail.clear();
1708}
1709
1710/// verifyRemoved - Verify that the specified instruction does not occur in our
1711/// internal data structures.
1712void GVN::verifyRemoved(const Instruction *Inst) const {
1713  VN.verifyRemoved(Inst);
1714
1715  // Walk through the PHI map to make sure the instruction isn't hiding in there
1716  // somewhere.
1717  for (PhiMapType::iterator
1718         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1719    assert(I->first != Inst && "Inst is still a key in PHI map!");
1720
1721    for (SmallPtrSet<Instruction*, 4>::iterator
1722           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1723      assert(*II != Inst && "Inst is still a value in PHI map!");
1724    }
1725  }
1726
1727  // Walk through the value number scope to make sure the instruction isn't
1728  // ferreted away in it.
1729  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1730         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1731    const ValueNumberScope *VNS = I->second;
1732
1733    while (VNS) {
1734      for (DenseMap<uint32_t, Value*>::iterator
1735             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1736        assert(II->second != Inst && "Inst still in value numbering scope!");
1737      }
1738
1739      VNS = VNS->parent;
1740    }
1741  }
1742}
1743