GVN.cpp revision ca74940fee04662a61cee290a1b04ef2f2b52c09
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/MallocHelper.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include <cstdio>
48using namespace llvm;
49
50STATISTIC(NumGVNInstr,  "Number of instructions deleted");
51STATISTIC(NumGVNLoad,   "Number of loads deleted");
52STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
53STATISTIC(NumGVNBlocks, "Number of blocks merged");
54STATISTIC(NumPRELoad,   "Number of loads PRE'd");
55
56static cl::opt<bool> EnablePRE("enable-pre",
57                               cl::init(true), cl::Hidden);
58static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
59
60//===----------------------------------------------------------------------===//
61//                         ValueTable Class
62//===----------------------------------------------------------------------===//
63
64/// This class holds the mapping between values and value numbers.  It is used
65/// as an efficient mechanism to determine the expression-wise equivalence of
66/// two values.
67namespace {
68  struct Expression {
69    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
70                            UDIV, SDIV, FDIV, UREM, SREM,
71                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
72                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
73                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
74                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
75                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
76                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
77                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
78                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
79                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
80                            EMPTY, TOMBSTONE };
81
82    ExpressionOpcode opcode;
83    const Type* type;
84    uint32_t firstVN;
85    uint32_t secondVN;
86    uint32_t thirdVN;
87    SmallVector<uint32_t, 4> varargs;
88    Value *function;
89
90    Expression() { }
91    Expression(ExpressionOpcode o) : opcode(o) { }
92
93    bool operator==(const Expression &other) const {
94      if (opcode != other.opcode)
95        return false;
96      else if (opcode == EMPTY || opcode == TOMBSTONE)
97        return true;
98      else if (type != other.type)
99        return false;
100      else if (function != other.function)
101        return false;
102      else if (firstVN != other.firstVN)
103        return false;
104      else if (secondVN != other.secondVN)
105        return false;
106      else if (thirdVN != other.thirdVN)
107        return false;
108      else {
109        if (varargs.size() != other.varargs.size())
110          return false;
111
112        for (size_t i = 0; i < varargs.size(); ++i)
113          if (varargs[i] != other.varargs[i])
114            return false;
115
116        return true;
117      }
118    }
119
120    bool operator!=(const Expression &other) const {
121      return !(*this == other);
122    }
123  };
124
125  class ValueTable {
126    private:
127      DenseMap<Value*, uint32_t> valueNumbering;
128      DenseMap<Expression, uint32_t> expressionNumbering;
129      AliasAnalysis* AA;
130      MemoryDependenceAnalysis* MD;
131      DominatorTree* DT;
132
133      uint32_t nextValueNumber;
134
135      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
136      Expression::ExpressionOpcode getOpcode(CmpInst* C);
137      Expression::ExpressionOpcode getOpcode(CastInst* C);
138      Expression create_expression(BinaryOperator* BO);
139      Expression create_expression(CmpInst* C);
140      Expression create_expression(ShuffleVectorInst* V);
141      Expression create_expression(ExtractElementInst* C);
142      Expression create_expression(InsertElementInst* V);
143      Expression create_expression(SelectInst* V);
144      Expression create_expression(CastInst* C);
145      Expression create_expression(GetElementPtrInst* G);
146      Expression create_expression(CallInst* C);
147      Expression create_expression(Constant* C);
148    public:
149      ValueTable() : nextValueNumber(1) { }
150      uint32_t lookup_or_add(Value *V);
151      uint32_t lookup(Value *V) const;
152      void add(Value *V, uint32_t num);
153      void clear();
154      void erase(Value *v);
155      unsigned size();
156      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
157      AliasAnalysis *getAliasAnalysis() const { return AA; }
158      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
159      void setDomTree(DominatorTree* D) { DT = D; }
160      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
161      void verifyRemoved(const Value *) const;
162  };
163}
164
165namespace llvm {
166template <> struct DenseMapInfo<Expression> {
167  static inline Expression getEmptyKey() {
168    return Expression(Expression::EMPTY);
169  }
170
171  static inline Expression getTombstoneKey() {
172    return Expression(Expression::TOMBSTONE);
173  }
174
175  static unsigned getHashValue(const Expression e) {
176    unsigned hash = e.opcode;
177
178    hash = e.firstVN + hash * 37;
179    hash = e.secondVN + hash * 37;
180    hash = e.thirdVN + hash * 37;
181
182    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
183            (unsigned)((uintptr_t)e.type >> 9)) +
184           hash * 37;
185
186    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
187         E = e.varargs.end(); I != E; ++I)
188      hash = *I + hash * 37;
189
190    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
191            (unsigned)((uintptr_t)e.function >> 9)) +
192           hash * 37;
193
194    return hash;
195  }
196  static bool isEqual(const Expression &LHS, const Expression &RHS) {
197    return LHS == RHS;
198  }
199  static bool isPod() { return true; }
200};
201}
202
203//===----------------------------------------------------------------------===//
204//                     ValueTable Internal Functions
205//===----------------------------------------------------------------------===//
206Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
207  switch(BO->getOpcode()) {
208  default: // THIS SHOULD NEVER HAPPEN
209    llvm_unreachable("Binary operator with unknown opcode?");
210  case Instruction::Add:  return Expression::ADD;
211  case Instruction::FAdd: return Expression::FADD;
212  case Instruction::Sub:  return Expression::SUB;
213  case Instruction::FSub: return Expression::FSUB;
214  case Instruction::Mul:  return Expression::MUL;
215  case Instruction::FMul: return Expression::FMUL;
216  case Instruction::UDiv: return Expression::UDIV;
217  case Instruction::SDiv: return Expression::SDIV;
218  case Instruction::FDiv: return Expression::FDIV;
219  case Instruction::URem: return Expression::UREM;
220  case Instruction::SRem: return Expression::SREM;
221  case Instruction::FRem: return Expression::FREM;
222  case Instruction::Shl:  return Expression::SHL;
223  case Instruction::LShr: return Expression::LSHR;
224  case Instruction::AShr: return Expression::ASHR;
225  case Instruction::And:  return Expression::AND;
226  case Instruction::Or:   return Expression::OR;
227  case Instruction::Xor:  return Expression::XOR;
228  }
229}
230
231Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
232  if (isa<ICmpInst>(C)) {
233    switch (C->getPredicate()) {
234    default:  // THIS SHOULD NEVER HAPPEN
235      llvm_unreachable("Comparison with unknown predicate?");
236    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
237    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
238    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
239    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
240    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
241    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
242    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
243    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
244    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
245    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
246    }
247  } else {
248    switch (C->getPredicate()) {
249    default: // THIS SHOULD NEVER HAPPEN
250      llvm_unreachable("Comparison with unknown predicate?");
251    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
252    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
253    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
254    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
255    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
256    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
257    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
258    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
259    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
260    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
261    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
262    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
263    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
264    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
265    }
266  }
267}
268
269Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
270  switch(C->getOpcode()) {
271  default: // THIS SHOULD NEVER HAPPEN
272    llvm_unreachable("Cast operator with unknown opcode?");
273  case Instruction::Trunc:    return Expression::TRUNC;
274  case Instruction::ZExt:     return Expression::ZEXT;
275  case Instruction::SExt:     return Expression::SEXT;
276  case Instruction::FPToUI:   return Expression::FPTOUI;
277  case Instruction::FPToSI:   return Expression::FPTOSI;
278  case Instruction::UIToFP:   return Expression::UITOFP;
279  case Instruction::SIToFP:   return Expression::SITOFP;
280  case Instruction::FPTrunc:  return Expression::FPTRUNC;
281  case Instruction::FPExt:    return Expression::FPEXT;
282  case Instruction::PtrToInt: return Expression::PTRTOINT;
283  case Instruction::IntToPtr: return Expression::INTTOPTR;
284  case Instruction::BitCast:  return Expression::BITCAST;
285  }
286}
287
288Expression ValueTable::create_expression(CallInst* C) {
289  Expression e;
290
291  e.type = C->getType();
292  e.firstVN = 0;
293  e.secondVN = 0;
294  e.thirdVN = 0;
295  e.function = C->getCalledFunction();
296  e.opcode = Expression::CALL;
297
298  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
299       I != E; ++I)
300    e.varargs.push_back(lookup_or_add(*I));
301
302  return e;
303}
304
305Expression ValueTable::create_expression(BinaryOperator* BO) {
306  Expression e;
307
308  e.firstVN = lookup_or_add(BO->getOperand(0));
309  e.secondVN = lookup_or_add(BO->getOperand(1));
310  e.thirdVN = 0;
311  e.function = 0;
312  e.type = BO->getType();
313  e.opcode = getOpcode(BO);
314
315  return e;
316}
317
318Expression ValueTable::create_expression(CmpInst* C) {
319  Expression e;
320
321  e.firstVN = lookup_or_add(C->getOperand(0));
322  e.secondVN = lookup_or_add(C->getOperand(1));
323  e.thirdVN = 0;
324  e.function = 0;
325  e.type = C->getType();
326  e.opcode = getOpcode(C);
327
328  return e;
329}
330
331Expression ValueTable::create_expression(CastInst* C) {
332  Expression e;
333
334  e.firstVN = lookup_or_add(C->getOperand(0));
335  e.secondVN = 0;
336  e.thirdVN = 0;
337  e.function = 0;
338  e.type = C->getType();
339  e.opcode = getOpcode(C);
340
341  return e;
342}
343
344Expression ValueTable::create_expression(ShuffleVectorInst* S) {
345  Expression e;
346
347  e.firstVN = lookup_or_add(S->getOperand(0));
348  e.secondVN = lookup_or_add(S->getOperand(1));
349  e.thirdVN = lookup_or_add(S->getOperand(2));
350  e.function = 0;
351  e.type = S->getType();
352  e.opcode = Expression::SHUFFLE;
353
354  return e;
355}
356
357Expression ValueTable::create_expression(ExtractElementInst* E) {
358  Expression e;
359
360  e.firstVN = lookup_or_add(E->getOperand(0));
361  e.secondVN = lookup_or_add(E->getOperand(1));
362  e.thirdVN = 0;
363  e.function = 0;
364  e.type = E->getType();
365  e.opcode = Expression::EXTRACT;
366
367  return e;
368}
369
370Expression ValueTable::create_expression(InsertElementInst* I) {
371  Expression e;
372
373  e.firstVN = lookup_or_add(I->getOperand(0));
374  e.secondVN = lookup_or_add(I->getOperand(1));
375  e.thirdVN = lookup_or_add(I->getOperand(2));
376  e.function = 0;
377  e.type = I->getType();
378  e.opcode = Expression::INSERT;
379
380  return e;
381}
382
383Expression ValueTable::create_expression(SelectInst* I) {
384  Expression e;
385
386  e.firstVN = lookup_or_add(I->getCondition());
387  e.secondVN = lookup_or_add(I->getTrueValue());
388  e.thirdVN = lookup_or_add(I->getFalseValue());
389  e.function = 0;
390  e.type = I->getType();
391  e.opcode = Expression::SELECT;
392
393  return e;
394}
395
396Expression ValueTable::create_expression(GetElementPtrInst* G) {
397  Expression e;
398
399  e.firstVN = lookup_or_add(G->getPointerOperand());
400  e.secondVN = 0;
401  e.thirdVN = 0;
402  e.function = 0;
403  e.type = G->getType();
404  e.opcode = Expression::GEP;
405
406  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
407       I != E; ++I)
408    e.varargs.push_back(lookup_or_add(*I));
409
410  return e;
411}
412
413//===----------------------------------------------------------------------===//
414//                     ValueTable External Functions
415//===----------------------------------------------------------------------===//
416
417/// add - Insert a value into the table with a specified value number.
418void ValueTable::add(Value *V, uint32_t num) {
419  valueNumbering.insert(std::make_pair(V, num));
420}
421
422/// lookup_or_add - Returns the value number for the specified value, assigning
423/// it a new number if it did not have one before.
424uint32_t ValueTable::lookup_or_add(Value *V) {
425  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
426  if (VI != valueNumbering.end())
427    return VI->second;
428
429  if (CallInst* C = dyn_cast<CallInst>(V)) {
430    if (AA->doesNotAccessMemory(C)) {
431      Expression e = create_expression(C);
432
433      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
434      if (EI != expressionNumbering.end()) {
435        valueNumbering.insert(std::make_pair(V, EI->second));
436        return EI->second;
437      } else {
438        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
439        valueNumbering.insert(std::make_pair(V, nextValueNumber));
440
441        return nextValueNumber++;
442      }
443    } else if (AA->onlyReadsMemory(C)) {
444      Expression e = create_expression(C);
445
446      if (expressionNumbering.find(e) == expressionNumbering.end()) {
447        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
448        valueNumbering.insert(std::make_pair(V, nextValueNumber));
449        return nextValueNumber++;
450      }
451
452      MemDepResult local_dep = MD->getDependency(C);
453
454      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
455        valueNumbering.insert(std::make_pair(V, nextValueNumber));
456        return nextValueNumber++;
457      }
458
459      if (local_dep.isDef()) {
460        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
461
462        if (local_cdep->getNumOperands() != C->getNumOperands()) {
463          valueNumbering.insert(std::make_pair(V, nextValueNumber));
464          return nextValueNumber++;
465        }
466
467        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
468          uint32_t c_vn = lookup_or_add(C->getOperand(i));
469          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
470          if (c_vn != cd_vn) {
471            valueNumbering.insert(std::make_pair(V, nextValueNumber));
472            return nextValueNumber++;
473          }
474        }
475
476        uint32_t v = lookup_or_add(local_cdep);
477        valueNumbering.insert(std::make_pair(V, v));
478        return v;
479      }
480
481      // Non-local case.
482      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
483        MD->getNonLocalCallDependency(CallSite(C));
484      // FIXME: call/call dependencies for readonly calls should return def, not
485      // clobber!  Move the checking logic to MemDep!
486      CallInst* cdep = 0;
487
488      // Check to see if we have a single dominating call instruction that is
489      // identical to C.
490      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
491        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
492        // Ignore non-local dependencies.
493        if (I->second.isNonLocal())
494          continue;
495
496        // We don't handle non-depedencies.  If we already have a call, reject
497        // instruction dependencies.
498        if (I->second.isClobber() || cdep != 0) {
499          cdep = 0;
500          break;
501        }
502
503        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
504        // FIXME: All duplicated with non-local case.
505        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
506          cdep = NonLocalDepCall;
507          continue;
508        }
509
510        cdep = 0;
511        break;
512      }
513
514      if (!cdep) {
515        valueNumbering.insert(std::make_pair(V, nextValueNumber));
516        return nextValueNumber++;
517      }
518
519      if (cdep->getNumOperands() != C->getNumOperands()) {
520        valueNumbering.insert(std::make_pair(V, nextValueNumber));
521        return nextValueNumber++;
522      }
523      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
524        uint32_t c_vn = lookup_or_add(C->getOperand(i));
525        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
526        if (c_vn != cd_vn) {
527          valueNumbering.insert(std::make_pair(V, nextValueNumber));
528          return nextValueNumber++;
529        }
530      }
531
532      uint32_t v = lookup_or_add(cdep);
533      valueNumbering.insert(std::make_pair(V, v));
534      return v;
535
536    } else {
537      valueNumbering.insert(std::make_pair(V, nextValueNumber));
538      return nextValueNumber++;
539    }
540  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
541    Expression e = create_expression(BO);
542
543    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
544    if (EI != expressionNumbering.end()) {
545      valueNumbering.insert(std::make_pair(V, EI->second));
546      return EI->second;
547    } else {
548      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
549      valueNumbering.insert(std::make_pair(V, nextValueNumber));
550
551      return nextValueNumber++;
552    }
553  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
554    Expression e = create_expression(C);
555
556    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
557    if (EI != expressionNumbering.end()) {
558      valueNumbering.insert(std::make_pair(V, EI->second));
559      return EI->second;
560    } else {
561      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
562      valueNumbering.insert(std::make_pair(V, nextValueNumber));
563
564      return nextValueNumber++;
565    }
566  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
567    Expression e = create_expression(U);
568
569    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
570    if (EI != expressionNumbering.end()) {
571      valueNumbering.insert(std::make_pair(V, EI->second));
572      return EI->second;
573    } else {
574      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
575      valueNumbering.insert(std::make_pair(V, nextValueNumber));
576
577      return nextValueNumber++;
578    }
579  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
580    Expression e = create_expression(U);
581
582    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
583    if (EI != expressionNumbering.end()) {
584      valueNumbering.insert(std::make_pair(V, EI->second));
585      return EI->second;
586    } else {
587      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
588      valueNumbering.insert(std::make_pair(V, nextValueNumber));
589
590      return nextValueNumber++;
591    }
592  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
593    Expression e = create_expression(U);
594
595    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
596    if (EI != expressionNumbering.end()) {
597      valueNumbering.insert(std::make_pair(V, EI->second));
598      return EI->second;
599    } else {
600      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
601      valueNumbering.insert(std::make_pair(V, nextValueNumber));
602
603      return nextValueNumber++;
604    }
605  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
606    Expression e = create_expression(U);
607
608    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
609    if (EI != expressionNumbering.end()) {
610      valueNumbering.insert(std::make_pair(V, EI->second));
611      return EI->second;
612    } else {
613      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
614      valueNumbering.insert(std::make_pair(V, nextValueNumber));
615
616      return nextValueNumber++;
617    }
618  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
619    Expression e = create_expression(U);
620
621    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
622    if (EI != expressionNumbering.end()) {
623      valueNumbering.insert(std::make_pair(V, EI->second));
624      return EI->second;
625    } else {
626      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
627      valueNumbering.insert(std::make_pair(V, nextValueNumber));
628
629      return nextValueNumber++;
630    }
631  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
632    Expression e = create_expression(U);
633
634    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
635    if (EI != expressionNumbering.end()) {
636      valueNumbering.insert(std::make_pair(V, EI->second));
637      return EI->second;
638    } else {
639      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
640      valueNumbering.insert(std::make_pair(V, nextValueNumber));
641
642      return nextValueNumber++;
643    }
644  } else {
645    valueNumbering.insert(std::make_pair(V, nextValueNumber));
646    return nextValueNumber++;
647  }
648}
649
650/// lookup - Returns the value number of the specified value. Fails if
651/// the value has not yet been numbered.
652uint32_t ValueTable::lookup(Value *V) const {
653  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
654  assert(VI != valueNumbering.end() && "Value not numbered?");
655  return VI->second;
656}
657
658/// clear - Remove all entries from the ValueTable
659void ValueTable::clear() {
660  valueNumbering.clear();
661  expressionNumbering.clear();
662  nextValueNumber = 1;
663}
664
665/// erase - Remove a value from the value numbering
666void ValueTable::erase(Value *V) {
667  valueNumbering.erase(V);
668}
669
670/// verifyRemoved - Verify that the value is removed from all internal data
671/// structures.
672void ValueTable::verifyRemoved(const Value *V) const {
673  for (DenseMap<Value*, uint32_t>::iterator
674         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
675    assert(I->first != V && "Inst still occurs in value numbering map!");
676  }
677}
678
679//===----------------------------------------------------------------------===//
680//                                GVN Pass
681//===----------------------------------------------------------------------===//
682
683namespace {
684  struct ValueNumberScope {
685    ValueNumberScope* parent;
686    DenseMap<uint32_t, Value*> table;
687
688    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
689  };
690}
691
692namespace {
693
694  class GVN : public FunctionPass {
695    bool runOnFunction(Function &F);
696  public:
697    static char ID; // Pass identification, replacement for typeid
698    GVN() : FunctionPass(&ID) { }
699
700  private:
701    MemoryDependenceAnalysis *MD;
702    DominatorTree *DT;
703
704    ValueTable VN;
705    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
706
707    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
708    PhiMapType phiMap;
709
710
711    // This transformation requires dominator postdominator info
712    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
713      AU.addRequired<DominatorTree>();
714      AU.addRequired<MemoryDependenceAnalysis>();
715      AU.addRequired<AliasAnalysis>();
716
717      AU.addPreserved<DominatorTree>();
718      AU.addPreserved<AliasAnalysis>();
719    }
720
721    // Helper fuctions
722    // FIXME: eliminate or document these better
723    bool processLoad(LoadInst* L,
724                     SmallVectorImpl<Instruction*> &toErase);
725    bool processInstruction(Instruction *I,
726                            SmallVectorImpl<Instruction*> &toErase);
727    bool processNonLocalLoad(LoadInst* L,
728                             SmallVectorImpl<Instruction*> &toErase);
729    bool processBlock(BasicBlock *BB);
730    Value *GetValueForBlock(BasicBlock *BB, Instruction *orig,
731                            DenseMap<BasicBlock*, Value*> &Phis,
732                            bool top_level = false);
733    void dump(DenseMap<uint32_t, Value*>& d);
734    bool iterateOnFunction(Function &F);
735    Value *CollapsePhi(PHINode* p);
736    bool performPRE(Function& F);
737    Value *lookupNumber(BasicBlock *BB, uint32_t num);
738    Value *AttemptRedundancyElimination(Instruction *orig, unsigned valno);
739    void cleanupGlobalSets();
740    void verifyRemoved(const Instruction *I) const;
741  };
742
743  char GVN::ID = 0;
744}
745
746// createGVNPass - The public interface to this file...
747FunctionPass *llvm::createGVNPass() { return new GVN(); }
748
749static RegisterPass<GVN> X("gvn",
750                           "Global Value Numbering");
751
752void GVN::dump(DenseMap<uint32_t, Value*>& d) {
753  printf("{\n");
754  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
755       E = d.end(); I != E; ++I) {
756      printf("%d\n", I->first);
757      I->second->dump();
758  }
759  printf("}\n");
760}
761
762static bool isSafeReplacement(PHINode* p, Instruction *inst) {
763  if (!isa<PHINode>(inst))
764    return true;
765
766  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
767       UI != E; ++UI)
768    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
769      if (use_phi->getParent() == inst->getParent())
770        return false;
771
772  return true;
773}
774
775Value *GVN::CollapsePhi(PHINode *PN) {
776  Value *ConstVal = PN->hasConstantValue(DT);
777  if (!ConstVal) return 0;
778
779  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
780  if (!Inst)
781    return ConstVal;
782
783  if (DT->dominates(Inst, PN))
784    if (isSafeReplacement(PN, Inst))
785      return Inst;
786  return 0;
787}
788
789/// GetValueForBlock - Get the value to use within the specified basic block.
790/// available values are in Phis.
791Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction *Orig,
792                             DenseMap<BasicBlock*, Value*> &Phis,
793                             bool TopLevel) {
794
795  // If we have already computed this value, return the previously computed val.
796  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
797  if (V != Phis.end() && !TopLevel) return V->second;
798
799  // If the block is unreachable, just return undef, since this path
800  // can't actually occur at runtime.
801  if (!DT->isReachableFromEntry(BB))
802    return Phis[BB] = UndefValue::get(Orig->getType());
803
804  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
805    Value *ret = GetValueForBlock(Pred, Orig, Phis);
806    Phis[BB] = ret;
807    return ret;
808  }
809
810  // Get the number of predecessors of this block so we can reserve space later.
811  // If there is already a PHI in it, use the #preds from it, otherwise count.
812  // Getting it from the PHI is constant time.
813  unsigned NumPreds;
814  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
815    NumPreds = ExistingPN->getNumIncomingValues();
816  else
817    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
818
819  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
820  // now, then get values to fill in the incoming values for the PHI.
821  PHINode *PN = PHINode::Create(Orig->getType(), Orig->getName()+".rle",
822                                BB->begin());
823  PN->reserveOperandSpace(NumPreds);
824
825  Phis.insert(std::make_pair(BB, PN));
826
827  // Fill in the incoming values for the block.
828  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
829    Value *val = GetValueForBlock(*PI, Orig, Phis);
830    PN->addIncoming(val, *PI);
831  }
832
833  VN.getAliasAnalysis()->copyValue(Orig, PN);
834
835  // Attempt to collapse PHI nodes that are trivially redundant
836  Value *v = CollapsePhi(PN);
837  if (!v) {
838    // Cache our phi construction results
839    if (LoadInst* L = dyn_cast<LoadInst>(Orig))
840      phiMap[L->getPointerOperand()].insert(PN);
841    else
842      phiMap[Orig].insert(PN);
843
844    return PN;
845  }
846
847  PN->replaceAllUsesWith(v);
848  if (isa<PointerType>(v->getType()))
849    MD->invalidateCachedPointerInfo(v);
850
851  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
852       E = Phis.end(); I != E; ++I)
853    if (I->second == PN)
854      I->second = v;
855
856  DEBUG(errs() << "GVN removed: " << *PN << '\n');
857  MD->removeInstruction(PN);
858  PN->eraseFromParent();
859  DEBUG(verifyRemoved(PN));
860
861  Phis[BB] = v;
862  return v;
863}
864
865/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
866/// we're analyzing is fully available in the specified block.  As we go, keep
867/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
868/// map is actually a tri-state map with the following values:
869///   0) we know the block *is not* fully available.
870///   1) we know the block *is* fully available.
871///   2) we do not know whether the block is fully available or not, but we are
872///      currently speculating that it will be.
873///   3) we are speculating for this block and have used that to speculate for
874///      other blocks.
875static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
876                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
877  // Optimistically assume that the block is fully available and check to see
878  // if we already know about this block in one lookup.
879  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
880    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
881
882  // If the entry already existed for this block, return the precomputed value.
883  if (!IV.second) {
884    // If this is a speculative "available" value, mark it as being used for
885    // speculation of other blocks.
886    if (IV.first->second == 2)
887      IV.first->second = 3;
888    return IV.first->second != 0;
889  }
890
891  // Otherwise, see if it is fully available in all predecessors.
892  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
893
894  // If this block has no predecessors, it isn't live-in here.
895  if (PI == PE)
896    goto SpeculationFailure;
897
898  for (; PI != PE; ++PI)
899    // If the value isn't fully available in one of our predecessors, then it
900    // isn't fully available in this block either.  Undo our previous
901    // optimistic assumption and bail out.
902    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
903      goto SpeculationFailure;
904
905  return true;
906
907// SpeculationFailure - If we get here, we found out that this is not, after
908// all, a fully-available block.  We have a problem if we speculated on this and
909// used the speculation to mark other blocks as available.
910SpeculationFailure:
911  char &BBVal = FullyAvailableBlocks[BB];
912
913  // If we didn't speculate on this, just return with it set to false.
914  if (BBVal == 2) {
915    BBVal = 0;
916    return false;
917  }
918
919  // If we did speculate on this value, we could have blocks set to 1 that are
920  // incorrect.  Walk the (transitive) successors of this block and mark them as
921  // 0 if set to one.
922  SmallVector<BasicBlock*, 32> BBWorklist;
923  BBWorklist.push_back(BB);
924
925  while (!BBWorklist.empty()) {
926    BasicBlock *Entry = BBWorklist.pop_back_val();
927    // Note that this sets blocks to 0 (unavailable) if they happen to not
928    // already be in FullyAvailableBlocks.  This is safe.
929    char &EntryVal = FullyAvailableBlocks[Entry];
930    if (EntryVal == 0) continue;  // Already unavailable.
931
932    // Mark as unavailable.
933    EntryVal = 0;
934
935    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
936      BBWorklist.push_back(*I);
937  }
938
939  return false;
940}
941
942
943/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
944/// then a load from a must-aliased pointer of a different type, try to coerce
945/// the stored value.  LoadedTy is the type of the load we want to replace and
946/// InsertPt is the place to insert new instructions.
947///
948/// If we can't do it, return null.
949static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
950                                             const Type *LoadedTy,
951                                             Instruction *InsertPt,
952                                             const TargetData &TD) {
953  const Type *StoredValTy = StoredVal->getType();
954
955  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
956  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
957
958  // If the store and reload are the same size, we can always reuse it.
959  if (StoreSize == LoadSize) {
960    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
961      // Pointer to Pointer -> use bitcast.
962      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
963    }
964
965    // Convert source pointers to integers, which can be bitcast.
966    if (isa<PointerType>(StoredValTy)) {
967      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
968      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
969    }
970
971    const Type *TypeToCastTo = LoadedTy;
972    if (isa<PointerType>(TypeToCastTo))
973      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
974
975    if (StoredValTy != TypeToCastTo)
976      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
977
978    // Cast to pointer if the load needs a pointer type.
979    if (isa<PointerType>(LoadedTy))
980      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
981
982    return StoredVal;
983  }
984
985  // If the loaded value is smaller than the available value, then we can
986  // extract out a piece from it.  If the available value is too small, then we
987  // can't do anything.
988  if (StoreSize < LoadSize)
989    return 0;
990
991  // Convert source pointers to integers, which can be manipulated.
992  if (isa<PointerType>(StoredValTy)) {
993    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
994    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
995  }
996
997  // Convert vectors and fp to integer, which can be manipulated.
998  if (!isa<IntegerType>(StoredValTy)) {
999    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
1000    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
1001  }
1002
1003  // If this is a big-endian system, we need to shift the value down to the low
1004  // bits so that a truncate will work.
1005  if (TD.isBigEndian()) {
1006    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
1007    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
1008  }
1009
1010  // Truncate the integer to the right size now.
1011  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
1012  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
1013
1014  if (LoadedTy == NewIntTy)
1015    return StoredVal;
1016
1017  // If the result is a pointer, inttoptr.
1018  if (isa<PointerType>(LoadedTy))
1019    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
1020
1021  // Otherwise, bitcast.
1022  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
1023}
1024
1025/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
1026/// be expressed as a base pointer plus a constant offset.  Return the base and
1027/// offset to the caller.
1028static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1029                                        const TargetData *TD) {
1030  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1031  if (PtrOp == 0) return Ptr;
1032
1033  // Just look through bitcasts.
1034  if (PtrOp->getOpcode() == Instruction::BitCast)
1035    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1036
1037  // If this is a GEP with constant indices, we can look through it.
1038  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1039  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1040
1041  gep_type_iterator GTI = gep_type_begin(GEP);
1042  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1043       ++I, ++GTI) {
1044    ConstantInt *OpC = cast<ConstantInt>(*I);
1045    if (OpC->isZero()) continue;
1046
1047    // Handle a struct and array indices which add their offset to the pointer.
1048    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1049      Offset += TD->getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1050    } else {
1051      uint64_t Size = TD->getTypeAllocSize(GTI.getIndexedType());
1052      Offset += OpC->getSExtValue()*Size;
1053    }
1054  }
1055
1056  // Re-sign extend from the pointer size if needed to get overflow edge cases
1057  // right.
1058  unsigned PtrSize = TD->getPointerSizeInBits();
1059  if (PtrSize < 64)
1060    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1061
1062  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1063}
1064
1065
1066/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1067/// memdep query of a load that ends up being a clobbering store.  This means
1068/// that the store *may* provide bits used by the load but we can't be sure
1069/// because the pointers don't mustalias.  Check this case to see if there is
1070/// anything more we can do before we give up.  This returns -1 if we have to
1071/// give up, or a byte number in the stored value of the piece that feeds the
1072/// load.
1073static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
1074                                          const TargetData *TD) {
1075  int64_t StoreOffset = 0, LoadOffset = 0;
1076  Value *StoreBase =
1077  GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
1078  Value *LoadBase =
1079  GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1080  if (StoreBase != LoadBase)
1081    return -1;
1082
1083  // If the load and store are to the exact same address, they should have been
1084  // a must alias.  AA must have gotten confused.
1085  // FIXME: Study to see if/when this happens.
1086  if (LoadOffset == StoreOffset) {
1087#if 0
1088    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1089    << "Base       = " << *StoreBase << "\n"
1090    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1091    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1092    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1093    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1094    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1095    << *L->getParent();
1096#endif
1097    return -1;
1098  }
1099
1100  // If the load and store don't overlap at all, the store doesn't provide
1101  // anything to the load.  In this case, they really don't alias at all, AA
1102  // must have gotten confused.
1103  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1104  // remove this check, as it is duplicated with what we have below.
1105  uint64_t StoreSize = TD->getTypeSizeInBits(DepSI->getOperand(0)->getType());
1106  uint64_t LoadSize = TD->getTypeSizeInBits(L->getType());
1107
1108  if ((StoreSize & 7) | (LoadSize & 7))
1109    return -1;
1110  StoreSize >>= 3;  // Convert to bytes.
1111  LoadSize >>= 3;
1112
1113
1114  bool isAAFailure = false;
1115  if (StoreOffset < LoadOffset) {
1116    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1117  } else {
1118    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1119  }
1120  if (isAAFailure) {
1121#if 0
1122    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1123    << "Base       = " << *StoreBase << "\n"
1124    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1125    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1126    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1127    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1128    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1129    << *L->getParent();
1130#endif
1131    return -1;
1132  }
1133
1134  // If the Load isn't completely contained within the stored bits, we don't
1135  // have all the bits to feed it.  We could do something crazy in the future
1136  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1137  // valuable.
1138  if (StoreOffset > LoadOffset ||
1139      StoreOffset+StoreSize < LoadOffset+LoadSize)
1140    return -1;
1141
1142  // Okay, we can do this transformation.  Return the number of bytes into the
1143  // store that the load is.
1144  return LoadOffset-StoreOffset;
1145}
1146
1147
1148/// GetStoreValueForLoad - This function is called when we have a
1149/// memdep query of a load that ends up being a clobbering store.  This means
1150/// that the store *may* provide bits used by the load but we can't be sure
1151/// because the pointers don't mustalias.  Check this case to see if there is
1152/// anything more we can do before we give up.
1153static Value *GetStoreValueForLoad(Value *SrcVal, int Offset,const Type *LoadTy,
1154                                   Instruction *InsertPt, const TargetData *TD){
1155  LLVMContext &Ctx = SrcVal->getType()->getContext();
1156
1157  uint64_t StoreSize = TD->getTypeSizeInBits(SrcVal->getType())/8;
1158  uint64_t LoadSize = TD->getTypeSizeInBits(LoadTy)/8;
1159
1160
1161  // Compute which bits of the stored value are being used by the load.  Convert
1162  // to an integer type to start with.
1163  if (isa<PointerType>(SrcVal->getType()))
1164    SrcVal = new PtrToIntInst(SrcVal, TD->getIntPtrType(Ctx), "tmp", InsertPt);
1165  if (!isa<IntegerType>(SrcVal->getType()))
1166    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1167                             "tmp", InsertPt);
1168
1169  // Shift the bits to the least significant depending on endianness.
1170  unsigned ShiftAmt;
1171  if (TD->isLittleEndian()) {
1172    ShiftAmt = Offset*8;
1173  } else {
1174    ShiftAmt = StoreSize-LoadSize-Offset;
1175  }
1176
1177  SrcVal = BinaryOperator::CreateLShr(SrcVal,
1178                                      ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1179
1180  SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1181                         "tmp", InsertPt);
1182
1183  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, *TD);
1184}
1185
1186/// GetAvailableBlockValues - Given the ValuesPerBlock list, convert all of the
1187/// available values to values of the expected LoadTy in their blocks and insert
1188/// the new values into BlockReplValues.
1189static void
1190GetAvailableBlockValues(DenseMap<BasicBlock*, Value*> &BlockReplValues,
1191                        const SmallVector<std::pair<BasicBlock*,
1192                                    Value*>, 16> &ValuesPerBlock,
1193                        const Type *LoadTy,
1194                        const TargetData *TD) {
1195
1196  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1197    BasicBlock *BB = ValuesPerBlock[i].first;
1198    Value *AvailableVal = ValuesPerBlock[i].second;
1199
1200    Value *&BlockEntry = BlockReplValues[BB];
1201    if (BlockEntry) continue;
1202
1203    if (AvailableVal->getType() != LoadTy) {
1204      assert(TD && "Need target data to handle type mismatch case");
1205      AvailableVal = CoerceAvailableValueToLoadType(AvailableVal, LoadTy,
1206                                                    BB->getTerminator(), *TD);
1207      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1208                   << *ValuesPerBlock[i].second << '\n'
1209                   << *AvailableVal << '\n' << "\n\n\n");
1210    }
1211    BlockEntry = AvailableVal;
1212  }
1213}
1214
1215/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1216/// non-local by performing PHI construction.
1217bool GVN::processNonLocalLoad(LoadInst *LI,
1218                              SmallVectorImpl<Instruction*> &toErase) {
1219  // Find the non-local dependencies of the load.
1220  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1221  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1222                                   Deps);
1223  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1224  //             << Deps.size() << *LI << '\n');
1225
1226  // If we had to process more than one hundred blocks to find the
1227  // dependencies, this load isn't worth worrying about.  Optimizing
1228  // it will be too expensive.
1229  if (Deps.size() > 100)
1230    return false;
1231
1232  // If we had a phi translation failure, we'll have a single entry which is a
1233  // clobber in the current block.  Reject this early.
1234  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1235    DEBUG(
1236      errs() << "GVN: non-local load ";
1237      WriteAsOperand(errs(), LI);
1238      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1239    );
1240    return false;
1241  }
1242
1243  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1244  // where we have a value available in repl, also keep track of whether we see
1245  // dependencies that produce an unknown value for the load (such as a call
1246  // that could potentially clobber the load).
1247  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
1248  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1249
1250  const TargetData *TD = 0;
1251
1252  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1253    BasicBlock *DepBB = Deps[i].first;
1254    MemDepResult DepInfo = Deps[i].second;
1255
1256    if (DepInfo.isClobber()) {
1257      UnavailableBlocks.push_back(DepBB);
1258      continue;
1259    }
1260
1261    Instruction *DepInst = DepInfo.getInst();
1262
1263    // Loading the allocation -> undef.
1264    if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1265      ValuesPerBlock.push_back(std::make_pair(DepBB,
1266                               UndefValue::get(LI->getType())));
1267      continue;
1268    }
1269
1270    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
1271      // Reject loads and stores that are to the same address but are of
1272      // different types if we have to.
1273      if (S->getOperand(0)->getType() != LI->getType()) {
1274        if (TD == 0)
1275          TD = getAnalysisIfAvailable<TargetData>();
1276
1277        // If the stored value is larger or equal to the loaded value, we can
1278        // reuse it.
1279        if (TD == 0 ||
1280            TD->getTypeSizeInBits(S->getOperand(0)->getType()) <
1281              TD->getTypeSizeInBits(LI->getType())) {
1282          UnavailableBlocks.push_back(DepBB);
1283          continue;
1284        }
1285      }
1286
1287      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1288
1289    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1290      // If the types mismatch and we can't handle it, reject reuse of the load.
1291      if (LD->getType() != LI->getType()) {
1292        if (TD == 0)
1293          TD = getAnalysisIfAvailable<TargetData>();
1294
1295        // If the stored value is larger or equal to the loaded value, we can
1296        // reuse it.
1297        if (TD == 0 ||
1298            TD->getTypeSizeInBits(LD->getType()) <
1299               TD->getTypeSizeInBits(LI->getType())) {
1300          UnavailableBlocks.push_back(DepBB);
1301          continue;
1302        }
1303      }
1304      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1305    } else {
1306      // FIXME: Handle memset/memcpy.
1307      UnavailableBlocks.push_back(DepBB);
1308      continue;
1309    }
1310  }
1311
1312  // If we have no predecessors that produce a known value for this load, exit
1313  // early.
1314  if (ValuesPerBlock.empty()) return false;
1315
1316  // If all of the instructions we depend on produce a known value for this
1317  // load, then it is fully redundant and we can use PHI insertion to compute
1318  // its value.  Insert PHIs and remove the fully redundant value now.
1319  if (UnavailableBlocks.empty()) {
1320    // Use cached PHI construction information from previous runs
1321    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1322    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1323    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1324         I != E; ++I) {
1325      if ((*I)->getParent() == LI->getParent()) {
1326        DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
1327        LI->replaceAllUsesWith(*I);
1328        if (isa<PointerType>((*I)->getType()))
1329          MD->invalidateCachedPointerInfo(*I);
1330        toErase.push_back(LI);
1331        NumGVNLoad++;
1332        return true;
1333      }
1334
1335      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1336    }
1337
1338    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1339
1340    // Convert the block information to a map, and insert coersions as needed.
1341    DenseMap<BasicBlock*, Value*> BlockReplValues;
1342    GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1343
1344    // Perform PHI construction.
1345    Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1346    LI->replaceAllUsesWith(V);
1347
1348    if (isa<PHINode>(V))
1349      V->takeName(LI);
1350    if (isa<PointerType>(V->getType()))
1351      MD->invalidateCachedPointerInfo(V);
1352    toErase.push_back(LI);
1353    NumGVNLoad++;
1354    return true;
1355  }
1356
1357  if (!EnablePRE || !EnableLoadPRE)
1358    return false;
1359
1360  // Okay, we have *some* definitions of the value.  This means that the value
1361  // is available in some of our (transitive) predecessors.  Lets think about
1362  // doing PRE of this load.  This will involve inserting a new load into the
1363  // predecessor when it's not available.  We could do this in general, but
1364  // prefer to not increase code size.  As such, we only do this when we know
1365  // that we only have to insert *one* load (which means we're basically moving
1366  // the load, not inserting a new one).
1367
1368  SmallPtrSet<BasicBlock *, 4> Blockers;
1369  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1370    Blockers.insert(UnavailableBlocks[i]);
1371
1372  // Lets find first basic block with more than one predecessor.  Walk backwards
1373  // through predecessors if needed.
1374  BasicBlock *LoadBB = LI->getParent();
1375  BasicBlock *TmpBB = LoadBB;
1376
1377  bool isSinglePred = false;
1378  bool allSingleSucc = true;
1379  while (TmpBB->getSinglePredecessor()) {
1380    isSinglePred = true;
1381    TmpBB = TmpBB->getSinglePredecessor();
1382    if (!TmpBB) // If haven't found any, bail now.
1383      return false;
1384    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1385      return false;
1386    if (Blockers.count(TmpBB))
1387      return false;
1388    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1389      allSingleSucc = false;
1390  }
1391
1392  assert(TmpBB);
1393  LoadBB = TmpBB;
1394
1395  // If we have a repl set with LI itself in it, this means we have a loop where
1396  // at least one of the values is LI.  Since this means that we won't be able
1397  // to eliminate LI even if we insert uses in the other predecessors, we will
1398  // end up increasing code size.  Reject this by scanning for LI.
1399  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1400    if (ValuesPerBlock[i].second == LI)
1401      return false;
1402
1403  if (isSinglePred) {
1404    bool isHot = false;
1405    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1406      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1407        // "Hot" Instruction is in some loop (because it dominates its dep.
1408        // instruction).
1409        if (DT->dominates(LI, I)) {
1410          isHot = true;
1411          break;
1412        }
1413
1414    // We are interested only in "hot" instructions. We don't want to do any
1415    // mis-optimizations here.
1416    if (!isHot)
1417      return false;
1418  }
1419
1420  // Okay, we have some hope :).  Check to see if the loaded value is fully
1421  // available in all but one predecessor.
1422  // FIXME: If we could restructure the CFG, we could make a common pred with
1423  // all the preds that don't have an available LI and insert a new load into
1424  // that one block.
1425  BasicBlock *UnavailablePred = 0;
1426
1427  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1428  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1429    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1430  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1431    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1432
1433  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1434       PI != E; ++PI) {
1435    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1436      continue;
1437
1438    // If this load is not available in multiple predecessors, reject it.
1439    if (UnavailablePred && UnavailablePred != *PI)
1440      return false;
1441    UnavailablePred = *PI;
1442  }
1443
1444  assert(UnavailablePred != 0 &&
1445         "Fully available value should be eliminated above!");
1446
1447  // If the loaded pointer is PHI node defined in this block, do PHI translation
1448  // to get its value in the predecessor.
1449  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1450
1451  // Make sure the value is live in the predecessor.  If it was defined by a
1452  // non-PHI instruction in this block, we don't know how to recompute it above.
1453  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1454    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1455      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1456                   << *LPInst << '\n' << *LI << "\n");
1457      return false;
1458    }
1459
1460  // We don't currently handle critical edges :(
1461  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1462    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1463                 << UnavailablePred->getName() << "': " << *LI << '\n');
1464    return false;
1465  }
1466
1467  // Make sure it is valid to move this load here.  We have to watch out for:
1468  //  @1 = getelementptr (i8* p, ...
1469  //  test p and branch if == 0
1470  //  load @1
1471  // It is valid to have the getelementptr before the test, even if p can be 0,
1472  // as getelementptr only does address arithmetic.
1473  // If we are not pushing the value through any multiple-successor blocks
1474  // we do not have this case.  Otherwise, check that the load is safe to
1475  // put anywhere; this can be improved, but should be conservatively safe.
1476  if (!allSingleSucc &&
1477      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1478    return false;
1479
1480  // Okay, we can eliminate this load by inserting a reload in the predecessor
1481  // and using PHI construction to get the value in the other predecessors, do
1482  // it.
1483  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1484
1485  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1486                                LI->getAlignment(),
1487                                UnavailablePred->getTerminator());
1488
1489  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1490  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1491       I != E; ++I)
1492    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1493
1494  DenseMap<BasicBlock*, Value*> BlockReplValues;
1495  GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1496  BlockReplValues[UnavailablePred] = NewLoad;
1497
1498  // Perform PHI construction.
1499  Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1500  LI->replaceAllUsesWith(V);
1501  if (isa<PHINode>(V))
1502    V->takeName(LI);
1503  if (isa<PointerType>(V->getType()))
1504    MD->invalidateCachedPointerInfo(V);
1505  toErase.push_back(LI);
1506  NumPRELoad++;
1507  return true;
1508}
1509
1510/// processLoad - Attempt to eliminate a load, first by eliminating it
1511/// locally, and then attempting non-local elimination if that fails.
1512bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1513  if (L->isVolatile())
1514    return false;
1515
1516  // ... to a pointer that has been loaded from before...
1517  MemDepResult Dep = MD->getDependency(L);
1518
1519  // If the value isn't available, don't do anything!
1520  if (Dep.isClobber()) {
1521    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
1522    // to forward the value if available.
1523    //if (isa<MemIntrinsic>(Dep.getInst()))
1524    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
1525
1526    // Check to see if we have something like this:
1527    //   store i32 123, i32* %P
1528    //   %A = bitcast i32* %P to i8*
1529    //   %B = gep i8* %A, i32 1
1530    //   %C = load i8* %B
1531    //
1532    // We could do that by recognizing if the clobber instructions are obviously
1533    // a common base + constant offset, and if the previous store (or memset)
1534    // completely covers this load.  This sort of thing can happen in bitfield
1535    // access code.
1536    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1537      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1538        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, TD);
1539        if (Offset != -1) {
1540          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1541                                                 L->getType(), L, TD);
1542          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
1543                       << *AvailVal << '\n' << *L << "\n\n\n");
1544
1545          // Replace the load!
1546          L->replaceAllUsesWith(AvailVal);
1547          if (isa<PointerType>(AvailVal->getType()))
1548            MD->invalidateCachedPointerInfo(AvailVal);
1549          toErase.push_back(L);
1550          NumGVNLoad++;
1551          return true;
1552        }
1553      }
1554
1555    DEBUG(
1556      // fast print dep, using operator<< on instruction would be too slow
1557      errs() << "GVN: load ";
1558      WriteAsOperand(errs(), L);
1559      Instruction *I = Dep.getInst();
1560      errs() << " is clobbered by " << *I << '\n';
1561    );
1562    return false;
1563  }
1564
1565  // If it is defined in another block, try harder.
1566  if (Dep.isNonLocal())
1567    return processNonLocalLoad(L, toErase);
1568
1569  Instruction *DepInst = Dep.getInst();
1570  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1571    Value *StoredVal = DepSI->getOperand(0);
1572
1573    // The store and load are to a must-aliased pointer, but they may not
1574    // actually have the same type.  See if we know how to reuse the stored
1575    // value (depending on its type).
1576    const TargetData *TD = 0;
1577    if (StoredVal->getType() != L->getType() &&
1578        (TD = getAnalysisIfAvailable<TargetData>())) {
1579      StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), L, *TD);
1580      if (StoredVal == 0)
1581        return false;
1582
1583      DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1584                   << '\n' << *L << "\n\n\n");
1585    }
1586
1587    // Remove it!
1588    L->replaceAllUsesWith(StoredVal);
1589    if (isa<PointerType>(StoredVal->getType()))
1590      MD->invalidateCachedPointerInfo(StoredVal);
1591    toErase.push_back(L);
1592    NumGVNLoad++;
1593    return true;
1594  }
1595
1596  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1597    Value *AvailableVal = DepLI;
1598
1599    // The loads are of a must-aliased pointer, but they may not actually have
1600    // the same type.  See if we know how to reuse the previously loaded value
1601    // (depending on its type).
1602    const TargetData *TD = 0;
1603    if (DepLI->getType() != L->getType() &&
1604        (TD = getAnalysisIfAvailable<TargetData>())) {
1605      AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L, *TD);
1606      if (AvailableVal == 0)
1607        return false;
1608
1609      DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1610                   << "\n" << *L << "\n\n\n");
1611    }
1612
1613    // Remove it!
1614    L->replaceAllUsesWith(AvailableVal);
1615    if (isa<PointerType>(DepLI->getType()))
1616      MD->invalidateCachedPointerInfo(DepLI);
1617    toErase.push_back(L);
1618    NumGVNLoad++;
1619    return true;
1620  }
1621
1622  // If this load really doesn't depend on anything, then we must be loading an
1623  // undef value.  This can happen when loading for a fresh allocation with no
1624  // intervening stores, for example.
1625  if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1626    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1627    toErase.push_back(L);
1628    NumGVNLoad++;
1629    return true;
1630  }
1631
1632  return false;
1633}
1634
1635Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1636  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1637  if (I == localAvail.end())
1638    return 0;
1639
1640  ValueNumberScope *Locals = I->second;
1641  while (Locals) {
1642    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1643    if (I != Locals->table.end())
1644      return I->second;
1645    Locals = Locals->parent;
1646  }
1647
1648  return 0;
1649}
1650
1651/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1652/// by inheritance from the dominator fails, see if we can perform phi
1653/// construction to eliminate the redundancy.
1654Value *GVN::AttemptRedundancyElimination(Instruction *orig, unsigned valno) {
1655  BasicBlock *BaseBlock = orig->getParent();
1656
1657  SmallPtrSet<BasicBlock*, 4> Visited;
1658  SmallVector<BasicBlock*, 8> Stack;
1659  Stack.push_back(BaseBlock);
1660
1661  DenseMap<BasicBlock*, Value*> Results;
1662
1663  // Walk backwards through our predecessors, looking for instances of the
1664  // value number we're looking for.  Instances are recorded in the Results
1665  // map, which is then used to perform phi construction.
1666  while (!Stack.empty()) {
1667    BasicBlock *Current = Stack.back();
1668    Stack.pop_back();
1669
1670    // If we've walked all the way to a proper dominator, then give up. Cases
1671    // where the instance is in the dominator will have been caught by the fast
1672    // path, and any cases that require phi construction further than this are
1673    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1674    // time improvement.
1675    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1676
1677    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1678                                                       localAvail.find(Current);
1679    if (LA == localAvail.end()) return 0;
1680    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1681
1682    if (V != LA->second->table.end()) {
1683      // Found an instance, record it.
1684      Results.insert(std::make_pair(Current, V->second));
1685      continue;
1686    }
1687
1688    // If we reach the beginning of the function, then give up.
1689    if (pred_begin(Current) == pred_end(Current))
1690      return 0;
1691
1692    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1693         PI != PE; ++PI)
1694      if (Visited.insert(*PI))
1695        Stack.push_back(*PI);
1696  }
1697
1698  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1699  if (Results.size() == 0)
1700    return 0;
1701  else
1702    return GetValueForBlock(BaseBlock, orig, Results, true);
1703}
1704
1705/// processInstruction - When calculating availability, handle an instruction
1706/// by inserting it into the appropriate sets
1707bool GVN::processInstruction(Instruction *I,
1708                             SmallVectorImpl<Instruction*> &toErase) {
1709  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1710    bool Changed = processLoad(LI, toErase);
1711
1712    if (!Changed) {
1713      unsigned Num = VN.lookup_or_add(LI);
1714      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1715    }
1716
1717    return Changed;
1718  }
1719
1720  uint32_t NextNum = VN.getNextUnusedValueNumber();
1721  unsigned Num = VN.lookup_or_add(I);
1722
1723  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1724    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1725
1726    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1727      return false;
1728
1729    Value *BranchCond = BI->getCondition();
1730    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1731
1732    BasicBlock *TrueSucc = BI->getSuccessor(0);
1733    BasicBlock *FalseSucc = BI->getSuccessor(1);
1734
1735    if (TrueSucc->getSinglePredecessor())
1736      localAvail[TrueSucc]->table[CondVN] =
1737        ConstantInt::getTrue(TrueSucc->getContext());
1738    if (FalseSucc->getSinglePredecessor())
1739      localAvail[FalseSucc]->table[CondVN] =
1740        ConstantInt::getFalse(TrueSucc->getContext());
1741
1742    return false;
1743
1744  // Allocations are always uniquely numbered, so we can save time and memory
1745  // by fast failing them.
1746  } else if (isa<AllocationInst>(I) || isMalloc(I) || isa<TerminatorInst>(I)) {
1747    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1748    return false;
1749  }
1750
1751  // Collapse PHI nodes
1752  if (PHINode* p = dyn_cast<PHINode>(I)) {
1753    Value *constVal = CollapsePhi(p);
1754
1755    if (constVal) {
1756      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1757           PI != PE; ++PI)
1758        PI->second.erase(p);
1759
1760      p->replaceAllUsesWith(constVal);
1761      if (isa<PointerType>(constVal->getType()))
1762        MD->invalidateCachedPointerInfo(constVal);
1763      VN.erase(p);
1764
1765      toErase.push_back(p);
1766    } else {
1767      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1768    }
1769
1770  // If the number we were assigned was a brand new VN, then we don't
1771  // need to do a lookup to see if the number already exists
1772  // somewhere in the domtree: it can't!
1773  } else if (Num == NextNum) {
1774    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1775
1776  // Perform fast-path value-number based elimination of values inherited from
1777  // dominators.
1778  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1779    // Remove it!
1780    VN.erase(I);
1781    I->replaceAllUsesWith(repl);
1782    if (isa<PointerType>(repl->getType()))
1783      MD->invalidateCachedPointerInfo(repl);
1784    toErase.push_back(I);
1785    return true;
1786
1787#if 0
1788  // Perform slow-pathvalue-number based elimination with phi construction.
1789  } else if (Value *repl = AttemptRedundancyElimination(I, Num)) {
1790    // Remove it!
1791    VN.erase(I);
1792    I->replaceAllUsesWith(repl);
1793    if (isa<PointerType>(repl->getType()))
1794      MD->invalidateCachedPointerInfo(repl);
1795    toErase.push_back(I);
1796    return true;
1797#endif
1798  } else {
1799    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1800  }
1801
1802  return false;
1803}
1804
1805/// runOnFunction - This is the main transformation entry point for a function.
1806bool GVN::runOnFunction(Function& F) {
1807  MD = &getAnalysis<MemoryDependenceAnalysis>();
1808  DT = &getAnalysis<DominatorTree>();
1809  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1810  VN.setMemDep(MD);
1811  VN.setDomTree(DT);
1812
1813  bool Changed = false;
1814  bool ShouldContinue = true;
1815
1816  // Merge unconditional branches, allowing PRE to catch more
1817  // optimization opportunities.
1818  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1819    BasicBlock *BB = FI;
1820    ++FI;
1821    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1822    if (removedBlock) NumGVNBlocks++;
1823
1824    Changed |= removedBlock;
1825  }
1826
1827  unsigned Iteration = 0;
1828
1829  while (ShouldContinue) {
1830    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1831    ShouldContinue = iterateOnFunction(F);
1832    Changed |= ShouldContinue;
1833    ++Iteration;
1834  }
1835
1836  if (EnablePRE) {
1837    bool PREChanged = true;
1838    while (PREChanged) {
1839      PREChanged = performPRE(F);
1840      Changed |= PREChanged;
1841    }
1842  }
1843  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1844  // computations into blocks where they become fully redundant.  Note that
1845  // we can't do this until PRE's critical edge splitting updates memdep.
1846  // Actually, when this happens, we should just fully integrate PRE into GVN.
1847
1848  cleanupGlobalSets();
1849
1850  return Changed;
1851}
1852
1853
1854bool GVN::processBlock(BasicBlock *BB) {
1855  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1856  // incrementing BI before processing an instruction).
1857  SmallVector<Instruction*, 8> toErase;
1858  bool ChangedFunction = false;
1859
1860  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1861       BI != BE;) {
1862    ChangedFunction |= processInstruction(BI, toErase);
1863    if (toErase.empty()) {
1864      ++BI;
1865      continue;
1866    }
1867
1868    // If we need some instructions deleted, do it now.
1869    NumGVNInstr += toErase.size();
1870
1871    // Avoid iterator invalidation.
1872    bool AtStart = BI == BB->begin();
1873    if (!AtStart)
1874      --BI;
1875
1876    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1877         E = toErase.end(); I != E; ++I) {
1878      DEBUG(errs() << "GVN removed: " << **I << '\n');
1879      MD->removeInstruction(*I);
1880      (*I)->eraseFromParent();
1881      DEBUG(verifyRemoved(*I));
1882    }
1883    toErase.clear();
1884
1885    if (AtStart)
1886      BI = BB->begin();
1887    else
1888      ++BI;
1889  }
1890
1891  return ChangedFunction;
1892}
1893
1894/// performPRE - Perform a purely local form of PRE that looks for diamond
1895/// control flow patterns and attempts to perform simple PRE at the join point.
1896bool GVN::performPRE(Function& F) {
1897  bool Changed = false;
1898  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1899  DenseMap<BasicBlock*, Value*> predMap;
1900  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1901       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1902    BasicBlock *CurrentBlock = *DI;
1903
1904    // Nothing to PRE in the entry block.
1905    if (CurrentBlock == &F.getEntryBlock()) continue;
1906
1907    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1908         BE = CurrentBlock->end(); BI != BE; ) {
1909      Instruction *CurInst = BI++;
1910
1911      if (isa<AllocationInst>(CurInst) || isMalloc(CurInst) ||
1912          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1913          (CurInst->getType() == Type::getVoidTy(F.getContext())) ||
1914          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1915          isa<DbgInfoIntrinsic>(CurInst))
1916        continue;
1917
1918      uint32_t ValNo = VN.lookup(CurInst);
1919
1920      // Look for the predecessors for PRE opportunities.  We're
1921      // only trying to solve the basic diamond case, where
1922      // a value is computed in the successor and one predecessor,
1923      // but not the other.  We also explicitly disallow cases
1924      // where the successor is its own predecessor, because they're
1925      // more complicated to get right.
1926      unsigned NumWith = 0;
1927      unsigned NumWithout = 0;
1928      BasicBlock *PREPred = 0;
1929      predMap.clear();
1930
1931      for (pred_iterator PI = pred_begin(CurrentBlock),
1932           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1933        // We're not interested in PRE where the block is its
1934        // own predecessor, on in blocks with predecessors
1935        // that are not reachable.
1936        if (*PI == CurrentBlock) {
1937          NumWithout = 2;
1938          break;
1939        } else if (!localAvail.count(*PI))  {
1940          NumWithout = 2;
1941          break;
1942        }
1943
1944        DenseMap<uint32_t, Value*>::iterator predV =
1945                                            localAvail[*PI]->table.find(ValNo);
1946        if (predV == localAvail[*PI]->table.end()) {
1947          PREPred = *PI;
1948          NumWithout++;
1949        } else if (predV->second == CurInst) {
1950          NumWithout = 2;
1951        } else {
1952          predMap[*PI] = predV->second;
1953          NumWith++;
1954        }
1955      }
1956
1957      // Don't do PRE when it might increase code size, i.e. when
1958      // we would need to insert instructions in more than one pred.
1959      if (NumWithout != 1 || NumWith == 0)
1960        continue;
1961
1962      // We can't do PRE safely on a critical edge, so instead we schedule
1963      // the edge to be split and perform the PRE the next time we iterate
1964      // on the function.
1965      unsigned SuccNum = 0;
1966      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1967           i != e; ++i)
1968        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1969          SuccNum = i;
1970          break;
1971        }
1972
1973      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1974        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1975        continue;
1976      }
1977
1978      // Instantiate the expression the in predecessor that lacked it.
1979      // Because we are going top-down through the block, all value numbers
1980      // will be available in the predecessor by the time we need them.  Any
1981      // that weren't original present will have been instantiated earlier
1982      // in this loop.
1983      Instruction *PREInstr = CurInst->clone(CurInst->getContext());
1984      bool success = true;
1985      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1986        Value *Op = PREInstr->getOperand(i);
1987        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1988          continue;
1989
1990        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1991          PREInstr->setOperand(i, V);
1992        } else {
1993          success = false;
1994          break;
1995        }
1996      }
1997
1998      // Fail out if we encounter an operand that is not available in
1999      // the PRE predecessor.  This is typically because of loads which
2000      // are not value numbered precisely.
2001      if (!success) {
2002        delete PREInstr;
2003        DEBUG(verifyRemoved(PREInstr));
2004        continue;
2005      }
2006
2007      PREInstr->insertBefore(PREPred->getTerminator());
2008      PREInstr->setName(CurInst->getName() + ".pre");
2009      predMap[PREPred] = PREInstr;
2010      VN.add(PREInstr, ValNo);
2011      NumGVNPRE++;
2012
2013      // Update the availability map to include the new instruction.
2014      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2015
2016      // Create a PHI to make the value available in this block.
2017      PHINode* Phi = PHINode::Create(CurInst->getType(),
2018                                     CurInst->getName() + ".pre-phi",
2019                                     CurrentBlock->begin());
2020      for (pred_iterator PI = pred_begin(CurrentBlock),
2021           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2022        Phi->addIncoming(predMap[*PI], *PI);
2023
2024      VN.add(Phi, ValNo);
2025      localAvail[CurrentBlock]->table[ValNo] = Phi;
2026
2027      CurInst->replaceAllUsesWith(Phi);
2028      if (isa<PointerType>(Phi->getType()))
2029        MD->invalidateCachedPointerInfo(Phi);
2030      VN.erase(CurInst);
2031
2032      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2033      MD->removeInstruction(CurInst);
2034      CurInst->eraseFromParent();
2035      DEBUG(verifyRemoved(CurInst));
2036      Changed = true;
2037    }
2038  }
2039
2040  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2041       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2042    SplitCriticalEdge(I->first, I->second, this);
2043
2044  return Changed || toSplit.size();
2045}
2046
2047/// iterateOnFunction - Executes one iteration of GVN
2048bool GVN::iterateOnFunction(Function &F) {
2049  cleanupGlobalSets();
2050
2051  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2052       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2053    if (DI->getIDom())
2054      localAvail[DI->getBlock()] =
2055                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2056    else
2057      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2058  }
2059
2060  // Top-down walk of the dominator tree
2061  bool Changed = false;
2062#if 0
2063  // Needed for value numbering with phi construction to work.
2064  ReversePostOrderTraversal<Function*> RPOT(&F);
2065  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2066       RE = RPOT.end(); RI != RE; ++RI)
2067    Changed |= processBlock(*RI);
2068#else
2069  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2070       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2071    Changed |= processBlock(DI->getBlock());
2072#endif
2073
2074  return Changed;
2075}
2076
2077void GVN::cleanupGlobalSets() {
2078  VN.clear();
2079  phiMap.clear();
2080
2081  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2082       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2083    delete I->second;
2084  localAvail.clear();
2085}
2086
2087/// verifyRemoved - Verify that the specified instruction does not occur in our
2088/// internal data structures.
2089void GVN::verifyRemoved(const Instruction *Inst) const {
2090  VN.verifyRemoved(Inst);
2091
2092  // Walk through the PHI map to make sure the instruction isn't hiding in there
2093  // somewhere.
2094  for (PhiMapType::iterator
2095         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
2096    assert(I->first != Inst && "Inst is still a key in PHI map!");
2097
2098    for (SmallPtrSet<Instruction*, 4>::iterator
2099           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
2100      assert(*II != Inst && "Inst is still a value in PHI map!");
2101    }
2102  }
2103
2104  // Walk through the value number scope to make sure the instruction isn't
2105  // ferreted away in it.
2106  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2107         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2108    const ValueNumberScope *VNS = I->second;
2109
2110    while (VNS) {
2111      for (DenseMap<uint32_t, Value*>::iterator
2112             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2113        assert(II->second != Inst && "Inst still in value numbering scope!");
2114      }
2115
2116      VNS = VNS->parent;
2117    }
2118  }
2119}
2120