GVN.cpp revision ce665bd2e2b581ab0858d1afe359192bac96b868
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/Loads.h"
39#include "llvm/Analysis/MemoryBuiltins.h"
40#include "llvm/Analysis/MemoryDependenceAnalysis.h"
41#include "llvm/Analysis/PHITransAddr.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/GetElementPtrTypeIterator.h"
47#include "llvm/Support/IRBuilder.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumGVNInstr,  "Number of instructions deleted");
56STATISTIC(NumGVNLoad,   "Number of loads deleted");
57STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
58STATISTIC(NumGVNBlocks, "Number of blocks merged");
59STATISTIC(NumPRELoad,   "Number of loads PRE'd");
60
61static cl::opt<bool> EnablePRE("enable-pre",
62                               cl::init(true), cl::Hidden);
63static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
64
65//===----------------------------------------------------------------------===//
66//                         ValueTable Class
67//===----------------------------------------------------------------------===//
68
69/// This class holds the mapping between values and value numbers.  It is used
70/// as an efficient mechanism to determine the expression-wise equivalence of
71/// two values.
72namespace {
73  struct Expression {
74    enum ExpressionOpcode {
75      ADD = Instruction::Add,
76      FADD = Instruction::FAdd,
77      SUB = Instruction::Sub,
78      FSUB = Instruction::FSub,
79      MUL = Instruction::Mul,
80      FMUL = Instruction::FMul,
81      UDIV = Instruction::UDiv,
82      SDIV = Instruction::SDiv,
83      FDIV = Instruction::FDiv,
84      UREM = Instruction::URem,
85      SREM = Instruction::SRem,
86      FREM = Instruction::FRem,
87      SHL = Instruction::Shl,
88      LSHR = Instruction::LShr,
89      ASHR = Instruction::AShr,
90      AND = Instruction::And,
91      OR = Instruction::Or,
92      XOR = Instruction::Xor,
93      TRUNC = Instruction::Trunc,
94      ZEXT = Instruction::ZExt,
95      SEXT = Instruction::SExt,
96      FPTOUI = Instruction::FPToUI,
97      FPTOSI = Instruction::FPToSI,
98      UITOFP = Instruction::UIToFP,
99      SITOFP = Instruction::SIToFP,
100      FPTRUNC = Instruction::FPTrunc,
101      FPEXT = Instruction::FPExt,
102      PTRTOINT = Instruction::PtrToInt,
103      INTTOPTR = Instruction::IntToPtr,
104      BITCAST = Instruction::BitCast,
105      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
106      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
107      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
108      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
109      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
110      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
111      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
112
113    ExpressionOpcode opcode;
114    const Type* type;
115    SmallVector<uint32_t, 4> varargs;
116    Value *function;
117
118    Expression() { }
119    Expression(ExpressionOpcode o) : opcode(o) { }
120
121    bool operator==(const Expression &other) const {
122      if (opcode != other.opcode)
123        return false;
124      else if (opcode == EMPTY || opcode == TOMBSTONE)
125        return true;
126      else if (type != other.type)
127        return false;
128      else if (function != other.function)
129        return false;
130      else {
131        if (varargs.size() != other.varargs.size())
132          return false;
133
134        for (size_t i = 0; i < varargs.size(); ++i)
135          if (varargs[i] != other.varargs[i])
136            return false;
137
138        return true;
139      }
140    }
141
142    /*bool operator!=(const Expression &other) const {
143      return !(*this == other);
144    }*/
145  };
146
147  class ValueTable {
148    private:
149      DenseMap<Value*, uint32_t> valueNumbering;
150      DenseMap<Expression, uint32_t> expressionNumbering;
151      AliasAnalysis* AA;
152      MemoryDependenceAnalysis* MD;
153      DominatorTree* DT;
154
155      uint32_t nextValueNumber;
156
157      Expression::ExpressionOpcode getOpcode(CmpInst* C);
158      Expression create_expression(BinaryOperator* BO);
159      Expression create_expression(CmpInst* C);
160      Expression create_expression(ShuffleVectorInst* V);
161      Expression create_expression(ExtractElementInst* C);
162      Expression create_expression(InsertElementInst* V);
163      Expression create_expression(SelectInst* V);
164      Expression create_expression(CastInst* C);
165      Expression create_expression(GetElementPtrInst* G);
166      Expression create_expression(CallInst* C);
167      Expression create_expression(ExtractValueInst* C);
168      Expression create_expression(InsertValueInst* C);
169
170      uint32_t lookup_or_add_call(CallInst* C);
171    public:
172      ValueTable() : nextValueNumber(1) { }
173      uint32_t lookup_or_add(Value *V);
174      uint32_t lookup(Value *V) const;
175      void add(Value *V, uint32_t num);
176      void clear();
177      void erase(Value *v);
178      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
179      AliasAnalysis *getAliasAnalysis() const { return AA; }
180      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
181      void setDomTree(DominatorTree* D) { DT = D; }
182      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
183      void verifyRemoved(const Value *) const;
184  };
185}
186
187namespace llvm {
188template <> struct DenseMapInfo<Expression> {
189  static inline Expression getEmptyKey() {
190    return Expression(Expression::EMPTY);
191  }
192
193  static inline Expression getTombstoneKey() {
194    return Expression(Expression::TOMBSTONE);
195  }
196
197  static unsigned getHashValue(const Expression e) {
198    unsigned hash = e.opcode;
199
200    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
201            (unsigned)((uintptr_t)e.type >> 9));
202
203    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
204         E = e.varargs.end(); I != E; ++I)
205      hash = *I + hash * 37;
206
207    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
208            (unsigned)((uintptr_t)e.function >> 9)) +
209           hash * 37;
210
211    return hash;
212  }
213  static bool isEqual(const Expression &LHS, const Expression &RHS) {
214    return LHS == RHS;
215  }
216};
217
218template <>
219struct isPodLike<Expression> { static const bool value = true; };
220
221}
222
223//===----------------------------------------------------------------------===//
224//                     ValueTable Internal Functions
225//===----------------------------------------------------------------------===//
226
227Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
228  if (isa<ICmpInst>(C)) {
229    switch (C->getPredicate()) {
230    default:  // THIS SHOULD NEVER HAPPEN
231      llvm_unreachable("Comparison with unknown predicate?");
232    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
233    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
234    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
235    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
236    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
237    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
238    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
239    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
240    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
241    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
242    }
243  } else {
244    switch (C->getPredicate()) {
245    default: // THIS SHOULD NEVER HAPPEN
246      llvm_unreachable("Comparison with unknown predicate?");
247    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
248    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
249    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
250    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
251    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
252    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
253    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
254    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
255    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
256    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
257    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
258    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
259    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
260    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
261    }
262  }
263}
264
265Expression ValueTable::create_expression(CallInst* C) {
266  Expression e;
267
268  e.type = C->getType();
269  e.function = C->getCalledFunction();
270  e.opcode = Expression::CALL;
271
272  CallSite CS(C);
273  for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
274       I != E; ++I)
275    e.varargs.push_back(lookup_or_add(*I));
276
277  return e;
278}
279
280Expression ValueTable::create_expression(BinaryOperator* BO) {
281  Expression e;
282  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
283  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
284  e.function = 0;
285  e.type = BO->getType();
286  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
287
288  return e;
289}
290
291Expression ValueTable::create_expression(CmpInst* C) {
292  Expression e;
293
294  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
295  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
296  e.function = 0;
297  e.type = C->getType();
298  e.opcode = getOpcode(C);
299
300  return e;
301}
302
303Expression ValueTable::create_expression(CastInst* C) {
304  Expression e;
305
306  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
307  e.function = 0;
308  e.type = C->getType();
309  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
310
311  return e;
312}
313
314Expression ValueTable::create_expression(ShuffleVectorInst* S) {
315  Expression e;
316
317  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
318  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
319  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
320  e.function = 0;
321  e.type = S->getType();
322  e.opcode = Expression::SHUFFLE;
323
324  return e;
325}
326
327Expression ValueTable::create_expression(ExtractElementInst* E) {
328  Expression e;
329
330  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
331  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
332  e.function = 0;
333  e.type = E->getType();
334  e.opcode = Expression::EXTRACT;
335
336  return e;
337}
338
339Expression ValueTable::create_expression(InsertElementInst* I) {
340  Expression e;
341
342  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
343  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
344  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
345  e.function = 0;
346  e.type = I->getType();
347  e.opcode = Expression::INSERT;
348
349  return e;
350}
351
352Expression ValueTable::create_expression(SelectInst* I) {
353  Expression e;
354
355  e.varargs.push_back(lookup_or_add(I->getCondition()));
356  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
357  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
358  e.function = 0;
359  e.type = I->getType();
360  e.opcode = Expression::SELECT;
361
362  return e;
363}
364
365Expression ValueTable::create_expression(GetElementPtrInst* G) {
366  Expression e;
367
368  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
369  e.function = 0;
370  e.type = G->getType();
371  e.opcode = Expression::GEP;
372
373  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
374       I != E; ++I)
375    e.varargs.push_back(lookup_or_add(*I));
376
377  return e;
378}
379
380Expression ValueTable::create_expression(ExtractValueInst* E) {
381  Expression e;
382
383  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
384  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
385       II != IE; ++II)
386    e.varargs.push_back(*II);
387  e.function = 0;
388  e.type = E->getType();
389  e.opcode = Expression::EXTRACTVALUE;
390
391  return e;
392}
393
394Expression ValueTable::create_expression(InsertValueInst* E) {
395  Expression e;
396
397  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
398  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
399  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
400       II != IE; ++II)
401    e.varargs.push_back(*II);
402  e.function = 0;
403  e.type = E->getType();
404  e.opcode = Expression::INSERTVALUE;
405
406  return e;
407}
408
409//===----------------------------------------------------------------------===//
410//                     ValueTable External Functions
411//===----------------------------------------------------------------------===//
412
413/// add - Insert a value into the table with a specified value number.
414void ValueTable::add(Value *V, uint32_t num) {
415  valueNumbering.insert(std::make_pair(V, num));
416}
417
418uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
419  if (AA->doesNotAccessMemory(C)) {
420    Expression exp = create_expression(C);
421    uint32_t& e = expressionNumbering[exp];
422    if (!e) e = nextValueNumber++;
423    valueNumbering[C] = e;
424    return e;
425  } else if (AA->onlyReadsMemory(C)) {
426    Expression exp = create_expression(C);
427    uint32_t& e = expressionNumbering[exp];
428    if (!e) {
429      e = nextValueNumber++;
430      valueNumbering[C] = e;
431      return e;
432    }
433    if (!MD) {
434      e = nextValueNumber++;
435      valueNumbering[C] = e;
436      return e;
437    }
438
439    MemDepResult local_dep = MD->getDependency(C);
440
441    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
442      valueNumbering[C] =  nextValueNumber;
443      return nextValueNumber++;
444    }
445
446    if (local_dep.isDef()) {
447      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
448
449      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
450        valueNumbering[C] = nextValueNumber;
451        return nextValueNumber++;
452      }
453
454      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
455        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
456        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
457        if (c_vn != cd_vn) {
458          valueNumbering[C] = nextValueNumber;
459          return nextValueNumber++;
460        }
461      }
462
463      uint32_t v = lookup_or_add(local_cdep);
464      valueNumbering[C] = v;
465      return v;
466    }
467
468    // Non-local case.
469    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
470      MD->getNonLocalCallDependency(CallSite(C));
471    // FIXME: call/call dependencies for readonly calls should return def, not
472    // clobber!  Move the checking logic to MemDep!
473    CallInst* cdep = 0;
474
475    // Check to see if we have a single dominating call instruction that is
476    // identical to C.
477    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
478      const NonLocalDepEntry *I = &deps[i];
479      // Ignore non-local dependencies.
480      if (I->getResult().isNonLocal())
481        continue;
482
483      // We don't handle non-depedencies.  If we already have a call, reject
484      // instruction dependencies.
485      if (I->getResult().isClobber() || cdep != 0) {
486        cdep = 0;
487        break;
488      }
489
490      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
491      // FIXME: All duplicated with non-local case.
492      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
493        cdep = NonLocalDepCall;
494        continue;
495      }
496
497      cdep = 0;
498      break;
499    }
500
501    if (!cdep) {
502      valueNumbering[C] = nextValueNumber;
503      return nextValueNumber++;
504    }
505
506    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
507      valueNumbering[C] = nextValueNumber;
508      return nextValueNumber++;
509    }
510    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
511      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
512      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
513      if (c_vn != cd_vn) {
514        valueNumbering[C] = nextValueNumber;
515        return nextValueNumber++;
516      }
517    }
518
519    uint32_t v = lookup_or_add(cdep);
520    valueNumbering[C] = v;
521    return v;
522
523  } else {
524    valueNumbering[C] = nextValueNumber;
525    return nextValueNumber++;
526  }
527}
528
529/// lookup_or_add - Returns the value number for the specified value, assigning
530/// it a new number if it did not have one before.
531uint32_t ValueTable::lookup_or_add(Value *V) {
532  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
533  if (VI != valueNumbering.end())
534    return VI->second;
535
536  if (!isa<Instruction>(V)) {
537    valueNumbering[V] = nextValueNumber;
538    return nextValueNumber++;
539  }
540
541  Instruction* I = cast<Instruction>(V);
542  Expression exp;
543  switch (I->getOpcode()) {
544    case Instruction::Call:
545      return lookup_or_add_call(cast<CallInst>(I));
546    case Instruction::Add:
547    case Instruction::FAdd:
548    case Instruction::Sub:
549    case Instruction::FSub:
550    case Instruction::Mul:
551    case Instruction::FMul:
552    case Instruction::UDiv:
553    case Instruction::SDiv:
554    case Instruction::FDiv:
555    case Instruction::URem:
556    case Instruction::SRem:
557    case Instruction::FRem:
558    case Instruction::Shl:
559    case Instruction::LShr:
560    case Instruction::AShr:
561    case Instruction::And:
562    case Instruction::Or :
563    case Instruction::Xor:
564      exp = create_expression(cast<BinaryOperator>(I));
565      break;
566    case Instruction::ICmp:
567    case Instruction::FCmp:
568      exp = create_expression(cast<CmpInst>(I));
569      break;
570    case Instruction::Trunc:
571    case Instruction::ZExt:
572    case Instruction::SExt:
573    case Instruction::FPToUI:
574    case Instruction::FPToSI:
575    case Instruction::UIToFP:
576    case Instruction::SIToFP:
577    case Instruction::FPTrunc:
578    case Instruction::FPExt:
579    case Instruction::PtrToInt:
580    case Instruction::IntToPtr:
581    case Instruction::BitCast:
582      exp = create_expression(cast<CastInst>(I));
583      break;
584    case Instruction::Select:
585      exp = create_expression(cast<SelectInst>(I));
586      break;
587    case Instruction::ExtractElement:
588      exp = create_expression(cast<ExtractElementInst>(I));
589      break;
590    case Instruction::InsertElement:
591      exp = create_expression(cast<InsertElementInst>(I));
592      break;
593    case Instruction::ShuffleVector:
594      exp = create_expression(cast<ShuffleVectorInst>(I));
595      break;
596    case Instruction::ExtractValue:
597      exp = create_expression(cast<ExtractValueInst>(I));
598      break;
599    case Instruction::InsertValue:
600      exp = create_expression(cast<InsertValueInst>(I));
601      break;
602    case Instruction::GetElementPtr:
603      exp = create_expression(cast<GetElementPtrInst>(I));
604      break;
605    default:
606      valueNumbering[V] = nextValueNumber;
607      return nextValueNumber++;
608  }
609
610  uint32_t& e = expressionNumbering[exp];
611  if (!e) e = nextValueNumber++;
612  valueNumbering[V] = e;
613  return e;
614}
615
616/// lookup - Returns the value number of the specified value. Fails if
617/// the value has not yet been numbered.
618uint32_t ValueTable::lookup(Value *V) const {
619  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
620  assert(VI != valueNumbering.end() && "Value not numbered?");
621  return VI->second;
622}
623
624/// clear - Remove all entries from the ValueTable
625void ValueTable::clear() {
626  valueNumbering.clear();
627  expressionNumbering.clear();
628  nextValueNumber = 1;
629}
630
631/// erase - Remove a value from the value numbering
632void ValueTable::erase(Value *V) {
633  valueNumbering.erase(V);
634}
635
636/// verifyRemoved - Verify that the value is removed from all internal data
637/// structures.
638void ValueTable::verifyRemoved(const Value *V) const {
639  for (DenseMap<Value*, uint32_t>::const_iterator
640         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
641    assert(I->first != V && "Inst still occurs in value numbering map!");
642  }
643}
644
645//===----------------------------------------------------------------------===//
646//                                GVN Pass
647//===----------------------------------------------------------------------===//
648
649namespace {
650  struct ValueNumberScope {
651    ValueNumberScope* parent;
652    DenseMap<uint32_t, Value*> table;
653
654    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
655  };
656}
657
658namespace {
659
660  class GVN : public FunctionPass {
661    bool runOnFunction(Function &F);
662  public:
663    static char ID; // Pass identification, replacement for typeid
664    explicit GVN(bool noloads = false)
665      : FunctionPass(ID), NoLoads(noloads), MD(0) { }
666
667  private:
668    bool NoLoads;
669    MemoryDependenceAnalysis *MD;
670    DominatorTree *DT;
671
672    ValueTable VN;
673    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
674
675    // List of critical edges to be split between iterations.
676    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
677
678    // This transformation requires dominator postdominator info
679    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
680      AU.addRequired<DominatorTree>();
681      if (!NoLoads)
682        AU.addRequired<MemoryDependenceAnalysis>();
683      AU.addRequired<AliasAnalysis>();
684
685      AU.addPreserved<DominatorTree>();
686      AU.addPreserved<AliasAnalysis>();
687    }
688
689    // Helper fuctions
690    // FIXME: eliminate or document these better
691    bool processLoad(LoadInst* L,
692                     SmallVectorImpl<Instruction*> &toErase);
693    bool processInstruction(Instruction *I,
694                            SmallVectorImpl<Instruction*> &toErase);
695    bool processNonLocalLoad(LoadInst* L,
696                             SmallVectorImpl<Instruction*> &toErase);
697    bool processBlock(BasicBlock *BB);
698    void dump(DenseMap<uint32_t, Value*>& d);
699    bool iterateOnFunction(Function &F);
700    Value *CollapsePhi(PHINode* p);
701    bool performPRE(Function& F);
702    Value *lookupNumber(BasicBlock *BB, uint32_t num);
703    void cleanupGlobalSets();
704    void verifyRemoved(const Instruction *I) const;
705    bool splitCriticalEdges();
706  };
707
708  char GVN::ID = 0;
709}
710
711// createGVNPass - The public interface to this file...
712FunctionPass *llvm::createGVNPass(bool NoLoads) {
713  return new GVN(NoLoads);
714}
715
716INITIALIZE_PASS(GVN, "gvn", "Global Value Numbering", false, false)
717
718void GVN::dump(DenseMap<uint32_t, Value*>& d) {
719  errs() << "{\n";
720  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
721       E = d.end(); I != E; ++I) {
722      errs() << I->first << "\n";
723      I->second->dump();
724  }
725  errs() << "}\n";
726}
727
728static bool isSafeReplacement(PHINode* p, Instruction *inst) {
729  if (!isa<PHINode>(inst))
730    return true;
731
732  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
733       UI != E; ++UI)
734    if (PHINode* use_phi = dyn_cast<PHINode>(*UI))
735      if (use_phi->getParent() == inst->getParent())
736        return false;
737
738  return true;
739}
740
741Value *GVN::CollapsePhi(PHINode *PN) {
742  Value *ConstVal = PN->hasConstantValue(DT);
743  if (!ConstVal) return 0;
744
745  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
746  if (!Inst)
747    return ConstVal;
748
749  if (DT->dominates(Inst, PN))
750    if (isSafeReplacement(PN, Inst))
751      return Inst;
752  return 0;
753}
754
755/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
756/// we're analyzing is fully available in the specified block.  As we go, keep
757/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
758/// map is actually a tri-state map with the following values:
759///   0) we know the block *is not* fully available.
760///   1) we know the block *is* fully available.
761///   2) we do not know whether the block is fully available or not, but we are
762///      currently speculating that it will be.
763///   3) we are speculating for this block and have used that to speculate for
764///      other blocks.
765static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
766                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
767  // Optimistically assume that the block is fully available and check to see
768  // if we already know about this block in one lookup.
769  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
770    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
771
772  // If the entry already existed for this block, return the precomputed value.
773  if (!IV.second) {
774    // If this is a speculative "available" value, mark it as being used for
775    // speculation of other blocks.
776    if (IV.first->second == 2)
777      IV.first->second = 3;
778    return IV.first->second != 0;
779  }
780
781  // Otherwise, see if it is fully available in all predecessors.
782  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
783
784  // If this block has no predecessors, it isn't live-in here.
785  if (PI == PE)
786    goto SpeculationFailure;
787
788  for (; PI != PE; ++PI)
789    // If the value isn't fully available in one of our predecessors, then it
790    // isn't fully available in this block either.  Undo our previous
791    // optimistic assumption and bail out.
792    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
793      goto SpeculationFailure;
794
795  return true;
796
797// SpeculationFailure - If we get here, we found out that this is not, after
798// all, a fully-available block.  We have a problem if we speculated on this and
799// used the speculation to mark other blocks as available.
800SpeculationFailure:
801  char &BBVal = FullyAvailableBlocks[BB];
802
803  // If we didn't speculate on this, just return with it set to false.
804  if (BBVal == 2) {
805    BBVal = 0;
806    return false;
807  }
808
809  // If we did speculate on this value, we could have blocks set to 1 that are
810  // incorrect.  Walk the (transitive) successors of this block and mark them as
811  // 0 if set to one.
812  SmallVector<BasicBlock*, 32> BBWorklist;
813  BBWorklist.push_back(BB);
814
815  do {
816    BasicBlock *Entry = BBWorklist.pop_back_val();
817    // Note that this sets blocks to 0 (unavailable) if they happen to not
818    // already be in FullyAvailableBlocks.  This is safe.
819    char &EntryVal = FullyAvailableBlocks[Entry];
820    if (EntryVal == 0) continue;  // Already unavailable.
821
822    // Mark as unavailable.
823    EntryVal = 0;
824
825    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
826      BBWorklist.push_back(*I);
827  } while (!BBWorklist.empty());
828
829  return false;
830}
831
832
833/// CanCoerceMustAliasedValueToLoad - Return true if
834/// CoerceAvailableValueToLoadType will succeed.
835static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
836                                            const Type *LoadTy,
837                                            const TargetData &TD) {
838  // If the loaded or stored value is an first class array or struct, don't try
839  // to transform them.  We need to be able to bitcast to integer.
840  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
841      StoredVal->getType()->isStructTy() ||
842      StoredVal->getType()->isArrayTy())
843    return false;
844
845  // The store has to be at least as big as the load.
846  if (TD.getTypeSizeInBits(StoredVal->getType()) <
847        TD.getTypeSizeInBits(LoadTy))
848    return false;
849
850  return true;
851}
852
853
854/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
855/// then a load from a must-aliased pointer of a different type, try to coerce
856/// the stored value.  LoadedTy is the type of the load we want to replace and
857/// InsertPt is the place to insert new instructions.
858///
859/// If we can't do it, return null.
860static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
861                                             const Type *LoadedTy,
862                                             Instruction *InsertPt,
863                                             const TargetData &TD) {
864  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
865    return 0;
866
867  const Type *StoredValTy = StoredVal->getType();
868
869  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
870  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
871
872  // If the store and reload are the same size, we can always reuse it.
873  if (StoreSize == LoadSize) {
874    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
875      // Pointer to Pointer -> use bitcast.
876      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
877    }
878
879    // Convert source pointers to integers, which can be bitcast.
880    if (StoredValTy->isPointerTy()) {
881      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
882      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
883    }
884
885    const Type *TypeToCastTo = LoadedTy;
886    if (TypeToCastTo->isPointerTy())
887      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
888
889    if (StoredValTy != TypeToCastTo)
890      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
891
892    // Cast to pointer if the load needs a pointer type.
893    if (LoadedTy->isPointerTy())
894      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
895
896    return StoredVal;
897  }
898
899  // If the loaded value is smaller than the available value, then we can
900  // extract out a piece from it.  If the available value is too small, then we
901  // can't do anything.
902  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
903
904  // Convert source pointers to integers, which can be manipulated.
905  if (StoredValTy->isPointerTy()) {
906    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
907    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
908  }
909
910  // Convert vectors and fp to integer, which can be manipulated.
911  if (!StoredValTy->isIntegerTy()) {
912    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
913    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
914  }
915
916  // If this is a big-endian system, we need to shift the value down to the low
917  // bits so that a truncate will work.
918  if (TD.isBigEndian()) {
919    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
920    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
921  }
922
923  // Truncate the integer to the right size now.
924  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
925  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
926
927  if (LoadedTy == NewIntTy)
928    return StoredVal;
929
930  // If the result is a pointer, inttoptr.
931  if (LoadedTy->isPointerTy())
932    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
933
934  // Otherwise, bitcast.
935  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
936}
937
938/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
939/// be expressed as a base pointer plus a constant offset.  Return the base and
940/// offset to the caller.
941static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
942                                        const TargetData &TD) {
943  Operator *PtrOp = dyn_cast<Operator>(Ptr);
944  if (PtrOp == 0) return Ptr;
945
946  // Just look through bitcasts.
947  if (PtrOp->getOpcode() == Instruction::BitCast)
948    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
949
950  // If this is a GEP with constant indices, we can look through it.
951  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
952  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
953
954  gep_type_iterator GTI = gep_type_begin(GEP);
955  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
956       ++I, ++GTI) {
957    ConstantInt *OpC = cast<ConstantInt>(*I);
958    if (OpC->isZero()) continue;
959
960    // Handle a struct and array indices which add their offset to the pointer.
961    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
962      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
963    } else {
964      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
965      Offset += OpC->getSExtValue()*Size;
966    }
967  }
968
969  // Re-sign extend from the pointer size if needed to get overflow edge cases
970  // right.
971  unsigned PtrSize = TD.getPointerSizeInBits();
972  if (PtrSize < 64)
973    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
974
975  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
976}
977
978
979/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
980/// memdep query of a load that ends up being a clobbering memory write (store,
981/// memset, memcpy, memmove).  This means that the write *may* provide bits used
982/// by the load but we can't be sure because the pointers don't mustalias.
983///
984/// Check this case to see if there is anything more we can do before we give
985/// up.  This returns -1 if we have to give up, or a byte number in the stored
986/// value of the piece that feeds the load.
987static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
988                                          Value *WritePtr,
989                                          uint64_t WriteSizeInBits,
990                                          const TargetData &TD) {
991  // If the loaded or stored value is an first class array or struct, don't try
992  // to transform them.  We need to be able to bitcast to integer.
993  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
994    return -1;
995
996  int64_t StoreOffset = 0, LoadOffset = 0;
997  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
998  Value *LoadBase =
999    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1000  if (StoreBase != LoadBase)
1001    return -1;
1002
1003  // If the load and store are to the exact same address, they should have been
1004  // a must alias.  AA must have gotten confused.
1005  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1006  // to a load from the base of the memset.
1007#if 0
1008  if (LoadOffset == StoreOffset) {
1009    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1010    << "Base       = " << *StoreBase << "\n"
1011    << "Store Ptr  = " << *WritePtr << "\n"
1012    << "Store Offs = " << StoreOffset << "\n"
1013    << "Load Ptr   = " << *LoadPtr << "\n";
1014    abort();
1015  }
1016#endif
1017
1018  // If the load and store don't overlap at all, the store doesn't provide
1019  // anything to the load.  In this case, they really don't alias at all, AA
1020  // must have gotten confused.
1021  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1022  // remove this check, as it is duplicated with what we have below.
1023  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1024
1025  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1026    return -1;
1027  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1028  LoadSize >>= 3;
1029
1030
1031  bool isAAFailure = false;
1032  if (StoreOffset < LoadOffset)
1033    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1034  else
1035    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1036
1037  if (isAAFailure) {
1038#if 0
1039    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1040    << "Base       = " << *StoreBase << "\n"
1041    << "Store Ptr  = " << *WritePtr << "\n"
1042    << "Store Offs = " << StoreOffset << "\n"
1043    << "Load Ptr   = " << *LoadPtr << "\n";
1044    abort();
1045#endif
1046    return -1;
1047  }
1048
1049  // If the Load isn't completely contained within the stored bits, we don't
1050  // have all the bits to feed it.  We could do something crazy in the future
1051  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1052  // valuable.
1053  if (StoreOffset > LoadOffset ||
1054      StoreOffset+StoreSize < LoadOffset+LoadSize)
1055    return -1;
1056
1057  // Okay, we can do this transformation.  Return the number of bytes into the
1058  // store that the load is.
1059  return LoadOffset-StoreOffset;
1060}
1061
1062/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1063/// memdep query of a load that ends up being a clobbering store.
1064static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1065                                          StoreInst *DepSI,
1066                                          const TargetData &TD) {
1067  // Cannot handle reading from store of first-class aggregate yet.
1068  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1069      DepSI->getOperand(0)->getType()->isArrayTy())
1070    return -1;
1071
1072  Value *StorePtr = DepSI->getPointerOperand();
1073  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1074  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1075                                        StorePtr, StoreSize, TD);
1076}
1077
1078static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1079                                            MemIntrinsic *MI,
1080                                            const TargetData &TD) {
1081  // If the mem operation is a non-constant size, we can't handle it.
1082  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1083  if (SizeCst == 0) return -1;
1084  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1085
1086  // If this is memset, we just need to see if the offset is valid in the size
1087  // of the memset..
1088  if (MI->getIntrinsicID() == Intrinsic::memset)
1089    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1090                                          MemSizeInBits, TD);
1091
1092  // If we have a memcpy/memmove, the only case we can handle is if this is a
1093  // copy from constant memory.  In that case, we can read directly from the
1094  // constant memory.
1095  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1096
1097  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1098  if (Src == 0) return -1;
1099
1100  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1101  if (GV == 0 || !GV->isConstant()) return -1;
1102
1103  // See if the access is within the bounds of the transfer.
1104  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1105                                              MI->getDest(), MemSizeInBits, TD);
1106  if (Offset == -1)
1107    return Offset;
1108
1109  // Otherwise, see if we can constant fold a load from the constant with the
1110  // offset applied as appropriate.
1111  Src = ConstantExpr::getBitCast(Src,
1112                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1113  Constant *OffsetCst =
1114    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1115  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1116  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1117  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1118    return Offset;
1119  return -1;
1120}
1121
1122
1123/// GetStoreValueForLoad - This function is called when we have a
1124/// memdep query of a load that ends up being a clobbering store.  This means
1125/// that the store *may* provide bits used by the load but we can't be sure
1126/// because the pointers don't mustalias.  Check this case to see if there is
1127/// anything more we can do before we give up.
1128static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1129                                   const Type *LoadTy,
1130                                   Instruction *InsertPt, const TargetData &TD){
1131  LLVMContext &Ctx = SrcVal->getType()->getContext();
1132
1133  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1134  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1135
1136  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1137
1138  // Compute which bits of the stored value are being used by the load.  Convert
1139  // to an integer type to start with.
1140  if (SrcVal->getType()->isPointerTy())
1141    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1142  if (!SrcVal->getType()->isIntegerTy())
1143    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1144                                   "tmp");
1145
1146  // Shift the bits to the least significant depending on endianness.
1147  unsigned ShiftAmt;
1148  if (TD.isLittleEndian())
1149    ShiftAmt = Offset*8;
1150  else
1151    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1152
1153  if (ShiftAmt)
1154    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1155
1156  if (LoadSize != StoreSize)
1157    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1158                                 "tmp");
1159
1160  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1161}
1162
1163/// GetMemInstValueForLoad - This function is called when we have a
1164/// memdep query of a load that ends up being a clobbering mem intrinsic.
1165static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1166                                     const Type *LoadTy, Instruction *InsertPt,
1167                                     const TargetData &TD){
1168  LLVMContext &Ctx = LoadTy->getContext();
1169  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1170
1171  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1172
1173  // We know that this method is only called when the mem transfer fully
1174  // provides the bits for the load.
1175  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1176    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1177    // independently of what the offset is.
1178    Value *Val = MSI->getValue();
1179    if (LoadSize != 1)
1180      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1181
1182    Value *OneElt = Val;
1183
1184    // Splat the value out to the right number of bits.
1185    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1186      // If we can double the number of bytes set, do it.
1187      if (NumBytesSet*2 <= LoadSize) {
1188        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1189        Val = Builder.CreateOr(Val, ShVal);
1190        NumBytesSet <<= 1;
1191        continue;
1192      }
1193
1194      // Otherwise insert one byte at a time.
1195      Value *ShVal = Builder.CreateShl(Val, 1*8);
1196      Val = Builder.CreateOr(OneElt, ShVal);
1197      ++NumBytesSet;
1198    }
1199
1200    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1201  }
1202
1203  // Otherwise, this is a memcpy/memmove from a constant global.
1204  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1205  Constant *Src = cast<Constant>(MTI->getSource());
1206
1207  // Otherwise, see if we can constant fold a load from the constant with the
1208  // offset applied as appropriate.
1209  Src = ConstantExpr::getBitCast(Src,
1210                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1211  Constant *OffsetCst =
1212  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1213  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1214  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1215  return ConstantFoldLoadFromConstPtr(Src, &TD);
1216}
1217
1218namespace {
1219
1220struct AvailableValueInBlock {
1221  /// BB - The basic block in question.
1222  BasicBlock *BB;
1223  enum ValType {
1224    SimpleVal,  // A simple offsetted value that is accessed.
1225    MemIntrin   // A memory intrinsic which is loaded from.
1226  };
1227
1228  /// V - The value that is live out of the block.
1229  PointerIntPair<Value *, 1, ValType> Val;
1230
1231  /// Offset - The byte offset in Val that is interesting for the load query.
1232  unsigned Offset;
1233
1234  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1235                                   unsigned Offset = 0) {
1236    AvailableValueInBlock Res;
1237    Res.BB = BB;
1238    Res.Val.setPointer(V);
1239    Res.Val.setInt(SimpleVal);
1240    Res.Offset = Offset;
1241    return Res;
1242  }
1243
1244  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1245                                     unsigned Offset = 0) {
1246    AvailableValueInBlock Res;
1247    Res.BB = BB;
1248    Res.Val.setPointer(MI);
1249    Res.Val.setInt(MemIntrin);
1250    Res.Offset = Offset;
1251    return Res;
1252  }
1253
1254  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1255  Value *getSimpleValue() const {
1256    assert(isSimpleValue() && "Wrong accessor");
1257    return Val.getPointer();
1258  }
1259
1260  MemIntrinsic *getMemIntrinValue() const {
1261    assert(!isSimpleValue() && "Wrong accessor");
1262    return cast<MemIntrinsic>(Val.getPointer());
1263  }
1264
1265  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1266  /// defined here to the specified type.  This handles various coercion cases.
1267  Value *MaterializeAdjustedValue(const Type *LoadTy,
1268                                  const TargetData *TD) const {
1269    Value *Res;
1270    if (isSimpleValue()) {
1271      Res = getSimpleValue();
1272      if (Res->getType() != LoadTy) {
1273        assert(TD && "Need target data to handle type mismatch case");
1274        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1275                                   *TD);
1276
1277        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1278                     << *getSimpleValue() << '\n'
1279                     << *Res << '\n' << "\n\n\n");
1280      }
1281    } else {
1282      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1283                                   LoadTy, BB->getTerminator(), *TD);
1284      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1285                   << "  " << *getMemIntrinValue() << '\n'
1286                   << *Res << '\n' << "\n\n\n");
1287    }
1288    return Res;
1289  }
1290};
1291
1292}
1293
1294/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1295/// construct SSA form, allowing us to eliminate LI.  This returns the value
1296/// that should be used at LI's definition site.
1297static Value *ConstructSSAForLoadSet(LoadInst *LI,
1298                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1299                                     const TargetData *TD,
1300                                     const DominatorTree &DT,
1301                                     AliasAnalysis *AA) {
1302  // Check for the fully redundant, dominating load case.  In this case, we can
1303  // just use the dominating value directly.
1304  if (ValuesPerBlock.size() == 1 &&
1305      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1306    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1307
1308  // Otherwise, we have to construct SSA form.
1309  SmallVector<PHINode*, 8> NewPHIs;
1310  SSAUpdater SSAUpdate(&NewPHIs);
1311  SSAUpdate.Initialize(LI->getType(), LI->getName());
1312
1313  const Type *LoadTy = LI->getType();
1314
1315  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1316    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1317    BasicBlock *BB = AV.BB;
1318
1319    if (SSAUpdate.HasValueForBlock(BB))
1320      continue;
1321
1322    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1323  }
1324
1325  // Perform PHI construction.
1326  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1327
1328  // If new PHI nodes were created, notify alias analysis.
1329  if (V->getType()->isPointerTy())
1330    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1331      AA->copyValue(LI, NewPHIs[i]);
1332
1333  return V;
1334}
1335
1336static bool isLifetimeStart(const Instruction *Inst) {
1337  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1338    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1339  return false;
1340}
1341
1342/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1343/// non-local by performing PHI construction.
1344bool GVN::processNonLocalLoad(LoadInst *LI,
1345                              SmallVectorImpl<Instruction*> &toErase) {
1346  // Find the non-local dependencies of the load.
1347  SmallVector<NonLocalDepResult, 64> Deps;
1348  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1349                                   Deps);
1350  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1351  //             << Deps.size() << *LI << '\n');
1352
1353  // If we had to process more than one hundred blocks to find the
1354  // dependencies, this load isn't worth worrying about.  Optimizing
1355  // it will be too expensive.
1356  if (Deps.size() > 100)
1357    return false;
1358
1359  // If we had a phi translation failure, we'll have a single entry which is a
1360  // clobber in the current block.  Reject this early.
1361  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1362    DEBUG(
1363      dbgs() << "GVN: non-local load ";
1364      WriteAsOperand(dbgs(), LI);
1365      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1366    );
1367    return false;
1368  }
1369
1370  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1371  // where we have a value available in repl, also keep track of whether we see
1372  // dependencies that produce an unknown value for the load (such as a call
1373  // that could potentially clobber the load).
1374  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1375  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1376
1377  const TargetData *TD = 0;
1378
1379  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1380    BasicBlock *DepBB = Deps[i].getBB();
1381    MemDepResult DepInfo = Deps[i].getResult();
1382
1383    if (DepInfo.isClobber()) {
1384      // The address being loaded in this non-local block may not be the same as
1385      // the pointer operand of the load if PHI translation occurs.  Make sure
1386      // to consider the right address.
1387      Value *Address = Deps[i].getAddress();
1388
1389      // If the dependence is to a store that writes to a superset of the bits
1390      // read by the load, we can extract the bits we need for the load from the
1391      // stored value.
1392      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1393        if (TD == 0)
1394          TD = getAnalysisIfAvailable<TargetData>();
1395        if (TD && Address) {
1396          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1397                                                      DepSI, *TD);
1398          if (Offset != -1) {
1399            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1400                                                           DepSI->getOperand(0),
1401                                                                Offset));
1402            continue;
1403          }
1404        }
1405      }
1406
1407      // If the clobbering value is a memset/memcpy/memmove, see if we can
1408      // forward a value on from it.
1409      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1410        if (TD == 0)
1411          TD = getAnalysisIfAvailable<TargetData>();
1412        if (TD && Address) {
1413          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1414                                                        DepMI, *TD);
1415          if (Offset != -1) {
1416            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1417                                                                  Offset));
1418            continue;
1419          }
1420        }
1421      }
1422
1423      UnavailableBlocks.push_back(DepBB);
1424      continue;
1425    }
1426
1427    Instruction *DepInst = DepInfo.getInst();
1428
1429    // Loading the allocation -> undef.
1430    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1431        // Loading immediately after lifetime begin -> undef.
1432        isLifetimeStart(DepInst)) {
1433      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1434                                             UndefValue::get(LI->getType())));
1435      continue;
1436    }
1437
1438    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1439      // Reject loads and stores that are to the same address but are of
1440      // different types if we have to.
1441      if (S->getOperand(0)->getType() != LI->getType()) {
1442        if (TD == 0)
1443          TD = getAnalysisIfAvailable<TargetData>();
1444
1445        // If the stored value is larger or equal to the loaded value, we can
1446        // reuse it.
1447        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1448                                                        LI->getType(), *TD)) {
1449          UnavailableBlocks.push_back(DepBB);
1450          continue;
1451        }
1452      }
1453
1454      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1455                                                          S->getOperand(0)));
1456      continue;
1457    }
1458
1459    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1460      // If the types mismatch and we can't handle it, reject reuse of the load.
1461      if (LD->getType() != LI->getType()) {
1462        if (TD == 0)
1463          TD = getAnalysisIfAvailable<TargetData>();
1464
1465        // If the stored value is larger or equal to the loaded value, we can
1466        // reuse it.
1467        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1468          UnavailableBlocks.push_back(DepBB);
1469          continue;
1470        }
1471      }
1472      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1473      continue;
1474    }
1475
1476    UnavailableBlocks.push_back(DepBB);
1477    continue;
1478  }
1479
1480  // If we have no predecessors that produce a known value for this load, exit
1481  // early.
1482  if (ValuesPerBlock.empty()) return false;
1483
1484  // If all of the instructions we depend on produce a known value for this
1485  // load, then it is fully redundant and we can use PHI insertion to compute
1486  // its value.  Insert PHIs and remove the fully redundant value now.
1487  if (UnavailableBlocks.empty()) {
1488    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1489
1490    // Perform PHI construction.
1491    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1492                                      VN.getAliasAnalysis());
1493    LI->replaceAllUsesWith(V);
1494
1495    if (isa<PHINode>(V))
1496      V->takeName(LI);
1497    if (V->getType()->isPointerTy())
1498      MD->invalidateCachedPointerInfo(V);
1499    VN.erase(LI);
1500    toErase.push_back(LI);
1501    ++NumGVNLoad;
1502    return true;
1503  }
1504
1505  if (!EnablePRE || !EnableLoadPRE)
1506    return false;
1507
1508  // Okay, we have *some* definitions of the value.  This means that the value
1509  // is available in some of our (transitive) predecessors.  Lets think about
1510  // doing PRE of this load.  This will involve inserting a new load into the
1511  // predecessor when it's not available.  We could do this in general, but
1512  // prefer to not increase code size.  As such, we only do this when we know
1513  // that we only have to insert *one* load (which means we're basically moving
1514  // the load, not inserting a new one).
1515
1516  SmallPtrSet<BasicBlock *, 4> Blockers;
1517  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1518    Blockers.insert(UnavailableBlocks[i]);
1519
1520  // Lets find first basic block with more than one predecessor.  Walk backwards
1521  // through predecessors if needed.
1522  BasicBlock *LoadBB = LI->getParent();
1523  BasicBlock *TmpBB = LoadBB;
1524
1525  bool isSinglePred = false;
1526  bool allSingleSucc = true;
1527  while (TmpBB->getSinglePredecessor()) {
1528    isSinglePred = true;
1529    TmpBB = TmpBB->getSinglePredecessor();
1530    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1531      return false;
1532    if (Blockers.count(TmpBB))
1533      return false;
1534
1535    // If any of these blocks has more than one successor (i.e. if the edge we
1536    // just traversed was critical), then there are other paths through this
1537    // block along which the load may not be anticipated.  Hoisting the load
1538    // above this block would be adding the load to execution paths along
1539    // which it was not previously executed.
1540    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1541      return false;
1542  }
1543
1544  assert(TmpBB);
1545  LoadBB = TmpBB;
1546
1547  // FIXME: It is extremely unclear what this loop is doing, other than
1548  // artificially restricting loadpre.
1549  if (isSinglePred) {
1550    bool isHot = false;
1551    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1552      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1553      if (AV.isSimpleValue())
1554        // "Hot" Instruction is in some loop (because it dominates its dep.
1555        // instruction).
1556        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1557          if (DT->dominates(LI, I)) {
1558            isHot = true;
1559            break;
1560          }
1561    }
1562
1563    // We are interested only in "hot" instructions. We don't want to do any
1564    // mis-optimizations here.
1565    if (!isHot)
1566      return false;
1567  }
1568
1569  // Check to see how many predecessors have the loaded value fully
1570  // available.
1571  DenseMap<BasicBlock*, Value*> PredLoads;
1572  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1573  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1574    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1575  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1576    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1577
1578  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1579  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1580       PI != E; ++PI) {
1581    BasicBlock *Pred = *PI;
1582    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1583      continue;
1584    }
1585    PredLoads[Pred] = 0;
1586
1587    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1588      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1589        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1590              << Pred->getName() << "': " << *LI << '\n');
1591        return false;
1592      }
1593      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1594      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1595    }
1596  }
1597  if (!NeedToSplit.empty()) {
1598    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1599    return false;
1600  }
1601
1602  // Decide whether PRE is profitable for this load.
1603  unsigned NumUnavailablePreds = PredLoads.size();
1604  assert(NumUnavailablePreds != 0 &&
1605         "Fully available value should be eliminated above!");
1606
1607  // If this load is unavailable in multiple predecessors, reject it.
1608  // FIXME: If we could restructure the CFG, we could make a common pred with
1609  // all the preds that don't have an available LI and insert a new load into
1610  // that one block.
1611  if (NumUnavailablePreds != 1)
1612      return false;
1613
1614  // Check if the load can safely be moved to all the unavailable predecessors.
1615  bool CanDoPRE = true;
1616  SmallVector<Instruction*, 8> NewInsts;
1617  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1618         E = PredLoads.end(); I != E; ++I) {
1619    BasicBlock *UnavailablePred = I->first;
1620
1621    // Do PHI translation to get its value in the predecessor if necessary.  The
1622    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1623
1624    // If all preds have a single successor, then we know it is safe to insert
1625    // the load on the pred (?!?), so we can insert code to materialize the
1626    // pointer if it is not available.
1627    PHITransAddr Address(LI->getOperand(0), TD);
1628    Value *LoadPtr = 0;
1629    if (allSingleSucc) {
1630      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1631                                                  *DT, NewInsts);
1632    } else {
1633      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1634      LoadPtr = Address.getAddr();
1635    }
1636
1637    // If we couldn't find or insert a computation of this phi translated value,
1638    // we fail PRE.
1639    if (LoadPtr == 0) {
1640      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1641            << *LI->getOperand(0) << "\n");
1642      CanDoPRE = false;
1643      break;
1644    }
1645
1646    // Make sure it is valid to move this load here.  We have to watch out for:
1647    //  @1 = getelementptr (i8* p, ...
1648    //  test p and branch if == 0
1649    //  load @1
1650    // It is valid to have the getelementptr before the test, even if p can be 0,
1651    // as getelementptr only does address arithmetic.
1652    // If we are not pushing the value through any multiple-successor blocks
1653    // we do not have this case.  Otherwise, check that the load is safe to
1654    // put anywhere; this can be improved, but should be conservatively safe.
1655    if (!allSingleSucc &&
1656        // FIXME: REEVALUTE THIS.
1657        !isSafeToLoadUnconditionally(LoadPtr,
1658                                     UnavailablePred->getTerminator(),
1659                                     LI->getAlignment(), TD)) {
1660      CanDoPRE = false;
1661      break;
1662    }
1663
1664    I->second = LoadPtr;
1665  }
1666
1667  if (!CanDoPRE) {
1668    while (!NewInsts.empty())
1669      NewInsts.pop_back_val()->eraseFromParent();
1670    return false;
1671  }
1672
1673  // Okay, we can eliminate this load by inserting a reload in the predecessor
1674  // and using PHI construction to get the value in the other predecessors, do
1675  // it.
1676  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1677  DEBUG(if (!NewInsts.empty())
1678          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1679                 << *NewInsts.back() << '\n');
1680
1681  // Assign value numbers to the new instructions.
1682  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1683    // FIXME: We really _ought_ to insert these value numbers into their
1684    // parent's availability map.  However, in doing so, we risk getting into
1685    // ordering issues.  If a block hasn't been processed yet, we would be
1686    // marking a value as AVAIL-IN, which isn't what we intend.
1687    VN.lookup_or_add(NewInsts[i]);
1688  }
1689
1690  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1691         E = PredLoads.end(); I != E; ++I) {
1692    BasicBlock *UnavailablePred = I->first;
1693    Value *LoadPtr = I->second;
1694
1695    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1696                                  LI->getAlignment(),
1697                                  UnavailablePred->getTerminator());
1698
1699    // Add the newly created load.
1700    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1701                                                        NewLoad));
1702    MD->invalidateCachedPointerInfo(LoadPtr);
1703    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1704  }
1705
1706  // Perform PHI construction.
1707  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1708                                    VN.getAliasAnalysis());
1709  LI->replaceAllUsesWith(V);
1710  if (isa<PHINode>(V))
1711    V->takeName(LI);
1712  if (V->getType()->isPointerTy())
1713    MD->invalidateCachedPointerInfo(V);
1714  VN.erase(LI);
1715  toErase.push_back(LI);
1716  ++NumPRELoad;
1717  return true;
1718}
1719
1720/// processLoad - Attempt to eliminate a load, first by eliminating it
1721/// locally, and then attempting non-local elimination if that fails.
1722bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1723  if (!MD)
1724    return false;
1725
1726  if (L->isVolatile())
1727    return false;
1728
1729  // ... to a pointer that has been loaded from before...
1730  MemDepResult Dep = MD->getDependency(L);
1731
1732  // If the value isn't available, don't do anything!
1733  if (Dep.isClobber()) {
1734    // Check to see if we have something like this:
1735    //   store i32 123, i32* %P
1736    //   %A = bitcast i32* %P to i8*
1737    //   %B = gep i8* %A, i32 1
1738    //   %C = load i8* %B
1739    //
1740    // We could do that by recognizing if the clobber instructions are obviously
1741    // a common base + constant offset, and if the previous store (or memset)
1742    // completely covers this load.  This sort of thing can happen in bitfield
1743    // access code.
1744    Value *AvailVal = 0;
1745    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1746      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1747        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1748                                                    L->getPointerOperand(),
1749                                                    DepSI, *TD);
1750        if (Offset != -1)
1751          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1752                                          L->getType(), L, *TD);
1753      }
1754
1755    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1756    // a value on from it.
1757    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1758      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1759        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1760                                                      L->getPointerOperand(),
1761                                                      DepMI, *TD);
1762        if (Offset != -1)
1763          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1764      }
1765    }
1766
1767    if (AvailVal) {
1768      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1769            << *AvailVal << '\n' << *L << "\n\n\n");
1770
1771      // Replace the load!
1772      L->replaceAllUsesWith(AvailVal);
1773      if (AvailVal->getType()->isPointerTy())
1774        MD->invalidateCachedPointerInfo(AvailVal);
1775      VN.erase(L);
1776      toErase.push_back(L);
1777      ++NumGVNLoad;
1778      return true;
1779    }
1780
1781    DEBUG(
1782      // fast print dep, using operator<< on instruction would be too slow
1783      dbgs() << "GVN: load ";
1784      WriteAsOperand(dbgs(), L);
1785      Instruction *I = Dep.getInst();
1786      dbgs() << " is clobbered by " << *I << '\n';
1787    );
1788    return false;
1789  }
1790
1791  // If it is defined in another block, try harder.
1792  if (Dep.isNonLocal())
1793    return processNonLocalLoad(L, toErase);
1794
1795  Instruction *DepInst = Dep.getInst();
1796  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1797    Value *StoredVal = DepSI->getOperand(0);
1798
1799    // The store and load are to a must-aliased pointer, but they may not
1800    // actually have the same type.  See if we know how to reuse the stored
1801    // value (depending on its type).
1802    const TargetData *TD = 0;
1803    if (StoredVal->getType() != L->getType()) {
1804      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1805        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1806                                                   L, *TD);
1807        if (StoredVal == 0)
1808          return false;
1809
1810        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1811                     << '\n' << *L << "\n\n\n");
1812      }
1813      else
1814        return false;
1815    }
1816
1817    // Remove it!
1818    L->replaceAllUsesWith(StoredVal);
1819    if (StoredVal->getType()->isPointerTy())
1820      MD->invalidateCachedPointerInfo(StoredVal);
1821    VN.erase(L);
1822    toErase.push_back(L);
1823    ++NumGVNLoad;
1824    return true;
1825  }
1826
1827  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1828    Value *AvailableVal = DepLI;
1829
1830    // The loads are of a must-aliased pointer, but they may not actually have
1831    // the same type.  See if we know how to reuse the previously loaded value
1832    // (depending on its type).
1833    const TargetData *TD = 0;
1834    if (DepLI->getType() != L->getType()) {
1835      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1836        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1837        if (AvailableVal == 0)
1838          return false;
1839
1840        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1841                     << "\n" << *L << "\n\n\n");
1842      }
1843      else
1844        return false;
1845    }
1846
1847    // Remove it!
1848    L->replaceAllUsesWith(AvailableVal);
1849    if (DepLI->getType()->isPointerTy())
1850      MD->invalidateCachedPointerInfo(DepLI);
1851    VN.erase(L);
1852    toErase.push_back(L);
1853    ++NumGVNLoad;
1854    return true;
1855  }
1856
1857  // If this load really doesn't depend on anything, then we must be loading an
1858  // undef value.  This can happen when loading for a fresh allocation with no
1859  // intervening stores, for example.
1860  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1861    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1862    VN.erase(L);
1863    toErase.push_back(L);
1864    ++NumGVNLoad;
1865    return true;
1866  }
1867
1868  // If this load occurs either right after a lifetime begin,
1869  // then the loaded value is undefined.
1870  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1871    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1872      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1873      VN.erase(L);
1874      toErase.push_back(L);
1875      ++NumGVNLoad;
1876      return true;
1877    }
1878  }
1879
1880  return false;
1881}
1882
1883Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1884  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1885  if (I == localAvail.end())
1886    return 0;
1887
1888  ValueNumberScope *Locals = I->second;
1889  while (Locals) {
1890    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1891    if (I != Locals->table.end())
1892      return I->second;
1893    Locals = Locals->parent;
1894  }
1895
1896  return 0;
1897}
1898
1899
1900/// processInstruction - When calculating availability, handle an instruction
1901/// by inserting it into the appropriate sets
1902bool GVN::processInstruction(Instruction *I,
1903                             SmallVectorImpl<Instruction*> &toErase) {
1904  // Ignore dbg info intrinsics.
1905  if (isa<DbgInfoIntrinsic>(I))
1906    return false;
1907
1908  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1909    bool Changed = processLoad(LI, toErase);
1910
1911    if (!Changed) {
1912      unsigned Num = VN.lookup_or_add(LI);
1913      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1914    }
1915
1916    return Changed;
1917  }
1918
1919  uint32_t NextNum = VN.getNextUnusedValueNumber();
1920  unsigned Num = VN.lookup_or_add(I);
1921
1922  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1923    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1924
1925    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1926      return false;
1927
1928    Value *BranchCond = BI->getCondition();
1929    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1930
1931    BasicBlock *TrueSucc = BI->getSuccessor(0);
1932    BasicBlock *FalseSucc = BI->getSuccessor(1);
1933
1934    if (TrueSucc->getSinglePredecessor())
1935      localAvail[TrueSucc]->table[CondVN] =
1936        ConstantInt::getTrue(TrueSucc->getContext());
1937    if (FalseSucc->getSinglePredecessor())
1938      localAvail[FalseSucc]->table[CondVN] =
1939        ConstantInt::getFalse(TrueSucc->getContext());
1940
1941    return false;
1942
1943  // Allocations are always uniquely numbered, so we can save time and memory
1944  // by fast failing them.
1945  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1946    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1947    return false;
1948  }
1949
1950  // Collapse PHI nodes
1951  if (PHINode* p = dyn_cast<PHINode>(I)) {
1952    Value *constVal = CollapsePhi(p);
1953
1954    if (constVal) {
1955      p->replaceAllUsesWith(constVal);
1956      if (MD && constVal->getType()->isPointerTy())
1957        MD->invalidateCachedPointerInfo(constVal);
1958      VN.erase(p);
1959
1960      toErase.push_back(p);
1961    } else {
1962      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1963    }
1964
1965  // If the number we were assigned was a brand new VN, then we don't
1966  // need to do a lookup to see if the number already exists
1967  // somewhere in the domtree: it can't!
1968  } else if (Num == NextNum) {
1969    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1970
1971  // Perform fast-path value-number based elimination of values inherited from
1972  // dominators.
1973  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1974    // Remove it!
1975    VN.erase(I);
1976    I->replaceAllUsesWith(repl);
1977    if (MD && repl->getType()->isPointerTy())
1978      MD->invalidateCachedPointerInfo(repl);
1979    toErase.push_back(I);
1980    return true;
1981
1982  } else {
1983    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1984  }
1985
1986  return false;
1987}
1988
1989/// runOnFunction - This is the main transformation entry point for a function.
1990bool GVN::runOnFunction(Function& F) {
1991  if (!NoLoads)
1992    MD = &getAnalysis<MemoryDependenceAnalysis>();
1993  DT = &getAnalysis<DominatorTree>();
1994  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1995  VN.setMemDep(MD);
1996  VN.setDomTree(DT);
1997
1998  bool Changed = false;
1999  bool ShouldContinue = true;
2000
2001  // Merge unconditional branches, allowing PRE to catch more
2002  // optimization opportunities.
2003  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2004    BasicBlock *BB = FI;
2005    ++FI;
2006    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2007    if (removedBlock) ++NumGVNBlocks;
2008
2009    Changed |= removedBlock;
2010  }
2011
2012  unsigned Iteration = 0;
2013
2014  while (ShouldContinue) {
2015    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2016    ShouldContinue = iterateOnFunction(F);
2017    if (splitCriticalEdges())
2018      ShouldContinue = true;
2019    Changed |= ShouldContinue;
2020    ++Iteration;
2021  }
2022
2023  if (EnablePRE) {
2024    bool PREChanged = true;
2025    while (PREChanged) {
2026      PREChanged = performPRE(F);
2027      Changed |= PREChanged;
2028    }
2029  }
2030  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2031  // computations into blocks where they become fully redundant.  Note that
2032  // we can't do this until PRE's critical edge splitting updates memdep.
2033  // Actually, when this happens, we should just fully integrate PRE into GVN.
2034
2035  cleanupGlobalSets();
2036
2037  return Changed;
2038}
2039
2040
2041bool GVN::processBlock(BasicBlock *BB) {
2042  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2043  // incrementing BI before processing an instruction).
2044  SmallVector<Instruction*, 8> toErase;
2045  bool ChangedFunction = false;
2046
2047  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2048       BI != BE;) {
2049    ChangedFunction |= processInstruction(BI, toErase);
2050    if (toErase.empty()) {
2051      ++BI;
2052      continue;
2053    }
2054
2055    // If we need some instructions deleted, do it now.
2056    NumGVNInstr += toErase.size();
2057
2058    // Avoid iterator invalidation.
2059    bool AtStart = BI == BB->begin();
2060    if (!AtStart)
2061      --BI;
2062
2063    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2064         E = toErase.end(); I != E; ++I) {
2065      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2066      if (MD) MD->removeInstruction(*I);
2067      (*I)->eraseFromParent();
2068      DEBUG(verifyRemoved(*I));
2069    }
2070    toErase.clear();
2071
2072    if (AtStart)
2073      BI = BB->begin();
2074    else
2075      ++BI;
2076  }
2077
2078  return ChangedFunction;
2079}
2080
2081/// performPRE - Perform a purely local form of PRE that looks for diamond
2082/// control flow patterns and attempts to perform simple PRE at the join point.
2083bool GVN::performPRE(Function &F) {
2084  bool Changed = false;
2085  DenseMap<BasicBlock*, Value*> predMap;
2086  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2087       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2088    BasicBlock *CurrentBlock = *DI;
2089
2090    // Nothing to PRE in the entry block.
2091    if (CurrentBlock == &F.getEntryBlock()) continue;
2092
2093    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2094         BE = CurrentBlock->end(); BI != BE; ) {
2095      Instruction *CurInst = BI++;
2096
2097      if (isa<AllocaInst>(CurInst) ||
2098          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2099          CurInst->getType()->isVoidTy() ||
2100          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2101          isa<DbgInfoIntrinsic>(CurInst))
2102        continue;
2103
2104      // We don't currently value number ANY inline asm calls.
2105      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2106        if (CallI->isInlineAsm())
2107          continue;
2108
2109      uint32_t ValNo = VN.lookup(CurInst);
2110
2111      // Look for the predecessors for PRE opportunities.  We're
2112      // only trying to solve the basic diamond case, where
2113      // a value is computed in the successor and one predecessor,
2114      // but not the other.  We also explicitly disallow cases
2115      // where the successor is its own predecessor, because they're
2116      // more complicated to get right.
2117      unsigned NumWith = 0;
2118      unsigned NumWithout = 0;
2119      BasicBlock *PREPred = 0;
2120      predMap.clear();
2121
2122      for (pred_iterator PI = pred_begin(CurrentBlock),
2123           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2124        BasicBlock *P = *PI;
2125        // We're not interested in PRE where the block is its
2126        // own predecessor, or in blocks with predecessors
2127        // that are not reachable.
2128        if (P == CurrentBlock) {
2129          NumWithout = 2;
2130          break;
2131        } else if (!localAvail.count(P))  {
2132          NumWithout = 2;
2133          break;
2134        }
2135
2136        DenseMap<uint32_t, Value*>::iterator predV =
2137                                            localAvail[P]->table.find(ValNo);
2138        if (predV == localAvail[P]->table.end()) {
2139          PREPred = P;
2140          ++NumWithout;
2141        } else if (predV->second == CurInst) {
2142          NumWithout = 2;
2143        } else {
2144          predMap[P] = predV->second;
2145          ++NumWith;
2146        }
2147      }
2148
2149      // Don't do PRE when it might increase code size, i.e. when
2150      // we would need to insert instructions in more than one pred.
2151      if (NumWithout != 1 || NumWith == 0)
2152        continue;
2153
2154      // Don't do PRE across indirect branch.
2155      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2156        continue;
2157
2158      // We can't do PRE safely on a critical edge, so instead we schedule
2159      // the edge to be split and perform the PRE the next time we iterate
2160      // on the function.
2161      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2162      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2163        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2164        continue;
2165      }
2166
2167      // Instantiate the expression in the predecessor that lacked it.
2168      // Because we are going top-down through the block, all value numbers
2169      // will be available in the predecessor by the time we need them.  Any
2170      // that weren't originally present will have been instantiated earlier
2171      // in this loop.
2172      Instruction *PREInstr = CurInst->clone();
2173      bool success = true;
2174      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2175        Value *Op = PREInstr->getOperand(i);
2176        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2177          continue;
2178
2179        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2180          PREInstr->setOperand(i, V);
2181        } else {
2182          success = false;
2183          break;
2184        }
2185      }
2186
2187      // Fail out if we encounter an operand that is not available in
2188      // the PRE predecessor.  This is typically because of loads which
2189      // are not value numbered precisely.
2190      if (!success) {
2191        delete PREInstr;
2192        DEBUG(verifyRemoved(PREInstr));
2193        continue;
2194      }
2195
2196      PREInstr->insertBefore(PREPred->getTerminator());
2197      PREInstr->setName(CurInst->getName() + ".pre");
2198      predMap[PREPred] = PREInstr;
2199      VN.add(PREInstr, ValNo);
2200      ++NumGVNPRE;
2201
2202      // Update the availability map to include the new instruction.
2203      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2204
2205      // Create a PHI to make the value available in this block.
2206      PHINode* Phi = PHINode::Create(CurInst->getType(),
2207                                     CurInst->getName() + ".pre-phi",
2208                                     CurrentBlock->begin());
2209      for (pred_iterator PI = pred_begin(CurrentBlock),
2210           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2211        BasicBlock *P = *PI;
2212        Phi->addIncoming(predMap[P], P);
2213      }
2214
2215      VN.add(Phi, ValNo);
2216      localAvail[CurrentBlock]->table[ValNo] = Phi;
2217
2218      CurInst->replaceAllUsesWith(Phi);
2219      if (MD && Phi->getType()->isPointerTy())
2220        MD->invalidateCachedPointerInfo(Phi);
2221      VN.erase(CurInst);
2222
2223      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2224      if (MD) MD->removeInstruction(CurInst);
2225      CurInst->eraseFromParent();
2226      DEBUG(verifyRemoved(CurInst));
2227      Changed = true;
2228    }
2229  }
2230
2231  if (splitCriticalEdges())
2232    Changed = true;
2233
2234  return Changed;
2235}
2236
2237/// splitCriticalEdges - Split critical edges found during the previous
2238/// iteration that may enable further optimization.
2239bool GVN::splitCriticalEdges() {
2240  if (toSplit.empty())
2241    return false;
2242  do {
2243    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2244    SplitCriticalEdge(Edge.first, Edge.second, this);
2245  } while (!toSplit.empty());
2246  if (MD) MD->invalidateCachedPredecessors();
2247  return true;
2248}
2249
2250/// iterateOnFunction - Executes one iteration of GVN
2251bool GVN::iterateOnFunction(Function &F) {
2252  cleanupGlobalSets();
2253
2254  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2255       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2256    if (DI->getIDom())
2257      localAvail[DI->getBlock()] =
2258                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2259    else
2260      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2261  }
2262
2263  // Top-down walk of the dominator tree
2264  bool Changed = false;
2265#if 0
2266  // Needed for value numbering with phi construction to work.
2267  ReversePostOrderTraversal<Function*> RPOT(&F);
2268  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2269       RE = RPOT.end(); RI != RE; ++RI)
2270    Changed |= processBlock(*RI);
2271#else
2272  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2273       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2274    Changed |= processBlock(DI->getBlock());
2275#endif
2276
2277  return Changed;
2278}
2279
2280void GVN::cleanupGlobalSets() {
2281  VN.clear();
2282
2283  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2284       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2285    delete I->second;
2286  localAvail.clear();
2287}
2288
2289/// verifyRemoved - Verify that the specified instruction does not occur in our
2290/// internal data structures.
2291void GVN::verifyRemoved(const Instruction *Inst) const {
2292  VN.verifyRemoved(Inst);
2293
2294  // Walk through the value number scope to make sure the instruction isn't
2295  // ferreted away in it.
2296  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2297         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2298    const ValueNumberScope *VNS = I->second;
2299
2300    while (VNS) {
2301      for (DenseMap<uint32_t, Value*>::const_iterator
2302             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2303        assert(II->second != Inst && "Inst still in value numbering scope!");
2304      }
2305
2306      VNS = VNS->parent;
2307    }
2308  }
2309}
2310