GVN.cpp revision d0f5bfc9be43997d3d2f09f6616ddbef0df7ddce
1//===- GVN.cpp - Eliminate redundant values and loads ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself, it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Value.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/MemoryDependenceAnalysis.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include <cstdio>
40using namespace llvm;
41
42STATISTIC(NumGVNInstr, "Number of instructions deleted");
43STATISTIC(NumGVNLoad, "Number of loads deleted");
44STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
45STATISTIC(NumGVNBlocks, "Number of blocks merged");
46
47static cl::opt<bool> EnablePRE("enable-pre",
48                               cl::init(true), cl::Hidden);
49
50//===----------------------------------------------------------------------===//
51//                         ValueTable Class
52//===----------------------------------------------------------------------===//
53
54/// This class holds the mapping between values and value numbers.  It is used
55/// as an efficient mechanism to determine the expression-wise equivalence of
56/// two values.
57namespace {
58  struct VISIBILITY_HIDDEN Expression {
59    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
60                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
61                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
62                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
63                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
64                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
65                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
66                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
67                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
68                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
69                            EMPTY, TOMBSTONE };
70
71    ExpressionOpcode opcode;
72    const Type* type;
73    uint32_t firstVN;
74    uint32_t secondVN;
75    uint32_t thirdVN;
76    SmallVector<uint32_t, 4> varargs;
77    Value* function;
78
79    Expression() { }
80    Expression(ExpressionOpcode o) : opcode(o) { }
81
82    bool operator==(const Expression &other) const {
83      if (opcode != other.opcode)
84        return false;
85      else if (opcode == EMPTY || opcode == TOMBSTONE)
86        return true;
87      else if (type != other.type)
88        return false;
89      else if (function != other.function)
90        return false;
91      else if (firstVN != other.firstVN)
92        return false;
93      else if (secondVN != other.secondVN)
94        return false;
95      else if (thirdVN != other.thirdVN)
96        return false;
97      else {
98        if (varargs.size() != other.varargs.size())
99          return false;
100
101        for (size_t i = 0; i < varargs.size(); ++i)
102          if (varargs[i] != other.varargs[i])
103            return false;
104
105        return true;
106      }
107    }
108
109    bool operator!=(const Expression &other) const {
110      if (opcode != other.opcode)
111        return true;
112      else if (opcode == EMPTY || opcode == TOMBSTONE)
113        return false;
114      else if (type != other.type)
115        return true;
116      else if (function != other.function)
117        return true;
118      else if (firstVN != other.firstVN)
119        return true;
120      else if (secondVN != other.secondVN)
121        return true;
122      else if (thirdVN != other.thirdVN)
123        return true;
124      else {
125        if (varargs.size() != other.varargs.size())
126          return true;
127
128        for (size_t i = 0; i < varargs.size(); ++i)
129          if (varargs[i] != other.varargs[i])
130            return true;
131
132          return false;
133      }
134    }
135  };
136
137  class VISIBILITY_HIDDEN ValueTable {
138    private:
139      DenseMap<Value*, uint32_t> valueNumbering;
140      DenseMap<Expression, uint32_t> expressionNumbering;
141      AliasAnalysis* AA;
142      MemoryDependenceAnalysis* MD;
143      DominatorTree* DT;
144
145      uint32_t nextValueNumber;
146
147      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
148      Expression::ExpressionOpcode getOpcode(CmpInst* C);
149      Expression::ExpressionOpcode getOpcode(CastInst* C);
150      Expression create_expression(BinaryOperator* BO);
151      Expression create_expression(CmpInst* C);
152      Expression create_expression(ShuffleVectorInst* V);
153      Expression create_expression(ExtractElementInst* C);
154      Expression create_expression(InsertElementInst* V);
155      Expression create_expression(SelectInst* V);
156      Expression create_expression(CastInst* C);
157      Expression create_expression(GetElementPtrInst* G);
158      Expression create_expression(CallInst* C);
159      Expression create_expression(Constant* C);
160    public:
161      ValueTable() : nextValueNumber(1) { }
162      uint32_t lookup_or_add(Value* V);
163      uint32_t lookup(Value* V) const;
164      void add(Value* V, uint32_t num);
165      void clear();
166      void erase(Value* v);
167      unsigned size();
168      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
169      AliasAnalysis *getAliasAnalysis() const { return AA; }
170      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
171      void setDomTree(DominatorTree* D) { DT = D; }
172      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
173  };
174}
175
176namespace llvm {
177template <> struct DenseMapInfo<Expression> {
178  static inline Expression getEmptyKey() {
179    return Expression(Expression::EMPTY);
180  }
181
182  static inline Expression getTombstoneKey() {
183    return Expression(Expression::TOMBSTONE);
184  }
185
186  static unsigned getHashValue(const Expression e) {
187    unsigned hash = e.opcode;
188
189    hash = e.firstVN + hash * 37;
190    hash = e.secondVN + hash * 37;
191    hash = e.thirdVN + hash * 37;
192
193    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
194            (unsigned)((uintptr_t)e.type >> 9)) +
195           hash * 37;
196
197    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
198         E = e.varargs.end(); I != E; ++I)
199      hash = *I + hash * 37;
200
201    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
202            (unsigned)((uintptr_t)e.function >> 9)) +
203           hash * 37;
204
205    return hash;
206  }
207  static bool isEqual(const Expression &LHS, const Expression &RHS) {
208    return LHS == RHS;
209  }
210  static bool isPod() { return true; }
211};
212}
213
214//===----------------------------------------------------------------------===//
215//                     ValueTable Internal Functions
216//===----------------------------------------------------------------------===//
217Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
218  switch(BO->getOpcode()) {
219  default: // THIS SHOULD NEVER HAPPEN
220    assert(0 && "Binary operator with unknown opcode?");
221  case Instruction::Add:  return Expression::ADD;
222  case Instruction::Sub:  return Expression::SUB;
223  case Instruction::Mul:  return Expression::MUL;
224  case Instruction::UDiv: return Expression::UDIV;
225  case Instruction::SDiv: return Expression::SDIV;
226  case Instruction::FDiv: return Expression::FDIV;
227  case Instruction::URem: return Expression::UREM;
228  case Instruction::SRem: return Expression::SREM;
229  case Instruction::FRem: return Expression::FREM;
230  case Instruction::Shl:  return Expression::SHL;
231  case Instruction::LShr: return Expression::LSHR;
232  case Instruction::AShr: return Expression::ASHR;
233  case Instruction::And:  return Expression::AND;
234  case Instruction::Or:   return Expression::OR;
235  case Instruction::Xor:  return Expression::XOR;
236  }
237}
238
239Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
240  if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
241    switch (C->getPredicate()) {
242    default:  // THIS SHOULD NEVER HAPPEN
243      assert(0 && "Comparison with unknown predicate?");
244    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
245    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
246    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
247    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
248    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
249    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
250    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
251    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
252    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
253    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
254    }
255  }
256  assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
257  switch (C->getPredicate()) {
258  default: // THIS SHOULD NEVER HAPPEN
259    assert(0 && "Comparison with unknown predicate?");
260  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
261  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
262  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
263  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
264  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
265  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
266  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
267  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
268  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
269  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
270  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
271  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
272  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
273  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
274  }
275}
276
277Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
278  switch(C->getOpcode()) {
279  default: // THIS SHOULD NEVER HAPPEN
280    assert(0 && "Cast operator with unknown opcode?");
281  case Instruction::Trunc:    return Expression::TRUNC;
282  case Instruction::ZExt:     return Expression::ZEXT;
283  case Instruction::SExt:     return Expression::SEXT;
284  case Instruction::FPToUI:   return Expression::FPTOUI;
285  case Instruction::FPToSI:   return Expression::FPTOSI;
286  case Instruction::UIToFP:   return Expression::UITOFP;
287  case Instruction::SIToFP:   return Expression::SITOFP;
288  case Instruction::FPTrunc:  return Expression::FPTRUNC;
289  case Instruction::FPExt:    return Expression::FPEXT;
290  case Instruction::PtrToInt: return Expression::PTRTOINT;
291  case Instruction::IntToPtr: return Expression::INTTOPTR;
292  case Instruction::BitCast:  return Expression::BITCAST;
293  }
294}
295
296Expression ValueTable::create_expression(CallInst* C) {
297  Expression e;
298
299  e.type = C->getType();
300  e.firstVN = 0;
301  e.secondVN = 0;
302  e.thirdVN = 0;
303  e.function = C->getCalledFunction();
304  e.opcode = Expression::CALL;
305
306  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
307       I != E; ++I)
308    e.varargs.push_back(lookup_or_add(*I));
309
310  return e;
311}
312
313Expression ValueTable::create_expression(BinaryOperator* BO) {
314  Expression e;
315
316  e.firstVN = lookup_or_add(BO->getOperand(0));
317  e.secondVN = lookup_or_add(BO->getOperand(1));
318  e.thirdVN = 0;
319  e.function = 0;
320  e.type = BO->getType();
321  e.opcode = getOpcode(BO);
322
323  return e;
324}
325
326Expression ValueTable::create_expression(CmpInst* C) {
327  Expression e;
328
329  e.firstVN = lookup_or_add(C->getOperand(0));
330  e.secondVN = lookup_or_add(C->getOperand(1));
331  e.thirdVN = 0;
332  e.function = 0;
333  e.type = C->getType();
334  e.opcode = getOpcode(C);
335
336  return e;
337}
338
339Expression ValueTable::create_expression(CastInst* C) {
340  Expression e;
341
342  e.firstVN = lookup_or_add(C->getOperand(0));
343  e.secondVN = 0;
344  e.thirdVN = 0;
345  e.function = 0;
346  e.type = C->getType();
347  e.opcode = getOpcode(C);
348
349  return e;
350}
351
352Expression ValueTable::create_expression(ShuffleVectorInst* S) {
353  Expression e;
354
355  e.firstVN = lookup_or_add(S->getOperand(0));
356  e.secondVN = lookup_or_add(S->getOperand(1));
357  e.thirdVN = lookup_or_add(S->getOperand(2));
358  e.function = 0;
359  e.type = S->getType();
360  e.opcode = Expression::SHUFFLE;
361
362  return e;
363}
364
365Expression ValueTable::create_expression(ExtractElementInst* E) {
366  Expression e;
367
368  e.firstVN = lookup_or_add(E->getOperand(0));
369  e.secondVN = lookup_or_add(E->getOperand(1));
370  e.thirdVN = 0;
371  e.function = 0;
372  e.type = E->getType();
373  e.opcode = Expression::EXTRACT;
374
375  return e;
376}
377
378Expression ValueTable::create_expression(InsertElementInst* I) {
379  Expression e;
380
381  e.firstVN = lookup_or_add(I->getOperand(0));
382  e.secondVN = lookup_or_add(I->getOperand(1));
383  e.thirdVN = lookup_or_add(I->getOperand(2));
384  e.function = 0;
385  e.type = I->getType();
386  e.opcode = Expression::INSERT;
387
388  return e;
389}
390
391Expression ValueTable::create_expression(SelectInst* I) {
392  Expression e;
393
394  e.firstVN = lookup_or_add(I->getCondition());
395  e.secondVN = lookup_or_add(I->getTrueValue());
396  e.thirdVN = lookup_or_add(I->getFalseValue());
397  e.function = 0;
398  e.type = I->getType();
399  e.opcode = Expression::SELECT;
400
401  return e;
402}
403
404Expression ValueTable::create_expression(GetElementPtrInst* G) {
405  Expression e;
406
407  e.firstVN = lookup_or_add(G->getPointerOperand());
408  e.secondVN = 0;
409  e.thirdVN = 0;
410  e.function = 0;
411  e.type = G->getType();
412  e.opcode = Expression::GEP;
413
414  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
415       I != E; ++I)
416    e.varargs.push_back(lookup_or_add(*I));
417
418  return e;
419}
420
421//===----------------------------------------------------------------------===//
422//                     ValueTable External Functions
423//===----------------------------------------------------------------------===//
424
425/// add - Insert a value into the table with a specified value number.
426void ValueTable::add(Value* V, uint32_t num) {
427  valueNumbering.insert(std::make_pair(V, num));
428}
429
430/// lookup_or_add - Returns the value number for the specified value, assigning
431/// it a new number if it did not have one before.
432uint32_t ValueTable::lookup_or_add(Value* V) {
433  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
434  if (VI != valueNumbering.end())
435    return VI->second;
436
437  if (CallInst* C = dyn_cast<CallInst>(V)) {
438    if (AA->doesNotAccessMemory(C)) {
439      Expression e = create_expression(C);
440
441      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
442      if (EI != expressionNumbering.end()) {
443        valueNumbering.insert(std::make_pair(V, EI->second));
444        return EI->second;
445      } else {
446        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
447        valueNumbering.insert(std::make_pair(V, nextValueNumber));
448
449        return nextValueNumber++;
450      }
451    } else if (AA->onlyReadsMemory(C)) {
452      Expression e = create_expression(C);
453
454      if (expressionNumbering.find(e) == expressionNumbering.end()) {
455        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
456        valueNumbering.insert(std::make_pair(V, nextValueNumber));
457        return nextValueNumber++;
458      }
459
460      MemDepResult local_dep = MD->getDependency(C);
461
462      if (local_dep.isNone()) {
463        valueNumbering.insert(std::make_pair(V, nextValueNumber));
464        return nextValueNumber++;
465      }
466
467      if (Instruction *LocalDepInst = local_dep.getInst()) {
468        if (!isa<CallInst>(LocalDepInst)) {
469          valueNumbering.insert(std::make_pair(V, nextValueNumber));
470          return nextValueNumber++;
471        }
472
473        CallInst* local_cdep = cast<CallInst>(LocalDepInst);
474
475        if (local_cdep->getCalledFunction() != C->getCalledFunction() ||
476            local_cdep->getNumOperands() != C->getNumOperands()) {
477          valueNumbering.insert(std::make_pair(V, nextValueNumber));
478          return nextValueNumber++;
479        }
480
481        if (!C->getCalledFunction()) {
482          valueNumbering.insert(std::make_pair(V, nextValueNumber));
483          return nextValueNumber++;
484        }
485
486        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
487          uint32_t c_vn = lookup_or_add(C->getOperand(i));
488          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
489          if (c_vn != cd_vn) {
490            valueNumbering.insert(std::make_pair(V, nextValueNumber));
491            return nextValueNumber++;
492          }
493        }
494
495        uint32_t v = lookup_or_add(local_cdep);
496        valueNumbering.insert(std::make_pair(V, v));
497        return v;
498      }
499
500
501      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
502        MD->getNonLocalDependency(C);
503      CallInst* cdep = 0;
504
505      // Check to see if we have a single dominating call instruction that is
506      // identical to C.
507      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
508        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
509        // Ignore non-local dependencies.
510        if (I->second.isNonLocal())
511          continue;
512
513        // We don't handle non-depedencies.  If we already have a call, reject
514        // instruction dependencies.
515        if (I->second.isNone() || cdep != 0) {
516          cdep = 0;
517          break;
518        }
519
520        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
521        // FIXME: All duplicated with non-local case.
522        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
523          cdep = NonLocalDepCall;
524          continue;
525        }
526
527        cdep = 0;
528        break;
529      }
530
531      if (!cdep) {
532        valueNumbering.insert(std::make_pair(V, nextValueNumber));
533        return nextValueNumber++;
534      }
535
536      if (cdep->getCalledFunction() != C->getCalledFunction() ||
537          cdep->getNumOperands() != C->getNumOperands()) {
538        valueNumbering.insert(std::make_pair(V, nextValueNumber));
539        return nextValueNumber++;
540      }
541      if (!C->getCalledFunction()) {
542        valueNumbering.insert(std::make_pair(V, nextValueNumber));
543        return nextValueNumber++;
544      }
545      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
546        uint32_t c_vn = lookup_or_add(C->getOperand(i));
547        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
548        if (c_vn != cd_vn) {
549          valueNumbering.insert(std::make_pair(V, nextValueNumber));
550          return nextValueNumber++;
551        }
552      }
553
554      uint32_t v = lookup_or_add(cdep);
555      valueNumbering.insert(std::make_pair(V, v));
556      return v;
557
558    } else {
559      valueNumbering.insert(std::make_pair(V, nextValueNumber));
560      return nextValueNumber++;
561    }
562  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
563    Expression e = create_expression(BO);
564
565    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
566    if (EI != expressionNumbering.end()) {
567      valueNumbering.insert(std::make_pair(V, EI->second));
568      return EI->second;
569    } else {
570      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
571      valueNumbering.insert(std::make_pair(V, nextValueNumber));
572
573      return nextValueNumber++;
574    }
575  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
576    Expression e = create_expression(C);
577
578    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
579    if (EI != expressionNumbering.end()) {
580      valueNumbering.insert(std::make_pair(V, EI->second));
581      return EI->second;
582    } else {
583      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
584      valueNumbering.insert(std::make_pair(V, nextValueNumber));
585
586      return nextValueNumber++;
587    }
588  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
589    Expression e = create_expression(U);
590
591    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
592    if (EI != expressionNumbering.end()) {
593      valueNumbering.insert(std::make_pair(V, EI->second));
594      return EI->second;
595    } else {
596      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
597      valueNumbering.insert(std::make_pair(V, nextValueNumber));
598
599      return nextValueNumber++;
600    }
601  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
602    Expression e = create_expression(U);
603
604    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
605    if (EI != expressionNumbering.end()) {
606      valueNumbering.insert(std::make_pair(V, EI->second));
607      return EI->second;
608    } else {
609      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
610      valueNumbering.insert(std::make_pair(V, nextValueNumber));
611
612      return nextValueNumber++;
613    }
614  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
615    Expression e = create_expression(U);
616
617    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
618    if (EI != expressionNumbering.end()) {
619      valueNumbering.insert(std::make_pair(V, EI->second));
620      return EI->second;
621    } else {
622      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
623      valueNumbering.insert(std::make_pair(V, nextValueNumber));
624
625      return nextValueNumber++;
626    }
627  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
628    Expression e = create_expression(U);
629
630    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
631    if (EI != expressionNumbering.end()) {
632      valueNumbering.insert(std::make_pair(V, EI->second));
633      return EI->second;
634    } else {
635      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
636      valueNumbering.insert(std::make_pair(V, nextValueNumber));
637
638      return nextValueNumber++;
639    }
640  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
641    Expression e = create_expression(U);
642
643    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
644    if (EI != expressionNumbering.end()) {
645      valueNumbering.insert(std::make_pair(V, EI->second));
646      return EI->second;
647    } else {
648      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
649      valueNumbering.insert(std::make_pair(V, nextValueNumber));
650
651      return nextValueNumber++;
652    }
653  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
654    Expression e = create_expression(U);
655
656    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
657    if (EI != expressionNumbering.end()) {
658      valueNumbering.insert(std::make_pair(V, EI->second));
659      return EI->second;
660    } else {
661      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
662      valueNumbering.insert(std::make_pair(V, nextValueNumber));
663
664      return nextValueNumber++;
665    }
666  } else {
667    valueNumbering.insert(std::make_pair(V, nextValueNumber));
668    return nextValueNumber++;
669  }
670}
671
672/// lookup - Returns the value number of the specified value. Fails if
673/// the value has not yet been numbered.
674uint32_t ValueTable::lookup(Value* V) const {
675  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
676  assert(VI != valueNumbering.end() && "Value not numbered?");
677  return VI->second;
678}
679
680/// clear - Remove all entries from the ValueTable
681void ValueTable::clear() {
682  valueNumbering.clear();
683  expressionNumbering.clear();
684  nextValueNumber = 1;
685}
686
687/// erase - Remove a value from the value numbering
688void ValueTable::erase(Value* V) {
689  valueNumbering.erase(V);
690}
691
692//===----------------------------------------------------------------------===//
693//                         GVN Pass
694//===----------------------------------------------------------------------===//
695
696namespace {
697  struct VISIBILITY_HIDDEN ValueNumberScope {
698    ValueNumberScope* parent;
699    DenseMap<uint32_t, Value*> table;
700
701    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
702  };
703}
704
705namespace {
706
707  class VISIBILITY_HIDDEN GVN : public FunctionPass {
708    bool runOnFunction(Function &F);
709  public:
710    static char ID; // Pass identification, replacement for typeid
711    GVN() : FunctionPass(&ID) { }
712
713  private:
714    MemoryDependenceAnalysis *MD;
715    DominatorTree *DT;
716
717    ValueTable VN;
718    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
719
720    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
721    PhiMapType phiMap;
722
723
724    // This transformation requires dominator postdominator info
725    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
726      AU.addRequired<DominatorTree>();
727      AU.addRequired<MemoryDependenceAnalysis>();
728      AU.addRequired<AliasAnalysis>();
729
730      AU.addPreserved<DominatorTree>();
731      AU.addPreserved<AliasAnalysis>();
732    }
733
734    // Helper fuctions
735    // FIXME: eliminate or document these better
736    bool processLoad(LoadInst* L,
737                     DenseMap<Value*, LoadInst*> &lastLoad,
738                     SmallVectorImpl<Instruction*> &toErase);
739    bool processInstruction(Instruction* I,
740                            DenseMap<Value*, LoadInst*>& lastSeenLoad,
741                            SmallVectorImpl<Instruction*> &toErase);
742    bool processNonLocalLoad(LoadInst* L,
743                             SmallVectorImpl<Instruction*> &toErase);
744    bool processBlock(DomTreeNode* DTN);
745    Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
746                            DenseMap<BasicBlock*, Value*> &Phis,
747                            bool top_level = false);
748    void dump(DenseMap<uint32_t, Value*>& d);
749    bool iterateOnFunction(Function &F);
750    Value* CollapsePhi(PHINode* p);
751    bool isSafeReplacement(PHINode* p, Instruction* inst);
752    bool performPRE(Function& F);
753    Value* lookupNumber(BasicBlock* BB, uint32_t num);
754    bool mergeBlockIntoPredecessor(BasicBlock* BB);
755    void cleanupGlobalSets();
756  };
757
758  char GVN::ID = 0;
759}
760
761// createGVNPass - The public interface to this file...
762FunctionPass *llvm::createGVNPass() { return new GVN(); }
763
764static RegisterPass<GVN> X("gvn",
765                           "Global Value Numbering");
766
767void GVN::dump(DenseMap<uint32_t, Value*>& d) {
768  printf("{\n");
769  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
770       E = d.end(); I != E; ++I) {
771      printf("%d\n", I->first);
772      I->second->dump();
773  }
774  printf("}\n");
775}
776
777Value* GVN::CollapsePhi(PHINode* p) {
778  Value* constVal = p->hasConstantValue();
779  if (!constVal) return 0;
780
781  Instruction* inst = dyn_cast<Instruction>(constVal);
782  if (!inst)
783    return constVal;
784
785  if (DT->dominates(inst, p))
786    if (isSafeReplacement(p, inst))
787      return inst;
788  return 0;
789}
790
791bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
792  if (!isa<PHINode>(inst))
793    return true;
794
795  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
796       UI != E; ++UI)
797    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
798      if (use_phi->getParent() == inst->getParent())
799        return false;
800
801  return true;
802}
803
804/// GetValueForBlock - Get the value to use within the specified basic block.
805/// available values are in Phis.
806Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
807                             DenseMap<BasicBlock*, Value*> &Phis,
808                             bool top_level) {
809
810  // If we have already computed this value, return the previously computed val.
811  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
812  if (V != Phis.end() && !top_level) return V->second;
813
814  // If the block is unreachable, just return undef, since this path
815  // can't actually occur at runtime.
816  if (!DT->isReachableFromEntry(BB))
817    return Phis[BB] = UndefValue::get(orig->getType());
818
819  BasicBlock* singlePred = BB->getSinglePredecessor();
820  if (singlePred) {
821    Value *ret = GetValueForBlock(singlePred, orig, Phis);
822    Phis[BB] = ret;
823    return ret;
824  }
825
826  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
827  // now, then get values to fill in the incoming values for the PHI.
828  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
829                                BB->begin());
830  PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
831
832  if (Phis.count(BB) == 0)
833    Phis.insert(std::make_pair(BB, PN));
834
835  // Fill in the incoming values for the block.
836  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
837    Value* val = GetValueForBlock(*PI, orig, Phis);
838    PN->addIncoming(val, *PI);
839  }
840
841  VN.getAliasAnalysis()->copyValue(orig, PN);
842
843  // Attempt to collapse PHI nodes that are trivially redundant
844  Value* v = CollapsePhi(PN);
845  if (!v) {
846    // Cache our phi construction results
847    phiMap[orig->getPointerOperand()].insert(PN);
848    return PN;
849  }
850
851  PN->replaceAllUsesWith(v);
852
853  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
854       E = Phis.end(); I != E; ++I)
855    if (I->second == PN)
856      I->second = v;
857
858  DEBUG(cerr << "GVN removed: " << *PN);
859  MD->removeInstruction(PN);
860  PN->eraseFromParent();
861
862  Phis[BB] = v;
863  return v;
864}
865
866/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
867/// non-local by performing PHI construction.
868bool GVN::processNonLocalLoad(LoadInst* L,
869                              SmallVectorImpl<Instruction*> &toErase) {
870  // Find the non-local dependencies of the load
871  const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
872    MD->getNonLocalDependency(L);
873  DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << deps.size() << *L);
874#if 0
875  DEBUG(for (unsigned i = 0, e = deps.size(); i != e; ++i) {
876        cerr << "  " << deps[i].first->getName();
877          if (Instruction *I = deps[i].second.getInst())
878        cerr << *I;
879        else
880        cerr << "\n";
881        });
882#endif
883
884  // If we had to process more than one hundred blocks to find the
885  // dependencies, this load isn't worth worrying about.  Optimizing
886  // it will be too expensive.
887  if (deps.size() > 100)
888    return false;
889
890  BasicBlock *EntryBlock = &L->getParent()->getParent()->getEntryBlock();
891
892  DenseMap<BasicBlock*, Value*> repl;
893
894  // Filter out useless results (non-locals, etc)
895  for (unsigned i = 0, e = deps.size(); i != e; ++i) {
896    BasicBlock *DepBB = deps[i].first;
897    MemDepResult DepInfo = deps[i].second;
898
899    if (DepInfo.isNonLocal()) {
900      // If this is a non-local dependency in the entry block, then we depend on
901      // the value live-in at the start of the function.  We could insert a load
902      // in the entry block to get this, but for now we'll just bail out.
903      //
904      // FIXME: Consider emitting a load in the entry block to catch this case!
905      // Tricky part is to sink so that it doesn't execute in places where it
906      // isn't needed.
907      if (DepBB == EntryBlock)
908        return false;
909      continue;
910    }
911
912    if (DepInfo.isNone()) {
913      repl[DepBB] = UndefValue::get(L->getType());
914      continue;
915    }
916
917    if (StoreInst* S = dyn_cast<StoreInst>(DepInfo.getInst())) {
918      // Reject loads and stores that are to the same address but are of
919      // different types.
920      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
921      // of bitfield access, it would be interesting to optimize for it at some
922      // point.
923      if (S->getOperand(0)->getType() != L->getType())
924        return false;
925
926      if (S->getPointerOperand() != L->getPointerOperand() &&
927          VN.getAliasAnalysis()->alias(S->getPointerOperand(), 1,
928                                       L->getPointerOperand(), 1)
929            != AliasAnalysis::MustAlias)
930        return false;
931      repl[DepBB] = S->getOperand(0);
932    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInfo.getInst())) {
933      if (LD->getType() != L->getType())
934        return false;
935
936      if (LD->getPointerOperand() != L->getPointerOperand() &&
937          VN.getAliasAnalysis()->alias(LD->getPointerOperand(), 1,
938                                       L->getPointerOperand(), 1)
939            != AliasAnalysis::MustAlias)
940        return false;
941      repl[DepBB] = LD;
942    } else {
943      return false;
944    }
945  }
946
947  // Use cached PHI construction information from previous runs
948  SmallPtrSet<Instruction*, 4>& p = phiMap[L->getPointerOperand()];
949  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
950       I != E; ++I) {
951    if ((*I)->getParent() == L->getParent()) {
952      L->replaceAllUsesWith(*I);
953      toErase.push_back(L);
954      NumGVNLoad++;
955      return true;
956    }
957
958    repl.insert(std::make_pair((*I)->getParent(), *I));
959  }
960
961  DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *L);
962
963  // Perform PHI construction
964  SmallPtrSet<BasicBlock*, 4> visited;
965  Value* v = GetValueForBlock(L->getParent(), L, repl, true);
966  L->replaceAllUsesWith(v);
967  toErase.push_back(L);
968  NumGVNLoad++;
969  return true;
970}
971
972/// processLoad - Attempt to eliminate a load, first by eliminating it
973/// locally, and then attempting non-local elimination if that fails.
974bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
975                      SmallVectorImpl<Instruction*> &toErase) {
976  if (L->isVolatile()) {
977    lastLoad[L->getPointerOperand()] = L;
978    return false;
979  }
980
981  Value* pointer = L->getPointerOperand();
982  LoadInst*& last = lastLoad[pointer];
983
984  // ... to a pointer that has been loaded from before...
985  bool removedNonLocal = false;
986  MemDepResult dep = MD->getDependency(L);
987  if (dep.isNonLocal() &&
988      L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
989    removedNonLocal = processNonLocalLoad(L, toErase);
990
991    if (!removedNonLocal)
992      last = L;
993
994    return removedNonLocal;
995  }
996
997
998  bool deletedLoad = false;
999
1000  // Walk up the dependency chain until we either find
1001  // a dependency we can use, or we can't walk any further
1002  while (Instruction *DepInst = dep.getInst()) {
1003    // ... that depends on a store ...
1004    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
1005      if (S->getPointerOperand() == pointer) {
1006        // Remove it!
1007        L->replaceAllUsesWith(S->getOperand(0));
1008        toErase.push_back(L);
1009        deletedLoad = true;
1010        NumGVNLoad++;
1011      }
1012
1013      // Whether we removed it or not, we can't
1014      // go any further
1015      break;
1016    } else if (!isa<LoadInst>(DepInst)) {
1017      // Only want to handle loads below.
1018      break;
1019    } else if (!last) {
1020      // If we don't depend on a store, and we haven't
1021      // been loaded before, bail.
1022      break;
1023    } else if (DepInst == last) {
1024      // Remove it!
1025      L->replaceAllUsesWith(last);
1026      toErase.push_back(L);
1027      deletedLoad = true;
1028      NumGVNLoad++;
1029      break;
1030    } else {
1031      dep = MD->getDependencyFrom(L, DepInst, DepInst->getParent());
1032    }
1033  }
1034
1035  // If this load really doesn't depend on anything, then we must be loading an
1036  // undef value.  This can happen when loading for a fresh allocation with no
1037  // intervening stores, for example.
1038  if (dep.isNone()) {
1039    // If this load depends directly on an allocation, there isn't
1040    // anything stored there; therefore, we can optimize this load
1041    // to undef.
1042    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1043    toErase.push_back(L);
1044    deletedLoad = true;
1045    NumGVNLoad++;
1046  }
1047
1048  if (!deletedLoad)
1049    last = L;
1050
1051  return deletedLoad;
1052}
1053
1054Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1055  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1056  if (I == localAvail.end())
1057    return 0;
1058
1059  ValueNumberScope* locals = I->second;
1060
1061  while (locals) {
1062    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1063    if (I != locals->table.end())
1064      return I->second;
1065    else
1066      locals = locals->parent;
1067  }
1068
1069  return 0;
1070}
1071
1072/// processInstruction - When calculating availability, handle an instruction
1073/// by inserting it into the appropriate sets
1074bool GVN::processInstruction(Instruction *I,
1075                             DenseMap<Value*, LoadInst*> &lastSeenLoad,
1076                             SmallVectorImpl<Instruction*> &toErase) {
1077  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1078    bool changed = processLoad(L, lastSeenLoad, toErase);
1079
1080    if (!changed) {
1081      unsigned num = VN.lookup_or_add(L);
1082      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1083    }
1084
1085    return changed;
1086  }
1087
1088  uint32_t nextNum = VN.getNextUnusedValueNumber();
1089  unsigned num = VN.lookup_or_add(I);
1090
1091  // Allocations are always uniquely numbered, so we can save time and memory
1092  // by fast failing them.
1093  if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1094    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1095    return false;
1096  }
1097
1098  // Collapse PHI nodes
1099  if (PHINode* p = dyn_cast<PHINode>(I)) {
1100    Value* constVal = CollapsePhi(p);
1101
1102    if (constVal) {
1103      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1104           PI != PE; ++PI)
1105        if (PI->second.count(p))
1106          PI->second.erase(p);
1107
1108      p->replaceAllUsesWith(constVal);
1109      toErase.push_back(p);
1110    } else {
1111      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1112    }
1113
1114  // If the number we were assigned was a brand new VN, then we don't
1115  // need to do a lookup to see if the number already exists
1116  // somewhere in the domtree: it can't!
1117  } else if (num == nextNum) {
1118    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1119
1120  // Perform value-number based elimination
1121  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1122    // Remove it!
1123    VN.erase(I);
1124    I->replaceAllUsesWith(repl);
1125    toErase.push_back(I);
1126    return true;
1127  } else {
1128    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1129  }
1130
1131  return false;
1132}
1133
1134// GVN::runOnFunction - This is the main transformation entry point for a
1135// function.
1136//
1137bool GVN::runOnFunction(Function& F) {
1138  MD = &getAnalysis<MemoryDependenceAnalysis>();
1139  DT = &getAnalysis<DominatorTree>();
1140  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1141  VN.setMemDep(MD);
1142  VN.setDomTree(DT);
1143
1144  bool changed = false;
1145  bool shouldContinue = true;
1146
1147  // Merge unconditional branches, allowing PRE to catch more
1148  // optimization opportunities.
1149  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1150    BasicBlock* BB = FI;
1151    ++FI;
1152    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1153    if (removedBlock) NumGVNBlocks++;
1154
1155    changed |= removedBlock;
1156  }
1157
1158  while (shouldContinue) {
1159    shouldContinue = iterateOnFunction(F);
1160    changed |= shouldContinue;
1161  }
1162
1163  if (EnablePRE) {
1164    bool PREChanged = true;
1165    while (PREChanged) {
1166      PREChanged = performPRE(F);
1167      changed |= PREChanged;
1168    }
1169  }
1170
1171  cleanupGlobalSets();
1172
1173  return changed;
1174}
1175
1176
1177bool GVN::processBlock(DomTreeNode* DTN) {
1178  BasicBlock* BB = DTN->getBlock();
1179  SmallVector<Instruction*, 8> toErase;
1180  DenseMap<Value*, LoadInst*> lastSeenLoad;
1181  bool changed_function = false;
1182
1183  if (DTN->getIDom())
1184    localAvail[BB] =
1185                  new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
1186  else
1187    localAvail[BB] = new ValueNumberScope(0);
1188
1189  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1190       BI != BE;) {
1191    changed_function |= processInstruction(BI, lastSeenLoad, toErase);
1192    if (toErase.empty()) {
1193      ++BI;
1194      continue;
1195    }
1196
1197    // If we need some instructions deleted, do it now.
1198    NumGVNInstr += toErase.size();
1199
1200    // Avoid iterator invalidation.
1201    bool AtStart = BI == BB->begin();
1202    if (!AtStart)
1203      --BI;
1204
1205    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1206         E = toErase.end(); I != E; ++I) {
1207      DEBUG(cerr << "GVN removed: " << **I);
1208      MD->removeInstruction(*I);
1209      (*I)->eraseFromParent();
1210    }
1211
1212    if (AtStart)
1213      BI = BB->begin();
1214    else
1215      ++BI;
1216
1217    toErase.clear();
1218  }
1219
1220  return changed_function;
1221}
1222
1223/// performPRE - Perform a purely local form of PRE that looks for diamond
1224/// control flow patterns and attempts to perform simple PRE at the join point.
1225bool GVN::performPRE(Function& F) {
1226  bool Changed = false;
1227  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1228  DenseMap<BasicBlock*, Value*> predMap;
1229  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1230       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1231    BasicBlock* CurrentBlock = *DI;
1232
1233    // Nothing to PRE in the entry block.
1234    if (CurrentBlock == &F.getEntryBlock()) continue;
1235
1236    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1237         BE = CurrentBlock->end(); BI != BE; ) {
1238      Instruction *CurInst = BI++;
1239
1240      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1241          isa<PHINode>(CurInst) || CurInst->mayReadFromMemory() ||
1242          CurInst->mayWriteToMemory())
1243        continue;
1244
1245      uint32_t valno = VN.lookup(CurInst);
1246
1247      // Look for the predecessors for PRE opportunities.  We're
1248      // only trying to solve the basic diamond case, where
1249      // a value is computed in the successor and one predecessor,
1250      // but not the other.  We also explicitly disallow cases
1251      // where the successor is its own predecessor, because they're
1252      // more complicated to get right.
1253      unsigned numWith = 0;
1254      unsigned numWithout = 0;
1255      BasicBlock* PREPred = 0;
1256      predMap.clear();
1257
1258      for (pred_iterator PI = pred_begin(CurrentBlock),
1259           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1260        // We're not interested in PRE where the block is its
1261        // own predecessor, on in blocks with predecessors
1262        // that are not reachable.
1263        if (*PI == CurrentBlock) {
1264          numWithout = 2;
1265          break;
1266        } else if (!localAvail.count(*PI))  {
1267          numWithout = 2;
1268          break;
1269        }
1270
1271        DenseMap<uint32_t, Value*>::iterator predV =
1272                                            localAvail[*PI]->table.find(valno);
1273        if (predV == localAvail[*PI]->table.end()) {
1274          PREPred = *PI;
1275          numWithout++;
1276        } else if (predV->second == CurInst) {
1277          numWithout = 2;
1278        } else {
1279          predMap[*PI] = predV->second;
1280          numWith++;
1281        }
1282      }
1283
1284      // Don't do PRE when it might increase code size, i.e. when
1285      // we would need to insert instructions in more than one pred.
1286      if (numWithout != 1 || numWith == 0)
1287        continue;
1288
1289      // We can't do PRE safely on a critical edge, so instead we schedule
1290      // the edge to be split and perform the PRE the next time we iterate
1291      // on the function.
1292      unsigned succNum = 0;
1293      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1294           i != e; ++i)
1295        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1296          succNum = i;
1297          break;
1298        }
1299
1300      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1301        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1302        continue;
1303      }
1304
1305      // Instantiate the expression the in predecessor that lacked it.
1306      // Because we are going top-down through the block, all value numbers
1307      // will be available in the predecessor by the time we need them.  Any
1308      // that weren't original present will have been instantiated earlier
1309      // in this loop.
1310      Instruction* PREInstr = CurInst->clone();
1311      bool success = true;
1312      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1313        Value *Op = PREInstr->getOperand(i);
1314        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1315          continue;
1316
1317        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1318          PREInstr->setOperand(i, V);
1319        } else {
1320          success = false;
1321          break;
1322        }
1323      }
1324
1325      // Fail out if we encounter an operand that is not available in
1326      // the PRE predecessor.  This is typically because of loads which
1327      // are not value numbered precisely.
1328      if (!success) {
1329        delete PREInstr;
1330        continue;
1331      }
1332
1333      PREInstr->insertBefore(PREPred->getTerminator());
1334      PREInstr->setName(CurInst->getName() + ".pre");
1335      predMap[PREPred] = PREInstr;
1336      VN.add(PREInstr, valno);
1337      NumGVNPRE++;
1338
1339      // Update the availability map to include the new instruction.
1340      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1341
1342      // Create a PHI to make the value available in this block.
1343      PHINode* Phi = PHINode::Create(CurInst->getType(),
1344                                     CurInst->getName() + ".pre-phi",
1345                                     CurrentBlock->begin());
1346      for (pred_iterator PI = pred_begin(CurrentBlock),
1347           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1348        Phi->addIncoming(predMap[*PI], *PI);
1349
1350      VN.add(Phi, valno);
1351      localAvail[CurrentBlock]->table[valno] = Phi;
1352
1353      CurInst->replaceAllUsesWith(Phi);
1354      VN.erase(CurInst);
1355
1356      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1357      MD->removeInstruction(CurInst);
1358      CurInst->eraseFromParent();
1359      Changed = true;
1360    }
1361  }
1362
1363  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1364       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1365    SplitCriticalEdge(I->first, I->second, this);
1366
1367  return Changed || toSplit.size();
1368}
1369
1370// iterateOnFunction - Executes one iteration of GVN
1371bool GVN::iterateOnFunction(Function &F) {
1372  cleanupGlobalSets();
1373
1374  // Top-down walk of the dominator tree
1375  bool changed = false;
1376  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1377       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1378    changed |= processBlock(*DI);
1379
1380  return changed;
1381}
1382
1383void GVN::cleanupGlobalSets() {
1384  VN.clear();
1385  phiMap.clear();
1386
1387  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1388       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1389    delete I->second;
1390  localAvail.clear();
1391}
1392