GVN.cpp revision e170c76ccdcf9b0343d2d5a2805010ff77b8b56e
1049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//
3049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//                     The LLVM Compiler Infrastructure
4049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//
5049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project// This file is distributed under the University of Illinois Open Source
6049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project// License. See LICENSE.TXT for details.
7a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang//
8049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//===----------------------------------------------------------------------===//
9049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//
10049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project// This pass performs global value numbering to eliminate fully redundant
11049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project// instructions.  It also performs simple dead load elimination.
12049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//
13049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project// Note that this pass does the value numbering itself; it does not use the
14049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project// ValueNumbering analysis passes.
15049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//
16049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//===----------------------------------------------------------------------===//
17049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
18049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#define DEBUG_TYPE "gvn"
19049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Transforms/Scalar.h"
20049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/GlobalVariable.h"
21049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/IntrinsicInst.h"
22049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/LLVMContext.h"
23049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/AliasAnalysis.h"
24049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/ConstantFolding.h"
25049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/Dominators.h"
26049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/InstructionSimplify.h"
27049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/Loads.h"
28049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/MemoryBuiltins.h"
29049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/PHITransAddr.h"
31049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Analysis/ValueTracking.h"
32049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Assembly/Writer.h"
33049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Target/TargetData.h"
34049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Target/TargetLibraryInfo.h"
35049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Transforms/Utils/SSAUpdater.h"
37049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/ADT/DenseMap.h"
38049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/ADT/DepthFirstIterator.h"
39049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/ADT/SmallPtrSet.h"
40049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/ADT/Statistic.h"
41049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Support/Allocator.h"
42049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Support/CommandLine.h"
43049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Support/Debug.h"
44049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Support/IRBuilder.h"
45049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project#include "llvm/Support/PatternMatch.h"
46049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectusing namespace llvm;
47049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectusing namespace PatternMatch;
48049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
49049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectSTATISTIC(NumGVNInstr,  "Number of instructions deleted");
50049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectSTATISTIC(NumGVNLoad,   "Number of loads deleted");
51049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectSTATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
52049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectSTATISTIC(NumGVNBlocks, "Number of blocks merged");
53049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectSTATISTIC(NumGVNSimpl,  "Number of instructions simplified");
54049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectSTATISTIC(NumGVNEqProp, "Number of equalities propagated");
55049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectSTATISTIC(NumPRELoad,   "Number of loads PRE'd");
56049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
57049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectstatic cl::opt<bool> EnablePRE("enable-pre",
58049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project                               cl::init(true), cl::Hidden);
59049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectstatic cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
60049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
61049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//===----------------------------------------------------------------------===//
62049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//                         ValueTable Class
63049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//===----------------------------------------------------------------------===//
64049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
65049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project/// This class holds the mapping between values and value numbers.  It is used
66049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project/// as an efficient mechanism to determine the expression-wise equivalence of
67049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project/// two values.
68049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectnamespace {
69049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  struct Expression {
70049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    uint32_t opcode;
71049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    Type *type;
72049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    SmallVector<uint32_t, 4> varargs;
73049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
74049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    Expression(uint32_t o = ~2U) : opcode(o) { }
75049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
76049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    bool operator==(const Expression &other) const {
77a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang      if (opcode != other.opcode)
78049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        return false;
79049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      if (opcode == ~0U || opcode == ~1U)
80049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        return true;
81049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      if (type != other.type)
82049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        return false;
83049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      if (varargs != other.varargs)
84049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        return false;
85049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      return true;
86049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    }
87295ffce55e0198e7a9f7d46b33f5c2b4147bf821David 'Digit' Turner  };
88049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
89049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  class ValueTable {
90049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    DenseMap<Value*, uint32_t> valueNumbering;
91049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    DenseMap<Expression, uint32_t> expressionNumbering;
92049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    AliasAnalysis *AA;
93049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    MemoryDependenceAnalysis *MD;
94049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    DominatorTree *DT;
95049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
96049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    uint32_t nextValueNumber;
97049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
98049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    Expression create_expression(Instruction* I);
99049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    Expression create_extractvalue_expression(ExtractValueInst* EI);
100049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    uint32_t lookup_or_add_call(CallInst* C);
101049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  public:
102049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    ValueTable() : nextValueNumber(1) { }
103049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    uint32_t lookup_or_add(Value *V);
104049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    uint32_t lookup(Value *V) const;
105049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    void add(Value *V, uint32_t num);
106049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    void clear();
107049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    void erase(Value *v);
108049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
109049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    AliasAnalysis *getAliasAnalysis() const { return AA; }
110049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
111049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    void setDomTree(DominatorTree* D) { DT = D; }
112049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
113049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    void verifyRemoved(const Value *) const;
114049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  };
115049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project}
116049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
117049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectnamespace llvm {
118049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projecttemplate <> struct DenseMapInfo<Expression> {
119049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  static inline Expression getEmptyKey() {
120049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    return ~0U;
121049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  }
122049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
123049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  static inline Expression getTombstoneKey() {
124049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    return ~1U;
125049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  }
126049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
127049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  static unsigned getHashValue(const Expression e) {
128049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    unsigned hash = e.opcode;
129049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
130049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
131049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project            (unsigned)((uintptr_t)e.type >> 9));
132049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
133049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
134a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang         E = e.varargs.end(); I != E; ++I)
135049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      hash = *I + hash * 37;
136049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
137049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    return hash;
138049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  }
139049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  static bool isEqual(const Expression &LHS, const Expression &RHS) {
140049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    return LHS == RHS;
141049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  }
142049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project};
143049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
144295ffce55e0198e7a9f7d46b33f5c2b4147bf821David 'Digit' Turner}
145295ffce55e0198e7a9f7d46b33f5c2b4147bf821David 'Digit' Turner
146a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang//===----------------------------------------------------------------------===//
147295ffce55e0198e7a9f7d46b33f5c2b4147bf821David 'Digit' Turner//                     ValueTable Internal Functions
148295ffce55e0198e7a9f7d46b33f5c2b4147bf821David 'Digit' Turner//===----------------------------------------------------------------------===//
149295ffce55e0198e7a9f7d46b33f5c2b4147bf821David 'Digit' Turner
150295ffce55e0198e7a9f7d46b33f5c2b4147bf821David 'Digit' TurnerExpression ValueTable::create_expression(Instruction *I) {
151049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  Expression e;
152049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  e.type = I->getType();
153049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  e.opcode = I->getOpcode();
154049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
155049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project       OI != OE; ++OI)
156049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    e.varargs.push_back(lookup_or_add(*OI));
157049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  if (I->isCommutative()) {
158049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // Ensure that commutative instructions that only differ by a permutation
159049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // of their operands get the same value number by sorting the operand value
160049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // numbers.  Since all commutative instructions have two operands it is more
161049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // efficient to sort by hand rather than using, say, std::sort.
162049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
163049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    if (e.varargs[0] > e.varargs[1])
164049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      std::swap(e.varargs[0], e.varargs[1]);
165049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  }
166a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang
167049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
168049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // Sort the operand value numbers so x<y and y>x get the same value number.
169049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    CmpInst::Predicate Predicate = C->getPredicate();
170049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    if (e.varargs[0] > e.varargs[1]) {
171049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      std::swap(e.varargs[0], e.varargs[1]);
172049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      Predicate = CmpInst::getSwappedPredicate(Predicate);
173049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    }
174049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    e.opcode = (C->getOpcode() << 8) | Predicate;
175049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
176049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
177049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project         II != IE; ++II)
178049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      e.varargs.push_back(*II);
179049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  }
180049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
181049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  return e;
182049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project}
183049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
184049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source ProjectExpression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
185049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  assert(EI != 0 && "Not an ExtractValueInst?");
186049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  Expression e;
187049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  e.type = EI->getType();
188049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  e.opcode = 0;
189049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
190049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
191049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
192049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // EI might be an extract from one of our recognised intrinsics. If it
193049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // is we'll synthesize a semantically equivalent expression instead on
194049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    // an extract value expression.
195049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    switch (I->getIntrinsicID()) {
196049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      case Intrinsic::sadd_with_overflow:
197049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      case Intrinsic::uadd_with_overflow:
198049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        e.opcode = Instruction::Add;
199049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        break;
200049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      case Intrinsic::ssub_with_overflow:
201049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      case Intrinsic::usub_with_overflow:
202049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        e.opcode = Instruction::Sub;
203049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        break;
204049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      case Intrinsic::smul_with_overflow:
205049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      case Intrinsic::umul_with_overflow:
206049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        e.opcode = Instruction::Mul;
207049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        break;
208049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      default:
209049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project        break;
210049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    }
211049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
212049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    if (e.opcode != 0) {
213049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      // Intrinsic recognized. Grab its args to finish building the expression.
214049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      assert(I->getNumArgOperands() == 2 &&
215049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project             "Expect two args for recognised intrinsics.");
216049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
217049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
218a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang      return e;
219049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    }
220049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  }
221049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
222049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  // Not a recognised intrinsic. Fall back to producing an extract value
223049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  // expression.
224049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  e.opcode = EI->getOpcode();
225049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
226a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang       OI != OE; ++OI)
227049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    e.varargs.push_back(lookup_or_add(*OI));
228049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
229049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
230049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project         II != IE; ++II)
231049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    e.varargs.push_back(*II);
232a2b9955b49034a51dfbc8bf9f4e9d312149cecacXianzhu Wang
233049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  return e;
234049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project}
235049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
236049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//===----------------------------------------------------------------------===//
237049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//                     ValueTable External Functions
238049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project//===----------------------------------------------------------------------===//
239049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
240049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project/// add - Insert a value into the table with a specified value number.
241049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectvoid ValueTable::add(Value *V, uint32_t num) {
242049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  valueNumbering.insert(std::make_pair(V, num));
243049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project}
244049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project
245049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Projectuint32_t ValueTable::lookup_or_add_call(CallInst* C) {
246049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project  if (AA->doesNotAccessMemory(C)) {
247049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    Expression exp = create_expression(C);
248049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    uint32_t& e = expressionNumbering[exp];
249049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    if (!e) e = nextValueNumber++;
250049d6fea481044fcc000e7782e5bc7046fc70844The Android Open Source Project    valueNumbering[C] = e;
251    return e;
252  } else if (AA->onlyReadsMemory(C)) {
253    Expression exp = create_expression(C);
254    uint32_t& e = expressionNumbering[exp];
255    if (!e) {
256      e = nextValueNumber++;
257      valueNumbering[C] = e;
258      return e;
259    }
260    if (!MD) {
261      e = nextValueNumber++;
262      valueNumbering[C] = e;
263      return e;
264    }
265
266    MemDepResult local_dep = MD->getDependency(C);
267
268    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
269      valueNumbering[C] =  nextValueNumber;
270      return nextValueNumber++;
271    }
272
273    if (local_dep.isDef()) {
274      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
275
276      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
277        valueNumbering[C] = nextValueNumber;
278        return nextValueNumber++;
279      }
280
281      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
282        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
283        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
284        if (c_vn != cd_vn) {
285          valueNumbering[C] = nextValueNumber;
286          return nextValueNumber++;
287        }
288      }
289
290      uint32_t v = lookup_or_add(local_cdep);
291      valueNumbering[C] = v;
292      return v;
293    }
294
295    // Non-local case.
296    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
297      MD->getNonLocalCallDependency(CallSite(C));
298    // FIXME: Move the checking logic to MemDep!
299    CallInst* cdep = 0;
300
301    // Check to see if we have a single dominating call instruction that is
302    // identical to C.
303    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
304      const NonLocalDepEntry *I = &deps[i];
305      if (I->getResult().isNonLocal())
306        continue;
307
308      // We don't handle non-definitions.  If we already have a call, reject
309      // instruction dependencies.
310      if (!I->getResult().isDef() || cdep != 0) {
311        cdep = 0;
312        break;
313      }
314
315      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
316      // FIXME: All duplicated with non-local case.
317      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
318        cdep = NonLocalDepCall;
319        continue;
320      }
321
322      cdep = 0;
323      break;
324    }
325
326    if (!cdep) {
327      valueNumbering[C] = nextValueNumber;
328      return nextValueNumber++;
329    }
330
331    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
332      valueNumbering[C] = nextValueNumber;
333      return nextValueNumber++;
334    }
335    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
336      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
337      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
338      if (c_vn != cd_vn) {
339        valueNumbering[C] = nextValueNumber;
340        return nextValueNumber++;
341      }
342    }
343
344    uint32_t v = lookup_or_add(cdep);
345    valueNumbering[C] = v;
346    return v;
347
348  } else {
349    valueNumbering[C] = nextValueNumber;
350    return nextValueNumber++;
351  }
352}
353
354/// lookup_or_add - Returns the value number for the specified value, assigning
355/// it a new number if it did not have one before.
356uint32_t ValueTable::lookup_or_add(Value *V) {
357  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
358  if (VI != valueNumbering.end())
359    return VI->second;
360
361  if (!isa<Instruction>(V)) {
362    valueNumbering[V] = nextValueNumber;
363    return nextValueNumber++;
364  }
365
366  Instruction* I = cast<Instruction>(V);
367  Expression exp;
368  switch (I->getOpcode()) {
369    case Instruction::Call:
370      return lookup_or_add_call(cast<CallInst>(I));
371    case Instruction::Add:
372    case Instruction::FAdd:
373    case Instruction::Sub:
374    case Instruction::FSub:
375    case Instruction::Mul:
376    case Instruction::FMul:
377    case Instruction::UDiv:
378    case Instruction::SDiv:
379    case Instruction::FDiv:
380    case Instruction::URem:
381    case Instruction::SRem:
382    case Instruction::FRem:
383    case Instruction::Shl:
384    case Instruction::LShr:
385    case Instruction::AShr:
386    case Instruction::And:
387    case Instruction::Or :
388    case Instruction::Xor:
389    case Instruction::ICmp:
390    case Instruction::FCmp:
391    case Instruction::Trunc:
392    case Instruction::ZExt:
393    case Instruction::SExt:
394    case Instruction::FPToUI:
395    case Instruction::FPToSI:
396    case Instruction::UIToFP:
397    case Instruction::SIToFP:
398    case Instruction::FPTrunc:
399    case Instruction::FPExt:
400    case Instruction::PtrToInt:
401    case Instruction::IntToPtr:
402    case Instruction::BitCast:
403    case Instruction::Select:
404    case Instruction::ExtractElement:
405    case Instruction::InsertElement:
406    case Instruction::ShuffleVector:
407    case Instruction::InsertValue:
408    case Instruction::GetElementPtr:
409      exp = create_expression(I);
410      break;
411    case Instruction::ExtractValue:
412      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
413      break;
414    default:
415      valueNumbering[V] = nextValueNumber;
416      return nextValueNumber++;
417  }
418
419  uint32_t& e = expressionNumbering[exp];
420  if (!e) e = nextValueNumber++;
421  valueNumbering[V] = e;
422  return e;
423}
424
425/// lookup - Returns the value number of the specified value. Fails if
426/// the value has not yet been numbered.
427uint32_t ValueTable::lookup(Value *V) const {
428  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
429  assert(VI != valueNumbering.end() && "Value not numbered?");
430  return VI->second;
431}
432
433/// clear - Remove all entries from the ValueTable.
434void ValueTable::clear() {
435  valueNumbering.clear();
436  expressionNumbering.clear();
437  nextValueNumber = 1;
438}
439
440/// erase - Remove a value from the value numbering.
441void ValueTable::erase(Value *V) {
442  valueNumbering.erase(V);
443}
444
445/// verifyRemoved - Verify that the value is removed from all internal data
446/// structures.
447void ValueTable::verifyRemoved(const Value *V) const {
448  for (DenseMap<Value*, uint32_t>::const_iterator
449         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
450    assert(I->first != V && "Inst still occurs in value numbering map!");
451  }
452}
453
454//===----------------------------------------------------------------------===//
455//                                GVN Pass
456//===----------------------------------------------------------------------===//
457
458namespace {
459
460  class GVN : public FunctionPass {
461    bool NoLoads;
462    MemoryDependenceAnalysis *MD;
463    DominatorTree *DT;
464    const TargetData *TD;
465    const TargetLibraryInfo *TLI;
466
467    ValueTable VN;
468
469    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
470    /// have that value number.  Use findLeader to query it.
471    struct LeaderTableEntry {
472      Value *Val;
473      BasicBlock *BB;
474      LeaderTableEntry *Next;
475    };
476    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
477    BumpPtrAllocator TableAllocator;
478
479    SmallVector<Instruction*, 8> InstrsToErase;
480  public:
481    static char ID; // Pass identification, replacement for typeid
482    explicit GVN(bool noloads = false)
483        : FunctionPass(ID), NoLoads(noloads), MD(0) {
484      initializeGVNPass(*PassRegistry::getPassRegistry());
485    }
486
487    bool runOnFunction(Function &F);
488
489    /// markInstructionForDeletion - This removes the specified instruction from
490    /// our various maps and marks it for deletion.
491    void markInstructionForDeletion(Instruction *I) {
492      VN.erase(I);
493      InstrsToErase.push_back(I);
494    }
495
496    const TargetData *getTargetData() const { return TD; }
497    DominatorTree &getDominatorTree() const { return *DT; }
498    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
499    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
500  private:
501    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
502    /// its value number.
503    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
504      LeaderTableEntry &Curr = LeaderTable[N];
505      if (!Curr.Val) {
506        Curr.Val = V;
507        Curr.BB = BB;
508        return;
509      }
510
511      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
512      Node->Val = V;
513      Node->BB = BB;
514      Node->Next = Curr.Next;
515      Curr.Next = Node;
516    }
517
518    /// removeFromLeaderTable - Scan the list of values corresponding to a given
519    /// value number, and remove the given value if encountered.
520    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
521      LeaderTableEntry* Prev = 0;
522      LeaderTableEntry* Curr = &LeaderTable[N];
523
524      while (Curr->Val != V || Curr->BB != BB) {
525        Prev = Curr;
526        Curr = Curr->Next;
527      }
528
529      if (Prev) {
530        Prev->Next = Curr->Next;
531      } else {
532        if (!Curr->Next) {
533          Curr->Val = 0;
534          Curr->BB = 0;
535        } else {
536          LeaderTableEntry* Next = Curr->Next;
537          Curr->Val = Next->Val;
538          Curr->BB = Next->BB;
539          Curr->Next = Next->Next;
540        }
541      }
542    }
543
544    // List of critical edges to be split between iterations.
545    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
546
547    // This transformation requires dominator postdominator info
548    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
549      AU.addRequired<DominatorTree>();
550      AU.addRequired<TargetLibraryInfo>();
551      if (!NoLoads)
552        AU.addRequired<MemoryDependenceAnalysis>();
553      AU.addRequired<AliasAnalysis>();
554
555      AU.addPreserved<DominatorTree>();
556      AU.addPreserved<AliasAnalysis>();
557    }
558
559
560    // Helper fuctions
561    // FIXME: eliminate or document these better
562    bool processLoad(LoadInst *L);
563    bool processInstruction(Instruction *I);
564    bool processNonLocalLoad(LoadInst *L);
565    bool processBlock(BasicBlock *BB);
566    void dump(DenseMap<uint32_t, Value*> &d);
567    bool iterateOnFunction(Function &F);
568    bool performPRE(Function &F);
569    Value *findLeader(BasicBlock *BB, uint32_t num);
570    void cleanupGlobalSets();
571    void verifyRemoved(const Instruction *I) const;
572    bool splitCriticalEdges();
573    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
574                                         BasicBlock *Root);
575    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
576  };
577
578  char GVN::ID = 0;
579}
580
581// createGVNPass - The public interface to this file...
582FunctionPass *llvm::createGVNPass(bool NoLoads) {
583  return new GVN(NoLoads);
584}
585
586INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
587INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
588INITIALIZE_PASS_DEPENDENCY(DominatorTree)
589INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
590INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
591INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
592
593void GVN::dump(DenseMap<uint32_t, Value*>& d) {
594  errs() << "{\n";
595  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
596       E = d.end(); I != E; ++I) {
597      errs() << I->first << "\n";
598      I->second->dump();
599  }
600  errs() << "}\n";
601}
602
603/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
604/// we're analyzing is fully available in the specified block.  As we go, keep
605/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
606/// map is actually a tri-state map with the following values:
607///   0) we know the block *is not* fully available.
608///   1) we know the block *is* fully available.
609///   2) we do not know whether the block is fully available or not, but we are
610///      currently speculating that it will be.
611///   3) we are speculating for this block and have used that to speculate for
612///      other blocks.
613static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
614                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
615  // Optimistically assume that the block is fully available and check to see
616  // if we already know about this block in one lookup.
617  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
618    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
619
620  // If the entry already existed for this block, return the precomputed value.
621  if (!IV.second) {
622    // If this is a speculative "available" value, mark it as being used for
623    // speculation of other blocks.
624    if (IV.first->second == 2)
625      IV.first->second = 3;
626    return IV.first->second != 0;
627  }
628
629  // Otherwise, see if it is fully available in all predecessors.
630  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
631
632  // If this block has no predecessors, it isn't live-in here.
633  if (PI == PE)
634    goto SpeculationFailure;
635
636  for (; PI != PE; ++PI)
637    // If the value isn't fully available in one of our predecessors, then it
638    // isn't fully available in this block either.  Undo our previous
639    // optimistic assumption and bail out.
640    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
641      goto SpeculationFailure;
642
643  return true;
644
645// SpeculationFailure - If we get here, we found out that this is not, after
646// all, a fully-available block.  We have a problem if we speculated on this and
647// used the speculation to mark other blocks as available.
648SpeculationFailure:
649  char &BBVal = FullyAvailableBlocks[BB];
650
651  // If we didn't speculate on this, just return with it set to false.
652  if (BBVal == 2) {
653    BBVal = 0;
654    return false;
655  }
656
657  // If we did speculate on this value, we could have blocks set to 1 that are
658  // incorrect.  Walk the (transitive) successors of this block and mark them as
659  // 0 if set to one.
660  SmallVector<BasicBlock*, 32> BBWorklist;
661  BBWorklist.push_back(BB);
662
663  do {
664    BasicBlock *Entry = BBWorklist.pop_back_val();
665    // Note that this sets blocks to 0 (unavailable) if they happen to not
666    // already be in FullyAvailableBlocks.  This is safe.
667    char &EntryVal = FullyAvailableBlocks[Entry];
668    if (EntryVal == 0) continue;  // Already unavailable.
669
670    // Mark as unavailable.
671    EntryVal = 0;
672
673    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
674      BBWorklist.push_back(*I);
675  } while (!BBWorklist.empty());
676
677  return false;
678}
679
680
681/// CanCoerceMustAliasedValueToLoad - Return true if
682/// CoerceAvailableValueToLoadType will succeed.
683static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
684                                            Type *LoadTy,
685                                            const TargetData &TD) {
686  // If the loaded or stored value is an first class array or struct, don't try
687  // to transform them.  We need to be able to bitcast to integer.
688  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
689      StoredVal->getType()->isStructTy() ||
690      StoredVal->getType()->isArrayTy())
691    return false;
692
693  // The store has to be at least as big as the load.
694  if (TD.getTypeSizeInBits(StoredVal->getType()) <
695        TD.getTypeSizeInBits(LoadTy))
696    return false;
697
698  return true;
699}
700
701
702/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
703/// then a load from a must-aliased pointer of a different type, try to coerce
704/// the stored value.  LoadedTy is the type of the load we want to replace and
705/// InsertPt is the place to insert new instructions.
706///
707/// If we can't do it, return null.
708static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
709                                             Type *LoadedTy,
710                                             Instruction *InsertPt,
711                                             const TargetData &TD) {
712  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
713    return 0;
714
715  // If this is already the right type, just return it.
716  Type *StoredValTy = StoredVal->getType();
717
718  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
719  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
720
721  // If the store and reload are the same size, we can always reuse it.
722  if (StoreSize == LoadSize) {
723    // Pointer to Pointer -> use bitcast.
724    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
725      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
726
727    // Convert source pointers to integers, which can be bitcast.
728    if (StoredValTy->isPointerTy()) {
729      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
730      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
731    }
732
733    Type *TypeToCastTo = LoadedTy;
734    if (TypeToCastTo->isPointerTy())
735      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
736
737    if (StoredValTy != TypeToCastTo)
738      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
739
740    // Cast to pointer if the load needs a pointer type.
741    if (LoadedTy->isPointerTy())
742      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
743
744    return StoredVal;
745  }
746
747  // If the loaded value is smaller than the available value, then we can
748  // extract out a piece from it.  If the available value is too small, then we
749  // can't do anything.
750  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
751
752  // Convert source pointers to integers, which can be manipulated.
753  if (StoredValTy->isPointerTy()) {
754    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
755    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
756  }
757
758  // Convert vectors and fp to integer, which can be manipulated.
759  if (!StoredValTy->isIntegerTy()) {
760    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
761    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
762  }
763
764  // If this is a big-endian system, we need to shift the value down to the low
765  // bits so that a truncate will work.
766  if (TD.isBigEndian()) {
767    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
768    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
769  }
770
771  // Truncate the integer to the right size now.
772  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
773  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
774
775  if (LoadedTy == NewIntTy)
776    return StoredVal;
777
778  // If the result is a pointer, inttoptr.
779  if (LoadedTy->isPointerTy())
780    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
781
782  // Otherwise, bitcast.
783  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
784}
785
786/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
787/// memdep query of a load that ends up being a clobbering memory write (store,
788/// memset, memcpy, memmove).  This means that the write *may* provide bits used
789/// by the load but we can't be sure because the pointers don't mustalias.
790///
791/// Check this case to see if there is anything more we can do before we give
792/// up.  This returns -1 if we have to give up, or a byte number in the stored
793/// value of the piece that feeds the load.
794static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
795                                          Value *WritePtr,
796                                          uint64_t WriteSizeInBits,
797                                          const TargetData &TD) {
798  // If the loaded or stored value is a first class array or struct, don't try
799  // to transform them.  We need to be able to bitcast to integer.
800  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
801    return -1;
802
803  int64_t StoreOffset = 0, LoadOffset = 0;
804  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
805  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
806  if (StoreBase != LoadBase)
807    return -1;
808
809  // If the load and store are to the exact same address, they should have been
810  // a must alias.  AA must have gotten confused.
811  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
812  // to a load from the base of the memset.
813#if 0
814  if (LoadOffset == StoreOffset) {
815    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
816    << "Base       = " << *StoreBase << "\n"
817    << "Store Ptr  = " << *WritePtr << "\n"
818    << "Store Offs = " << StoreOffset << "\n"
819    << "Load Ptr   = " << *LoadPtr << "\n";
820    abort();
821  }
822#endif
823
824  // If the load and store don't overlap at all, the store doesn't provide
825  // anything to the load.  In this case, they really don't alias at all, AA
826  // must have gotten confused.
827  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
828
829  if ((WriteSizeInBits & 7) | (LoadSize & 7))
830    return -1;
831  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
832  LoadSize >>= 3;
833
834
835  bool isAAFailure = false;
836  if (StoreOffset < LoadOffset)
837    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
838  else
839    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
840
841  if (isAAFailure) {
842#if 0
843    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
844    << "Base       = " << *StoreBase << "\n"
845    << "Store Ptr  = " << *WritePtr << "\n"
846    << "Store Offs = " << StoreOffset << "\n"
847    << "Load Ptr   = " << *LoadPtr << "\n";
848    abort();
849#endif
850    return -1;
851  }
852
853  // If the Load isn't completely contained within the stored bits, we don't
854  // have all the bits to feed it.  We could do something crazy in the future
855  // (issue a smaller load then merge the bits in) but this seems unlikely to be
856  // valuable.
857  if (StoreOffset > LoadOffset ||
858      StoreOffset+StoreSize < LoadOffset+LoadSize)
859    return -1;
860
861  // Okay, we can do this transformation.  Return the number of bytes into the
862  // store that the load is.
863  return LoadOffset-StoreOffset;
864}
865
866/// AnalyzeLoadFromClobberingStore - This function is called when we have a
867/// memdep query of a load that ends up being a clobbering store.
868static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
869                                          StoreInst *DepSI,
870                                          const TargetData &TD) {
871  // Cannot handle reading from store of first-class aggregate yet.
872  if (DepSI->getValueOperand()->getType()->isStructTy() ||
873      DepSI->getValueOperand()->getType()->isArrayTy())
874    return -1;
875
876  Value *StorePtr = DepSI->getPointerOperand();
877  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
878  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
879                                        StorePtr, StoreSize, TD);
880}
881
882/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
883/// memdep query of a load that ends up being clobbered by another load.  See if
884/// the other load can feed into the second load.
885static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
886                                         LoadInst *DepLI, const TargetData &TD){
887  // Cannot handle reading from store of first-class aggregate yet.
888  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
889    return -1;
890
891  Value *DepPtr = DepLI->getPointerOperand();
892  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
893  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
894  if (R != -1) return R;
895
896  // If we have a load/load clobber an DepLI can be widened to cover this load,
897  // then we should widen it!
898  int64_t LoadOffs = 0;
899  const Value *LoadBase =
900    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
901  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
902
903  unsigned Size = MemoryDependenceAnalysis::
904    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
905  if (Size == 0) return -1;
906
907  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
908}
909
910
911
912static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
913                                            MemIntrinsic *MI,
914                                            const TargetData &TD) {
915  // If the mem operation is a non-constant size, we can't handle it.
916  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
917  if (SizeCst == 0) return -1;
918  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
919
920  // If this is memset, we just need to see if the offset is valid in the size
921  // of the memset..
922  if (MI->getIntrinsicID() == Intrinsic::memset)
923    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
924                                          MemSizeInBits, TD);
925
926  // If we have a memcpy/memmove, the only case we can handle is if this is a
927  // copy from constant memory.  In that case, we can read directly from the
928  // constant memory.
929  MemTransferInst *MTI = cast<MemTransferInst>(MI);
930
931  Constant *Src = dyn_cast<Constant>(MTI->getSource());
932  if (Src == 0) return -1;
933
934  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
935  if (GV == 0 || !GV->isConstant()) return -1;
936
937  // See if the access is within the bounds of the transfer.
938  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
939                                              MI->getDest(), MemSizeInBits, TD);
940  if (Offset == -1)
941    return Offset;
942
943  // Otherwise, see if we can constant fold a load from the constant with the
944  // offset applied as appropriate.
945  Src = ConstantExpr::getBitCast(Src,
946                                 llvm::Type::getInt8PtrTy(Src->getContext()));
947  Constant *OffsetCst =
948    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
949  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
950  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
951  if (ConstantFoldLoadFromConstPtr(Src, &TD))
952    return Offset;
953  return -1;
954}
955
956
957/// GetStoreValueForLoad - This function is called when we have a
958/// memdep query of a load that ends up being a clobbering store.  This means
959/// that the store provides bits used by the load but we the pointers don't
960/// mustalias.  Check this case to see if there is anything more we can do
961/// before we give up.
962static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
963                                   Type *LoadTy,
964                                   Instruction *InsertPt, const TargetData &TD){
965  LLVMContext &Ctx = SrcVal->getType()->getContext();
966
967  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
968  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
969
970  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
971
972  // Compute which bits of the stored value are being used by the load.  Convert
973  // to an integer type to start with.
974  if (SrcVal->getType()->isPointerTy())
975    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
976  if (!SrcVal->getType()->isIntegerTy())
977    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
978
979  // Shift the bits to the least significant depending on endianness.
980  unsigned ShiftAmt;
981  if (TD.isLittleEndian())
982    ShiftAmt = Offset*8;
983  else
984    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
985
986  if (ShiftAmt)
987    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
988
989  if (LoadSize != StoreSize)
990    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
991
992  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
993}
994
995/// GetLoadValueForLoad - This function is called when we have a
996/// memdep query of a load that ends up being a clobbering load.  This means
997/// that the load *may* provide bits used by the load but we can't be sure
998/// because the pointers don't mustalias.  Check this case to see if there is
999/// anything more we can do before we give up.
1000static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1001                                  Type *LoadTy, Instruction *InsertPt,
1002                                  GVN &gvn) {
1003  const TargetData &TD = *gvn.getTargetData();
1004  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1005  // widen SrcVal out to a larger load.
1006  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1007  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1008  if (Offset+LoadSize > SrcValSize) {
1009    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1010    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1011    // If we have a load/load clobber an DepLI can be widened to cover this
1012    // load, then we should widen it to the next power of 2 size big enough!
1013    unsigned NewLoadSize = Offset+LoadSize;
1014    if (!isPowerOf2_32(NewLoadSize))
1015      NewLoadSize = NextPowerOf2(NewLoadSize);
1016
1017    Value *PtrVal = SrcVal->getPointerOperand();
1018
1019    // Insert the new load after the old load.  This ensures that subsequent
1020    // memdep queries will find the new load.  We can't easily remove the old
1021    // load completely because it is already in the value numbering table.
1022    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1023    Type *DestPTy =
1024      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1025    DestPTy = PointerType::get(DestPTy,
1026                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1027    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1028    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1029    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1030    NewLoad->takeName(SrcVal);
1031    NewLoad->setAlignment(SrcVal->getAlignment());
1032
1033    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1034    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1035
1036    // Replace uses of the original load with the wider load.  On a big endian
1037    // system, we need to shift down to get the relevant bits.
1038    Value *RV = NewLoad;
1039    if (TD.isBigEndian())
1040      RV = Builder.CreateLShr(RV,
1041                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1042    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1043    SrcVal->replaceAllUsesWith(RV);
1044
1045    // We would like to use gvn.markInstructionForDeletion here, but we can't
1046    // because the load is already memoized into the leader map table that GVN
1047    // tracks.  It is potentially possible to remove the load from the table,
1048    // but then there all of the operations based on it would need to be
1049    // rehashed.  Just leave the dead load around.
1050    gvn.getMemDep().removeInstruction(SrcVal);
1051    SrcVal = NewLoad;
1052  }
1053
1054  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1055}
1056
1057
1058/// GetMemInstValueForLoad - This function is called when we have a
1059/// memdep query of a load that ends up being a clobbering mem intrinsic.
1060static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1061                                     Type *LoadTy, Instruction *InsertPt,
1062                                     const TargetData &TD){
1063  LLVMContext &Ctx = LoadTy->getContext();
1064  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1065
1066  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1067
1068  // We know that this method is only called when the mem transfer fully
1069  // provides the bits for the load.
1070  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1071    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1072    // independently of what the offset is.
1073    Value *Val = MSI->getValue();
1074    if (LoadSize != 1)
1075      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1076
1077    Value *OneElt = Val;
1078
1079    // Splat the value out to the right number of bits.
1080    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1081      // If we can double the number of bytes set, do it.
1082      if (NumBytesSet*2 <= LoadSize) {
1083        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1084        Val = Builder.CreateOr(Val, ShVal);
1085        NumBytesSet <<= 1;
1086        continue;
1087      }
1088
1089      // Otherwise insert one byte at a time.
1090      Value *ShVal = Builder.CreateShl(Val, 1*8);
1091      Val = Builder.CreateOr(OneElt, ShVal);
1092      ++NumBytesSet;
1093    }
1094
1095    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1096  }
1097
1098  // Otherwise, this is a memcpy/memmove from a constant global.
1099  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1100  Constant *Src = cast<Constant>(MTI->getSource());
1101
1102  // Otherwise, see if we can constant fold a load from the constant with the
1103  // offset applied as appropriate.
1104  Src = ConstantExpr::getBitCast(Src,
1105                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1106  Constant *OffsetCst =
1107  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1108  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1109  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1110  return ConstantFoldLoadFromConstPtr(Src, &TD);
1111}
1112
1113namespace {
1114
1115struct AvailableValueInBlock {
1116  /// BB - The basic block in question.
1117  BasicBlock *BB;
1118  enum ValType {
1119    SimpleVal,  // A simple offsetted value that is accessed.
1120    LoadVal,    // A value produced by a load.
1121    MemIntrin   // A memory intrinsic which is loaded from.
1122  };
1123
1124  /// V - The value that is live out of the block.
1125  PointerIntPair<Value *, 2, ValType> Val;
1126
1127  /// Offset - The byte offset in Val that is interesting for the load query.
1128  unsigned Offset;
1129
1130  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1131                                   unsigned Offset = 0) {
1132    AvailableValueInBlock Res;
1133    Res.BB = BB;
1134    Res.Val.setPointer(V);
1135    Res.Val.setInt(SimpleVal);
1136    Res.Offset = Offset;
1137    return Res;
1138  }
1139
1140  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1141                                     unsigned Offset = 0) {
1142    AvailableValueInBlock Res;
1143    Res.BB = BB;
1144    Res.Val.setPointer(MI);
1145    Res.Val.setInt(MemIntrin);
1146    Res.Offset = Offset;
1147    return Res;
1148  }
1149
1150  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1151                                       unsigned Offset = 0) {
1152    AvailableValueInBlock Res;
1153    Res.BB = BB;
1154    Res.Val.setPointer(LI);
1155    Res.Val.setInt(LoadVal);
1156    Res.Offset = Offset;
1157    return Res;
1158  }
1159
1160  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1161  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1162  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1163
1164  Value *getSimpleValue() const {
1165    assert(isSimpleValue() && "Wrong accessor");
1166    return Val.getPointer();
1167  }
1168
1169  LoadInst *getCoercedLoadValue() const {
1170    assert(isCoercedLoadValue() && "Wrong accessor");
1171    return cast<LoadInst>(Val.getPointer());
1172  }
1173
1174  MemIntrinsic *getMemIntrinValue() const {
1175    assert(isMemIntrinValue() && "Wrong accessor");
1176    return cast<MemIntrinsic>(Val.getPointer());
1177  }
1178
1179  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1180  /// defined here to the specified type.  This handles various coercion cases.
1181  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1182    Value *Res;
1183    if (isSimpleValue()) {
1184      Res = getSimpleValue();
1185      if (Res->getType() != LoadTy) {
1186        const TargetData *TD = gvn.getTargetData();
1187        assert(TD && "Need target data to handle type mismatch case");
1188        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1189                                   *TD);
1190
1191        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1192                     << *getSimpleValue() << '\n'
1193                     << *Res << '\n' << "\n\n\n");
1194      }
1195    } else if (isCoercedLoadValue()) {
1196      LoadInst *Load = getCoercedLoadValue();
1197      if (Load->getType() == LoadTy && Offset == 0) {
1198        Res = Load;
1199      } else {
1200        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1201                                  gvn);
1202
1203        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1204                     << *getCoercedLoadValue() << '\n'
1205                     << *Res << '\n' << "\n\n\n");
1206      }
1207    } else {
1208      const TargetData *TD = gvn.getTargetData();
1209      assert(TD && "Need target data to handle type mismatch case");
1210      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1211                                   LoadTy, BB->getTerminator(), *TD);
1212      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1213                   << "  " << *getMemIntrinValue() << '\n'
1214                   << *Res << '\n' << "\n\n\n");
1215    }
1216    return Res;
1217  }
1218};
1219
1220} // end anonymous namespace
1221
1222/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1223/// construct SSA form, allowing us to eliminate LI.  This returns the value
1224/// that should be used at LI's definition site.
1225static Value *ConstructSSAForLoadSet(LoadInst *LI,
1226                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1227                                     GVN &gvn) {
1228  // Check for the fully redundant, dominating load case.  In this case, we can
1229  // just use the dominating value directly.
1230  if (ValuesPerBlock.size() == 1 &&
1231      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1232                                               LI->getParent()))
1233    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1234
1235  // Otherwise, we have to construct SSA form.
1236  SmallVector<PHINode*, 8> NewPHIs;
1237  SSAUpdater SSAUpdate(&NewPHIs);
1238  SSAUpdate.Initialize(LI->getType(), LI->getName());
1239
1240  Type *LoadTy = LI->getType();
1241
1242  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1243    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1244    BasicBlock *BB = AV.BB;
1245
1246    if (SSAUpdate.HasValueForBlock(BB))
1247      continue;
1248
1249    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1250  }
1251
1252  // Perform PHI construction.
1253  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1254
1255  // If new PHI nodes were created, notify alias analysis.
1256  if (V->getType()->isPointerTy()) {
1257    AliasAnalysis *AA = gvn.getAliasAnalysis();
1258
1259    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1260      AA->copyValue(LI, NewPHIs[i]);
1261
1262    // Now that we've copied information to the new PHIs, scan through
1263    // them again and inform alias analysis that we've added potentially
1264    // escaping uses to any values that are operands to these PHIs.
1265    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1266      PHINode *P = NewPHIs[i];
1267      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1268        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1269        AA->addEscapingUse(P->getOperandUse(jj));
1270      }
1271    }
1272  }
1273
1274  return V;
1275}
1276
1277static bool isLifetimeStart(const Instruction *Inst) {
1278  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1279    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1280  return false;
1281}
1282
1283/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1284/// non-local by performing PHI construction.
1285bool GVN::processNonLocalLoad(LoadInst *LI) {
1286  // Find the non-local dependencies of the load.
1287  SmallVector<NonLocalDepResult, 64> Deps;
1288  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1289  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1290  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1291  //             << Deps.size() << *LI << '\n');
1292
1293  // If we had to process more than one hundred blocks to find the
1294  // dependencies, this load isn't worth worrying about.  Optimizing
1295  // it will be too expensive.
1296  unsigned NumDeps = Deps.size();
1297  if (NumDeps > 100)
1298    return false;
1299
1300  // If we had a phi translation failure, we'll have a single entry which is a
1301  // clobber in the current block.  Reject this early.
1302  if (NumDeps == 1 &&
1303      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1304    DEBUG(
1305      dbgs() << "GVN: non-local load ";
1306      WriteAsOperand(dbgs(), LI);
1307      dbgs() << " has unknown dependencies\n";
1308    );
1309    return false;
1310  }
1311
1312  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1313  // where we have a value available in repl, also keep track of whether we see
1314  // dependencies that produce an unknown value for the load (such as a call
1315  // that could potentially clobber the load).
1316  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1317  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1318
1319  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1320    BasicBlock *DepBB = Deps[i].getBB();
1321    MemDepResult DepInfo = Deps[i].getResult();
1322
1323    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1324      UnavailableBlocks.push_back(DepBB);
1325      continue;
1326    }
1327
1328    if (DepInfo.isClobber()) {
1329      // The address being loaded in this non-local block may not be the same as
1330      // the pointer operand of the load if PHI translation occurs.  Make sure
1331      // to consider the right address.
1332      Value *Address = Deps[i].getAddress();
1333
1334      // If the dependence is to a store that writes to a superset of the bits
1335      // read by the load, we can extract the bits we need for the load from the
1336      // stored value.
1337      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1338        if (TD && Address) {
1339          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1340                                                      DepSI, *TD);
1341          if (Offset != -1) {
1342            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1343                                                       DepSI->getValueOperand(),
1344                                                                Offset));
1345            continue;
1346          }
1347        }
1348      }
1349
1350      // Check to see if we have something like this:
1351      //    load i32* P
1352      //    load i8* (P+1)
1353      // if we have this, replace the later with an extraction from the former.
1354      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1355        // If this is a clobber and L is the first instruction in its block, then
1356        // we have the first instruction in the entry block.
1357        if (DepLI != LI && Address && TD) {
1358          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1359                                                     LI->getPointerOperand(),
1360                                                     DepLI, *TD);
1361
1362          if (Offset != -1) {
1363            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1364                                                                    Offset));
1365            continue;
1366          }
1367        }
1368      }
1369
1370      // If the clobbering value is a memset/memcpy/memmove, see if we can
1371      // forward a value on from it.
1372      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1373        if (TD && Address) {
1374          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1375                                                        DepMI, *TD);
1376          if (Offset != -1) {
1377            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1378                                                                  Offset));
1379            continue;
1380          }
1381        }
1382      }
1383
1384      UnavailableBlocks.push_back(DepBB);
1385      continue;
1386    }
1387
1388    // DepInfo.isDef() here
1389
1390    Instruction *DepInst = DepInfo.getInst();
1391
1392    // Loading the allocation -> undef.
1393    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1394        // Loading immediately after lifetime begin -> undef.
1395        isLifetimeStart(DepInst)) {
1396      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1397                                             UndefValue::get(LI->getType())));
1398      continue;
1399    }
1400
1401    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1402      // Reject loads and stores that are to the same address but are of
1403      // different types if we have to.
1404      if (S->getValueOperand()->getType() != LI->getType()) {
1405        // If the stored value is larger or equal to the loaded value, we can
1406        // reuse it.
1407        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1408                                                        LI->getType(), *TD)) {
1409          UnavailableBlocks.push_back(DepBB);
1410          continue;
1411        }
1412      }
1413
1414      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1415                                                         S->getValueOperand()));
1416      continue;
1417    }
1418
1419    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1420      // If the types mismatch and we can't handle it, reject reuse of the load.
1421      if (LD->getType() != LI->getType()) {
1422        // If the stored value is larger or equal to the loaded value, we can
1423        // reuse it.
1424        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1425          UnavailableBlocks.push_back(DepBB);
1426          continue;
1427        }
1428      }
1429      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1430      continue;
1431    }
1432
1433    UnavailableBlocks.push_back(DepBB);
1434    continue;
1435  }
1436
1437  // If we have no predecessors that produce a known value for this load, exit
1438  // early.
1439  if (ValuesPerBlock.empty()) return false;
1440
1441  // If all of the instructions we depend on produce a known value for this
1442  // load, then it is fully redundant and we can use PHI insertion to compute
1443  // its value.  Insert PHIs and remove the fully redundant value now.
1444  if (UnavailableBlocks.empty()) {
1445    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1446
1447    // Perform PHI construction.
1448    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1449    LI->replaceAllUsesWith(V);
1450
1451    if (isa<PHINode>(V))
1452      V->takeName(LI);
1453    if (V->getType()->isPointerTy())
1454      MD->invalidateCachedPointerInfo(V);
1455    markInstructionForDeletion(LI);
1456    ++NumGVNLoad;
1457    return true;
1458  }
1459
1460  if (!EnablePRE || !EnableLoadPRE)
1461    return false;
1462
1463  // Okay, we have *some* definitions of the value.  This means that the value
1464  // is available in some of our (transitive) predecessors.  Lets think about
1465  // doing PRE of this load.  This will involve inserting a new load into the
1466  // predecessor when it's not available.  We could do this in general, but
1467  // prefer to not increase code size.  As such, we only do this when we know
1468  // that we only have to insert *one* load (which means we're basically moving
1469  // the load, not inserting a new one).
1470
1471  SmallPtrSet<BasicBlock *, 4> Blockers;
1472  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1473    Blockers.insert(UnavailableBlocks[i]);
1474
1475  // Let's find the first basic block with more than one predecessor.  Walk
1476  // backwards through predecessors if needed.
1477  BasicBlock *LoadBB = LI->getParent();
1478  BasicBlock *TmpBB = LoadBB;
1479
1480  bool isSinglePred = false;
1481  bool allSingleSucc = true;
1482  while (TmpBB->getSinglePredecessor()) {
1483    isSinglePred = true;
1484    TmpBB = TmpBB->getSinglePredecessor();
1485    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1486      return false;
1487    if (Blockers.count(TmpBB))
1488      return false;
1489
1490    // If any of these blocks has more than one successor (i.e. if the edge we
1491    // just traversed was critical), then there are other paths through this
1492    // block along which the load may not be anticipated.  Hoisting the load
1493    // above this block would be adding the load to execution paths along
1494    // which it was not previously executed.
1495    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1496      return false;
1497  }
1498
1499  assert(TmpBB);
1500  LoadBB = TmpBB;
1501
1502  // FIXME: It is extremely unclear what this loop is doing, other than
1503  // artificially restricting loadpre.
1504  if (isSinglePred) {
1505    bool isHot = false;
1506    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1507      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1508      if (AV.isSimpleValue())
1509        // "Hot" Instruction is in some loop (because it dominates its dep.
1510        // instruction).
1511        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1512          if (DT->dominates(LI, I)) {
1513            isHot = true;
1514            break;
1515          }
1516    }
1517
1518    // We are interested only in "hot" instructions. We don't want to do any
1519    // mis-optimizations here.
1520    if (!isHot)
1521      return false;
1522  }
1523
1524  // Check to see how many predecessors have the loaded value fully
1525  // available.
1526  DenseMap<BasicBlock*, Value*> PredLoads;
1527  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1528  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1529    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1530  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1531    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1532
1533  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1534  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1535       PI != E; ++PI) {
1536    BasicBlock *Pred = *PI;
1537    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1538      continue;
1539    }
1540    PredLoads[Pred] = 0;
1541
1542    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1543      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1544        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1545              << Pred->getName() << "': " << *LI << '\n');
1546        return false;
1547      }
1548
1549      if (LoadBB->isLandingPad()) {
1550        DEBUG(dbgs()
1551              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1552              << Pred->getName() << "': " << *LI << '\n');
1553        return false;
1554      }
1555
1556      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1557      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1558    }
1559  }
1560
1561  if (!NeedToSplit.empty()) {
1562    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1563    return false;
1564  }
1565
1566  // Decide whether PRE is profitable for this load.
1567  unsigned NumUnavailablePreds = PredLoads.size();
1568  assert(NumUnavailablePreds != 0 &&
1569         "Fully available value should be eliminated above!");
1570
1571  // If this load is unavailable in multiple predecessors, reject it.
1572  // FIXME: If we could restructure the CFG, we could make a common pred with
1573  // all the preds that don't have an available LI and insert a new load into
1574  // that one block.
1575  if (NumUnavailablePreds != 1)
1576      return false;
1577
1578  // Check if the load can safely be moved to all the unavailable predecessors.
1579  bool CanDoPRE = true;
1580  SmallVector<Instruction*, 8> NewInsts;
1581  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1582         E = PredLoads.end(); I != E; ++I) {
1583    BasicBlock *UnavailablePred = I->first;
1584
1585    // Do PHI translation to get its value in the predecessor if necessary.  The
1586    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1587
1588    // If all preds have a single successor, then we know it is safe to insert
1589    // the load on the pred (?!?), so we can insert code to materialize the
1590    // pointer if it is not available.
1591    PHITransAddr Address(LI->getPointerOperand(), TD);
1592    Value *LoadPtr = 0;
1593    if (allSingleSucc) {
1594      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1595                                                  *DT, NewInsts);
1596    } else {
1597      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1598      LoadPtr = Address.getAddr();
1599    }
1600
1601    // If we couldn't find or insert a computation of this phi translated value,
1602    // we fail PRE.
1603    if (LoadPtr == 0) {
1604      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1605            << *LI->getPointerOperand() << "\n");
1606      CanDoPRE = false;
1607      break;
1608    }
1609
1610    // Make sure it is valid to move this load here.  We have to watch out for:
1611    //  @1 = getelementptr (i8* p, ...
1612    //  test p and branch if == 0
1613    //  load @1
1614    // It is valid to have the getelementptr before the test, even if p can
1615    // be 0, as getelementptr only does address arithmetic.
1616    // If we are not pushing the value through any multiple-successor blocks
1617    // we do not have this case.  Otherwise, check that the load is safe to
1618    // put anywhere; this can be improved, but should be conservatively safe.
1619    if (!allSingleSucc &&
1620        // FIXME: REEVALUTE THIS.
1621        !isSafeToLoadUnconditionally(LoadPtr,
1622                                     UnavailablePred->getTerminator(),
1623                                     LI->getAlignment(), TD)) {
1624      CanDoPRE = false;
1625      break;
1626    }
1627
1628    I->second = LoadPtr;
1629  }
1630
1631  if (!CanDoPRE) {
1632    while (!NewInsts.empty()) {
1633      Instruction *I = NewInsts.pop_back_val();
1634      if (MD) MD->removeInstruction(I);
1635      I->eraseFromParent();
1636    }
1637    return false;
1638  }
1639
1640  // Okay, we can eliminate this load by inserting a reload in the predecessor
1641  // and using PHI construction to get the value in the other predecessors, do
1642  // it.
1643  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1644  DEBUG(if (!NewInsts.empty())
1645          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1646                 << *NewInsts.back() << '\n');
1647
1648  // Assign value numbers to the new instructions.
1649  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1650    // FIXME: We really _ought_ to insert these value numbers into their
1651    // parent's availability map.  However, in doing so, we risk getting into
1652    // ordering issues.  If a block hasn't been processed yet, we would be
1653    // marking a value as AVAIL-IN, which isn't what we intend.
1654    VN.lookup_or_add(NewInsts[i]);
1655  }
1656
1657  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1658         E = PredLoads.end(); I != E; ++I) {
1659    BasicBlock *UnavailablePred = I->first;
1660    Value *LoadPtr = I->second;
1661
1662    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1663                                        LI->getAlignment(),
1664                                        UnavailablePred->getTerminator());
1665
1666    // Transfer the old load's TBAA tag to the new load.
1667    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1668      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1669
1670    // Transfer DebugLoc.
1671    NewLoad->setDebugLoc(LI->getDebugLoc());
1672
1673    // Add the newly created load.
1674    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1675                                                        NewLoad));
1676    MD->invalidateCachedPointerInfo(LoadPtr);
1677    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1678  }
1679
1680  // Perform PHI construction.
1681  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1682  LI->replaceAllUsesWith(V);
1683  if (isa<PHINode>(V))
1684    V->takeName(LI);
1685  if (V->getType()->isPointerTy())
1686    MD->invalidateCachedPointerInfo(V);
1687  markInstructionForDeletion(LI);
1688  ++NumPRELoad;
1689  return true;
1690}
1691
1692/// processLoad - Attempt to eliminate a load, first by eliminating it
1693/// locally, and then attempting non-local elimination if that fails.
1694bool GVN::processLoad(LoadInst *L) {
1695  if (!MD)
1696    return false;
1697
1698  if (!L->isSimple())
1699    return false;
1700
1701  if (L->use_empty()) {
1702    markInstructionForDeletion(L);
1703    return true;
1704  }
1705
1706  // ... to a pointer that has been loaded from before...
1707  MemDepResult Dep = MD->getDependency(L);
1708
1709  // If we have a clobber and target data is around, see if this is a clobber
1710  // that we can fix up through code synthesis.
1711  if (Dep.isClobber() && TD) {
1712    // Check to see if we have something like this:
1713    //   store i32 123, i32* %P
1714    //   %A = bitcast i32* %P to i8*
1715    //   %B = gep i8* %A, i32 1
1716    //   %C = load i8* %B
1717    //
1718    // We could do that by recognizing if the clobber instructions are obviously
1719    // a common base + constant offset, and if the previous store (or memset)
1720    // completely covers this load.  This sort of thing can happen in bitfield
1721    // access code.
1722    Value *AvailVal = 0;
1723    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1724      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1725                                                  L->getPointerOperand(),
1726                                                  DepSI, *TD);
1727      if (Offset != -1)
1728        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1729                                        L->getType(), L, *TD);
1730    }
1731
1732    // Check to see if we have something like this:
1733    //    load i32* P
1734    //    load i8* (P+1)
1735    // if we have this, replace the later with an extraction from the former.
1736    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1737      // If this is a clobber and L is the first instruction in its block, then
1738      // we have the first instruction in the entry block.
1739      if (DepLI == L)
1740        return false;
1741
1742      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1743                                                 L->getPointerOperand(),
1744                                                 DepLI, *TD);
1745      if (Offset != -1)
1746        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1747    }
1748
1749    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1750    // a value on from it.
1751    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1752      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1753                                                    L->getPointerOperand(),
1754                                                    DepMI, *TD);
1755      if (Offset != -1)
1756        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1757    }
1758
1759    if (AvailVal) {
1760      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1761            << *AvailVal << '\n' << *L << "\n\n\n");
1762
1763      // Replace the load!
1764      L->replaceAllUsesWith(AvailVal);
1765      if (AvailVal->getType()->isPointerTy())
1766        MD->invalidateCachedPointerInfo(AvailVal);
1767      markInstructionForDeletion(L);
1768      ++NumGVNLoad;
1769      return true;
1770    }
1771  }
1772
1773  // If the value isn't available, don't do anything!
1774  if (Dep.isClobber()) {
1775    DEBUG(
1776      // fast print dep, using operator<< on instruction is too slow.
1777      dbgs() << "GVN: load ";
1778      WriteAsOperand(dbgs(), L);
1779      Instruction *I = Dep.getInst();
1780      dbgs() << " is clobbered by " << *I << '\n';
1781    );
1782    return false;
1783  }
1784
1785  // If it is defined in another block, try harder.
1786  if (Dep.isNonLocal())
1787    return processNonLocalLoad(L);
1788
1789  if (!Dep.isDef()) {
1790    DEBUG(
1791      // fast print dep, using operator<< on instruction is too slow.
1792      dbgs() << "GVN: load ";
1793      WriteAsOperand(dbgs(), L);
1794      dbgs() << " has unknown dependence\n";
1795    );
1796    return false;
1797  }
1798
1799  Instruction *DepInst = Dep.getInst();
1800  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1801    Value *StoredVal = DepSI->getValueOperand();
1802
1803    // The store and load are to a must-aliased pointer, but they may not
1804    // actually have the same type.  See if we know how to reuse the stored
1805    // value (depending on its type).
1806    if (StoredVal->getType() != L->getType()) {
1807      if (TD) {
1808        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1809                                                   L, *TD);
1810        if (StoredVal == 0)
1811          return false;
1812
1813        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1814                     << '\n' << *L << "\n\n\n");
1815      }
1816      else
1817        return false;
1818    }
1819
1820    // Remove it!
1821    L->replaceAllUsesWith(StoredVal);
1822    if (StoredVal->getType()->isPointerTy())
1823      MD->invalidateCachedPointerInfo(StoredVal);
1824    markInstructionForDeletion(L);
1825    ++NumGVNLoad;
1826    return true;
1827  }
1828
1829  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1830    Value *AvailableVal = DepLI;
1831
1832    // The loads are of a must-aliased pointer, but they may not actually have
1833    // the same type.  See if we know how to reuse the previously loaded value
1834    // (depending on its type).
1835    if (DepLI->getType() != L->getType()) {
1836      if (TD) {
1837        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1838                                                      L, *TD);
1839        if (AvailableVal == 0)
1840          return false;
1841
1842        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1843                     << "\n" << *L << "\n\n\n");
1844      }
1845      else
1846        return false;
1847    }
1848
1849    // Remove it!
1850    L->replaceAllUsesWith(AvailableVal);
1851    if (DepLI->getType()->isPointerTy())
1852      MD->invalidateCachedPointerInfo(DepLI);
1853    markInstructionForDeletion(L);
1854    ++NumGVNLoad;
1855    return true;
1856  }
1857
1858  // If this load really doesn't depend on anything, then we must be loading an
1859  // undef value.  This can happen when loading for a fresh allocation with no
1860  // intervening stores, for example.
1861  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1862    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1863    markInstructionForDeletion(L);
1864    ++NumGVNLoad;
1865    return true;
1866  }
1867
1868  // If this load occurs either right after a lifetime begin,
1869  // then the loaded value is undefined.
1870  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1871    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1872      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1873      markInstructionForDeletion(L);
1874      ++NumGVNLoad;
1875      return true;
1876    }
1877  }
1878
1879  return false;
1880}
1881
1882// findLeader - In order to find a leader for a given value number at a
1883// specific basic block, we first obtain the list of all Values for that number,
1884// and then scan the list to find one whose block dominates the block in
1885// question.  This is fast because dominator tree queries consist of only
1886// a few comparisons of DFS numbers.
1887Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1888  LeaderTableEntry Vals = LeaderTable[num];
1889  if (!Vals.Val) return 0;
1890
1891  Value *Val = 0;
1892  if (DT->dominates(Vals.BB, BB)) {
1893    Val = Vals.Val;
1894    if (isa<Constant>(Val)) return Val;
1895  }
1896
1897  LeaderTableEntry* Next = Vals.Next;
1898  while (Next) {
1899    if (DT->dominates(Next->BB, BB)) {
1900      if (isa<Constant>(Next->Val)) return Next->Val;
1901      if (!Val) Val = Next->Val;
1902    }
1903
1904    Next = Next->Next;
1905  }
1906
1907  return Val;
1908}
1909
1910/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1911/// use is dominated by the given basic block.  Returns the number of uses that
1912/// were replaced.
1913unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1914                                          BasicBlock *Root) {
1915  unsigned Count = 0;
1916  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1917       UI != UE; ) {
1918    Use &U = (UI++).getUse();
1919    if (DT->dominates(Root, cast<Instruction>(U.getUser())->getParent())) {
1920      U.set(To);
1921      ++Count;
1922    }
1923  }
1924  return Count;
1925}
1926
1927/// propagateEquality - The given values are known to be equal in every block
1928/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1929/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1930bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
1931  if (LHS == RHS) return false;
1932  assert(LHS->getType() == RHS->getType() && "Equal but types differ!");
1933
1934  // Don't try to propagate equalities between constants.
1935  if (isa<Constant>(LHS) && isa<Constant>(RHS))
1936    return false;
1937
1938  // Make sure that any constants are on the right-hand side.  In general the
1939  // best results are obtained by placing the longest lived value on the RHS.
1940  if (isa<Constant>(LHS))
1941    std::swap(LHS, RHS);
1942
1943  // If neither term is constant then bail out.  This is not for correctness,
1944  // it's just that the non-constant case is much less useful: it occurs just
1945  // as often as the constant case but handling it hardly ever results in an
1946  // improvement.
1947  if (!isa<Constant>(RHS))
1948    return false;
1949
1950  // If value numbering later deduces that an instruction in the scope is equal
1951  // to 'LHS' then ensure it will be turned into 'RHS'.
1952  addToLeaderTable(VN.lookup_or_add(LHS), RHS, Root);
1953
1954  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1955  // LHS always has at least one use that is not dominated by Root, this will
1956  // never do anything if LHS has only one use.
1957  bool Changed = false;
1958  if (!LHS->hasOneUse()) {
1959    unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
1960    Changed |= NumReplacements > 0;
1961    NumGVNEqProp += NumReplacements;
1962  }
1963
1964  // Now try to deduce additional equalities from this one.  For example, if the
1965  // known equality was "(A != B)" == "false" then it follows that A and B are
1966  // equal in the scope.  Only boolean equalities with an explicit true or false
1967  // RHS are currently supported.
1968  if (!RHS->getType()->isIntegerTy(1))
1969    // Not a boolean equality - bail out.
1970    return Changed;
1971  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1972  if (!CI)
1973    // RHS neither 'true' nor 'false' - bail out.
1974    return Changed;
1975  // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1976  bool isKnownTrue = CI->isAllOnesValue();
1977  bool isKnownFalse = !isKnownTrue;
1978
1979  // If "A && B" is known true then both A and B are known true.  If "A || B"
1980  // is known false then both A and B are known false.
1981  Value *A, *B;
1982  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1983      (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1984    Changed |= propagateEquality(A, RHS, Root);
1985    Changed |= propagateEquality(B, RHS, Root);
1986    return Changed;
1987  }
1988
1989  // If we are propagating an equality like "(A == B)" == "true" then also
1990  // propagate the equality A == B.
1991  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
1992    // Only equality comparisons are supported.
1993    if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1994        (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) {
1995      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1996      Changed |= propagateEquality(Op0, Op1, Root);
1997    }
1998    return Changed;
1999  }
2000
2001  return Changed;
2002}
2003
2004/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2005/// true if every path from the entry block to 'Dst' passes via this edge.  In
2006/// particular 'Dst' must not be reachable via another edge from 'Src'.
2007static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
2008                                       DominatorTree *DT) {
2009  // While in theory it is interesting to consider the case in which Dst has
2010  // more than one predecessor, because Dst might be part of a loop which is
2011  // only reachable from Src, in practice it is pointless since at the time
2012  // GVN runs all such loops have preheaders, which means that Dst will have
2013  // been changed to have only one predecessor, namely Src.
2014  BasicBlock *Pred = Dst->getSinglePredecessor();
2015  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2016  (void)Src;
2017  return Pred != 0;
2018}
2019
2020/// processInstruction - When calculating availability, handle an instruction
2021/// by inserting it into the appropriate sets
2022bool GVN::processInstruction(Instruction *I) {
2023  // Ignore dbg info intrinsics.
2024  if (isa<DbgInfoIntrinsic>(I))
2025    return false;
2026
2027  // If the instruction can be easily simplified then do so now in preference
2028  // to value numbering it.  Value numbering often exposes redundancies, for
2029  // example if it determines that %y is equal to %x then the instruction
2030  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2031  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2032    I->replaceAllUsesWith(V);
2033    if (MD && V->getType()->isPointerTy())
2034      MD->invalidateCachedPointerInfo(V);
2035    markInstructionForDeletion(I);
2036    ++NumGVNSimpl;
2037    return true;
2038  }
2039
2040  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2041    if (processLoad(LI))
2042      return true;
2043
2044    unsigned Num = VN.lookup_or_add(LI);
2045    addToLeaderTable(Num, LI, LI->getParent());
2046    return false;
2047  }
2048
2049  // For conditional branches, we can perform simple conditional propagation on
2050  // the condition value itself.
2051  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2052    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2053      return false;
2054
2055    Value *BranchCond = BI->getCondition();
2056
2057    BasicBlock *TrueSucc = BI->getSuccessor(0);
2058    BasicBlock *FalseSucc = BI->getSuccessor(1);
2059    BasicBlock *Parent = BI->getParent();
2060    bool Changed = false;
2061
2062    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2063      Changed |= propagateEquality(BranchCond,
2064                                   ConstantInt::getTrue(TrueSucc->getContext()),
2065                                   TrueSucc);
2066
2067    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2068      Changed |= propagateEquality(BranchCond,
2069                                   ConstantInt::getFalse(FalseSucc->getContext()),
2070                                   FalseSucc);
2071
2072    return Changed;
2073  }
2074
2075  // For switches, propagate the case values into the case destinations.
2076  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2077    Value *SwitchCond = SI->getCondition();
2078    BasicBlock *Parent = SI->getParent();
2079    bool Changed = false;
2080    for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i) {
2081      BasicBlock *Dst = SI->getCaseSuccessor(i);
2082      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2083        Changed |= propagateEquality(SwitchCond, SI->getCaseValue(i), Dst);
2084    }
2085    return Changed;
2086  }
2087
2088  // Instructions with void type don't return a value, so there's
2089  // no point in trying to find redudancies in them.
2090  if (I->getType()->isVoidTy()) return false;
2091
2092  uint32_t NextNum = VN.getNextUnusedValueNumber();
2093  unsigned Num = VN.lookup_or_add(I);
2094
2095  // Allocations are always uniquely numbered, so we can save time and memory
2096  // by fast failing them.
2097  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2098    addToLeaderTable(Num, I, I->getParent());
2099    return false;
2100  }
2101
2102  // If the number we were assigned was a brand new VN, then we don't
2103  // need to do a lookup to see if the number already exists
2104  // somewhere in the domtree: it can't!
2105  if (Num == NextNum) {
2106    addToLeaderTable(Num, I, I->getParent());
2107    return false;
2108  }
2109
2110  // Perform fast-path value-number based elimination of values inherited from
2111  // dominators.
2112  Value *repl = findLeader(I->getParent(), Num);
2113  if (repl == 0) {
2114    // Failure, just remember this instance for future use.
2115    addToLeaderTable(Num, I, I->getParent());
2116    return false;
2117  }
2118
2119  // Remove it!
2120  I->replaceAllUsesWith(repl);
2121  if (MD && repl->getType()->isPointerTy())
2122    MD->invalidateCachedPointerInfo(repl);
2123  markInstructionForDeletion(I);
2124  return true;
2125}
2126
2127/// runOnFunction - This is the main transformation entry point for a function.
2128bool GVN::runOnFunction(Function& F) {
2129  if (!NoLoads)
2130    MD = &getAnalysis<MemoryDependenceAnalysis>();
2131  DT = &getAnalysis<DominatorTree>();
2132  TD = getAnalysisIfAvailable<TargetData>();
2133  TLI = &getAnalysis<TargetLibraryInfo>();
2134  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2135  VN.setMemDep(MD);
2136  VN.setDomTree(DT);
2137
2138  bool Changed = false;
2139  bool ShouldContinue = true;
2140
2141  // Merge unconditional branches, allowing PRE to catch more
2142  // optimization opportunities.
2143  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2144    BasicBlock *BB = FI++;
2145
2146    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2147    if (removedBlock) ++NumGVNBlocks;
2148
2149    Changed |= removedBlock;
2150  }
2151
2152  unsigned Iteration = 0;
2153  while (ShouldContinue) {
2154    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2155    ShouldContinue = iterateOnFunction(F);
2156    if (splitCriticalEdges())
2157      ShouldContinue = true;
2158    Changed |= ShouldContinue;
2159    ++Iteration;
2160  }
2161
2162  if (EnablePRE) {
2163    bool PREChanged = true;
2164    while (PREChanged) {
2165      PREChanged = performPRE(F);
2166      Changed |= PREChanged;
2167    }
2168  }
2169  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2170  // computations into blocks where they become fully redundant.  Note that
2171  // we can't do this until PRE's critical edge splitting updates memdep.
2172  // Actually, when this happens, we should just fully integrate PRE into GVN.
2173
2174  cleanupGlobalSets();
2175
2176  return Changed;
2177}
2178
2179
2180bool GVN::processBlock(BasicBlock *BB) {
2181  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2182  // (and incrementing BI before processing an instruction).
2183  assert(InstrsToErase.empty() &&
2184         "We expect InstrsToErase to be empty across iterations");
2185  bool ChangedFunction = false;
2186
2187  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2188       BI != BE;) {
2189    ChangedFunction |= processInstruction(BI);
2190    if (InstrsToErase.empty()) {
2191      ++BI;
2192      continue;
2193    }
2194
2195    // If we need some instructions deleted, do it now.
2196    NumGVNInstr += InstrsToErase.size();
2197
2198    // Avoid iterator invalidation.
2199    bool AtStart = BI == BB->begin();
2200    if (!AtStart)
2201      --BI;
2202
2203    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2204         E = InstrsToErase.end(); I != E; ++I) {
2205      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2206      if (MD) MD->removeInstruction(*I);
2207      (*I)->eraseFromParent();
2208      DEBUG(verifyRemoved(*I));
2209    }
2210    InstrsToErase.clear();
2211
2212    if (AtStart)
2213      BI = BB->begin();
2214    else
2215      ++BI;
2216  }
2217
2218  return ChangedFunction;
2219}
2220
2221/// performPRE - Perform a purely local form of PRE that looks for diamond
2222/// control flow patterns and attempts to perform simple PRE at the join point.
2223bool GVN::performPRE(Function &F) {
2224  bool Changed = false;
2225  DenseMap<BasicBlock*, Value*> predMap;
2226  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2227       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2228    BasicBlock *CurrentBlock = *DI;
2229
2230    // Nothing to PRE in the entry block.
2231    if (CurrentBlock == &F.getEntryBlock()) continue;
2232
2233    // Don't perform PRE on a landing pad.
2234    if (CurrentBlock->isLandingPad()) continue;
2235
2236    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2237         BE = CurrentBlock->end(); BI != BE; ) {
2238      Instruction *CurInst = BI++;
2239
2240      if (isa<AllocaInst>(CurInst) ||
2241          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2242          CurInst->getType()->isVoidTy() ||
2243          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2244          isa<DbgInfoIntrinsic>(CurInst))
2245        continue;
2246
2247      // We don't currently value number ANY inline asm calls.
2248      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2249        if (CallI->isInlineAsm())
2250          continue;
2251
2252      uint32_t ValNo = VN.lookup(CurInst);
2253
2254      // Look for the predecessors for PRE opportunities.  We're
2255      // only trying to solve the basic diamond case, where
2256      // a value is computed in the successor and one predecessor,
2257      // but not the other.  We also explicitly disallow cases
2258      // where the successor is its own predecessor, because they're
2259      // more complicated to get right.
2260      unsigned NumWith = 0;
2261      unsigned NumWithout = 0;
2262      BasicBlock *PREPred = 0;
2263      predMap.clear();
2264
2265      for (pred_iterator PI = pred_begin(CurrentBlock),
2266           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2267        BasicBlock *P = *PI;
2268        // We're not interested in PRE where the block is its
2269        // own predecessor, or in blocks with predecessors
2270        // that are not reachable.
2271        if (P == CurrentBlock) {
2272          NumWithout = 2;
2273          break;
2274        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2275          NumWithout = 2;
2276          break;
2277        }
2278
2279        Value* predV = findLeader(P, ValNo);
2280        if (predV == 0) {
2281          PREPred = P;
2282          ++NumWithout;
2283        } else if (predV == CurInst) {
2284          NumWithout = 2;
2285        } else {
2286          predMap[P] = predV;
2287          ++NumWith;
2288        }
2289      }
2290
2291      // Don't do PRE when it might increase code size, i.e. when
2292      // we would need to insert instructions in more than one pred.
2293      if (NumWithout != 1 || NumWith == 0)
2294        continue;
2295
2296      // Don't do PRE across indirect branch.
2297      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2298        continue;
2299
2300      // We can't do PRE safely on a critical edge, so instead we schedule
2301      // the edge to be split and perform the PRE the next time we iterate
2302      // on the function.
2303      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2304      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2305        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2306        continue;
2307      }
2308
2309      // Instantiate the expression in the predecessor that lacked it.
2310      // Because we are going top-down through the block, all value numbers
2311      // will be available in the predecessor by the time we need them.  Any
2312      // that weren't originally present will have been instantiated earlier
2313      // in this loop.
2314      Instruction *PREInstr = CurInst->clone();
2315      bool success = true;
2316      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2317        Value *Op = PREInstr->getOperand(i);
2318        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2319          continue;
2320
2321        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2322          PREInstr->setOperand(i, V);
2323        } else {
2324          success = false;
2325          break;
2326        }
2327      }
2328
2329      // Fail out if we encounter an operand that is not available in
2330      // the PRE predecessor.  This is typically because of loads which
2331      // are not value numbered precisely.
2332      if (!success) {
2333        delete PREInstr;
2334        DEBUG(verifyRemoved(PREInstr));
2335        continue;
2336      }
2337
2338      PREInstr->insertBefore(PREPred->getTerminator());
2339      PREInstr->setName(CurInst->getName() + ".pre");
2340      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2341      predMap[PREPred] = PREInstr;
2342      VN.add(PREInstr, ValNo);
2343      ++NumGVNPRE;
2344
2345      // Update the availability map to include the new instruction.
2346      addToLeaderTable(ValNo, PREInstr, PREPred);
2347
2348      // Create a PHI to make the value available in this block.
2349      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2350      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2351                                     CurInst->getName() + ".pre-phi",
2352                                     CurrentBlock->begin());
2353      for (pred_iterator PI = PB; PI != PE; ++PI) {
2354        BasicBlock *P = *PI;
2355        Phi->addIncoming(predMap[P], P);
2356      }
2357
2358      VN.add(Phi, ValNo);
2359      addToLeaderTable(ValNo, Phi, CurrentBlock);
2360      Phi->setDebugLoc(CurInst->getDebugLoc());
2361      CurInst->replaceAllUsesWith(Phi);
2362      if (Phi->getType()->isPointerTy()) {
2363        // Because we have added a PHI-use of the pointer value, it has now
2364        // "escaped" from alias analysis' perspective.  We need to inform
2365        // AA of this.
2366        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2367             ++ii) {
2368          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2369          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2370        }
2371
2372        if (MD)
2373          MD->invalidateCachedPointerInfo(Phi);
2374      }
2375      VN.erase(CurInst);
2376      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2377
2378      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2379      if (MD) MD->removeInstruction(CurInst);
2380      CurInst->eraseFromParent();
2381      DEBUG(verifyRemoved(CurInst));
2382      Changed = true;
2383    }
2384  }
2385
2386  if (splitCriticalEdges())
2387    Changed = true;
2388
2389  return Changed;
2390}
2391
2392/// splitCriticalEdges - Split critical edges found during the previous
2393/// iteration that may enable further optimization.
2394bool GVN::splitCriticalEdges() {
2395  if (toSplit.empty())
2396    return false;
2397  do {
2398    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2399    SplitCriticalEdge(Edge.first, Edge.second, this);
2400  } while (!toSplit.empty());
2401  if (MD) MD->invalidateCachedPredecessors();
2402  return true;
2403}
2404
2405/// iterateOnFunction - Executes one iteration of GVN
2406bool GVN::iterateOnFunction(Function &F) {
2407  cleanupGlobalSets();
2408
2409  // Top-down walk of the dominator tree
2410  bool Changed = false;
2411#if 0
2412  // Needed for value numbering with phi construction to work.
2413  ReversePostOrderTraversal<Function*> RPOT(&F);
2414  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2415       RE = RPOT.end(); RI != RE; ++RI)
2416    Changed |= processBlock(*RI);
2417#else
2418  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2419       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2420    Changed |= processBlock(DI->getBlock());
2421#endif
2422
2423  return Changed;
2424}
2425
2426void GVN::cleanupGlobalSets() {
2427  VN.clear();
2428  LeaderTable.clear();
2429  TableAllocator.Reset();
2430}
2431
2432/// verifyRemoved - Verify that the specified instruction does not occur in our
2433/// internal data structures.
2434void GVN::verifyRemoved(const Instruction *Inst) const {
2435  VN.verifyRemoved(Inst);
2436
2437  // Walk through the value number scope to make sure the instruction isn't
2438  // ferreted away in it.
2439  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2440       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2441    const LeaderTableEntry *Node = &I->second;
2442    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2443
2444    while (Node->Next) {
2445      Node = Node->Next;
2446      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2447    }
2448  }
2449}
2450