GVN.cpp revision e641863cd2e28e6a1f0f41446bef08f89a22a513
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/SSAUpdater.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/Allocator.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/IRBuilder.h"
44using namespace llvm;
45
46STATISTIC(NumGVNInstr,  "Number of instructions deleted");
47STATISTIC(NumGVNLoad,   "Number of loads deleted");
48STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
49STATISTIC(NumGVNBlocks, "Number of blocks merged");
50STATISTIC(NumPRELoad,   "Number of loads PRE'd");
51
52static cl::opt<bool> EnablePRE("enable-pre",
53                               cl::init(true), cl::Hidden);
54static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
55
56//===----------------------------------------------------------------------===//
57//                         ValueTable Class
58//===----------------------------------------------------------------------===//
59
60/// This class holds the mapping between values and value numbers.  It is used
61/// as an efficient mechanism to determine the expression-wise equivalence of
62/// two values.
63namespace {
64  struct Expression {
65    uint32_t opcode;
66    const Type* type;
67    SmallVector<uint32_t, 4> varargs;
68
69    Expression() { }
70    Expression(uint32_t o) : opcode(o) { }
71
72    bool operator==(const Expression &other) const {
73      if (opcode != other.opcode)
74        return false;
75      else if (opcode == ~0U || opcode == ~1U)
76        return true;
77      else if (type != other.type)
78        return false;
79      else if (varargs != other.varargs)
80        return false;
81      return true;
82    }
83  };
84
85  class ValueTable {
86    private:
87      DenseMap<Value*, uint32_t> valueNumbering;
88      DenseMap<Expression, uint32_t> expressionNumbering;
89      AliasAnalysis* AA;
90      MemoryDependenceAnalysis* MD;
91      DominatorTree* DT;
92
93      uint32_t nextValueNumber;
94
95      Expression create_expression(Instruction* I);
96      uint32_t lookup_or_add_call(CallInst* C);
97    public:
98      ValueTable() : nextValueNumber(1) { }
99      uint32_t lookup_or_add(Value *V);
100      uint32_t lookup(Value *V) const;
101      void add(Value *V, uint32_t num);
102      void clear();
103      void erase(Value *v);
104      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
105      AliasAnalysis *getAliasAnalysis() const { return AA; }
106      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
107      void setDomTree(DominatorTree* D) { DT = D; }
108      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
109      void verifyRemoved(const Value *) const;
110  };
111}
112
113namespace llvm {
114template <> struct DenseMapInfo<Expression> {
115  static inline Expression getEmptyKey() {
116    return ~0U;
117  }
118
119  static inline Expression getTombstoneKey() {
120    return ~1U;
121  }
122
123  static unsigned getHashValue(const Expression e) {
124    unsigned hash = e.opcode;
125
126    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
127            (unsigned)((uintptr_t)e.type >> 9));
128
129    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
130         E = e.varargs.end(); I != E; ++I)
131      hash = *I + hash * 37;
132
133    return hash;
134  }
135  static bool isEqual(const Expression &LHS, const Expression &RHS) {
136    return LHS == RHS;
137  }
138};
139
140}
141
142//===----------------------------------------------------------------------===//
143//                     ValueTable Internal Functions
144//===----------------------------------------------------------------------===//
145
146
147Expression ValueTable::create_expression(Instruction *I) {
148  Expression e;
149  e.type = I->getType();
150  e.opcode = I->getOpcode();
151  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
152       OI != OE; ++OI)
153    e.varargs.push_back(lookup_or_add(*OI));
154
155  if (CmpInst *C = dyn_cast<CmpInst>(I))
156    e.opcode = (C->getOpcode() << 8) | C->getPredicate();
157  else if (ExtractValueInst *E = dyn_cast<ExtractValueInst>(I)) {
158    for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
159         II != IE; ++II)
160      e.varargs.push_back(*II);
161  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
162    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
163         II != IE; ++II)
164      e.varargs.push_back(*II);
165  }
166
167  return e;
168}
169
170//===----------------------------------------------------------------------===//
171//                     ValueTable External Functions
172//===----------------------------------------------------------------------===//
173
174/// add - Insert a value into the table with a specified value number.
175void ValueTable::add(Value *V, uint32_t num) {
176  valueNumbering.insert(std::make_pair(V, num));
177}
178
179uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
180  if (AA->doesNotAccessMemory(C)) {
181    Expression exp = create_expression(C);
182    uint32_t& e = expressionNumbering[exp];
183    if (!e) e = nextValueNumber++;
184    valueNumbering[C] = e;
185    return e;
186  } else if (AA->onlyReadsMemory(C)) {
187    Expression exp = create_expression(C);
188    uint32_t& e = expressionNumbering[exp];
189    if (!e) {
190      e = nextValueNumber++;
191      valueNumbering[C] = e;
192      return e;
193    }
194    if (!MD) {
195      e = nextValueNumber++;
196      valueNumbering[C] = e;
197      return e;
198    }
199
200    MemDepResult local_dep = MD->getDependency(C);
201
202    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
203      valueNumbering[C] =  nextValueNumber;
204      return nextValueNumber++;
205    }
206
207    if (local_dep.isDef()) {
208      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
209
210      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
211        valueNumbering[C] = nextValueNumber;
212        return nextValueNumber++;
213      }
214
215      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
216        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
217        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
218        if (c_vn != cd_vn) {
219          valueNumbering[C] = nextValueNumber;
220          return nextValueNumber++;
221        }
222      }
223
224      uint32_t v = lookup_or_add(local_cdep);
225      valueNumbering[C] = v;
226      return v;
227    }
228
229    // Non-local case.
230    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
231      MD->getNonLocalCallDependency(CallSite(C));
232    // FIXME: call/call dependencies for readonly calls should return def, not
233    // clobber!  Move the checking logic to MemDep!
234    CallInst* cdep = 0;
235
236    // Check to see if we have a single dominating call instruction that is
237    // identical to C.
238    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
239      const NonLocalDepEntry *I = &deps[i];
240      // Ignore non-local dependencies.
241      if (I->getResult().isNonLocal())
242        continue;
243
244      // We don't handle non-depedencies.  If we already have a call, reject
245      // instruction dependencies.
246      if (I->getResult().isClobber() || cdep != 0) {
247        cdep = 0;
248        break;
249      }
250
251      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
252      // FIXME: All duplicated with non-local case.
253      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
254        cdep = NonLocalDepCall;
255        continue;
256      }
257
258      cdep = 0;
259      break;
260    }
261
262    if (!cdep) {
263      valueNumbering[C] = nextValueNumber;
264      return nextValueNumber++;
265    }
266
267    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
268      valueNumbering[C] = nextValueNumber;
269      return nextValueNumber++;
270    }
271    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
272      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
273      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
274      if (c_vn != cd_vn) {
275        valueNumbering[C] = nextValueNumber;
276        return nextValueNumber++;
277      }
278    }
279
280    uint32_t v = lookup_or_add(cdep);
281    valueNumbering[C] = v;
282    return v;
283
284  } else {
285    valueNumbering[C] = nextValueNumber;
286    return nextValueNumber++;
287  }
288}
289
290/// lookup_or_add - Returns the value number for the specified value, assigning
291/// it a new number if it did not have one before.
292uint32_t ValueTable::lookup_or_add(Value *V) {
293  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
294  if (VI != valueNumbering.end())
295    return VI->second;
296
297  if (!isa<Instruction>(V)) {
298    valueNumbering[V] = nextValueNumber;
299    return nextValueNumber++;
300  }
301
302  Instruction* I = cast<Instruction>(V);
303  Expression exp;
304  switch (I->getOpcode()) {
305    case Instruction::Call:
306      return lookup_or_add_call(cast<CallInst>(I));
307    case Instruction::Add:
308    case Instruction::FAdd:
309    case Instruction::Sub:
310    case Instruction::FSub:
311    case Instruction::Mul:
312    case Instruction::FMul:
313    case Instruction::UDiv:
314    case Instruction::SDiv:
315    case Instruction::FDiv:
316    case Instruction::URem:
317    case Instruction::SRem:
318    case Instruction::FRem:
319    case Instruction::Shl:
320    case Instruction::LShr:
321    case Instruction::AShr:
322    case Instruction::And:
323    case Instruction::Or :
324    case Instruction::Xor:
325    case Instruction::ICmp:
326    case Instruction::FCmp:
327    case Instruction::Trunc:
328    case Instruction::ZExt:
329    case Instruction::SExt:
330    case Instruction::FPToUI:
331    case Instruction::FPToSI:
332    case Instruction::UIToFP:
333    case Instruction::SIToFP:
334    case Instruction::FPTrunc:
335    case Instruction::FPExt:
336    case Instruction::PtrToInt:
337    case Instruction::IntToPtr:
338    case Instruction::BitCast:
339    case Instruction::Select:
340    case Instruction::ExtractElement:
341    case Instruction::InsertElement:
342    case Instruction::ShuffleVector:
343    case Instruction::ExtractValue:
344    case Instruction::InsertValue:
345    case Instruction::GetElementPtr:
346      exp = create_expression(I);
347      break;
348    default:
349      valueNumbering[V] = nextValueNumber;
350      return nextValueNumber++;
351  }
352
353  uint32_t& e = expressionNumbering[exp];
354  if (!e) e = nextValueNumber++;
355  valueNumbering[V] = e;
356  return e;
357}
358
359/// lookup - Returns the value number of the specified value. Fails if
360/// the value has not yet been numbered.
361uint32_t ValueTable::lookup(Value *V) const {
362  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
363  assert(VI != valueNumbering.end() && "Value not numbered?");
364  return VI->second;
365}
366
367/// clear - Remove all entries from the ValueTable
368void ValueTable::clear() {
369  valueNumbering.clear();
370  expressionNumbering.clear();
371  nextValueNumber = 1;
372}
373
374/// erase - Remove a value from the value numbering
375void ValueTable::erase(Value *V) {
376  valueNumbering.erase(V);
377}
378
379/// verifyRemoved - Verify that the value is removed from all internal data
380/// structures.
381void ValueTable::verifyRemoved(const Value *V) const {
382  for (DenseMap<Value*, uint32_t>::const_iterator
383         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
384    assert(I->first != V && "Inst still occurs in value numbering map!");
385  }
386}
387
388//===----------------------------------------------------------------------===//
389//                                GVN Pass
390//===----------------------------------------------------------------------===//
391
392namespace {
393
394  class GVN : public FunctionPass {
395    bool runOnFunction(Function &F);
396  public:
397    static char ID; // Pass identification, replacement for typeid
398    explicit GVN(bool noloads = false)
399        : FunctionPass(ID), NoLoads(noloads), MD(0) {
400      initializeGVNPass(*PassRegistry::getPassRegistry());
401    }
402
403  private:
404    bool NoLoads;
405    MemoryDependenceAnalysis *MD;
406    DominatorTree *DT;
407    const TargetData* TD;
408
409    ValueTable VN;
410
411    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
412    /// have that value number.  Use findLeader to query it.
413    struct LeaderTableEntry {
414      Value *Val;
415      BasicBlock *BB;
416      LeaderTableEntry *Next;
417    };
418    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
419    BumpPtrAllocator TableAllocator;
420
421    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
422    /// its value number.
423    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
424      LeaderTableEntry& Curr = LeaderTable[N];
425      if (!Curr.Val) {
426        Curr.Val = V;
427        Curr.BB = BB;
428        return;
429      }
430
431      LeaderTableEntry* Node = TableAllocator.Allocate<LeaderTableEntry>();
432      Node->Val = V;
433      Node->BB = BB;
434      Node->Next = Curr.Next;
435      Curr.Next = Node;
436    }
437
438    /// removeFromLeaderTable - Scan the list of values corresponding to a given
439    /// value number, and remove the given value if encountered.
440    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
441      LeaderTableEntry* Prev = 0;
442      LeaderTableEntry* Curr = &LeaderTable[N];
443
444      while (Curr->Val != V || Curr->BB != BB) {
445        Prev = Curr;
446        Curr = Curr->Next;
447      }
448
449      if (Prev) {
450        Prev->Next = Curr->Next;
451      } else {
452        if (!Curr->Next) {
453          Curr->Val = 0;
454          Curr->BB = 0;
455        } else {
456          LeaderTableEntry* Next = Curr->Next;
457          Curr->Val = Next->Val;
458          Curr->BB = Next->BB;
459          Curr->Next = Next->Next;
460        }
461      }
462    }
463
464    // List of critical edges to be split between iterations.
465    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
466
467    // This transformation requires dominator postdominator info
468    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
469      AU.addRequired<DominatorTree>();
470      if (!NoLoads)
471        AU.addRequired<MemoryDependenceAnalysis>();
472      AU.addRequired<AliasAnalysis>();
473
474      AU.addPreserved<DominatorTree>();
475      AU.addPreserved<AliasAnalysis>();
476    }
477
478    // Helper fuctions
479    // FIXME: eliminate or document these better
480    bool processLoad(LoadInst* L,
481                     SmallVectorImpl<Instruction*> &toErase);
482    bool processInstruction(Instruction *I,
483                            SmallVectorImpl<Instruction*> &toErase);
484    bool processNonLocalLoad(LoadInst* L,
485                             SmallVectorImpl<Instruction*> &toErase);
486    bool processBlock(BasicBlock *BB);
487    void dump(DenseMap<uint32_t, Value*>& d);
488    bool iterateOnFunction(Function &F);
489    bool performPRE(Function& F);
490    Value *findLeader(BasicBlock *BB, uint32_t num);
491    void cleanupGlobalSets();
492    void verifyRemoved(const Instruction *I) const;
493    bool splitCriticalEdges();
494  };
495
496  char GVN::ID = 0;
497}
498
499// createGVNPass - The public interface to this file...
500FunctionPass *llvm::createGVNPass(bool NoLoads) {
501  return new GVN(NoLoads);
502}
503
504INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
505INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
506INITIALIZE_PASS_DEPENDENCY(DominatorTree)
507INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
508INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
509
510void GVN::dump(DenseMap<uint32_t, Value*>& d) {
511  errs() << "{\n";
512  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
513       E = d.end(); I != E; ++I) {
514      errs() << I->first << "\n";
515      I->second->dump();
516  }
517  errs() << "}\n";
518}
519
520/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
521/// we're analyzing is fully available in the specified block.  As we go, keep
522/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
523/// map is actually a tri-state map with the following values:
524///   0) we know the block *is not* fully available.
525///   1) we know the block *is* fully available.
526///   2) we do not know whether the block is fully available or not, but we are
527///      currently speculating that it will be.
528///   3) we are speculating for this block and have used that to speculate for
529///      other blocks.
530static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
531                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
532  // Optimistically assume that the block is fully available and check to see
533  // if we already know about this block in one lookup.
534  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
535    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
536
537  // If the entry already existed for this block, return the precomputed value.
538  if (!IV.second) {
539    // If this is a speculative "available" value, mark it as being used for
540    // speculation of other blocks.
541    if (IV.first->second == 2)
542      IV.first->second = 3;
543    return IV.first->second != 0;
544  }
545
546  // Otherwise, see if it is fully available in all predecessors.
547  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
548
549  // If this block has no predecessors, it isn't live-in here.
550  if (PI == PE)
551    goto SpeculationFailure;
552
553  for (; PI != PE; ++PI)
554    // If the value isn't fully available in one of our predecessors, then it
555    // isn't fully available in this block either.  Undo our previous
556    // optimistic assumption and bail out.
557    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
558      goto SpeculationFailure;
559
560  return true;
561
562// SpeculationFailure - If we get here, we found out that this is not, after
563// all, a fully-available block.  We have a problem if we speculated on this and
564// used the speculation to mark other blocks as available.
565SpeculationFailure:
566  char &BBVal = FullyAvailableBlocks[BB];
567
568  // If we didn't speculate on this, just return with it set to false.
569  if (BBVal == 2) {
570    BBVal = 0;
571    return false;
572  }
573
574  // If we did speculate on this value, we could have blocks set to 1 that are
575  // incorrect.  Walk the (transitive) successors of this block and mark them as
576  // 0 if set to one.
577  SmallVector<BasicBlock*, 32> BBWorklist;
578  BBWorklist.push_back(BB);
579
580  do {
581    BasicBlock *Entry = BBWorklist.pop_back_val();
582    // Note that this sets blocks to 0 (unavailable) if they happen to not
583    // already be in FullyAvailableBlocks.  This is safe.
584    char &EntryVal = FullyAvailableBlocks[Entry];
585    if (EntryVal == 0) continue;  // Already unavailable.
586
587    // Mark as unavailable.
588    EntryVal = 0;
589
590    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
591      BBWorklist.push_back(*I);
592  } while (!BBWorklist.empty());
593
594  return false;
595}
596
597
598/// CanCoerceMustAliasedValueToLoad - Return true if
599/// CoerceAvailableValueToLoadType will succeed.
600static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
601                                            const Type *LoadTy,
602                                            const TargetData &TD) {
603  // If the loaded or stored value is an first class array or struct, don't try
604  // to transform them.  We need to be able to bitcast to integer.
605  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
606      StoredVal->getType()->isStructTy() ||
607      StoredVal->getType()->isArrayTy())
608    return false;
609
610  // The store has to be at least as big as the load.
611  if (TD.getTypeSizeInBits(StoredVal->getType()) <
612        TD.getTypeSizeInBits(LoadTy))
613    return false;
614
615  return true;
616}
617
618
619/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
620/// then a load from a must-aliased pointer of a different type, try to coerce
621/// the stored value.  LoadedTy is the type of the load we want to replace and
622/// InsertPt is the place to insert new instructions.
623///
624/// If we can't do it, return null.
625static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
626                                             const Type *LoadedTy,
627                                             Instruction *InsertPt,
628                                             const TargetData &TD) {
629  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
630    return 0;
631
632  const Type *StoredValTy = StoredVal->getType();
633
634  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
635  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
636
637  // If the store and reload are the same size, we can always reuse it.
638  if (StoreSize == LoadSize) {
639    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
640      // Pointer to Pointer -> use bitcast.
641      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
642    }
643
644    // Convert source pointers to integers, which can be bitcast.
645    if (StoredValTy->isPointerTy()) {
646      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
647      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
648    }
649
650    const Type *TypeToCastTo = LoadedTy;
651    if (TypeToCastTo->isPointerTy())
652      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
653
654    if (StoredValTy != TypeToCastTo)
655      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
656
657    // Cast to pointer if the load needs a pointer type.
658    if (LoadedTy->isPointerTy())
659      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
660
661    return StoredVal;
662  }
663
664  // If the loaded value is smaller than the available value, then we can
665  // extract out a piece from it.  If the available value is too small, then we
666  // can't do anything.
667  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
668
669  // Convert source pointers to integers, which can be manipulated.
670  if (StoredValTy->isPointerTy()) {
671    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
672    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
673  }
674
675  // Convert vectors and fp to integer, which can be manipulated.
676  if (!StoredValTy->isIntegerTy()) {
677    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
678    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
679  }
680
681  // If this is a big-endian system, we need to shift the value down to the low
682  // bits so that a truncate will work.
683  if (TD.isBigEndian()) {
684    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
685    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
686  }
687
688  // Truncate the integer to the right size now.
689  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
690  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
691
692  if (LoadedTy == NewIntTy)
693    return StoredVal;
694
695  // If the result is a pointer, inttoptr.
696  if (LoadedTy->isPointerTy())
697    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
698
699  // Otherwise, bitcast.
700  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
701}
702
703/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
704/// memdep query of a load that ends up being a clobbering memory write (store,
705/// memset, memcpy, memmove).  This means that the write *may* provide bits used
706/// by the load but we can't be sure because the pointers don't mustalias.
707///
708/// Check this case to see if there is anything more we can do before we give
709/// up.  This returns -1 if we have to give up, or a byte number in the stored
710/// value of the piece that feeds the load.
711static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
712                                          Value *WritePtr,
713                                          uint64_t WriteSizeInBits,
714                                          const TargetData &TD) {
715  // If the loaded or stored value is an first class array or struct, don't try
716  // to transform them.  We need to be able to bitcast to integer.
717  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
718    return -1;
719
720  int64_t StoreOffset = 0, LoadOffset = 0;
721  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
722  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
723  if (StoreBase != LoadBase)
724    return -1;
725
726  // If the load and store are to the exact same address, they should have been
727  // a must alias.  AA must have gotten confused.
728  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
729  // to a load from the base of the memset.
730#if 0
731  if (LoadOffset == StoreOffset) {
732    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
733    << "Base       = " << *StoreBase << "\n"
734    << "Store Ptr  = " << *WritePtr << "\n"
735    << "Store Offs = " << StoreOffset << "\n"
736    << "Load Ptr   = " << *LoadPtr << "\n";
737    abort();
738  }
739#endif
740
741  // If the load and store don't overlap at all, the store doesn't provide
742  // anything to the load.  In this case, they really don't alias at all, AA
743  // must have gotten confused.
744  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
745
746  if ((WriteSizeInBits & 7) | (LoadSize & 7))
747    return -1;
748  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
749  LoadSize >>= 3;
750
751
752  bool isAAFailure = false;
753  if (StoreOffset < LoadOffset)
754    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
755  else
756    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
757
758  if (isAAFailure) {
759#if 0
760    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
761    << "Base       = " << *StoreBase << "\n"
762    << "Store Ptr  = " << *WritePtr << "\n"
763    << "Store Offs = " << StoreOffset << "\n"
764    << "Load Ptr   = " << *LoadPtr << "\n";
765    abort();
766#endif
767    return -1;
768  }
769
770  // If the Load isn't completely contained within the stored bits, we don't
771  // have all the bits to feed it.  We could do something crazy in the future
772  // (issue a smaller load then merge the bits in) but this seems unlikely to be
773  // valuable.
774  if (StoreOffset > LoadOffset ||
775      StoreOffset+StoreSize < LoadOffset+LoadSize)
776    return -1;
777
778  // Okay, we can do this transformation.  Return the number of bytes into the
779  // store that the load is.
780  return LoadOffset-StoreOffset;
781}
782
783/// AnalyzeLoadFromClobberingStore - This function is called when we have a
784/// memdep query of a load that ends up being a clobbering store.
785static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
786                                          StoreInst *DepSI,
787                                          const TargetData &TD) {
788  // Cannot handle reading from store of first-class aggregate yet.
789  if (DepSI->getValueOperand()->getType()->isStructTy() ||
790      DepSI->getValueOperand()->getType()->isArrayTy())
791    return -1;
792
793  Value *StorePtr = DepSI->getPointerOperand();
794  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
795  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
796                                        StorePtr, StoreSize, TD);
797}
798
799static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
800                                            MemIntrinsic *MI,
801                                            const TargetData &TD) {
802  // If the mem operation is a non-constant size, we can't handle it.
803  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
804  if (SizeCst == 0) return -1;
805  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
806
807  // If this is memset, we just need to see if the offset is valid in the size
808  // of the memset..
809  if (MI->getIntrinsicID() == Intrinsic::memset)
810    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
811                                          MemSizeInBits, TD);
812
813  // If we have a memcpy/memmove, the only case we can handle is if this is a
814  // copy from constant memory.  In that case, we can read directly from the
815  // constant memory.
816  MemTransferInst *MTI = cast<MemTransferInst>(MI);
817
818  Constant *Src = dyn_cast<Constant>(MTI->getSource());
819  if (Src == 0) return -1;
820
821  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src));
822  if (GV == 0 || !GV->isConstant()) return -1;
823
824  // See if the access is within the bounds of the transfer.
825  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
826                                              MI->getDest(), MemSizeInBits, TD);
827  if (Offset == -1)
828    return Offset;
829
830  // Otherwise, see if we can constant fold a load from the constant with the
831  // offset applied as appropriate.
832  Src = ConstantExpr::getBitCast(Src,
833                                 llvm::Type::getInt8PtrTy(Src->getContext()));
834  Constant *OffsetCst =
835    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
836  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
837  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
838  if (ConstantFoldLoadFromConstPtr(Src, &TD))
839    return Offset;
840  return -1;
841}
842
843
844/// GetStoreValueForLoad - This function is called when we have a
845/// memdep query of a load that ends up being a clobbering store.  This means
846/// that the store *may* provide bits used by the load but we can't be sure
847/// because the pointers don't mustalias.  Check this case to see if there is
848/// anything more we can do before we give up.
849static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
850                                   const Type *LoadTy,
851                                   Instruction *InsertPt, const TargetData &TD){
852  LLVMContext &Ctx = SrcVal->getType()->getContext();
853
854  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
855  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
856
857  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
858
859  // Compute which bits of the stored value are being used by the load.  Convert
860  // to an integer type to start with.
861  if (SrcVal->getType()->isPointerTy())
862    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
863  if (!SrcVal->getType()->isIntegerTy())
864    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
865                                   "tmp");
866
867  // Shift the bits to the least significant depending on endianness.
868  unsigned ShiftAmt;
869  if (TD.isLittleEndian())
870    ShiftAmt = Offset*8;
871  else
872    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
873
874  if (ShiftAmt)
875    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
876
877  if (LoadSize != StoreSize)
878    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
879                                 "tmp");
880
881  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
882}
883
884/// GetMemInstValueForLoad - This function is called when we have a
885/// memdep query of a load that ends up being a clobbering mem intrinsic.
886static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
887                                     const Type *LoadTy, Instruction *InsertPt,
888                                     const TargetData &TD){
889  LLVMContext &Ctx = LoadTy->getContext();
890  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
891
892  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
893
894  // We know that this method is only called when the mem transfer fully
895  // provides the bits for the load.
896  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
897    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
898    // independently of what the offset is.
899    Value *Val = MSI->getValue();
900    if (LoadSize != 1)
901      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
902
903    Value *OneElt = Val;
904
905    // Splat the value out to the right number of bits.
906    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
907      // If we can double the number of bytes set, do it.
908      if (NumBytesSet*2 <= LoadSize) {
909        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
910        Val = Builder.CreateOr(Val, ShVal);
911        NumBytesSet <<= 1;
912        continue;
913      }
914
915      // Otherwise insert one byte at a time.
916      Value *ShVal = Builder.CreateShl(Val, 1*8);
917      Val = Builder.CreateOr(OneElt, ShVal);
918      ++NumBytesSet;
919    }
920
921    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
922  }
923
924  // Otherwise, this is a memcpy/memmove from a constant global.
925  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
926  Constant *Src = cast<Constant>(MTI->getSource());
927
928  // Otherwise, see if we can constant fold a load from the constant with the
929  // offset applied as appropriate.
930  Src = ConstantExpr::getBitCast(Src,
931                                 llvm::Type::getInt8PtrTy(Src->getContext()));
932  Constant *OffsetCst =
933  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
934  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
935  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
936  return ConstantFoldLoadFromConstPtr(Src, &TD);
937}
938
939namespace {
940
941struct AvailableValueInBlock {
942  /// BB - The basic block in question.
943  BasicBlock *BB;
944  enum ValType {
945    SimpleVal,  // A simple offsetted value that is accessed.
946    MemIntrin   // A memory intrinsic which is loaded from.
947  };
948
949  /// V - The value that is live out of the block.
950  PointerIntPair<Value *, 1, ValType> Val;
951
952  /// Offset - The byte offset in Val that is interesting for the load query.
953  unsigned Offset;
954
955  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
956                                   unsigned Offset = 0) {
957    AvailableValueInBlock Res;
958    Res.BB = BB;
959    Res.Val.setPointer(V);
960    Res.Val.setInt(SimpleVal);
961    Res.Offset = Offset;
962    return Res;
963  }
964
965  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
966                                     unsigned Offset = 0) {
967    AvailableValueInBlock Res;
968    Res.BB = BB;
969    Res.Val.setPointer(MI);
970    Res.Val.setInt(MemIntrin);
971    Res.Offset = Offset;
972    return Res;
973  }
974
975  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
976  Value *getSimpleValue() const {
977    assert(isSimpleValue() && "Wrong accessor");
978    return Val.getPointer();
979  }
980
981  MemIntrinsic *getMemIntrinValue() const {
982    assert(!isSimpleValue() && "Wrong accessor");
983    return cast<MemIntrinsic>(Val.getPointer());
984  }
985
986  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
987  /// defined here to the specified type.  This handles various coercion cases.
988  Value *MaterializeAdjustedValue(const Type *LoadTy,
989                                  const TargetData *TD) const {
990    Value *Res;
991    if (isSimpleValue()) {
992      Res = getSimpleValue();
993      if (Res->getType() != LoadTy) {
994        assert(TD && "Need target data to handle type mismatch case");
995        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
996                                   *TD);
997
998        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
999                     << *getSimpleValue() << '\n'
1000                     << *Res << '\n' << "\n\n\n");
1001      }
1002    } else {
1003      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1004                                   LoadTy, BB->getTerminator(), *TD);
1005      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1006                   << "  " << *getMemIntrinValue() << '\n'
1007                   << *Res << '\n' << "\n\n\n");
1008    }
1009    return Res;
1010  }
1011};
1012
1013}
1014
1015/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1016/// construct SSA form, allowing us to eliminate LI.  This returns the value
1017/// that should be used at LI's definition site.
1018static Value *ConstructSSAForLoadSet(LoadInst *LI,
1019                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1020                                     const TargetData *TD,
1021                                     const DominatorTree &DT,
1022                                     AliasAnalysis *AA) {
1023  // Check for the fully redundant, dominating load case.  In this case, we can
1024  // just use the dominating value directly.
1025  if (ValuesPerBlock.size() == 1 &&
1026      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1027    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1028
1029  // Otherwise, we have to construct SSA form.
1030  SmallVector<PHINode*, 8> NewPHIs;
1031  SSAUpdater SSAUpdate(&NewPHIs);
1032  SSAUpdate.Initialize(LI->getType(), LI->getName());
1033
1034  const Type *LoadTy = LI->getType();
1035
1036  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1037    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1038    BasicBlock *BB = AV.BB;
1039
1040    if (SSAUpdate.HasValueForBlock(BB))
1041      continue;
1042
1043    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1044  }
1045
1046  // Perform PHI construction.
1047  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1048
1049  // If new PHI nodes were created, notify alias analysis.
1050  if (V->getType()->isPointerTy())
1051    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1052      AA->copyValue(LI, NewPHIs[i]);
1053
1054    // Now that we've copied information to the new PHIs, scan through
1055    // them again and inform alias analysis that we've added potentially
1056    // escaping uses to any values that are operands to these PHIs.
1057    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1058      PHINode *P = NewPHIs[i];
1059      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii)
1060        AA->addEscapingUse(P->getOperandUse(2*ii));
1061    }
1062
1063  return V;
1064}
1065
1066static bool isLifetimeStart(const Instruction *Inst) {
1067  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1068    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1069  return false;
1070}
1071
1072/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1073/// non-local by performing PHI construction.
1074bool GVN::processNonLocalLoad(LoadInst *LI,
1075                              SmallVectorImpl<Instruction*> &toErase) {
1076  // Find the non-local dependencies of the load.
1077  SmallVector<NonLocalDepResult, 64> Deps;
1078  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1079  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1080  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1081  //             << Deps.size() << *LI << '\n');
1082
1083  // If we had to process more than one hundred blocks to find the
1084  // dependencies, this load isn't worth worrying about.  Optimizing
1085  // it will be too expensive.
1086  if (Deps.size() > 100)
1087    return false;
1088
1089  // If we had a phi translation failure, we'll have a single entry which is a
1090  // clobber in the current block.  Reject this early.
1091  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1092    DEBUG(
1093      dbgs() << "GVN: non-local load ";
1094      WriteAsOperand(dbgs(), LI);
1095      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1096    );
1097    return false;
1098  }
1099
1100  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1101  // where we have a value available in repl, also keep track of whether we see
1102  // dependencies that produce an unknown value for the load (such as a call
1103  // that could potentially clobber the load).
1104  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1105  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1106
1107  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1108    BasicBlock *DepBB = Deps[i].getBB();
1109    MemDepResult DepInfo = Deps[i].getResult();
1110
1111    if (DepInfo.isClobber()) {
1112      // The address being loaded in this non-local block may not be the same as
1113      // the pointer operand of the load if PHI translation occurs.  Make sure
1114      // to consider the right address.
1115      Value *Address = Deps[i].getAddress();
1116
1117      // If the dependence is to a store that writes to a superset of the bits
1118      // read by the load, we can extract the bits we need for the load from the
1119      // stored value.
1120      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1121        if (TD && Address) {
1122          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1123                                                      DepSI, *TD);
1124          if (Offset != -1) {
1125            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1126                                                       DepSI->getValueOperand(),
1127                                                                Offset));
1128            continue;
1129          }
1130        }
1131      }
1132
1133      // If the clobbering value is a memset/memcpy/memmove, see if we can
1134      // forward a value on from it.
1135      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1136        if (TD && Address) {
1137          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1138                                                        DepMI, *TD);
1139          if (Offset != -1) {
1140            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1141                                                                  Offset));
1142            continue;
1143          }
1144        }
1145      }
1146
1147      UnavailableBlocks.push_back(DepBB);
1148      continue;
1149    }
1150
1151    Instruction *DepInst = DepInfo.getInst();
1152
1153    // Loading the allocation -> undef.
1154    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1155        // Loading immediately after lifetime begin -> undef.
1156        isLifetimeStart(DepInst)) {
1157      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1158                                             UndefValue::get(LI->getType())));
1159      continue;
1160    }
1161
1162    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1163      // Reject loads and stores that are to the same address but are of
1164      // different types if we have to.
1165      if (S->getValueOperand()->getType() != LI->getType()) {
1166        // If the stored value is larger or equal to the loaded value, we can
1167        // reuse it.
1168        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1169                                                        LI->getType(), *TD)) {
1170          UnavailableBlocks.push_back(DepBB);
1171          continue;
1172        }
1173      }
1174
1175      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1176                                                         S->getValueOperand()));
1177      continue;
1178    }
1179
1180    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1181      // If the types mismatch and we can't handle it, reject reuse of the load.
1182      if (LD->getType() != LI->getType()) {
1183        // If the stored value is larger or equal to the loaded value, we can
1184        // reuse it.
1185        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1186          UnavailableBlocks.push_back(DepBB);
1187          continue;
1188        }
1189      }
1190      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1191      continue;
1192    }
1193
1194    UnavailableBlocks.push_back(DepBB);
1195    continue;
1196  }
1197
1198  // If we have no predecessors that produce a known value for this load, exit
1199  // early.
1200  if (ValuesPerBlock.empty()) return false;
1201
1202  // If all of the instructions we depend on produce a known value for this
1203  // load, then it is fully redundant and we can use PHI insertion to compute
1204  // its value.  Insert PHIs and remove the fully redundant value now.
1205  if (UnavailableBlocks.empty()) {
1206    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1207
1208    // Perform PHI construction.
1209    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1210                                      VN.getAliasAnalysis());
1211    LI->replaceAllUsesWith(V);
1212
1213    if (isa<PHINode>(V))
1214      V->takeName(LI);
1215    if (V->getType()->isPointerTy())
1216      MD->invalidateCachedPointerInfo(V);
1217    VN.erase(LI);
1218    toErase.push_back(LI);
1219    ++NumGVNLoad;
1220    return true;
1221  }
1222
1223  if (!EnablePRE || !EnableLoadPRE)
1224    return false;
1225
1226  // Okay, we have *some* definitions of the value.  This means that the value
1227  // is available in some of our (transitive) predecessors.  Lets think about
1228  // doing PRE of this load.  This will involve inserting a new load into the
1229  // predecessor when it's not available.  We could do this in general, but
1230  // prefer to not increase code size.  As such, we only do this when we know
1231  // that we only have to insert *one* load (which means we're basically moving
1232  // the load, not inserting a new one).
1233
1234  SmallPtrSet<BasicBlock *, 4> Blockers;
1235  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1236    Blockers.insert(UnavailableBlocks[i]);
1237
1238  // Lets find first basic block with more than one predecessor.  Walk backwards
1239  // through predecessors if needed.
1240  BasicBlock *LoadBB = LI->getParent();
1241  BasicBlock *TmpBB = LoadBB;
1242
1243  bool isSinglePred = false;
1244  bool allSingleSucc = true;
1245  while (TmpBB->getSinglePredecessor()) {
1246    isSinglePred = true;
1247    TmpBB = TmpBB->getSinglePredecessor();
1248    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1249      return false;
1250    if (Blockers.count(TmpBB))
1251      return false;
1252
1253    // If any of these blocks has more than one successor (i.e. if the edge we
1254    // just traversed was critical), then there are other paths through this
1255    // block along which the load may not be anticipated.  Hoisting the load
1256    // above this block would be adding the load to execution paths along
1257    // which it was not previously executed.
1258    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1259      return false;
1260  }
1261
1262  assert(TmpBB);
1263  LoadBB = TmpBB;
1264
1265  // FIXME: It is extremely unclear what this loop is doing, other than
1266  // artificially restricting loadpre.
1267  if (isSinglePred) {
1268    bool isHot = false;
1269    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1270      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1271      if (AV.isSimpleValue())
1272        // "Hot" Instruction is in some loop (because it dominates its dep.
1273        // instruction).
1274        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1275          if (DT->dominates(LI, I)) {
1276            isHot = true;
1277            break;
1278          }
1279    }
1280
1281    // We are interested only in "hot" instructions. We don't want to do any
1282    // mis-optimizations here.
1283    if (!isHot)
1284      return false;
1285  }
1286
1287  // Check to see how many predecessors have the loaded value fully
1288  // available.
1289  DenseMap<BasicBlock*, Value*> PredLoads;
1290  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1291  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1292    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1293  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1294    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1295
1296  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1297  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1298       PI != E; ++PI) {
1299    BasicBlock *Pred = *PI;
1300    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1301      continue;
1302    }
1303    PredLoads[Pred] = 0;
1304
1305    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1306      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1307        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1308              << Pred->getName() << "': " << *LI << '\n');
1309        return false;
1310      }
1311      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1312      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1313    }
1314  }
1315  if (!NeedToSplit.empty()) {
1316    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1317    return false;
1318  }
1319
1320  // Decide whether PRE is profitable for this load.
1321  unsigned NumUnavailablePreds = PredLoads.size();
1322  assert(NumUnavailablePreds != 0 &&
1323         "Fully available value should be eliminated above!");
1324
1325  // If this load is unavailable in multiple predecessors, reject it.
1326  // FIXME: If we could restructure the CFG, we could make a common pred with
1327  // all the preds that don't have an available LI and insert a new load into
1328  // that one block.
1329  if (NumUnavailablePreds != 1)
1330      return false;
1331
1332  // Check if the load can safely be moved to all the unavailable predecessors.
1333  bool CanDoPRE = true;
1334  SmallVector<Instruction*, 8> NewInsts;
1335  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1336         E = PredLoads.end(); I != E; ++I) {
1337    BasicBlock *UnavailablePred = I->first;
1338
1339    // Do PHI translation to get its value in the predecessor if necessary.  The
1340    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1341
1342    // If all preds have a single successor, then we know it is safe to insert
1343    // the load on the pred (?!?), so we can insert code to materialize the
1344    // pointer if it is not available.
1345    PHITransAddr Address(LI->getPointerOperand(), TD);
1346    Value *LoadPtr = 0;
1347    if (allSingleSucc) {
1348      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1349                                                  *DT, NewInsts);
1350    } else {
1351      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1352      LoadPtr = Address.getAddr();
1353    }
1354
1355    // If we couldn't find or insert a computation of this phi translated value,
1356    // we fail PRE.
1357    if (LoadPtr == 0) {
1358      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1359            << *LI->getPointerOperand() << "\n");
1360      CanDoPRE = false;
1361      break;
1362    }
1363
1364    // Make sure it is valid to move this load here.  We have to watch out for:
1365    //  @1 = getelementptr (i8* p, ...
1366    //  test p and branch if == 0
1367    //  load @1
1368    // It is valid to have the getelementptr before the test, even if p can
1369    // be 0, as getelementptr only does address arithmetic.
1370    // If we are not pushing the value through any multiple-successor blocks
1371    // we do not have this case.  Otherwise, check that the load is safe to
1372    // put anywhere; this can be improved, but should be conservatively safe.
1373    if (!allSingleSucc &&
1374        // FIXME: REEVALUTE THIS.
1375        !isSafeToLoadUnconditionally(LoadPtr,
1376                                     UnavailablePred->getTerminator(),
1377                                     LI->getAlignment(), TD)) {
1378      CanDoPRE = false;
1379      break;
1380    }
1381
1382    I->second = LoadPtr;
1383  }
1384
1385  if (!CanDoPRE) {
1386    while (!NewInsts.empty()) {
1387      Instruction *I = NewInsts.pop_back_val();
1388      if (MD) MD->removeInstruction(I);
1389      I->eraseFromParent();
1390    }
1391    return false;
1392  }
1393
1394  // Okay, we can eliminate this load by inserting a reload in the predecessor
1395  // and using PHI construction to get the value in the other predecessors, do
1396  // it.
1397  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1398  DEBUG(if (!NewInsts.empty())
1399          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1400                 << *NewInsts.back() << '\n');
1401
1402  // Assign value numbers to the new instructions.
1403  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1404    // FIXME: We really _ought_ to insert these value numbers into their
1405    // parent's availability map.  However, in doing so, we risk getting into
1406    // ordering issues.  If a block hasn't been processed yet, we would be
1407    // marking a value as AVAIL-IN, which isn't what we intend.
1408    VN.lookup_or_add(NewInsts[i]);
1409  }
1410
1411  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1412         E = PredLoads.end(); I != E; ++I) {
1413    BasicBlock *UnavailablePred = I->first;
1414    Value *LoadPtr = I->second;
1415
1416    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1417                                        LI->getAlignment(),
1418                                        UnavailablePred->getTerminator());
1419
1420    // Transfer the old load's TBAA tag to the new load.
1421    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1422      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1423
1424    // Add the newly created load.
1425    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1426                                                        NewLoad));
1427    MD->invalidateCachedPointerInfo(LoadPtr);
1428    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1429  }
1430
1431  // Perform PHI construction.
1432  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1433                                    VN.getAliasAnalysis());
1434  LI->replaceAllUsesWith(V);
1435  if (isa<PHINode>(V))
1436    V->takeName(LI);
1437  if (V->getType()->isPointerTy())
1438    MD->invalidateCachedPointerInfo(V);
1439  VN.erase(LI);
1440  toErase.push_back(LI);
1441  ++NumPRELoad;
1442  return true;
1443}
1444
1445/// processLoad - Attempt to eliminate a load, first by eliminating it
1446/// locally, and then attempting non-local elimination if that fails.
1447bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1448  if (!MD)
1449    return false;
1450
1451  if (L->isVolatile())
1452    return false;
1453
1454  // ... to a pointer that has been loaded from before...
1455  MemDepResult Dep = MD->getDependency(L);
1456
1457  // If the value isn't available, don't do anything!
1458  if (Dep.isClobber()) {
1459    // Check to see if we have something like this:
1460    //   store i32 123, i32* %P
1461    //   %A = bitcast i32* %P to i8*
1462    //   %B = gep i8* %A, i32 1
1463    //   %C = load i8* %B
1464    //
1465    // We could do that by recognizing if the clobber instructions are obviously
1466    // a common base + constant offset, and if the previous store (or memset)
1467    // completely covers this load.  This sort of thing can happen in bitfield
1468    // access code.
1469    Value *AvailVal = 0;
1470    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1471      if (TD) {
1472        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1473                                                    L->getPointerOperand(),
1474                                                    DepSI, *TD);
1475        if (Offset != -1)
1476          AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1477                                          L->getType(), L, *TD);
1478      }
1479
1480    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1481    // a value on from it.
1482    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1483      if (TD) {
1484        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1485                                                      L->getPointerOperand(),
1486                                                      DepMI, *TD);
1487        if (Offset != -1)
1488          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1489      }
1490    }
1491
1492    if (AvailVal) {
1493      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1494            << *AvailVal << '\n' << *L << "\n\n\n");
1495
1496      // Replace the load!
1497      L->replaceAllUsesWith(AvailVal);
1498      if (AvailVal->getType()->isPointerTy())
1499        MD->invalidateCachedPointerInfo(AvailVal);
1500      VN.erase(L);
1501      toErase.push_back(L);
1502      ++NumGVNLoad;
1503      return true;
1504    }
1505
1506    DEBUG(
1507      // fast print dep, using operator<< on instruction would be too slow
1508      dbgs() << "GVN: load ";
1509      WriteAsOperand(dbgs(), L);
1510      Instruction *I = Dep.getInst();
1511      dbgs() << " is clobbered by " << *I << '\n';
1512    );
1513    return false;
1514  }
1515
1516  // If it is defined in another block, try harder.
1517  if (Dep.isNonLocal())
1518    return processNonLocalLoad(L, toErase);
1519
1520  Instruction *DepInst = Dep.getInst();
1521  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1522    Value *StoredVal = DepSI->getValueOperand();
1523
1524    // The store and load are to a must-aliased pointer, but they may not
1525    // actually have the same type.  See if we know how to reuse the stored
1526    // value (depending on its type).
1527    if (StoredVal->getType() != L->getType()) {
1528      if (TD) {
1529        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1530                                                   L, *TD);
1531        if (StoredVal == 0)
1532          return false;
1533
1534        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1535                     << '\n' << *L << "\n\n\n");
1536      }
1537      else
1538        return false;
1539    }
1540
1541    // Remove it!
1542    L->replaceAllUsesWith(StoredVal);
1543    if (StoredVal->getType()->isPointerTy())
1544      MD->invalidateCachedPointerInfo(StoredVal);
1545    VN.erase(L);
1546    toErase.push_back(L);
1547    ++NumGVNLoad;
1548    return true;
1549  }
1550
1551  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1552    Value *AvailableVal = DepLI;
1553
1554    // The loads are of a must-aliased pointer, but they may not actually have
1555    // the same type.  See if we know how to reuse the previously loaded value
1556    // (depending on its type).
1557    if (DepLI->getType() != L->getType()) {
1558      if (TD) {
1559        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1560        if (AvailableVal == 0)
1561          return false;
1562
1563        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1564                     << "\n" << *L << "\n\n\n");
1565      }
1566      else
1567        return false;
1568    }
1569
1570    // Remove it!
1571    L->replaceAllUsesWith(AvailableVal);
1572    if (DepLI->getType()->isPointerTy())
1573      MD->invalidateCachedPointerInfo(DepLI);
1574    VN.erase(L);
1575    toErase.push_back(L);
1576    ++NumGVNLoad;
1577    return true;
1578  }
1579
1580  // If this load really doesn't depend on anything, then we must be loading an
1581  // undef value.  This can happen when loading for a fresh allocation with no
1582  // intervening stores, for example.
1583  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1584    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1585    VN.erase(L);
1586    toErase.push_back(L);
1587    ++NumGVNLoad;
1588    return true;
1589  }
1590
1591  // If this load occurs either right after a lifetime begin,
1592  // then the loaded value is undefined.
1593  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1594    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1595      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1596      VN.erase(L);
1597      toErase.push_back(L);
1598      ++NumGVNLoad;
1599      return true;
1600    }
1601  }
1602
1603  return false;
1604}
1605
1606// findLeader - In order to find a leader for a given value number at a
1607// specific basic block, we first obtain the list of all Values for that number,
1608// and then scan the list to find one whose block dominates the block in
1609// question.  This is fast because dominator tree queries consist of only
1610// a few comparisons of DFS numbers.
1611Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1612  LeaderTableEntry Vals = LeaderTable[num];
1613  if (!Vals.Val) return 0;
1614
1615  Value *Val = 0;
1616  if (DT->dominates(Vals.BB, BB)) {
1617    Val = Vals.Val;
1618    if (isa<Constant>(Val)) return Val;
1619  }
1620
1621  LeaderTableEntry* Next = Vals.Next;
1622  while (Next) {
1623    if (DT->dominates(Next->BB, BB)) {
1624      if (isa<Constant>(Next->Val)) return Next->Val;
1625      if (!Val) Val = Next->Val;
1626    }
1627
1628    Next = Next->Next;
1629  }
1630
1631  return Val;
1632}
1633
1634
1635/// processInstruction - When calculating availability, handle an instruction
1636/// by inserting it into the appropriate sets
1637bool GVN::processInstruction(Instruction *I,
1638                             SmallVectorImpl<Instruction*> &toErase) {
1639  // Ignore dbg info intrinsics.
1640  if (isa<DbgInfoIntrinsic>(I))
1641    return false;
1642
1643  // If the instruction can be easily simplified then do so now in preference
1644  // to value numbering it.  Value numbering often exposes redundancies, for
1645  // example if it determines that %y is equal to %x then the instruction
1646  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1647  if (Value *V = SimplifyInstruction(I, TD, DT)) {
1648    I->replaceAllUsesWith(V);
1649    if (MD && V->getType()->isPointerTy())
1650      MD->invalidateCachedPointerInfo(V);
1651    VN.erase(I);
1652    toErase.push_back(I);
1653    return true;
1654  }
1655
1656  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1657    bool Changed = processLoad(LI, toErase);
1658
1659    if (!Changed) {
1660      unsigned Num = VN.lookup_or_add(LI);
1661      addToLeaderTable(Num, LI, LI->getParent());
1662    }
1663
1664    return Changed;
1665  }
1666
1667  // For conditions branches, we can perform simple conditional propagation on
1668  // the condition value itself.
1669  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1670    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1671      return false;
1672
1673    Value *BranchCond = BI->getCondition();
1674    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1675
1676    BasicBlock *TrueSucc = BI->getSuccessor(0);
1677    BasicBlock *FalseSucc = BI->getSuccessor(1);
1678
1679    if (TrueSucc->getSinglePredecessor())
1680      addToLeaderTable(CondVN,
1681                   ConstantInt::getTrue(TrueSucc->getContext()),
1682                   TrueSucc);
1683    if (FalseSucc->getSinglePredecessor())
1684      addToLeaderTable(CondVN,
1685                   ConstantInt::getFalse(TrueSucc->getContext()),
1686                   FalseSucc);
1687
1688    return false;
1689  }
1690
1691  // Instructions with void type don't return a value, so there's
1692  // no point in trying to find redudancies in them.
1693  if (I->getType()->isVoidTy()) return false;
1694
1695  uint32_t NextNum = VN.getNextUnusedValueNumber();
1696  unsigned Num = VN.lookup_or_add(I);
1697
1698  // Allocations are always uniquely numbered, so we can save time and memory
1699  // by fast failing them.
1700  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1701    addToLeaderTable(Num, I, I->getParent());
1702    return false;
1703  }
1704
1705  // If the number we were assigned was a brand new VN, then we don't
1706  // need to do a lookup to see if the number already exists
1707  // somewhere in the domtree: it can't!
1708  if (Num == NextNum) {
1709    addToLeaderTable(Num, I, I->getParent());
1710    return false;
1711  }
1712
1713  // Perform fast-path value-number based elimination of values inherited from
1714  // dominators.
1715  Value *repl = findLeader(I->getParent(), Num);
1716  if (repl == 0) {
1717    // Failure, just remember this instance for future use.
1718    addToLeaderTable(Num, I, I->getParent());
1719    return false;
1720  }
1721
1722  // Remove it!
1723  VN.erase(I);
1724  I->replaceAllUsesWith(repl);
1725  if (MD && repl->getType()->isPointerTy())
1726    MD->invalidateCachedPointerInfo(repl);
1727  toErase.push_back(I);
1728  return true;
1729}
1730
1731/// runOnFunction - This is the main transformation entry point for a function.
1732bool GVN::runOnFunction(Function& F) {
1733  if (!NoLoads)
1734    MD = &getAnalysis<MemoryDependenceAnalysis>();
1735  DT = &getAnalysis<DominatorTree>();
1736  TD = getAnalysisIfAvailable<TargetData>();
1737  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1738  VN.setMemDep(MD);
1739  VN.setDomTree(DT);
1740
1741  bool Changed = false;
1742  bool ShouldContinue = true;
1743
1744  // Merge unconditional branches, allowing PRE to catch more
1745  // optimization opportunities.
1746  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1747    BasicBlock *BB = FI++;
1748
1749    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1750    if (removedBlock) ++NumGVNBlocks;
1751
1752    Changed |= removedBlock;
1753  }
1754
1755  unsigned Iteration = 0;
1756
1757  while (ShouldContinue) {
1758    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
1759    ShouldContinue = iterateOnFunction(F);
1760    if (splitCriticalEdges())
1761      ShouldContinue = true;
1762    Changed |= ShouldContinue;
1763    ++Iteration;
1764  }
1765
1766  if (EnablePRE) {
1767    bool PREChanged = true;
1768    while (PREChanged) {
1769      PREChanged = performPRE(F);
1770      Changed |= PREChanged;
1771    }
1772  }
1773  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1774  // computations into blocks where they become fully redundant.  Note that
1775  // we can't do this until PRE's critical edge splitting updates memdep.
1776  // Actually, when this happens, we should just fully integrate PRE into GVN.
1777
1778  cleanupGlobalSets();
1779
1780  return Changed;
1781}
1782
1783
1784bool GVN::processBlock(BasicBlock *BB) {
1785  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1786  // incrementing BI before processing an instruction).
1787  SmallVector<Instruction*, 8> toErase;
1788  bool ChangedFunction = false;
1789
1790  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1791       BI != BE;) {
1792    ChangedFunction |= processInstruction(BI, toErase);
1793    if (toErase.empty()) {
1794      ++BI;
1795      continue;
1796    }
1797
1798    // If we need some instructions deleted, do it now.
1799    NumGVNInstr += toErase.size();
1800
1801    // Avoid iterator invalidation.
1802    bool AtStart = BI == BB->begin();
1803    if (!AtStart)
1804      --BI;
1805
1806    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1807         E = toErase.end(); I != E; ++I) {
1808      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
1809      if (MD) MD->removeInstruction(*I);
1810      (*I)->eraseFromParent();
1811      DEBUG(verifyRemoved(*I));
1812    }
1813    toErase.clear();
1814
1815    if (AtStart)
1816      BI = BB->begin();
1817    else
1818      ++BI;
1819  }
1820
1821  return ChangedFunction;
1822}
1823
1824/// performPRE - Perform a purely local form of PRE that looks for diamond
1825/// control flow patterns and attempts to perform simple PRE at the join point.
1826bool GVN::performPRE(Function &F) {
1827  bool Changed = false;
1828  DenseMap<BasicBlock*, Value*> predMap;
1829  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1830       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1831    BasicBlock *CurrentBlock = *DI;
1832
1833    // Nothing to PRE in the entry block.
1834    if (CurrentBlock == &F.getEntryBlock()) continue;
1835
1836    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1837         BE = CurrentBlock->end(); BI != BE; ) {
1838      Instruction *CurInst = BI++;
1839
1840      if (isa<AllocaInst>(CurInst) ||
1841          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1842          CurInst->getType()->isVoidTy() ||
1843          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1844          isa<DbgInfoIntrinsic>(CurInst))
1845        continue;
1846
1847      // We don't currently value number ANY inline asm calls.
1848      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
1849        if (CallI->isInlineAsm())
1850          continue;
1851
1852      uint32_t ValNo = VN.lookup(CurInst);
1853
1854      // Look for the predecessors for PRE opportunities.  We're
1855      // only trying to solve the basic diamond case, where
1856      // a value is computed in the successor and one predecessor,
1857      // but not the other.  We also explicitly disallow cases
1858      // where the successor is its own predecessor, because they're
1859      // more complicated to get right.
1860      unsigned NumWith = 0;
1861      unsigned NumWithout = 0;
1862      BasicBlock *PREPred = 0;
1863      predMap.clear();
1864
1865      for (pred_iterator PI = pred_begin(CurrentBlock),
1866           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1867        BasicBlock *P = *PI;
1868        // We're not interested in PRE where the block is its
1869        // own predecessor, or in blocks with predecessors
1870        // that are not reachable.
1871        if (P == CurrentBlock) {
1872          NumWithout = 2;
1873          break;
1874        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
1875          NumWithout = 2;
1876          break;
1877        }
1878
1879        Value* predV = findLeader(P, ValNo);
1880        if (predV == 0) {
1881          PREPred = P;
1882          ++NumWithout;
1883        } else if (predV == CurInst) {
1884          NumWithout = 2;
1885        } else {
1886          predMap[P] = predV;
1887          ++NumWith;
1888        }
1889      }
1890
1891      // Don't do PRE when it might increase code size, i.e. when
1892      // we would need to insert instructions in more than one pred.
1893      if (NumWithout != 1 || NumWith == 0)
1894        continue;
1895
1896      // Don't do PRE across indirect branch.
1897      if (isa<IndirectBrInst>(PREPred->getTerminator()))
1898        continue;
1899
1900      // We can't do PRE safely on a critical edge, so instead we schedule
1901      // the edge to be split and perform the PRE the next time we iterate
1902      // on the function.
1903      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
1904      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1905        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1906        continue;
1907      }
1908
1909      // Instantiate the expression in the predecessor that lacked it.
1910      // Because we are going top-down through the block, all value numbers
1911      // will be available in the predecessor by the time we need them.  Any
1912      // that weren't originally present will have been instantiated earlier
1913      // in this loop.
1914      Instruction *PREInstr = CurInst->clone();
1915      bool success = true;
1916      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1917        Value *Op = PREInstr->getOperand(i);
1918        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1919          continue;
1920
1921        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
1922          PREInstr->setOperand(i, V);
1923        } else {
1924          success = false;
1925          break;
1926        }
1927      }
1928
1929      // Fail out if we encounter an operand that is not available in
1930      // the PRE predecessor.  This is typically because of loads which
1931      // are not value numbered precisely.
1932      if (!success) {
1933        delete PREInstr;
1934        DEBUG(verifyRemoved(PREInstr));
1935        continue;
1936      }
1937
1938      PREInstr->insertBefore(PREPred->getTerminator());
1939      PREInstr->setName(CurInst->getName() + ".pre");
1940      predMap[PREPred] = PREInstr;
1941      VN.add(PREInstr, ValNo);
1942      ++NumGVNPRE;
1943
1944      // Update the availability map to include the new instruction.
1945      addToLeaderTable(ValNo, PREInstr, PREPred);
1946
1947      // Create a PHI to make the value available in this block.
1948      PHINode* Phi = PHINode::Create(CurInst->getType(),
1949                                     CurInst->getName() + ".pre-phi",
1950                                     CurrentBlock->begin());
1951      for (pred_iterator PI = pred_begin(CurrentBlock),
1952           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1953        BasicBlock *P = *PI;
1954        Phi->addIncoming(predMap[P], P);
1955      }
1956
1957      VN.add(Phi, ValNo);
1958      addToLeaderTable(ValNo, Phi, CurrentBlock);
1959
1960      CurInst->replaceAllUsesWith(Phi);
1961      if (Phi->getType()->isPointerTy()) {
1962        // Because we have added a PHI-use of the pointer value, it has now
1963        // "escaped" from alias analysis' perspective.  We need to inform
1964        // AA of this.
1965        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; ++ii)
1966          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(2*ii));
1967
1968        if (MD)
1969          MD->invalidateCachedPointerInfo(Phi);
1970      }
1971      VN.erase(CurInst);
1972      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
1973
1974      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
1975      if (MD) MD->removeInstruction(CurInst);
1976      CurInst->eraseFromParent();
1977      DEBUG(verifyRemoved(CurInst));
1978      Changed = true;
1979    }
1980  }
1981
1982  if (splitCriticalEdges())
1983    Changed = true;
1984
1985  return Changed;
1986}
1987
1988/// splitCriticalEdges - Split critical edges found during the previous
1989/// iteration that may enable further optimization.
1990bool GVN::splitCriticalEdges() {
1991  if (toSplit.empty())
1992    return false;
1993  do {
1994    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
1995    SplitCriticalEdge(Edge.first, Edge.second, this);
1996  } while (!toSplit.empty());
1997  if (MD) MD->invalidateCachedPredecessors();
1998  return true;
1999}
2000
2001/// iterateOnFunction - Executes one iteration of GVN
2002bool GVN::iterateOnFunction(Function &F) {
2003  cleanupGlobalSets();
2004
2005  // Top-down walk of the dominator tree
2006  bool Changed = false;
2007#if 0
2008  // Needed for value numbering with phi construction to work.
2009  ReversePostOrderTraversal<Function*> RPOT(&F);
2010  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2011       RE = RPOT.end(); RI != RE; ++RI)
2012    Changed |= processBlock(*RI);
2013#else
2014  DT->DT->recalculate(F);
2015  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2016       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2017    Changed |= processBlock(DI->getBlock());
2018#endif
2019
2020  return Changed;
2021}
2022
2023void GVN::cleanupGlobalSets() {
2024  VN.clear();
2025  LeaderTable.clear();
2026  TableAllocator.Reset();
2027}
2028
2029/// verifyRemoved - Verify that the specified instruction does not occur in our
2030/// internal data structures.
2031void GVN::verifyRemoved(const Instruction *Inst) const {
2032  VN.verifyRemoved(Inst);
2033
2034  // Walk through the value number scope to make sure the instruction isn't
2035  // ferreted away in it.
2036  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2037       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2038    const LeaderTableEntry *Node = &I->second;
2039    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2040
2041    while (Node->Next) {
2042      Node = Node->Next;
2043      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2044    }
2045  }
2046}
2047