GVN.cpp revision e922c0201916e0b980ab3cfe91e1413e68d55647
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Value.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/PostOrderIterator.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/MemoryDependenceAnalysis.h"
36#include "llvm/Support/CFG.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Compiler.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include <cstdio>
44using namespace llvm;
45
46STATISTIC(NumGVNInstr,  "Number of instructions deleted");
47STATISTIC(NumGVNLoad,   "Number of loads deleted");
48STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
49STATISTIC(NumGVNBlocks, "Number of blocks merged");
50STATISTIC(NumPRELoad,   "Number of loads PRE'd");
51
52static cl::opt<bool> EnablePRE("enable-pre",
53                               cl::init(true), cl::Hidden);
54static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
55
56//===----------------------------------------------------------------------===//
57//                         ValueTable Class
58//===----------------------------------------------------------------------===//
59
60/// This class holds the mapping between values and value numbers.  It is used
61/// as an efficient mechanism to determine the expression-wise equivalence of
62/// two values.
63namespace {
64  struct VISIBILITY_HIDDEN Expression {
65    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
66                            UDIV, SDIV, FDIV, UREM, SREM,
67                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
68                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
69                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
70                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
71                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
72                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
73                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
74                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
75                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
76                            EMPTY, TOMBSTONE };
77
78    ExpressionOpcode opcode;
79    const Type* type;
80    uint32_t firstVN;
81    uint32_t secondVN;
82    uint32_t thirdVN;
83    SmallVector<uint32_t, 4> varargs;
84    Value* function;
85
86    Expression() { }
87    Expression(ExpressionOpcode o) : opcode(o) { }
88
89    bool operator==(const Expression &other) const {
90      if (opcode != other.opcode)
91        return false;
92      else if (opcode == EMPTY || opcode == TOMBSTONE)
93        return true;
94      else if (type != other.type)
95        return false;
96      else if (function != other.function)
97        return false;
98      else if (firstVN != other.firstVN)
99        return false;
100      else if (secondVN != other.secondVN)
101        return false;
102      else if (thirdVN != other.thirdVN)
103        return false;
104      else {
105        if (varargs.size() != other.varargs.size())
106          return false;
107
108        for (size_t i = 0; i < varargs.size(); ++i)
109          if (varargs[i] != other.varargs[i])
110            return false;
111
112        return true;
113      }
114    }
115
116    bool operator!=(const Expression &other) const {
117      return !(*this == other);
118    }
119  };
120
121  class VISIBILITY_HIDDEN ValueTable {
122    private:
123      DenseMap<Value*, uint32_t> valueNumbering;
124      DenseMap<Expression, uint32_t> expressionNumbering;
125      AliasAnalysis* AA;
126      MemoryDependenceAnalysis* MD;
127      DominatorTree* DT;
128
129      uint32_t nextValueNumber;
130
131      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
132      Expression::ExpressionOpcode getOpcode(CmpInst* C);
133      Expression::ExpressionOpcode getOpcode(CastInst* C);
134      Expression create_expression(BinaryOperator* BO);
135      Expression create_expression(CmpInst* C);
136      Expression create_expression(ShuffleVectorInst* V);
137      Expression create_expression(ExtractElementInst* C);
138      Expression create_expression(InsertElementInst* V);
139      Expression create_expression(SelectInst* V);
140      Expression create_expression(CastInst* C);
141      Expression create_expression(GetElementPtrInst* G);
142      Expression create_expression(CallInst* C);
143      Expression create_expression(Constant* C);
144    public:
145      ValueTable() : nextValueNumber(1) { }
146      uint32_t lookup_or_add(Value* V);
147      uint32_t lookup(Value* V) const;
148      void add(Value* V, uint32_t num);
149      void clear();
150      void erase(Value* v);
151      unsigned size();
152      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
153      AliasAnalysis *getAliasAnalysis() const { return AA; }
154      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
155      void setDomTree(DominatorTree* D) { DT = D; }
156      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
157      void verifyRemoved(const Value *) const;
158  };
159}
160
161namespace llvm {
162template <> struct DenseMapInfo<Expression> {
163  static inline Expression getEmptyKey() {
164    return Expression(Expression::EMPTY);
165  }
166
167  static inline Expression getTombstoneKey() {
168    return Expression(Expression::TOMBSTONE);
169  }
170
171  static unsigned getHashValue(const Expression e) {
172    unsigned hash = e.opcode;
173
174    hash = e.firstVN + hash * 37;
175    hash = e.secondVN + hash * 37;
176    hash = e.thirdVN + hash * 37;
177
178    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
179            (unsigned)((uintptr_t)e.type >> 9)) +
180           hash * 37;
181
182    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
183         E = e.varargs.end(); I != E; ++I)
184      hash = *I + hash * 37;
185
186    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
187            (unsigned)((uintptr_t)e.function >> 9)) +
188           hash * 37;
189
190    return hash;
191  }
192  static bool isEqual(const Expression &LHS, const Expression &RHS) {
193    return LHS == RHS;
194  }
195  static bool isPod() { return true; }
196};
197}
198
199//===----------------------------------------------------------------------===//
200//                     ValueTable Internal Functions
201//===----------------------------------------------------------------------===//
202Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
203  switch(BO->getOpcode()) {
204  default: // THIS SHOULD NEVER HAPPEN
205    llvm_unreachable("Binary operator with unknown opcode?");
206  case Instruction::Add:  return Expression::ADD;
207  case Instruction::FAdd: return Expression::FADD;
208  case Instruction::Sub:  return Expression::SUB;
209  case Instruction::FSub: return Expression::FSUB;
210  case Instruction::Mul:  return Expression::MUL;
211  case Instruction::FMul: return Expression::FMUL;
212  case Instruction::UDiv: return Expression::UDIV;
213  case Instruction::SDiv: return Expression::SDIV;
214  case Instruction::FDiv: return Expression::FDIV;
215  case Instruction::URem: return Expression::UREM;
216  case Instruction::SRem: return Expression::SREM;
217  case Instruction::FRem: return Expression::FREM;
218  case Instruction::Shl:  return Expression::SHL;
219  case Instruction::LShr: return Expression::LSHR;
220  case Instruction::AShr: return Expression::ASHR;
221  case Instruction::And:  return Expression::AND;
222  case Instruction::Or:   return Expression::OR;
223  case Instruction::Xor:  return Expression::XOR;
224  }
225}
226
227Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
228  if (isa<ICmpInst>(C)) {
229    switch (C->getPredicate()) {
230    default:  // THIS SHOULD NEVER HAPPEN
231      llvm_unreachable("Comparison with unknown predicate?");
232    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
233    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
234    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
235    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
236    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
237    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
238    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
239    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
240    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
241    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
242    }
243  } else {
244    switch (C->getPredicate()) {
245    default: // THIS SHOULD NEVER HAPPEN
246      llvm_unreachable("Comparison with unknown predicate?");
247    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
248    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
249    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
250    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
251    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
252    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
253    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
254    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
255    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
256    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
257    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
258    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
259    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
260    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
261    }
262  }
263}
264
265Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
266  switch(C->getOpcode()) {
267  default: // THIS SHOULD NEVER HAPPEN
268    llvm_unreachable("Cast operator with unknown opcode?");
269  case Instruction::Trunc:    return Expression::TRUNC;
270  case Instruction::ZExt:     return Expression::ZEXT;
271  case Instruction::SExt:     return Expression::SEXT;
272  case Instruction::FPToUI:   return Expression::FPTOUI;
273  case Instruction::FPToSI:   return Expression::FPTOSI;
274  case Instruction::UIToFP:   return Expression::UITOFP;
275  case Instruction::SIToFP:   return Expression::SITOFP;
276  case Instruction::FPTrunc:  return Expression::FPTRUNC;
277  case Instruction::FPExt:    return Expression::FPEXT;
278  case Instruction::PtrToInt: return Expression::PTRTOINT;
279  case Instruction::IntToPtr: return Expression::INTTOPTR;
280  case Instruction::BitCast:  return Expression::BITCAST;
281  }
282}
283
284Expression ValueTable::create_expression(CallInst* C) {
285  Expression e;
286
287  e.type = C->getType();
288  e.firstVN = 0;
289  e.secondVN = 0;
290  e.thirdVN = 0;
291  e.function = C->getCalledFunction();
292  e.opcode = Expression::CALL;
293
294  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
295       I != E; ++I)
296    e.varargs.push_back(lookup_or_add(*I));
297
298  return e;
299}
300
301Expression ValueTable::create_expression(BinaryOperator* BO) {
302  Expression e;
303
304  e.firstVN = lookup_or_add(BO->getOperand(0));
305  e.secondVN = lookup_or_add(BO->getOperand(1));
306  e.thirdVN = 0;
307  e.function = 0;
308  e.type = BO->getType();
309  e.opcode = getOpcode(BO);
310
311  return e;
312}
313
314Expression ValueTable::create_expression(CmpInst* C) {
315  Expression e;
316
317  e.firstVN = lookup_or_add(C->getOperand(0));
318  e.secondVN = lookup_or_add(C->getOperand(1));
319  e.thirdVN = 0;
320  e.function = 0;
321  e.type = C->getType();
322  e.opcode = getOpcode(C);
323
324  return e;
325}
326
327Expression ValueTable::create_expression(CastInst* C) {
328  Expression e;
329
330  e.firstVN = lookup_or_add(C->getOperand(0));
331  e.secondVN = 0;
332  e.thirdVN = 0;
333  e.function = 0;
334  e.type = C->getType();
335  e.opcode = getOpcode(C);
336
337  return e;
338}
339
340Expression ValueTable::create_expression(ShuffleVectorInst* S) {
341  Expression e;
342
343  e.firstVN = lookup_or_add(S->getOperand(0));
344  e.secondVN = lookup_or_add(S->getOperand(1));
345  e.thirdVN = lookup_or_add(S->getOperand(2));
346  e.function = 0;
347  e.type = S->getType();
348  e.opcode = Expression::SHUFFLE;
349
350  return e;
351}
352
353Expression ValueTable::create_expression(ExtractElementInst* E) {
354  Expression e;
355
356  e.firstVN = lookup_or_add(E->getOperand(0));
357  e.secondVN = lookup_or_add(E->getOperand(1));
358  e.thirdVN = 0;
359  e.function = 0;
360  e.type = E->getType();
361  e.opcode = Expression::EXTRACT;
362
363  return e;
364}
365
366Expression ValueTable::create_expression(InsertElementInst* I) {
367  Expression e;
368
369  e.firstVN = lookup_or_add(I->getOperand(0));
370  e.secondVN = lookup_or_add(I->getOperand(1));
371  e.thirdVN = lookup_or_add(I->getOperand(2));
372  e.function = 0;
373  e.type = I->getType();
374  e.opcode = Expression::INSERT;
375
376  return e;
377}
378
379Expression ValueTable::create_expression(SelectInst* I) {
380  Expression e;
381
382  e.firstVN = lookup_or_add(I->getCondition());
383  e.secondVN = lookup_or_add(I->getTrueValue());
384  e.thirdVN = lookup_or_add(I->getFalseValue());
385  e.function = 0;
386  e.type = I->getType();
387  e.opcode = Expression::SELECT;
388
389  return e;
390}
391
392Expression ValueTable::create_expression(GetElementPtrInst* G) {
393  Expression e;
394
395  e.firstVN = lookup_or_add(G->getPointerOperand());
396  e.secondVN = 0;
397  e.thirdVN = 0;
398  e.function = 0;
399  e.type = G->getType();
400  e.opcode = Expression::GEP;
401
402  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
403       I != E; ++I)
404    e.varargs.push_back(lookup_or_add(*I));
405
406  return e;
407}
408
409//===----------------------------------------------------------------------===//
410//                     ValueTable External Functions
411//===----------------------------------------------------------------------===//
412
413/// add - Insert a value into the table with a specified value number.
414void ValueTable::add(Value* V, uint32_t num) {
415  valueNumbering.insert(std::make_pair(V, num));
416}
417
418/// lookup_or_add - Returns the value number for the specified value, assigning
419/// it a new number if it did not have one before.
420uint32_t ValueTable::lookup_or_add(Value* V) {
421  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
422  if (VI != valueNumbering.end())
423    return VI->second;
424
425  if (CallInst* C = dyn_cast<CallInst>(V)) {
426    if (AA->doesNotAccessMemory(C)) {
427      Expression e = create_expression(C);
428
429      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
430      if (EI != expressionNumbering.end()) {
431        valueNumbering.insert(std::make_pair(V, EI->second));
432        return EI->second;
433      } else {
434        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
435        valueNumbering.insert(std::make_pair(V, nextValueNumber));
436
437        return nextValueNumber++;
438      }
439    } else if (AA->onlyReadsMemory(C)) {
440      Expression e = create_expression(C);
441
442      if (expressionNumbering.find(e) == expressionNumbering.end()) {
443        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
444        valueNumbering.insert(std::make_pair(V, nextValueNumber));
445        return nextValueNumber++;
446      }
447
448      MemDepResult local_dep = MD->getDependency(C);
449
450      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
451        valueNumbering.insert(std::make_pair(V, nextValueNumber));
452        return nextValueNumber++;
453      }
454
455      if (local_dep.isDef()) {
456        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
457
458        if (local_cdep->getNumOperands() != C->getNumOperands()) {
459          valueNumbering.insert(std::make_pair(V, nextValueNumber));
460          return nextValueNumber++;
461        }
462
463        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
464          uint32_t c_vn = lookup_or_add(C->getOperand(i));
465          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
466          if (c_vn != cd_vn) {
467            valueNumbering.insert(std::make_pair(V, nextValueNumber));
468            return nextValueNumber++;
469          }
470        }
471
472        uint32_t v = lookup_or_add(local_cdep);
473        valueNumbering.insert(std::make_pair(V, v));
474        return v;
475      }
476
477      // Non-local case.
478      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
479        MD->getNonLocalCallDependency(CallSite(C));
480      // FIXME: call/call dependencies for readonly calls should return def, not
481      // clobber!  Move the checking logic to MemDep!
482      CallInst* cdep = 0;
483
484      // Check to see if we have a single dominating call instruction that is
485      // identical to C.
486      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
487        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
488        // Ignore non-local dependencies.
489        if (I->second.isNonLocal())
490          continue;
491
492        // We don't handle non-depedencies.  If we already have a call, reject
493        // instruction dependencies.
494        if (I->second.isClobber() || cdep != 0) {
495          cdep = 0;
496          break;
497        }
498
499        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
500        // FIXME: All duplicated with non-local case.
501        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
502          cdep = NonLocalDepCall;
503          continue;
504        }
505
506        cdep = 0;
507        break;
508      }
509
510      if (!cdep) {
511        valueNumbering.insert(std::make_pair(V, nextValueNumber));
512        return nextValueNumber++;
513      }
514
515      if (cdep->getNumOperands() != C->getNumOperands()) {
516        valueNumbering.insert(std::make_pair(V, nextValueNumber));
517        return nextValueNumber++;
518      }
519      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
520        uint32_t c_vn = lookup_or_add(C->getOperand(i));
521        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
522        if (c_vn != cd_vn) {
523          valueNumbering.insert(std::make_pair(V, nextValueNumber));
524          return nextValueNumber++;
525        }
526      }
527
528      uint32_t v = lookup_or_add(cdep);
529      valueNumbering.insert(std::make_pair(V, v));
530      return v;
531
532    } else {
533      valueNumbering.insert(std::make_pair(V, nextValueNumber));
534      return nextValueNumber++;
535    }
536  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
537    Expression e = create_expression(BO);
538
539    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
540    if (EI != expressionNumbering.end()) {
541      valueNumbering.insert(std::make_pair(V, EI->second));
542      return EI->second;
543    } else {
544      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
545      valueNumbering.insert(std::make_pair(V, nextValueNumber));
546
547      return nextValueNumber++;
548    }
549  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
550    Expression e = create_expression(C);
551
552    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
553    if (EI != expressionNumbering.end()) {
554      valueNumbering.insert(std::make_pair(V, EI->second));
555      return EI->second;
556    } else {
557      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
558      valueNumbering.insert(std::make_pair(V, nextValueNumber));
559
560      return nextValueNumber++;
561    }
562  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
563    Expression e = create_expression(U);
564
565    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
566    if (EI != expressionNumbering.end()) {
567      valueNumbering.insert(std::make_pair(V, EI->second));
568      return EI->second;
569    } else {
570      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
571      valueNumbering.insert(std::make_pair(V, nextValueNumber));
572
573      return nextValueNumber++;
574    }
575  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
576    Expression e = create_expression(U);
577
578    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
579    if (EI != expressionNumbering.end()) {
580      valueNumbering.insert(std::make_pair(V, EI->second));
581      return EI->second;
582    } else {
583      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
584      valueNumbering.insert(std::make_pair(V, nextValueNumber));
585
586      return nextValueNumber++;
587    }
588  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
589    Expression e = create_expression(U);
590
591    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
592    if (EI != expressionNumbering.end()) {
593      valueNumbering.insert(std::make_pair(V, EI->second));
594      return EI->second;
595    } else {
596      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
597      valueNumbering.insert(std::make_pair(V, nextValueNumber));
598
599      return nextValueNumber++;
600    }
601  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
602    Expression e = create_expression(U);
603
604    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
605    if (EI != expressionNumbering.end()) {
606      valueNumbering.insert(std::make_pair(V, EI->second));
607      return EI->second;
608    } else {
609      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
610      valueNumbering.insert(std::make_pair(V, nextValueNumber));
611
612      return nextValueNumber++;
613    }
614  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
615    Expression e = create_expression(U);
616
617    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
618    if (EI != expressionNumbering.end()) {
619      valueNumbering.insert(std::make_pair(V, EI->second));
620      return EI->second;
621    } else {
622      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
623      valueNumbering.insert(std::make_pair(V, nextValueNumber));
624
625      return nextValueNumber++;
626    }
627  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
628    Expression e = create_expression(U);
629
630    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
631    if (EI != expressionNumbering.end()) {
632      valueNumbering.insert(std::make_pair(V, EI->second));
633      return EI->second;
634    } else {
635      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
636      valueNumbering.insert(std::make_pair(V, nextValueNumber));
637
638      return nextValueNumber++;
639    }
640  } else {
641    valueNumbering.insert(std::make_pair(V, nextValueNumber));
642    return nextValueNumber++;
643  }
644}
645
646/// lookup - Returns the value number of the specified value. Fails if
647/// the value has not yet been numbered.
648uint32_t ValueTable::lookup(Value* V) const {
649  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
650  assert(VI != valueNumbering.end() && "Value not numbered?");
651  return VI->second;
652}
653
654/// clear - Remove all entries from the ValueTable
655void ValueTable::clear() {
656  valueNumbering.clear();
657  expressionNumbering.clear();
658  nextValueNumber = 1;
659}
660
661/// erase - Remove a value from the value numbering
662void ValueTable::erase(Value* V) {
663  valueNumbering.erase(V);
664}
665
666/// verifyRemoved - Verify that the value is removed from all internal data
667/// structures.
668void ValueTable::verifyRemoved(const Value *V) const {
669  for (DenseMap<Value*, uint32_t>::iterator
670         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
671    assert(I->first != V && "Inst still occurs in value numbering map!");
672  }
673}
674
675//===----------------------------------------------------------------------===//
676//                                GVN Pass
677//===----------------------------------------------------------------------===//
678
679namespace {
680  struct VISIBILITY_HIDDEN ValueNumberScope {
681    ValueNumberScope* parent;
682    DenseMap<uint32_t, Value*> table;
683
684    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
685  };
686}
687
688namespace {
689
690  class VISIBILITY_HIDDEN GVN : public FunctionPass {
691    bool runOnFunction(Function &F);
692  public:
693    static char ID; // Pass identification, replacement for typeid
694    GVN() : FunctionPass(&ID) { }
695
696  private:
697    MemoryDependenceAnalysis *MD;
698    DominatorTree *DT;
699
700    ValueTable VN;
701    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
702
703    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
704    PhiMapType phiMap;
705
706
707    // This transformation requires dominator postdominator info
708    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
709      AU.addRequired<DominatorTree>();
710      AU.addRequired<MemoryDependenceAnalysis>();
711      AU.addRequired<AliasAnalysis>();
712
713      AU.addPreserved<DominatorTree>();
714      AU.addPreserved<AliasAnalysis>();
715    }
716
717    // Helper fuctions
718    // FIXME: eliminate or document these better
719    bool processLoad(LoadInst* L,
720                     SmallVectorImpl<Instruction*> &toErase);
721    bool processInstruction(Instruction* I,
722                            SmallVectorImpl<Instruction*> &toErase);
723    bool processNonLocalLoad(LoadInst* L,
724                             SmallVectorImpl<Instruction*> &toErase);
725    bool processBlock(BasicBlock* BB);
726    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
727                            DenseMap<BasicBlock*, Value*> &Phis,
728                            bool top_level = false);
729    void dump(DenseMap<uint32_t, Value*>& d);
730    bool iterateOnFunction(Function &F);
731    Value* CollapsePhi(PHINode* p);
732    bool isSafeReplacement(PHINode* p, Instruction* inst);
733    bool performPRE(Function& F);
734    Value* lookupNumber(BasicBlock* BB, uint32_t num);
735    bool mergeBlockIntoPredecessor(BasicBlock* BB);
736    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
737    void cleanupGlobalSets();
738    void verifyRemoved(const Instruction *I) const;
739  };
740
741  char GVN::ID = 0;
742}
743
744// createGVNPass - The public interface to this file...
745FunctionPass *llvm::createGVNPass() { return new GVN(); }
746
747static RegisterPass<GVN> X("gvn",
748                           "Global Value Numbering");
749
750void GVN::dump(DenseMap<uint32_t, Value*>& d) {
751  printf("{\n");
752  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
753       E = d.end(); I != E; ++I) {
754      printf("%d\n", I->first);
755      I->second->dump();
756  }
757  printf("}\n");
758}
759
760Value* GVN::CollapsePhi(PHINode* p) {
761  Value* constVal = p->hasConstantValue();
762  if (!constVal) return 0;
763
764  Instruction* inst = dyn_cast<Instruction>(constVal);
765  if (!inst)
766    return constVal;
767
768  if (DT->dominates(inst, p))
769    if (isSafeReplacement(p, inst))
770      return inst;
771  return 0;
772}
773
774bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
775  if (!isa<PHINode>(inst))
776    return true;
777
778  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
779       UI != E; ++UI)
780    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
781      if (use_phi->getParent() == inst->getParent())
782        return false;
783
784  return true;
785}
786
787/// GetValueForBlock - Get the value to use within the specified basic block.
788/// available values are in Phis.
789Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
790                             DenseMap<BasicBlock*, Value*> &Phis,
791                             bool top_level) {
792
793  // If we have already computed this value, return the previously computed val.
794  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
795  if (V != Phis.end() && !top_level) return V->second;
796
797  // If the block is unreachable, just return undef, since this path
798  // can't actually occur at runtime.
799  if (!DT->isReachableFromEntry(BB))
800    return Phis[BB] = BB->getContext().getUndef(orig->getType());
801
802  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
803    Value *ret = GetValueForBlock(Pred, orig, Phis);
804    Phis[BB] = ret;
805    return ret;
806  }
807
808  // Get the number of predecessors of this block so we can reserve space later.
809  // If there is already a PHI in it, use the #preds from it, otherwise count.
810  // Getting it from the PHI is constant time.
811  unsigned NumPreds;
812  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
813    NumPreds = ExistingPN->getNumIncomingValues();
814  else
815    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
816
817  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
818  // now, then get values to fill in the incoming values for the PHI.
819  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
820                                BB->begin());
821  PN->reserveOperandSpace(NumPreds);
822
823  Phis.insert(std::make_pair(BB, PN));
824
825  // Fill in the incoming values for the block.
826  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
827    Value* val = GetValueForBlock(*PI, orig, Phis);
828    PN->addIncoming(val, *PI);
829  }
830
831  VN.getAliasAnalysis()->copyValue(orig, PN);
832
833  // Attempt to collapse PHI nodes that are trivially redundant
834  Value* v = CollapsePhi(PN);
835  if (!v) {
836    // Cache our phi construction results
837    if (LoadInst* L = dyn_cast<LoadInst>(orig))
838      phiMap[L->getPointerOperand()].insert(PN);
839    else
840      phiMap[orig].insert(PN);
841
842    return PN;
843  }
844
845  PN->replaceAllUsesWith(v);
846  if (isa<PointerType>(v->getType()))
847    MD->invalidateCachedPointerInfo(v);
848
849  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
850       E = Phis.end(); I != E; ++I)
851    if (I->second == PN)
852      I->second = v;
853
854  DEBUG(cerr << "GVN removed: " << *PN);
855  MD->removeInstruction(PN);
856  PN->eraseFromParent();
857  DEBUG(verifyRemoved(PN));
858
859  Phis[BB] = v;
860  return v;
861}
862
863/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
864/// we're analyzing is fully available in the specified block.  As we go, keep
865/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
866/// map is actually a tri-state map with the following values:
867///   0) we know the block *is not* fully available.
868///   1) we know the block *is* fully available.
869///   2) we do not know whether the block is fully available or not, but we are
870///      currently speculating that it will be.
871///   3) we are speculating for this block and have used that to speculate for
872///      other blocks.
873static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
874                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
875  // Optimistically assume that the block is fully available and check to see
876  // if we already know about this block in one lookup.
877  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
878    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
879
880  // If the entry already existed for this block, return the precomputed value.
881  if (!IV.second) {
882    // If this is a speculative "available" value, mark it as being used for
883    // speculation of other blocks.
884    if (IV.first->second == 2)
885      IV.first->second = 3;
886    return IV.first->second != 0;
887  }
888
889  // Otherwise, see if it is fully available in all predecessors.
890  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
891
892  // If this block has no predecessors, it isn't live-in here.
893  if (PI == PE)
894    goto SpeculationFailure;
895
896  for (; PI != PE; ++PI)
897    // If the value isn't fully available in one of our predecessors, then it
898    // isn't fully available in this block either.  Undo our previous
899    // optimistic assumption and bail out.
900    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
901      goto SpeculationFailure;
902
903  return true;
904
905// SpeculationFailure - If we get here, we found out that this is not, after
906// all, a fully-available block.  We have a problem if we speculated on this and
907// used the speculation to mark other blocks as available.
908SpeculationFailure:
909  char &BBVal = FullyAvailableBlocks[BB];
910
911  // If we didn't speculate on this, just return with it set to false.
912  if (BBVal == 2) {
913    BBVal = 0;
914    return false;
915  }
916
917  // If we did speculate on this value, we could have blocks set to 1 that are
918  // incorrect.  Walk the (transitive) successors of this block and mark them as
919  // 0 if set to one.
920  SmallVector<BasicBlock*, 32> BBWorklist;
921  BBWorklist.push_back(BB);
922
923  while (!BBWorklist.empty()) {
924    BasicBlock *Entry = BBWorklist.pop_back_val();
925    // Note that this sets blocks to 0 (unavailable) if they happen to not
926    // already be in FullyAvailableBlocks.  This is safe.
927    char &EntryVal = FullyAvailableBlocks[Entry];
928    if (EntryVal == 0) continue;  // Already unavailable.
929
930    // Mark as unavailable.
931    EntryVal = 0;
932
933    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
934      BBWorklist.push_back(*I);
935  }
936
937  return false;
938}
939
940/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
941/// non-local by performing PHI construction.
942bool GVN::processNonLocalLoad(LoadInst *LI,
943                              SmallVectorImpl<Instruction*> &toErase) {
944  // Find the non-local dependencies of the load.
945  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
946  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
947                                   Deps);
948  //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
949
950  // If we had to process more than one hundred blocks to find the
951  // dependencies, this load isn't worth worrying about.  Optimizing
952  // it will be too expensive.
953  if (Deps.size() > 100)
954    return false;
955
956  // If we had a phi translation failure, we'll have a single entry which is a
957  // clobber in the current block.  Reject this early.
958  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
959    DEBUG(
960      DOUT << "GVN: non-local load ";
961      WriteAsOperand(*DOUT.stream(), LI);
962      DOUT << " is clobbered by " << *Deps[0].second.getInst();
963    );
964    return false;
965  }
966
967  // Filter out useless results (non-locals, etc).  Keep track of the blocks
968  // where we have a value available in repl, also keep track of whether we see
969  // dependencies that produce an unknown value for the load (such as a call
970  // that could potentially clobber the load).
971  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
972  SmallVector<BasicBlock*, 16> UnavailableBlocks;
973
974  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
975    BasicBlock *DepBB = Deps[i].first;
976    MemDepResult DepInfo = Deps[i].second;
977
978    if (DepInfo.isClobber()) {
979      UnavailableBlocks.push_back(DepBB);
980      continue;
981    }
982
983    Instruction *DepInst = DepInfo.getInst();
984
985    // Loading the allocation -> undef.
986    if (isa<AllocationInst>(DepInst)) {
987      ValuesPerBlock.push_back(std::make_pair(DepBB,
988                                DepBB->getContext().getUndef(LI->getType())));
989      continue;
990    }
991
992    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
993      // Reject loads and stores that are to the same address but are of
994      // different types.
995      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
996      // of bitfield access, it would be interesting to optimize for it at some
997      // point.
998      if (S->getOperand(0)->getType() != LI->getType()) {
999        UnavailableBlocks.push_back(DepBB);
1000        continue;
1001      }
1002
1003      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1004
1005    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1006      if (LD->getType() != LI->getType()) {
1007        UnavailableBlocks.push_back(DepBB);
1008        continue;
1009      }
1010      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1011    } else {
1012      UnavailableBlocks.push_back(DepBB);
1013      continue;
1014    }
1015  }
1016
1017  // If we have no predecessors that produce a known value for this load, exit
1018  // early.
1019  if (ValuesPerBlock.empty()) return false;
1020
1021  // If all of the instructions we depend on produce a known value for this
1022  // load, then it is fully redundant and we can use PHI insertion to compute
1023  // its value.  Insert PHIs and remove the fully redundant value now.
1024  if (UnavailableBlocks.empty()) {
1025    // Use cached PHI construction information from previous runs
1026    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1027    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1028    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1029         I != E; ++I) {
1030      if ((*I)->getParent() == LI->getParent()) {
1031        DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1032        LI->replaceAllUsesWith(*I);
1033        if (isa<PointerType>((*I)->getType()))
1034          MD->invalidateCachedPointerInfo(*I);
1035        toErase.push_back(LI);
1036        NumGVNLoad++;
1037        return true;
1038      }
1039
1040      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1041    }
1042
1043    DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1044
1045    DenseMap<BasicBlock*, Value*> BlockReplValues;
1046    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1047    // Perform PHI construction.
1048    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1049    LI->replaceAllUsesWith(v);
1050
1051    if (isa<PHINode>(v))
1052      v->takeName(LI);
1053    if (isa<PointerType>(v->getType()))
1054      MD->invalidateCachedPointerInfo(v);
1055    toErase.push_back(LI);
1056    NumGVNLoad++;
1057    return true;
1058  }
1059
1060  if (!EnablePRE || !EnableLoadPRE)
1061    return false;
1062
1063  // Okay, we have *some* definitions of the value.  This means that the value
1064  // is available in some of our (transitive) predecessors.  Lets think about
1065  // doing PRE of this load.  This will involve inserting a new load into the
1066  // predecessor when it's not available.  We could do this in general, but
1067  // prefer to not increase code size.  As such, we only do this when we know
1068  // that we only have to insert *one* load (which means we're basically moving
1069  // the load, not inserting a new one).
1070
1071  SmallPtrSet<BasicBlock *, 4> Blockers;
1072  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1073    Blockers.insert(UnavailableBlocks[i]);
1074
1075  // Lets find first basic block with more than one predecessor.  Walk backwards
1076  // through predecessors if needed.
1077  BasicBlock *LoadBB = LI->getParent();
1078  BasicBlock *TmpBB = LoadBB;
1079
1080  bool isSinglePred = false;
1081  bool allSingleSucc = true;
1082  while (TmpBB->getSinglePredecessor()) {
1083    isSinglePred = true;
1084    TmpBB = TmpBB->getSinglePredecessor();
1085    if (!TmpBB) // If haven't found any, bail now.
1086      return false;
1087    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1088      return false;
1089    if (Blockers.count(TmpBB))
1090      return false;
1091    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1092      allSingleSucc = false;
1093  }
1094
1095  assert(TmpBB);
1096  LoadBB = TmpBB;
1097
1098  // If we have a repl set with LI itself in it, this means we have a loop where
1099  // at least one of the values is LI.  Since this means that we won't be able
1100  // to eliminate LI even if we insert uses in the other predecessors, we will
1101  // end up increasing code size.  Reject this by scanning for LI.
1102  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1103    if (ValuesPerBlock[i].second == LI)
1104      return false;
1105
1106  if (isSinglePred) {
1107    bool isHot = false;
1108    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1109      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1110	// "Hot" Instruction is in some loop (because it dominates its dep.
1111	// instruction).
1112	if (DT->dominates(LI, I)) {
1113	  isHot = true;
1114	  break;
1115	}
1116
1117    // We are interested only in "hot" instructions. We don't want to do any
1118    // mis-optimizations here.
1119    if (!isHot)
1120      return false;
1121  }
1122
1123  // Okay, we have some hope :).  Check to see if the loaded value is fully
1124  // available in all but one predecessor.
1125  // FIXME: If we could restructure the CFG, we could make a common pred with
1126  // all the preds that don't have an available LI and insert a new load into
1127  // that one block.
1128  BasicBlock *UnavailablePred = 0;
1129
1130  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1131  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1132    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1133  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1134    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1135
1136  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1137       PI != E; ++PI) {
1138    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1139      continue;
1140
1141    // If this load is not available in multiple predecessors, reject it.
1142    if (UnavailablePred && UnavailablePred != *PI)
1143      return false;
1144    UnavailablePred = *PI;
1145  }
1146
1147  assert(UnavailablePred != 0 &&
1148         "Fully available value should be eliminated above!");
1149
1150  // If the loaded pointer is PHI node defined in this block, do PHI translation
1151  // to get its value in the predecessor.
1152  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1153
1154  // Make sure the value is live in the predecessor.  If it was defined by a
1155  // non-PHI instruction in this block, we don't know how to recompute it above.
1156  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1157    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1158      DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1159                 << *LPInst << *LI << "\n");
1160      return false;
1161    }
1162
1163  // We don't currently handle critical edges :(
1164  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1165    DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1166                << UnavailablePred->getName() << "': " << *LI);
1167    return false;
1168  }
1169
1170  // Make sure it is valid to move this load here.  We have to watch out for:
1171  //  @1 = getelementptr (i8* p, ...
1172  //  test p and branch if == 0
1173  //  load @1
1174  // It is valid to have the getelementptr before the test, even if p can be 0,
1175  // as getelementptr only does address arithmetic.
1176  // If we are not pushing the value through any multiple-successor blocks
1177  // we do not have this case.  Otherwise, check that the load is safe to
1178  // put anywhere; this can be improved, but should be conservatively safe.
1179  if (!allSingleSucc &&
1180      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1181    return false;
1182
1183  // Okay, we can eliminate this load by inserting a reload in the predecessor
1184  // and using PHI construction to get the value in the other predecessors, do
1185  // it.
1186  DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1187
1188  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1189                                LI->getAlignment(),
1190                                UnavailablePred->getTerminator());
1191
1192  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1193  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1194       I != E; ++I)
1195    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1196
1197  DenseMap<BasicBlock*, Value*> BlockReplValues;
1198  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1199  BlockReplValues[UnavailablePred] = NewLoad;
1200
1201  // Perform PHI construction.
1202  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1203  LI->replaceAllUsesWith(v);
1204  if (isa<PHINode>(v))
1205    v->takeName(LI);
1206  if (isa<PointerType>(v->getType()))
1207    MD->invalidateCachedPointerInfo(v);
1208  toErase.push_back(LI);
1209  NumPRELoad++;
1210  return true;
1211}
1212
1213/// processLoad - Attempt to eliminate a load, first by eliminating it
1214/// locally, and then attempting non-local elimination if that fails.
1215bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1216  if (L->isVolatile())
1217    return false;
1218
1219  Value* pointer = L->getPointerOperand();
1220
1221  // ... to a pointer that has been loaded from before...
1222  MemDepResult dep = MD->getDependency(L);
1223
1224  // If the value isn't available, don't do anything!
1225  if (dep.isClobber()) {
1226    DEBUG(
1227      // fast print dep, using operator<< on instruction would be too slow
1228      DOUT << "GVN: load ";
1229      WriteAsOperand(*DOUT.stream(), L);
1230      Instruction *I = dep.getInst();
1231      DOUT << " is clobbered by " << *I;
1232    );
1233    return false;
1234  }
1235
1236  // If it is defined in another block, try harder.
1237  if (dep.isNonLocal())
1238    return processNonLocalLoad(L, toErase);
1239
1240  Instruction *DepInst = dep.getInst();
1241  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1242    // Only forward substitute stores to loads of the same type.
1243    // FIXME: Could do better!
1244    if (DepSI->getPointerOperand()->getType() != pointer->getType())
1245      return false;
1246
1247    // Remove it!
1248    L->replaceAllUsesWith(DepSI->getOperand(0));
1249    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1250      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1251    toErase.push_back(L);
1252    NumGVNLoad++;
1253    return true;
1254  }
1255
1256  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1257    // Only forward substitute stores to loads of the same type.
1258    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1259    if (DepLI->getType() != L->getType())
1260      return false;
1261
1262    // Remove it!
1263    L->replaceAllUsesWith(DepLI);
1264    if (isa<PointerType>(DepLI->getType()))
1265      MD->invalidateCachedPointerInfo(DepLI);
1266    toErase.push_back(L);
1267    NumGVNLoad++;
1268    return true;
1269  }
1270
1271  // If this load really doesn't depend on anything, then we must be loading an
1272  // undef value.  This can happen when loading for a fresh allocation with no
1273  // intervening stores, for example.
1274  if (isa<AllocationInst>(DepInst)) {
1275    L->replaceAllUsesWith(DepInst->getContext().getUndef(L->getType()));
1276    toErase.push_back(L);
1277    NumGVNLoad++;
1278    return true;
1279  }
1280
1281  return false;
1282}
1283
1284Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1285  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1286  if (I == localAvail.end())
1287    return 0;
1288
1289  ValueNumberScope* locals = I->second;
1290
1291  while (locals) {
1292    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1293    if (I != locals->table.end())
1294      return I->second;
1295    else
1296      locals = locals->parent;
1297  }
1298
1299  return 0;
1300}
1301
1302/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1303/// by inheritance from the dominator fails, see if we can perform phi
1304/// construction to eliminate the redundancy.
1305Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1306  BasicBlock* BaseBlock = orig->getParent();
1307
1308  SmallPtrSet<BasicBlock*, 4> Visited;
1309  SmallVector<BasicBlock*, 8> Stack;
1310  Stack.push_back(BaseBlock);
1311
1312  DenseMap<BasicBlock*, Value*> Results;
1313
1314  // Walk backwards through our predecessors, looking for instances of the
1315  // value number we're looking for.  Instances are recorded in the Results
1316  // map, which is then used to perform phi construction.
1317  while (!Stack.empty()) {
1318    BasicBlock* Current = Stack.back();
1319    Stack.pop_back();
1320
1321    // If we've walked all the way to a proper dominator, then give up. Cases
1322    // where the instance is in the dominator will have been caught by the fast
1323    // path, and any cases that require phi construction further than this are
1324    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1325    // time improvement.
1326    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1327
1328    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1329                                                       localAvail.find(Current);
1330    if (LA == localAvail.end()) return 0;
1331    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1332
1333    if (V != LA->second->table.end()) {
1334      // Found an instance, record it.
1335      Results.insert(std::make_pair(Current, V->second));
1336      continue;
1337    }
1338
1339    // If we reach the beginning of the function, then give up.
1340    if (pred_begin(Current) == pred_end(Current))
1341      return 0;
1342
1343    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1344         PI != PE; ++PI)
1345      if (Visited.insert(*PI))
1346        Stack.push_back(*PI);
1347  }
1348
1349  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1350  if (Results.size() == 0)
1351    return 0;
1352  else
1353    return GetValueForBlock(BaseBlock, orig, Results, true);
1354}
1355
1356/// processInstruction - When calculating availability, handle an instruction
1357/// by inserting it into the appropriate sets
1358bool GVN::processInstruction(Instruction *I,
1359                             SmallVectorImpl<Instruction*> &toErase) {
1360  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1361    bool changed = processLoad(L, toErase);
1362
1363    if (!changed) {
1364      unsigned num = VN.lookup_or_add(L);
1365      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1366    }
1367
1368    return changed;
1369  }
1370
1371  uint32_t nextNum = VN.getNextUnusedValueNumber();
1372  unsigned num = VN.lookup_or_add(I);
1373
1374  if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1375    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1376
1377    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1378      return false;
1379
1380    Value* branchCond = BI->getCondition();
1381    uint32_t condVN = VN.lookup_or_add(branchCond);
1382
1383    BasicBlock* trueSucc = BI->getSuccessor(0);
1384    BasicBlock* falseSucc = BI->getSuccessor(1);
1385
1386    if (trueSucc->getSinglePredecessor())
1387      localAvail[trueSucc]->table[condVN] = trueSucc->getContext().getTrue();
1388    if (falseSucc->getSinglePredecessor())
1389      localAvail[falseSucc]->table[condVN] = trueSucc->getContext().getFalse();
1390
1391    return false;
1392
1393  // Allocations are always uniquely numbered, so we can save time and memory
1394  // by fast failing them.
1395  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1396    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1397    return false;
1398  }
1399
1400  // Collapse PHI nodes
1401  if (PHINode* p = dyn_cast<PHINode>(I)) {
1402    Value* constVal = CollapsePhi(p);
1403
1404    if (constVal) {
1405      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1406           PI != PE; ++PI)
1407        PI->second.erase(p);
1408
1409      p->replaceAllUsesWith(constVal);
1410      if (isa<PointerType>(constVal->getType()))
1411        MD->invalidateCachedPointerInfo(constVal);
1412      VN.erase(p);
1413
1414      toErase.push_back(p);
1415    } else {
1416      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1417    }
1418
1419  // If the number we were assigned was a brand new VN, then we don't
1420  // need to do a lookup to see if the number already exists
1421  // somewhere in the domtree: it can't!
1422  } else if (num == nextNum) {
1423    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1424
1425  // Perform fast-path value-number based elimination of values inherited from
1426  // dominators.
1427  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1428    // Remove it!
1429    VN.erase(I);
1430    I->replaceAllUsesWith(repl);
1431    if (isa<PointerType>(repl->getType()))
1432      MD->invalidateCachedPointerInfo(repl);
1433    toErase.push_back(I);
1434    return true;
1435
1436#if 0
1437  // Perform slow-pathvalue-number based elimination with phi construction.
1438  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1439    // Remove it!
1440    VN.erase(I);
1441    I->replaceAllUsesWith(repl);
1442    if (isa<PointerType>(repl->getType()))
1443      MD->invalidateCachedPointerInfo(repl);
1444    toErase.push_back(I);
1445    return true;
1446#endif
1447  } else {
1448    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1449  }
1450
1451  return false;
1452}
1453
1454/// runOnFunction - This is the main transformation entry point for a function.
1455bool GVN::runOnFunction(Function& F) {
1456  MD = &getAnalysis<MemoryDependenceAnalysis>();
1457  DT = &getAnalysis<DominatorTree>();
1458  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1459  VN.setMemDep(MD);
1460  VN.setDomTree(DT);
1461
1462  bool changed = false;
1463  bool shouldContinue = true;
1464
1465  // Merge unconditional branches, allowing PRE to catch more
1466  // optimization opportunities.
1467  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1468    BasicBlock* BB = FI;
1469    ++FI;
1470    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1471    if (removedBlock) NumGVNBlocks++;
1472
1473    changed |= removedBlock;
1474  }
1475
1476  unsigned Iteration = 0;
1477
1478  while (shouldContinue) {
1479    DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1480    shouldContinue = iterateOnFunction(F);
1481    changed |= shouldContinue;
1482    ++Iteration;
1483  }
1484
1485  if (EnablePRE) {
1486    bool PREChanged = true;
1487    while (PREChanged) {
1488      PREChanged = performPRE(F);
1489      changed |= PREChanged;
1490    }
1491  }
1492  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1493  // computations into blocks where they become fully redundant.  Note that
1494  // we can't do this until PRE's critical edge splitting updates memdep.
1495  // Actually, when this happens, we should just fully integrate PRE into GVN.
1496
1497  cleanupGlobalSets();
1498
1499  return changed;
1500}
1501
1502
1503bool GVN::processBlock(BasicBlock* BB) {
1504  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1505  // incrementing BI before processing an instruction).
1506  SmallVector<Instruction*, 8> toErase;
1507  bool changed_function = false;
1508
1509  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1510       BI != BE;) {
1511    changed_function |= processInstruction(BI, toErase);
1512    if (toErase.empty()) {
1513      ++BI;
1514      continue;
1515    }
1516
1517    // If we need some instructions deleted, do it now.
1518    NumGVNInstr += toErase.size();
1519
1520    // Avoid iterator invalidation.
1521    bool AtStart = BI == BB->begin();
1522    if (!AtStart)
1523      --BI;
1524
1525    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1526         E = toErase.end(); I != E; ++I) {
1527      DEBUG(cerr << "GVN removed: " << **I);
1528      MD->removeInstruction(*I);
1529      (*I)->eraseFromParent();
1530      DEBUG(verifyRemoved(*I));
1531    }
1532    toErase.clear();
1533
1534    if (AtStart)
1535      BI = BB->begin();
1536    else
1537      ++BI;
1538  }
1539
1540  return changed_function;
1541}
1542
1543/// performPRE - Perform a purely local form of PRE that looks for diamond
1544/// control flow patterns and attempts to perform simple PRE at the join point.
1545bool GVN::performPRE(Function& F) {
1546  bool Changed = false;
1547  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1548  DenseMap<BasicBlock*, Value*> predMap;
1549  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1550       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1551    BasicBlock* CurrentBlock = *DI;
1552
1553    // Nothing to PRE in the entry block.
1554    if (CurrentBlock == &F.getEntryBlock()) continue;
1555
1556    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1557         BE = CurrentBlock->end(); BI != BE; ) {
1558      Instruction *CurInst = BI++;
1559
1560      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1561          isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
1562          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1563          isa<DbgInfoIntrinsic>(CurInst))
1564        continue;
1565
1566      uint32_t valno = VN.lookup(CurInst);
1567
1568      // Look for the predecessors for PRE opportunities.  We're
1569      // only trying to solve the basic diamond case, where
1570      // a value is computed in the successor and one predecessor,
1571      // but not the other.  We also explicitly disallow cases
1572      // where the successor is its own predecessor, because they're
1573      // more complicated to get right.
1574      unsigned numWith = 0;
1575      unsigned numWithout = 0;
1576      BasicBlock* PREPred = 0;
1577      predMap.clear();
1578
1579      for (pred_iterator PI = pred_begin(CurrentBlock),
1580           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1581        // We're not interested in PRE where the block is its
1582        // own predecessor, on in blocks with predecessors
1583        // that are not reachable.
1584        if (*PI == CurrentBlock) {
1585          numWithout = 2;
1586          break;
1587        } else if (!localAvail.count(*PI))  {
1588          numWithout = 2;
1589          break;
1590        }
1591
1592        DenseMap<uint32_t, Value*>::iterator predV =
1593                                            localAvail[*PI]->table.find(valno);
1594        if (predV == localAvail[*PI]->table.end()) {
1595          PREPred = *PI;
1596          numWithout++;
1597        } else if (predV->second == CurInst) {
1598          numWithout = 2;
1599        } else {
1600          predMap[*PI] = predV->second;
1601          numWith++;
1602        }
1603      }
1604
1605      // Don't do PRE when it might increase code size, i.e. when
1606      // we would need to insert instructions in more than one pred.
1607      if (numWithout != 1 || numWith == 0)
1608        continue;
1609
1610      // We can't do PRE safely on a critical edge, so instead we schedule
1611      // the edge to be split and perform the PRE the next time we iterate
1612      // on the function.
1613      unsigned succNum = 0;
1614      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1615           i != e; ++i)
1616        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1617          succNum = i;
1618          break;
1619        }
1620
1621      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1622        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1623        continue;
1624      }
1625
1626      // Instantiate the expression the in predecessor that lacked it.
1627      // Because we are going top-down through the block, all value numbers
1628      // will be available in the predecessor by the time we need them.  Any
1629      // that weren't original present will have been instantiated earlier
1630      // in this loop.
1631      Instruction* PREInstr = CurInst->clone(CurInst->getContext());
1632      bool success = true;
1633      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1634        Value *Op = PREInstr->getOperand(i);
1635        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1636          continue;
1637
1638        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1639          PREInstr->setOperand(i, V);
1640        } else {
1641          success = false;
1642          break;
1643        }
1644      }
1645
1646      // Fail out if we encounter an operand that is not available in
1647      // the PRE predecessor.  This is typically because of loads which
1648      // are not value numbered precisely.
1649      if (!success) {
1650        delete PREInstr;
1651        DEBUG(verifyRemoved(PREInstr));
1652        continue;
1653      }
1654
1655      PREInstr->insertBefore(PREPred->getTerminator());
1656      PREInstr->setName(CurInst->getName() + ".pre");
1657      predMap[PREPred] = PREInstr;
1658      VN.add(PREInstr, valno);
1659      NumGVNPRE++;
1660
1661      // Update the availability map to include the new instruction.
1662      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1663
1664      // Create a PHI to make the value available in this block.
1665      PHINode* Phi = PHINode::Create(CurInst->getType(),
1666                                     CurInst->getName() + ".pre-phi",
1667                                     CurrentBlock->begin());
1668      for (pred_iterator PI = pred_begin(CurrentBlock),
1669           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1670        Phi->addIncoming(predMap[*PI], *PI);
1671
1672      VN.add(Phi, valno);
1673      localAvail[CurrentBlock]->table[valno] = Phi;
1674
1675      CurInst->replaceAllUsesWith(Phi);
1676      if (isa<PointerType>(Phi->getType()))
1677        MD->invalidateCachedPointerInfo(Phi);
1678      VN.erase(CurInst);
1679
1680      DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1681      MD->removeInstruction(CurInst);
1682      CurInst->eraseFromParent();
1683      DEBUG(verifyRemoved(CurInst));
1684      Changed = true;
1685    }
1686  }
1687
1688  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1689       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1690    SplitCriticalEdge(I->first, I->second, this);
1691
1692  return Changed || toSplit.size();
1693}
1694
1695/// iterateOnFunction - Executes one iteration of GVN
1696bool GVN::iterateOnFunction(Function &F) {
1697  cleanupGlobalSets();
1698
1699  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1700       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1701    if (DI->getIDom())
1702      localAvail[DI->getBlock()] =
1703                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1704    else
1705      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1706  }
1707
1708  // Top-down walk of the dominator tree
1709  bool changed = false;
1710#if 0
1711  // Needed for value numbering with phi construction to work.
1712  ReversePostOrderTraversal<Function*> RPOT(&F);
1713  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1714       RE = RPOT.end(); RI != RE; ++RI)
1715    changed |= processBlock(*RI);
1716#else
1717  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1718       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1719    changed |= processBlock(DI->getBlock());
1720#endif
1721
1722  return changed;
1723}
1724
1725void GVN::cleanupGlobalSets() {
1726  VN.clear();
1727  phiMap.clear();
1728
1729  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1730       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1731    delete I->second;
1732  localAvail.clear();
1733}
1734
1735/// verifyRemoved - Verify that the specified instruction does not occur in our
1736/// internal data structures.
1737void GVN::verifyRemoved(const Instruction *Inst) const {
1738  VN.verifyRemoved(Inst);
1739
1740  // Walk through the PHI map to make sure the instruction isn't hiding in there
1741  // somewhere.
1742  for (PhiMapType::iterator
1743         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1744    assert(I->first != Inst && "Inst is still a key in PHI map!");
1745
1746    for (SmallPtrSet<Instruction*, 4>::iterator
1747           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1748      assert(*II != Inst && "Inst is still a value in PHI map!");
1749    }
1750  }
1751
1752  // Walk through the value number scope to make sure the instruction isn't
1753  // ferreted away in it.
1754  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1755         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1756    const ValueNumberScope *VNS = I->second;
1757
1758    while (VNS) {
1759      for (DenseMap<uint32_t, Value*>::iterator
1760             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1761        assert(II->second != Inst && "Inst still in value numbering scope!");
1762      }
1763
1764      VNS = VNS->parent;
1765    }
1766  }
1767}
1768