GVN.cpp revision e959f7e17f0bb999ab032b1567600d39347e983a
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/MemoryDependenceAnalysis.h"
30#include "llvm/Analysis/PHITransAddr.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/SSAUpdater.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/DepthFirstIterator.h"
39#include "llvm/ADT/Hashing.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Support/Allocator.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/PatternMatch.h"
47using namespace llvm;
48using namespace PatternMatch;
49
50STATISTIC(NumGVNInstr,  "Number of instructions deleted");
51STATISTIC(NumGVNLoad,   "Number of loads deleted");
52STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
53STATISTIC(NumGVNBlocks, "Number of blocks merged");
54STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
55STATISTIC(NumGVNEqProp, "Number of equalities propagated");
56STATISTIC(NumPRELoad,   "Number of loads PRE'd");
57
58static cl::opt<bool> EnablePRE("enable-pre",
59                               cl::init(true), cl::Hidden);
60static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
61
62//===----------------------------------------------------------------------===//
63//                         ValueTable Class
64//===----------------------------------------------------------------------===//
65
66/// This class holds the mapping between values and value numbers.  It is used
67/// as an efficient mechanism to determine the expression-wise equivalence of
68/// two values.
69namespace {
70  struct Expression {
71    uint32_t opcode;
72    Type *type;
73    SmallVector<uint32_t, 4> varargs;
74
75    Expression(uint32_t o = ~2U) : opcode(o) { }
76
77    bool operator==(const Expression &other) const {
78      if (opcode != other.opcode)
79        return false;
80      if (opcode == ~0U || opcode == ~1U)
81        return true;
82      if (type != other.type)
83        return false;
84      if (varargs != other.varargs)
85        return false;
86      return true;
87    }
88
89    friend hash_code hash_value(const Expression &Value) {
90      return hash_combine(Value.opcode, Value.type,
91                          hash_combine_range(Value.varargs.begin(),
92                                             Value.varargs.end()));
93    }
94  };
95
96  class ValueTable {
97    DenseMap<Value*, uint32_t> valueNumbering;
98    DenseMap<Expression, uint32_t> expressionNumbering;
99    AliasAnalysis *AA;
100    MemoryDependenceAnalysis *MD;
101    DominatorTree *DT;
102
103    uint32_t nextValueNumber;
104
105    Expression create_expression(Instruction* I);
106    Expression create_cmp_expression(unsigned Opcode,
107                                     CmpInst::Predicate Predicate,
108                                     Value *LHS, Value *RHS);
109    Expression create_extractvalue_expression(ExtractValueInst* EI);
110    uint32_t lookup_or_add_call(CallInst* C);
111  public:
112    ValueTable() : nextValueNumber(1) { }
113    uint32_t lookup_or_add(Value *V);
114    uint32_t lookup(Value *V) const;
115    uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
116                               Value *LHS, Value *RHS);
117    void add(Value *V, uint32_t num);
118    void clear();
119    void erase(Value *v);
120    void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
121    AliasAnalysis *getAliasAnalysis() const { return AA; }
122    void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
123    void setDomTree(DominatorTree* D) { DT = D; }
124    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
125    void verifyRemoved(const Value *) const;
126  };
127}
128
129namespace llvm {
130template <> struct DenseMapInfo<Expression> {
131  static inline Expression getEmptyKey() {
132    return ~0U;
133  }
134
135  static inline Expression getTombstoneKey() {
136    return ~1U;
137  }
138
139  static unsigned getHashValue(const Expression e) {
140    using llvm::hash_value;
141    return static_cast<unsigned>(hash_value(e));
142  }
143  static bool isEqual(const Expression &LHS, const Expression &RHS) {
144    return LHS == RHS;
145  }
146};
147
148}
149
150//===----------------------------------------------------------------------===//
151//                     ValueTable Internal Functions
152//===----------------------------------------------------------------------===//
153
154Expression ValueTable::create_expression(Instruction *I) {
155  Expression e;
156  e.type = I->getType();
157  e.opcode = I->getOpcode();
158  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
159       OI != OE; ++OI)
160    e.varargs.push_back(lookup_or_add(*OI));
161  if (I->isCommutative()) {
162    // Ensure that commutative instructions that only differ by a permutation
163    // of their operands get the same value number by sorting the operand value
164    // numbers.  Since all commutative instructions have two operands it is more
165    // efficient to sort by hand rather than using, say, std::sort.
166    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
167    if (e.varargs[0] > e.varargs[1])
168      std::swap(e.varargs[0], e.varargs[1]);
169  }
170
171  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
172    // Sort the operand value numbers so x<y and y>x get the same value number.
173    CmpInst::Predicate Predicate = C->getPredicate();
174    if (e.varargs[0] > e.varargs[1]) {
175      std::swap(e.varargs[0], e.varargs[1]);
176      Predicate = CmpInst::getSwappedPredicate(Predicate);
177    }
178    e.opcode = (C->getOpcode() << 8) | Predicate;
179  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
180    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
181         II != IE; ++II)
182      e.varargs.push_back(*II);
183  }
184
185  return e;
186}
187
188Expression ValueTable::create_cmp_expression(unsigned Opcode,
189                                             CmpInst::Predicate Predicate,
190                                             Value *LHS, Value *RHS) {
191  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
192         "Not a comparison!");
193  Expression e;
194  e.type = CmpInst::makeCmpResultType(LHS->getType());
195  e.varargs.push_back(lookup_or_add(LHS));
196  e.varargs.push_back(lookup_or_add(RHS));
197
198  // Sort the operand value numbers so x<y and y>x get the same value number.
199  if (e.varargs[0] > e.varargs[1]) {
200    std::swap(e.varargs[0], e.varargs[1]);
201    Predicate = CmpInst::getSwappedPredicate(Predicate);
202  }
203  e.opcode = (Opcode << 8) | Predicate;
204  return e;
205}
206
207Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
208  assert(EI != 0 && "Not an ExtractValueInst?");
209  Expression e;
210  e.type = EI->getType();
211  e.opcode = 0;
212
213  IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
214  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
215    // EI might be an extract from one of our recognised intrinsics. If it
216    // is we'll synthesize a semantically equivalent expression instead on
217    // an extract value expression.
218    switch (I->getIntrinsicID()) {
219      case Intrinsic::sadd_with_overflow:
220      case Intrinsic::uadd_with_overflow:
221        e.opcode = Instruction::Add;
222        break;
223      case Intrinsic::ssub_with_overflow:
224      case Intrinsic::usub_with_overflow:
225        e.opcode = Instruction::Sub;
226        break;
227      case Intrinsic::smul_with_overflow:
228      case Intrinsic::umul_with_overflow:
229        e.opcode = Instruction::Mul;
230        break;
231      default:
232        break;
233    }
234
235    if (e.opcode != 0) {
236      // Intrinsic recognized. Grab its args to finish building the expression.
237      assert(I->getNumArgOperands() == 2 &&
238             "Expect two args for recognised intrinsics.");
239      e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
240      e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
241      return e;
242    }
243  }
244
245  // Not a recognised intrinsic. Fall back to producing an extract value
246  // expression.
247  e.opcode = EI->getOpcode();
248  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
249       OI != OE; ++OI)
250    e.varargs.push_back(lookup_or_add(*OI));
251
252  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
253         II != IE; ++II)
254    e.varargs.push_back(*II);
255
256  return e;
257}
258
259//===----------------------------------------------------------------------===//
260//                     ValueTable External Functions
261//===----------------------------------------------------------------------===//
262
263/// add - Insert a value into the table with a specified value number.
264void ValueTable::add(Value *V, uint32_t num) {
265  valueNumbering.insert(std::make_pair(V, num));
266}
267
268uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
269  if (AA->doesNotAccessMemory(C)) {
270    Expression exp = create_expression(C);
271    uint32_t& e = expressionNumbering[exp];
272    if (!e) e = nextValueNumber++;
273    valueNumbering[C] = e;
274    return e;
275  } else if (AA->onlyReadsMemory(C)) {
276    Expression exp = create_expression(C);
277    uint32_t& e = expressionNumbering[exp];
278    if (!e) {
279      e = nextValueNumber++;
280      valueNumbering[C] = e;
281      return e;
282    }
283    if (!MD) {
284      e = nextValueNumber++;
285      valueNumbering[C] = e;
286      return e;
287    }
288
289    MemDepResult local_dep = MD->getDependency(C);
290
291    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
292      valueNumbering[C] =  nextValueNumber;
293      return nextValueNumber++;
294    }
295
296    if (local_dep.isDef()) {
297      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
298
299      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
300        valueNumbering[C] = nextValueNumber;
301        return nextValueNumber++;
302      }
303
304      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
305        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
306        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
307        if (c_vn != cd_vn) {
308          valueNumbering[C] = nextValueNumber;
309          return nextValueNumber++;
310        }
311      }
312
313      uint32_t v = lookup_or_add(local_cdep);
314      valueNumbering[C] = v;
315      return v;
316    }
317
318    // Non-local case.
319    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
320      MD->getNonLocalCallDependency(CallSite(C));
321    // FIXME: Move the checking logic to MemDep!
322    CallInst* cdep = 0;
323
324    // Check to see if we have a single dominating call instruction that is
325    // identical to C.
326    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
327      const NonLocalDepEntry *I = &deps[i];
328      if (I->getResult().isNonLocal())
329        continue;
330
331      // We don't handle non-definitions.  If we already have a call, reject
332      // instruction dependencies.
333      if (!I->getResult().isDef() || cdep != 0) {
334        cdep = 0;
335        break;
336      }
337
338      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
339      // FIXME: All duplicated with non-local case.
340      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
341        cdep = NonLocalDepCall;
342        continue;
343      }
344
345      cdep = 0;
346      break;
347    }
348
349    if (!cdep) {
350      valueNumbering[C] = nextValueNumber;
351      return nextValueNumber++;
352    }
353
354    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
355      valueNumbering[C] = nextValueNumber;
356      return nextValueNumber++;
357    }
358    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
359      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
360      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
361      if (c_vn != cd_vn) {
362        valueNumbering[C] = nextValueNumber;
363        return nextValueNumber++;
364      }
365    }
366
367    uint32_t v = lookup_or_add(cdep);
368    valueNumbering[C] = v;
369    return v;
370
371  } else {
372    valueNumbering[C] = nextValueNumber;
373    return nextValueNumber++;
374  }
375}
376
377/// lookup_or_add - Returns the value number for the specified value, assigning
378/// it a new number if it did not have one before.
379uint32_t ValueTable::lookup_or_add(Value *V) {
380  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
381  if (VI != valueNumbering.end())
382    return VI->second;
383
384  if (!isa<Instruction>(V)) {
385    valueNumbering[V] = nextValueNumber;
386    return nextValueNumber++;
387  }
388
389  Instruction* I = cast<Instruction>(V);
390  Expression exp;
391  switch (I->getOpcode()) {
392    case Instruction::Call:
393      return lookup_or_add_call(cast<CallInst>(I));
394    case Instruction::Add:
395    case Instruction::FAdd:
396    case Instruction::Sub:
397    case Instruction::FSub:
398    case Instruction::Mul:
399    case Instruction::FMul:
400    case Instruction::UDiv:
401    case Instruction::SDiv:
402    case Instruction::FDiv:
403    case Instruction::URem:
404    case Instruction::SRem:
405    case Instruction::FRem:
406    case Instruction::Shl:
407    case Instruction::LShr:
408    case Instruction::AShr:
409    case Instruction::And:
410    case Instruction::Or :
411    case Instruction::Xor:
412    case Instruction::ICmp:
413    case Instruction::FCmp:
414    case Instruction::Trunc:
415    case Instruction::ZExt:
416    case Instruction::SExt:
417    case Instruction::FPToUI:
418    case Instruction::FPToSI:
419    case Instruction::UIToFP:
420    case Instruction::SIToFP:
421    case Instruction::FPTrunc:
422    case Instruction::FPExt:
423    case Instruction::PtrToInt:
424    case Instruction::IntToPtr:
425    case Instruction::BitCast:
426    case Instruction::Select:
427    case Instruction::ExtractElement:
428    case Instruction::InsertElement:
429    case Instruction::ShuffleVector:
430    case Instruction::InsertValue:
431    case Instruction::GetElementPtr:
432      exp = create_expression(I);
433      break;
434    case Instruction::ExtractValue:
435      exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
436      break;
437    default:
438      valueNumbering[V] = nextValueNumber;
439      return nextValueNumber++;
440  }
441
442  uint32_t& e = expressionNumbering[exp];
443  if (!e) e = nextValueNumber++;
444  valueNumbering[V] = e;
445  return e;
446}
447
448/// lookup - Returns the value number of the specified value. Fails if
449/// the value has not yet been numbered.
450uint32_t ValueTable::lookup(Value *V) const {
451  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
452  assert(VI != valueNumbering.end() && "Value not numbered?");
453  return VI->second;
454}
455
456/// lookup_or_add_cmp - Returns the value number of the given comparison,
457/// assigning it a new number if it did not have one before.  Useful when
458/// we deduced the result of a comparison, but don't immediately have an
459/// instruction realizing that comparison to hand.
460uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
461                                       CmpInst::Predicate Predicate,
462                                       Value *LHS, Value *RHS) {
463  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
464  uint32_t& e = expressionNumbering[exp];
465  if (!e) e = nextValueNumber++;
466  return e;
467}
468
469/// clear - Remove all entries from the ValueTable.
470void ValueTable::clear() {
471  valueNumbering.clear();
472  expressionNumbering.clear();
473  nextValueNumber = 1;
474}
475
476/// erase - Remove a value from the value numbering.
477void ValueTable::erase(Value *V) {
478  valueNumbering.erase(V);
479}
480
481/// verifyRemoved - Verify that the value is removed from all internal data
482/// structures.
483void ValueTable::verifyRemoved(const Value *V) const {
484  for (DenseMap<Value*, uint32_t>::const_iterator
485         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
486    assert(I->first != V && "Inst still occurs in value numbering map!");
487  }
488}
489
490//===----------------------------------------------------------------------===//
491//                                GVN Pass
492//===----------------------------------------------------------------------===//
493
494namespace {
495
496  class GVN : public FunctionPass {
497    bool NoLoads;
498    MemoryDependenceAnalysis *MD;
499    DominatorTree *DT;
500    const TargetData *TD;
501    const TargetLibraryInfo *TLI;
502
503    ValueTable VN;
504
505    /// LeaderTable - A mapping from value numbers to lists of Value*'s that
506    /// have that value number.  Use findLeader to query it.
507    struct LeaderTableEntry {
508      Value *Val;
509      BasicBlock *BB;
510      LeaderTableEntry *Next;
511    };
512    DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
513    BumpPtrAllocator TableAllocator;
514
515    SmallVector<Instruction*, 8> InstrsToErase;
516  public:
517    static char ID; // Pass identification, replacement for typeid
518    explicit GVN(bool noloads = false)
519        : FunctionPass(ID), NoLoads(noloads), MD(0) {
520      initializeGVNPass(*PassRegistry::getPassRegistry());
521    }
522
523    bool runOnFunction(Function &F);
524
525    /// markInstructionForDeletion - This removes the specified instruction from
526    /// our various maps and marks it for deletion.
527    void markInstructionForDeletion(Instruction *I) {
528      VN.erase(I);
529      InstrsToErase.push_back(I);
530    }
531
532    const TargetData *getTargetData() const { return TD; }
533    DominatorTree &getDominatorTree() const { return *DT; }
534    AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
535    MemoryDependenceAnalysis &getMemDep() const { return *MD; }
536  private:
537    /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
538    /// its value number.
539    void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
540      LeaderTableEntry &Curr = LeaderTable[N];
541      if (!Curr.Val) {
542        Curr.Val = V;
543        Curr.BB = BB;
544        return;
545      }
546
547      LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
548      Node->Val = V;
549      Node->BB = BB;
550      Node->Next = Curr.Next;
551      Curr.Next = Node;
552    }
553
554    /// removeFromLeaderTable - Scan the list of values corresponding to a given
555    /// value number, and remove the given value if encountered.
556    void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
557      LeaderTableEntry* Prev = 0;
558      LeaderTableEntry* Curr = &LeaderTable[N];
559
560      while (Curr->Val != V || Curr->BB != BB) {
561        Prev = Curr;
562        Curr = Curr->Next;
563      }
564
565      if (Prev) {
566        Prev->Next = Curr->Next;
567      } else {
568        if (!Curr->Next) {
569          Curr->Val = 0;
570          Curr->BB = 0;
571        } else {
572          LeaderTableEntry* Next = Curr->Next;
573          Curr->Val = Next->Val;
574          Curr->BB = Next->BB;
575          Curr->Next = Next->Next;
576        }
577      }
578    }
579
580    // List of critical edges to be split between iterations.
581    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
582
583    // This transformation requires dominator postdominator info
584    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
585      AU.addRequired<DominatorTree>();
586      AU.addRequired<TargetLibraryInfo>();
587      if (!NoLoads)
588        AU.addRequired<MemoryDependenceAnalysis>();
589      AU.addRequired<AliasAnalysis>();
590
591      AU.addPreserved<DominatorTree>();
592      AU.addPreserved<AliasAnalysis>();
593    }
594
595
596    // Helper fuctions
597    // FIXME: eliminate or document these better
598    bool processLoad(LoadInst *L);
599    bool processInstruction(Instruction *I);
600    bool processNonLocalLoad(LoadInst *L);
601    bool processBlock(BasicBlock *BB);
602    void dump(DenseMap<uint32_t, Value*> &d);
603    bool iterateOnFunction(Function &F);
604    bool performPRE(Function &F);
605    Value *findLeader(BasicBlock *BB, uint32_t num);
606    void cleanupGlobalSets();
607    void verifyRemoved(const Instruction *I) const;
608    bool splitCriticalEdges();
609    unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
610                                         BasicBlock *Root);
611    bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
612  };
613
614  char GVN::ID = 0;
615}
616
617// createGVNPass - The public interface to this file...
618FunctionPass *llvm::createGVNPass(bool NoLoads) {
619  return new GVN(NoLoads);
620}
621
622INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
623INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
624INITIALIZE_PASS_DEPENDENCY(DominatorTree)
625INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
626INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
627INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
628
629void GVN::dump(DenseMap<uint32_t, Value*>& d) {
630  errs() << "{\n";
631  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
632       E = d.end(); I != E; ++I) {
633      errs() << I->first << "\n";
634      I->second->dump();
635  }
636  errs() << "}\n";
637}
638
639/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
640/// we're analyzing is fully available in the specified block.  As we go, keep
641/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
642/// map is actually a tri-state map with the following values:
643///   0) we know the block *is not* fully available.
644///   1) we know the block *is* fully available.
645///   2) we do not know whether the block is fully available or not, but we are
646///      currently speculating that it will be.
647///   3) we are speculating for this block and have used that to speculate for
648///      other blocks.
649static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
650                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
651  // Optimistically assume that the block is fully available and check to see
652  // if we already know about this block in one lookup.
653  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
654    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
655
656  // If the entry already existed for this block, return the precomputed value.
657  if (!IV.second) {
658    // If this is a speculative "available" value, mark it as being used for
659    // speculation of other blocks.
660    if (IV.first->second == 2)
661      IV.first->second = 3;
662    return IV.first->second != 0;
663  }
664
665  // Otherwise, see if it is fully available in all predecessors.
666  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
667
668  // If this block has no predecessors, it isn't live-in here.
669  if (PI == PE)
670    goto SpeculationFailure;
671
672  for (; PI != PE; ++PI)
673    // If the value isn't fully available in one of our predecessors, then it
674    // isn't fully available in this block either.  Undo our previous
675    // optimistic assumption and bail out.
676    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
677      goto SpeculationFailure;
678
679  return true;
680
681// SpeculationFailure - If we get here, we found out that this is not, after
682// all, a fully-available block.  We have a problem if we speculated on this and
683// used the speculation to mark other blocks as available.
684SpeculationFailure:
685  char &BBVal = FullyAvailableBlocks[BB];
686
687  // If we didn't speculate on this, just return with it set to false.
688  if (BBVal == 2) {
689    BBVal = 0;
690    return false;
691  }
692
693  // If we did speculate on this value, we could have blocks set to 1 that are
694  // incorrect.  Walk the (transitive) successors of this block and mark them as
695  // 0 if set to one.
696  SmallVector<BasicBlock*, 32> BBWorklist;
697  BBWorklist.push_back(BB);
698
699  do {
700    BasicBlock *Entry = BBWorklist.pop_back_val();
701    // Note that this sets blocks to 0 (unavailable) if they happen to not
702    // already be in FullyAvailableBlocks.  This is safe.
703    char &EntryVal = FullyAvailableBlocks[Entry];
704    if (EntryVal == 0) continue;  // Already unavailable.
705
706    // Mark as unavailable.
707    EntryVal = 0;
708
709    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
710      BBWorklist.push_back(*I);
711  } while (!BBWorklist.empty());
712
713  return false;
714}
715
716
717/// CanCoerceMustAliasedValueToLoad - Return true if
718/// CoerceAvailableValueToLoadType will succeed.
719static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
720                                            Type *LoadTy,
721                                            const TargetData &TD) {
722  // If the loaded or stored value is an first class array or struct, don't try
723  // to transform them.  We need to be able to bitcast to integer.
724  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
725      StoredVal->getType()->isStructTy() ||
726      StoredVal->getType()->isArrayTy())
727    return false;
728
729  // The store has to be at least as big as the load.
730  if (TD.getTypeSizeInBits(StoredVal->getType()) <
731        TD.getTypeSizeInBits(LoadTy))
732    return false;
733
734  return true;
735}
736
737
738/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
739/// then a load from a must-aliased pointer of a different type, try to coerce
740/// the stored value.  LoadedTy is the type of the load we want to replace and
741/// InsertPt is the place to insert new instructions.
742///
743/// If we can't do it, return null.
744static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
745                                             Type *LoadedTy,
746                                             Instruction *InsertPt,
747                                             const TargetData &TD) {
748  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
749    return 0;
750
751  // If this is already the right type, just return it.
752  Type *StoredValTy = StoredVal->getType();
753
754  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
755  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
756
757  // If the store and reload are the same size, we can always reuse it.
758  if (StoreSize == LoadSize) {
759    // Pointer to Pointer -> use bitcast.
760    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
761      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
762
763    // Convert source pointers to integers, which can be bitcast.
764    if (StoredValTy->isPointerTy()) {
765      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
766      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
767    }
768
769    Type *TypeToCastTo = LoadedTy;
770    if (TypeToCastTo->isPointerTy())
771      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
772
773    if (StoredValTy != TypeToCastTo)
774      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
775
776    // Cast to pointer if the load needs a pointer type.
777    if (LoadedTy->isPointerTy())
778      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
779
780    return StoredVal;
781  }
782
783  // If the loaded value is smaller than the available value, then we can
784  // extract out a piece from it.  If the available value is too small, then we
785  // can't do anything.
786  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
787
788  // Convert source pointers to integers, which can be manipulated.
789  if (StoredValTy->isPointerTy()) {
790    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
791    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
792  }
793
794  // Convert vectors and fp to integer, which can be manipulated.
795  if (!StoredValTy->isIntegerTy()) {
796    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
797    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
798  }
799
800  // If this is a big-endian system, we need to shift the value down to the low
801  // bits so that a truncate will work.
802  if (TD.isBigEndian()) {
803    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
804    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
805  }
806
807  // Truncate the integer to the right size now.
808  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
809  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
810
811  if (LoadedTy == NewIntTy)
812    return StoredVal;
813
814  // If the result is a pointer, inttoptr.
815  if (LoadedTy->isPointerTy())
816    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
817
818  // Otherwise, bitcast.
819  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
820}
821
822/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
823/// memdep query of a load that ends up being a clobbering memory write (store,
824/// memset, memcpy, memmove).  This means that the write *may* provide bits used
825/// by the load but we can't be sure because the pointers don't mustalias.
826///
827/// Check this case to see if there is anything more we can do before we give
828/// up.  This returns -1 if we have to give up, or a byte number in the stored
829/// value of the piece that feeds the load.
830static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
831                                          Value *WritePtr,
832                                          uint64_t WriteSizeInBits,
833                                          const TargetData &TD) {
834  // If the loaded or stored value is a first class array or struct, don't try
835  // to transform them.  We need to be able to bitcast to integer.
836  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
837    return -1;
838
839  int64_t StoreOffset = 0, LoadOffset = 0;
840  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
841  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
842  if (StoreBase != LoadBase)
843    return -1;
844
845  // If the load and store are to the exact same address, they should have been
846  // a must alias.  AA must have gotten confused.
847  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
848  // to a load from the base of the memset.
849#if 0
850  if (LoadOffset == StoreOffset) {
851    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
852    << "Base       = " << *StoreBase << "\n"
853    << "Store Ptr  = " << *WritePtr << "\n"
854    << "Store Offs = " << StoreOffset << "\n"
855    << "Load Ptr   = " << *LoadPtr << "\n";
856    abort();
857  }
858#endif
859
860  // If the load and store don't overlap at all, the store doesn't provide
861  // anything to the load.  In this case, they really don't alias at all, AA
862  // must have gotten confused.
863  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
864
865  if ((WriteSizeInBits & 7) | (LoadSize & 7))
866    return -1;
867  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
868  LoadSize >>= 3;
869
870
871  bool isAAFailure = false;
872  if (StoreOffset < LoadOffset)
873    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
874  else
875    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
876
877  if (isAAFailure) {
878#if 0
879    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
880    << "Base       = " << *StoreBase << "\n"
881    << "Store Ptr  = " << *WritePtr << "\n"
882    << "Store Offs = " << StoreOffset << "\n"
883    << "Load Ptr   = " << *LoadPtr << "\n";
884    abort();
885#endif
886    return -1;
887  }
888
889  // If the Load isn't completely contained within the stored bits, we don't
890  // have all the bits to feed it.  We could do something crazy in the future
891  // (issue a smaller load then merge the bits in) but this seems unlikely to be
892  // valuable.
893  if (StoreOffset > LoadOffset ||
894      StoreOffset+StoreSize < LoadOffset+LoadSize)
895    return -1;
896
897  // Okay, we can do this transformation.  Return the number of bytes into the
898  // store that the load is.
899  return LoadOffset-StoreOffset;
900}
901
902/// AnalyzeLoadFromClobberingStore - This function is called when we have a
903/// memdep query of a load that ends up being a clobbering store.
904static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
905                                          StoreInst *DepSI,
906                                          const TargetData &TD) {
907  // Cannot handle reading from store of first-class aggregate yet.
908  if (DepSI->getValueOperand()->getType()->isStructTy() ||
909      DepSI->getValueOperand()->getType()->isArrayTy())
910    return -1;
911
912  Value *StorePtr = DepSI->getPointerOperand();
913  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
914  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
915                                        StorePtr, StoreSize, TD);
916}
917
918/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
919/// memdep query of a load that ends up being clobbered by another load.  See if
920/// the other load can feed into the second load.
921static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
922                                         LoadInst *DepLI, const TargetData &TD){
923  // Cannot handle reading from store of first-class aggregate yet.
924  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
925    return -1;
926
927  Value *DepPtr = DepLI->getPointerOperand();
928  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
929  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
930  if (R != -1) return R;
931
932  // If we have a load/load clobber an DepLI can be widened to cover this load,
933  // then we should widen it!
934  int64_t LoadOffs = 0;
935  const Value *LoadBase =
936    GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
937  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
938
939  unsigned Size = MemoryDependenceAnalysis::
940    getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
941  if (Size == 0) return -1;
942
943  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
944}
945
946
947
948static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
949                                            MemIntrinsic *MI,
950                                            const TargetData &TD) {
951  // If the mem operation is a non-constant size, we can't handle it.
952  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
953  if (SizeCst == 0) return -1;
954  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
955
956  // If this is memset, we just need to see if the offset is valid in the size
957  // of the memset..
958  if (MI->getIntrinsicID() == Intrinsic::memset)
959    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
960                                          MemSizeInBits, TD);
961
962  // If we have a memcpy/memmove, the only case we can handle is if this is a
963  // copy from constant memory.  In that case, we can read directly from the
964  // constant memory.
965  MemTransferInst *MTI = cast<MemTransferInst>(MI);
966
967  Constant *Src = dyn_cast<Constant>(MTI->getSource());
968  if (Src == 0) return -1;
969
970  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
971  if (GV == 0 || !GV->isConstant()) return -1;
972
973  // See if the access is within the bounds of the transfer.
974  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
975                                              MI->getDest(), MemSizeInBits, TD);
976  if (Offset == -1)
977    return Offset;
978
979  // Otherwise, see if we can constant fold a load from the constant with the
980  // offset applied as appropriate.
981  Src = ConstantExpr::getBitCast(Src,
982                                 llvm::Type::getInt8PtrTy(Src->getContext()));
983  Constant *OffsetCst =
984    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
985  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
986  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
987  if (ConstantFoldLoadFromConstPtr(Src, &TD))
988    return Offset;
989  return -1;
990}
991
992
993/// GetStoreValueForLoad - This function is called when we have a
994/// memdep query of a load that ends up being a clobbering store.  This means
995/// that the store provides bits used by the load but we the pointers don't
996/// mustalias.  Check this case to see if there is anything more we can do
997/// before we give up.
998static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
999                                   Type *LoadTy,
1000                                   Instruction *InsertPt, const TargetData &TD){
1001  LLVMContext &Ctx = SrcVal->getType()->getContext();
1002
1003  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1004  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1005
1006  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1007
1008  // Compute which bits of the stored value are being used by the load.  Convert
1009  // to an integer type to start with.
1010  if (SrcVal->getType()->isPointerTy())
1011    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
1012  if (!SrcVal->getType()->isIntegerTy())
1013    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1014
1015  // Shift the bits to the least significant depending on endianness.
1016  unsigned ShiftAmt;
1017  if (TD.isLittleEndian())
1018    ShiftAmt = Offset*8;
1019  else
1020    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1021
1022  if (ShiftAmt)
1023    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1024
1025  if (LoadSize != StoreSize)
1026    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1027
1028  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1029}
1030
1031/// GetLoadValueForLoad - This function is called when we have a
1032/// memdep query of a load that ends up being a clobbering load.  This means
1033/// that the load *may* provide bits used by the load but we can't be sure
1034/// because the pointers don't mustalias.  Check this case to see if there is
1035/// anything more we can do before we give up.
1036static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1037                                  Type *LoadTy, Instruction *InsertPt,
1038                                  GVN &gvn) {
1039  const TargetData &TD = *gvn.getTargetData();
1040  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1041  // widen SrcVal out to a larger load.
1042  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1043  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1044  if (Offset+LoadSize > SrcValSize) {
1045    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1046    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1047    // If we have a load/load clobber an DepLI can be widened to cover this
1048    // load, then we should widen it to the next power of 2 size big enough!
1049    unsigned NewLoadSize = Offset+LoadSize;
1050    if (!isPowerOf2_32(NewLoadSize))
1051      NewLoadSize = NextPowerOf2(NewLoadSize);
1052
1053    Value *PtrVal = SrcVal->getPointerOperand();
1054
1055    // Insert the new load after the old load.  This ensures that subsequent
1056    // memdep queries will find the new load.  We can't easily remove the old
1057    // load completely because it is already in the value numbering table.
1058    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1059    Type *DestPTy =
1060      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1061    DestPTy = PointerType::get(DestPTy,
1062                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
1063    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1064    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1065    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1066    NewLoad->takeName(SrcVal);
1067    NewLoad->setAlignment(SrcVal->getAlignment());
1068
1069    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1070    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1071
1072    // Replace uses of the original load with the wider load.  On a big endian
1073    // system, we need to shift down to get the relevant bits.
1074    Value *RV = NewLoad;
1075    if (TD.isBigEndian())
1076      RV = Builder.CreateLShr(RV,
1077                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1078    RV = Builder.CreateTrunc(RV, SrcVal->getType());
1079    SrcVal->replaceAllUsesWith(RV);
1080
1081    // We would like to use gvn.markInstructionForDeletion here, but we can't
1082    // because the load is already memoized into the leader map table that GVN
1083    // tracks.  It is potentially possible to remove the load from the table,
1084    // but then there all of the operations based on it would need to be
1085    // rehashed.  Just leave the dead load around.
1086    gvn.getMemDep().removeInstruction(SrcVal);
1087    SrcVal = NewLoad;
1088  }
1089
1090  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1091}
1092
1093
1094/// GetMemInstValueForLoad - This function is called when we have a
1095/// memdep query of a load that ends up being a clobbering mem intrinsic.
1096static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1097                                     Type *LoadTy, Instruction *InsertPt,
1098                                     const TargetData &TD){
1099  LLVMContext &Ctx = LoadTy->getContext();
1100  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1101
1102  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1103
1104  // We know that this method is only called when the mem transfer fully
1105  // provides the bits for the load.
1106  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1107    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1108    // independently of what the offset is.
1109    Value *Val = MSI->getValue();
1110    if (LoadSize != 1)
1111      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1112
1113    Value *OneElt = Val;
1114
1115    // Splat the value out to the right number of bits.
1116    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1117      // If we can double the number of bytes set, do it.
1118      if (NumBytesSet*2 <= LoadSize) {
1119        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1120        Val = Builder.CreateOr(Val, ShVal);
1121        NumBytesSet <<= 1;
1122        continue;
1123      }
1124
1125      // Otherwise insert one byte at a time.
1126      Value *ShVal = Builder.CreateShl(Val, 1*8);
1127      Val = Builder.CreateOr(OneElt, ShVal);
1128      ++NumBytesSet;
1129    }
1130
1131    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1132  }
1133
1134  // Otherwise, this is a memcpy/memmove from a constant global.
1135  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1136  Constant *Src = cast<Constant>(MTI->getSource());
1137
1138  // Otherwise, see if we can constant fold a load from the constant with the
1139  // offset applied as appropriate.
1140  Src = ConstantExpr::getBitCast(Src,
1141                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1142  Constant *OffsetCst =
1143  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1144  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1145  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1146  return ConstantFoldLoadFromConstPtr(Src, &TD);
1147}
1148
1149namespace {
1150
1151struct AvailableValueInBlock {
1152  /// BB - The basic block in question.
1153  BasicBlock *BB;
1154  enum ValType {
1155    SimpleVal,  // A simple offsetted value that is accessed.
1156    LoadVal,    // A value produced by a load.
1157    MemIntrin   // A memory intrinsic which is loaded from.
1158  };
1159
1160  /// V - The value that is live out of the block.
1161  PointerIntPair<Value *, 2, ValType> Val;
1162
1163  /// Offset - The byte offset in Val that is interesting for the load query.
1164  unsigned Offset;
1165
1166  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1167                                   unsigned Offset = 0) {
1168    AvailableValueInBlock Res;
1169    Res.BB = BB;
1170    Res.Val.setPointer(V);
1171    Res.Val.setInt(SimpleVal);
1172    Res.Offset = Offset;
1173    return Res;
1174  }
1175
1176  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1177                                     unsigned Offset = 0) {
1178    AvailableValueInBlock Res;
1179    Res.BB = BB;
1180    Res.Val.setPointer(MI);
1181    Res.Val.setInt(MemIntrin);
1182    Res.Offset = Offset;
1183    return Res;
1184  }
1185
1186  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1187                                       unsigned Offset = 0) {
1188    AvailableValueInBlock Res;
1189    Res.BB = BB;
1190    Res.Val.setPointer(LI);
1191    Res.Val.setInt(LoadVal);
1192    Res.Offset = Offset;
1193    return Res;
1194  }
1195
1196  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1197  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1198  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1199
1200  Value *getSimpleValue() const {
1201    assert(isSimpleValue() && "Wrong accessor");
1202    return Val.getPointer();
1203  }
1204
1205  LoadInst *getCoercedLoadValue() const {
1206    assert(isCoercedLoadValue() && "Wrong accessor");
1207    return cast<LoadInst>(Val.getPointer());
1208  }
1209
1210  MemIntrinsic *getMemIntrinValue() const {
1211    assert(isMemIntrinValue() && "Wrong accessor");
1212    return cast<MemIntrinsic>(Val.getPointer());
1213  }
1214
1215  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1216  /// defined here to the specified type.  This handles various coercion cases.
1217  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1218    Value *Res;
1219    if (isSimpleValue()) {
1220      Res = getSimpleValue();
1221      if (Res->getType() != LoadTy) {
1222        const TargetData *TD = gvn.getTargetData();
1223        assert(TD && "Need target data to handle type mismatch case");
1224        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1225                                   *TD);
1226
1227        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1228                     << *getSimpleValue() << '\n'
1229                     << *Res << '\n' << "\n\n\n");
1230      }
1231    } else if (isCoercedLoadValue()) {
1232      LoadInst *Load = getCoercedLoadValue();
1233      if (Load->getType() == LoadTy && Offset == 0) {
1234        Res = Load;
1235      } else {
1236        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1237                                  gvn);
1238
1239        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
1240                     << *getCoercedLoadValue() << '\n'
1241                     << *Res << '\n' << "\n\n\n");
1242      }
1243    } else {
1244      const TargetData *TD = gvn.getTargetData();
1245      assert(TD && "Need target data to handle type mismatch case");
1246      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1247                                   LoadTy, BB->getTerminator(), *TD);
1248      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1249                   << "  " << *getMemIntrinValue() << '\n'
1250                   << *Res << '\n' << "\n\n\n");
1251    }
1252    return Res;
1253  }
1254};
1255
1256} // end anonymous namespace
1257
1258/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1259/// construct SSA form, allowing us to eliminate LI.  This returns the value
1260/// that should be used at LI's definition site.
1261static Value *ConstructSSAForLoadSet(LoadInst *LI,
1262                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1263                                     GVN &gvn) {
1264  // Check for the fully redundant, dominating load case.  In this case, we can
1265  // just use the dominating value directly.
1266  if (ValuesPerBlock.size() == 1 &&
1267      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1268                                               LI->getParent()))
1269    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1270
1271  // Otherwise, we have to construct SSA form.
1272  SmallVector<PHINode*, 8> NewPHIs;
1273  SSAUpdater SSAUpdate(&NewPHIs);
1274  SSAUpdate.Initialize(LI->getType(), LI->getName());
1275
1276  Type *LoadTy = LI->getType();
1277
1278  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1279    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1280    BasicBlock *BB = AV.BB;
1281
1282    if (SSAUpdate.HasValueForBlock(BB))
1283      continue;
1284
1285    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1286  }
1287
1288  // Perform PHI construction.
1289  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1290
1291  // If new PHI nodes were created, notify alias analysis.
1292  if (V->getType()->isPointerTy()) {
1293    AliasAnalysis *AA = gvn.getAliasAnalysis();
1294
1295    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1296      AA->copyValue(LI, NewPHIs[i]);
1297
1298    // Now that we've copied information to the new PHIs, scan through
1299    // them again and inform alias analysis that we've added potentially
1300    // escaping uses to any values that are operands to these PHIs.
1301    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1302      PHINode *P = NewPHIs[i];
1303      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1304        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1305        AA->addEscapingUse(P->getOperandUse(jj));
1306      }
1307    }
1308  }
1309
1310  return V;
1311}
1312
1313static bool isLifetimeStart(const Instruction *Inst) {
1314  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1315    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1316  return false;
1317}
1318
1319/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1320/// non-local by performing PHI construction.
1321bool GVN::processNonLocalLoad(LoadInst *LI) {
1322  // Find the non-local dependencies of the load.
1323  SmallVector<NonLocalDepResult, 64> Deps;
1324  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1325  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1326  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1327  //             << Deps.size() << *LI << '\n');
1328
1329  // If we had to process more than one hundred blocks to find the
1330  // dependencies, this load isn't worth worrying about.  Optimizing
1331  // it will be too expensive.
1332  unsigned NumDeps = Deps.size();
1333  if (NumDeps > 100)
1334    return false;
1335
1336  // If we had a phi translation failure, we'll have a single entry which is a
1337  // clobber in the current block.  Reject this early.
1338  if (NumDeps == 1 &&
1339      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1340    DEBUG(
1341      dbgs() << "GVN: non-local load ";
1342      WriteAsOperand(dbgs(), LI);
1343      dbgs() << " has unknown dependencies\n";
1344    );
1345    return false;
1346  }
1347
1348  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1349  // where we have a value available in repl, also keep track of whether we see
1350  // dependencies that produce an unknown value for the load (such as a call
1351  // that could potentially clobber the load).
1352  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
1353  SmallVector<BasicBlock*, 64> UnavailableBlocks;
1354
1355  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1356    BasicBlock *DepBB = Deps[i].getBB();
1357    MemDepResult DepInfo = Deps[i].getResult();
1358
1359    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1360      UnavailableBlocks.push_back(DepBB);
1361      continue;
1362    }
1363
1364    if (DepInfo.isClobber()) {
1365      // The address being loaded in this non-local block may not be the same as
1366      // the pointer operand of the load if PHI translation occurs.  Make sure
1367      // to consider the right address.
1368      Value *Address = Deps[i].getAddress();
1369
1370      // If the dependence is to a store that writes to a superset of the bits
1371      // read by the load, we can extract the bits we need for the load from the
1372      // stored value.
1373      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1374        if (TD && Address) {
1375          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1376                                                      DepSI, *TD);
1377          if (Offset != -1) {
1378            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1379                                                       DepSI->getValueOperand(),
1380                                                                Offset));
1381            continue;
1382          }
1383        }
1384      }
1385
1386      // Check to see if we have something like this:
1387      //    load i32* P
1388      //    load i8* (P+1)
1389      // if we have this, replace the later with an extraction from the former.
1390      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1391        // If this is a clobber and L is the first instruction in its block, then
1392        // we have the first instruction in the entry block.
1393        if (DepLI != LI && Address && TD) {
1394          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1395                                                     LI->getPointerOperand(),
1396                                                     DepLI, *TD);
1397
1398          if (Offset != -1) {
1399            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1400                                                                    Offset));
1401            continue;
1402          }
1403        }
1404      }
1405
1406      // If the clobbering value is a memset/memcpy/memmove, see if we can
1407      // forward a value on from it.
1408      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1409        if (TD && Address) {
1410          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1411                                                        DepMI, *TD);
1412          if (Offset != -1) {
1413            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1414                                                                  Offset));
1415            continue;
1416          }
1417        }
1418      }
1419
1420      UnavailableBlocks.push_back(DepBB);
1421      continue;
1422    }
1423
1424    // DepInfo.isDef() here
1425
1426    Instruction *DepInst = DepInfo.getInst();
1427
1428    // Loading the allocation -> undef.
1429    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1430        // Loading immediately after lifetime begin -> undef.
1431        isLifetimeStart(DepInst)) {
1432      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1433                                             UndefValue::get(LI->getType())));
1434      continue;
1435    }
1436
1437    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1438      // Reject loads and stores that are to the same address but are of
1439      // different types if we have to.
1440      if (S->getValueOperand()->getType() != LI->getType()) {
1441        // If the stored value is larger or equal to the loaded value, we can
1442        // reuse it.
1443        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1444                                                        LI->getType(), *TD)) {
1445          UnavailableBlocks.push_back(DepBB);
1446          continue;
1447        }
1448      }
1449
1450      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1451                                                         S->getValueOperand()));
1452      continue;
1453    }
1454
1455    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1456      // If the types mismatch and we can't handle it, reject reuse of the load.
1457      if (LD->getType() != LI->getType()) {
1458        // If the stored value is larger or equal to the loaded value, we can
1459        // reuse it.
1460        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1461          UnavailableBlocks.push_back(DepBB);
1462          continue;
1463        }
1464      }
1465      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1466      continue;
1467    }
1468
1469    UnavailableBlocks.push_back(DepBB);
1470    continue;
1471  }
1472
1473  // If we have no predecessors that produce a known value for this load, exit
1474  // early.
1475  if (ValuesPerBlock.empty()) return false;
1476
1477  // If all of the instructions we depend on produce a known value for this
1478  // load, then it is fully redundant and we can use PHI insertion to compute
1479  // its value.  Insert PHIs and remove the fully redundant value now.
1480  if (UnavailableBlocks.empty()) {
1481    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1482
1483    // Perform PHI construction.
1484    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1485    LI->replaceAllUsesWith(V);
1486
1487    if (isa<PHINode>(V))
1488      V->takeName(LI);
1489    if (V->getType()->isPointerTy())
1490      MD->invalidateCachedPointerInfo(V);
1491    markInstructionForDeletion(LI);
1492    ++NumGVNLoad;
1493    return true;
1494  }
1495
1496  if (!EnablePRE || !EnableLoadPRE)
1497    return false;
1498
1499  // Okay, we have *some* definitions of the value.  This means that the value
1500  // is available in some of our (transitive) predecessors.  Lets think about
1501  // doing PRE of this load.  This will involve inserting a new load into the
1502  // predecessor when it's not available.  We could do this in general, but
1503  // prefer to not increase code size.  As such, we only do this when we know
1504  // that we only have to insert *one* load (which means we're basically moving
1505  // the load, not inserting a new one).
1506
1507  SmallPtrSet<BasicBlock *, 4> Blockers;
1508  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1509    Blockers.insert(UnavailableBlocks[i]);
1510
1511  // Let's find the first basic block with more than one predecessor.  Walk
1512  // backwards through predecessors if needed.
1513  BasicBlock *LoadBB = LI->getParent();
1514  BasicBlock *TmpBB = LoadBB;
1515
1516  bool isSinglePred = false;
1517  bool allSingleSucc = true;
1518  while (TmpBB->getSinglePredecessor()) {
1519    isSinglePred = true;
1520    TmpBB = TmpBB->getSinglePredecessor();
1521    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1522      return false;
1523    if (Blockers.count(TmpBB))
1524      return false;
1525
1526    // If any of these blocks has more than one successor (i.e. if the edge we
1527    // just traversed was critical), then there are other paths through this
1528    // block along which the load may not be anticipated.  Hoisting the load
1529    // above this block would be adding the load to execution paths along
1530    // which it was not previously executed.
1531    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1532      return false;
1533  }
1534
1535  assert(TmpBB);
1536  LoadBB = TmpBB;
1537
1538  // FIXME: It is extremely unclear what this loop is doing, other than
1539  // artificially restricting loadpre.
1540  if (isSinglePred) {
1541    bool isHot = false;
1542    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1543      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1544      if (AV.isSimpleValue())
1545        // "Hot" Instruction is in some loop (because it dominates its dep.
1546        // instruction).
1547        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1548          if (DT->dominates(LI, I)) {
1549            isHot = true;
1550            break;
1551          }
1552    }
1553
1554    // We are interested only in "hot" instructions. We don't want to do any
1555    // mis-optimizations here.
1556    if (!isHot)
1557      return false;
1558  }
1559
1560  // Check to see how many predecessors have the loaded value fully
1561  // available.
1562  DenseMap<BasicBlock*, Value*> PredLoads;
1563  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1564  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1565    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1566  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1567    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1568
1569  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1570  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1571       PI != E; ++PI) {
1572    BasicBlock *Pred = *PI;
1573    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1574      continue;
1575    }
1576    PredLoads[Pred] = 0;
1577
1578    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1579      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1580        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1581              << Pred->getName() << "': " << *LI << '\n');
1582        return false;
1583      }
1584
1585      if (LoadBB->isLandingPad()) {
1586        DEBUG(dbgs()
1587              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1588              << Pred->getName() << "': " << *LI << '\n');
1589        return false;
1590      }
1591
1592      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1593      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1594    }
1595  }
1596
1597  if (!NeedToSplit.empty()) {
1598    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1599    return false;
1600  }
1601
1602  // Decide whether PRE is profitable for this load.
1603  unsigned NumUnavailablePreds = PredLoads.size();
1604  assert(NumUnavailablePreds != 0 &&
1605         "Fully available value should be eliminated above!");
1606
1607  // If this load is unavailable in multiple predecessors, reject it.
1608  // FIXME: If we could restructure the CFG, we could make a common pred with
1609  // all the preds that don't have an available LI and insert a new load into
1610  // that one block.
1611  if (NumUnavailablePreds != 1)
1612      return false;
1613
1614  // Check if the load can safely be moved to all the unavailable predecessors.
1615  bool CanDoPRE = true;
1616  SmallVector<Instruction*, 8> NewInsts;
1617  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1618         E = PredLoads.end(); I != E; ++I) {
1619    BasicBlock *UnavailablePred = I->first;
1620
1621    // Do PHI translation to get its value in the predecessor if necessary.  The
1622    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1623
1624    // If all preds have a single successor, then we know it is safe to insert
1625    // the load on the pred (?!?), so we can insert code to materialize the
1626    // pointer if it is not available.
1627    PHITransAddr Address(LI->getPointerOperand(), TD);
1628    Value *LoadPtr = 0;
1629    if (allSingleSucc) {
1630      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1631                                                  *DT, NewInsts);
1632    } else {
1633      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1634      LoadPtr = Address.getAddr();
1635    }
1636
1637    // If we couldn't find or insert a computation of this phi translated value,
1638    // we fail PRE.
1639    if (LoadPtr == 0) {
1640      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1641            << *LI->getPointerOperand() << "\n");
1642      CanDoPRE = false;
1643      break;
1644    }
1645
1646    // Make sure it is valid to move this load here.  We have to watch out for:
1647    //  @1 = getelementptr (i8* p, ...
1648    //  test p and branch if == 0
1649    //  load @1
1650    // It is valid to have the getelementptr before the test, even if p can
1651    // be 0, as getelementptr only does address arithmetic.
1652    // If we are not pushing the value through any multiple-successor blocks
1653    // we do not have this case.  Otherwise, check that the load is safe to
1654    // put anywhere; this can be improved, but should be conservatively safe.
1655    if (!allSingleSucc &&
1656        // FIXME: REEVALUTE THIS.
1657        !isSafeToLoadUnconditionally(LoadPtr,
1658                                     UnavailablePred->getTerminator(),
1659                                     LI->getAlignment(), TD)) {
1660      CanDoPRE = false;
1661      break;
1662    }
1663
1664    I->second = LoadPtr;
1665  }
1666
1667  if (!CanDoPRE) {
1668    while (!NewInsts.empty()) {
1669      Instruction *I = NewInsts.pop_back_val();
1670      if (MD) MD->removeInstruction(I);
1671      I->eraseFromParent();
1672    }
1673    return false;
1674  }
1675
1676  // Okay, we can eliminate this load by inserting a reload in the predecessor
1677  // and using PHI construction to get the value in the other predecessors, do
1678  // it.
1679  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1680  DEBUG(if (!NewInsts.empty())
1681          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1682                 << *NewInsts.back() << '\n');
1683
1684  // Assign value numbers to the new instructions.
1685  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1686    // FIXME: We really _ought_ to insert these value numbers into their
1687    // parent's availability map.  However, in doing so, we risk getting into
1688    // ordering issues.  If a block hasn't been processed yet, we would be
1689    // marking a value as AVAIL-IN, which isn't what we intend.
1690    VN.lookup_or_add(NewInsts[i]);
1691  }
1692
1693  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1694         E = PredLoads.end(); I != E; ++I) {
1695    BasicBlock *UnavailablePred = I->first;
1696    Value *LoadPtr = I->second;
1697
1698    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1699                                        LI->getAlignment(),
1700                                        UnavailablePred->getTerminator());
1701
1702    // Transfer the old load's TBAA tag to the new load.
1703    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1704      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1705
1706    // Transfer DebugLoc.
1707    NewLoad->setDebugLoc(LI->getDebugLoc());
1708
1709    // Add the newly created load.
1710    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1711                                                        NewLoad));
1712    MD->invalidateCachedPointerInfo(LoadPtr);
1713    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1714  }
1715
1716  // Perform PHI construction.
1717  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1718  LI->replaceAllUsesWith(V);
1719  if (isa<PHINode>(V))
1720    V->takeName(LI);
1721  if (V->getType()->isPointerTy())
1722    MD->invalidateCachedPointerInfo(V);
1723  markInstructionForDeletion(LI);
1724  ++NumPRELoad;
1725  return true;
1726}
1727
1728/// processLoad - Attempt to eliminate a load, first by eliminating it
1729/// locally, and then attempting non-local elimination if that fails.
1730bool GVN::processLoad(LoadInst *L) {
1731  if (!MD)
1732    return false;
1733
1734  if (!L->isSimple())
1735    return false;
1736
1737  if (L->use_empty()) {
1738    markInstructionForDeletion(L);
1739    return true;
1740  }
1741
1742  // ... to a pointer that has been loaded from before...
1743  MemDepResult Dep = MD->getDependency(L);
1744
1745  // If we have a clobber and target data is around, see if this is a clobber
1746  // that we can fix up through code synthesis.
1747  if (Dep.isClobber() && TD) {
1748    // Check to see if we have something like this:
1749    //   store i32 123, i32* %P
1750    //   %A = bitcast i32* %P to i8*
1751    //   %B = gep i8* %A, i32 1
1752    //   %C = load i8* %B
1753    //
1754    // We could do that by recognizing if the clobber instructions are obviously
1755    // a common base + constant offset, and if the previous store (or memset)
1756    // completely covers this load.  This sort of thing can happen in bitfield
1757    // access code.
1758    Value *AvailVal = 0;
1759    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1760      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1761                                                  L->getPointerOperand(),
1762                                                  DepSI, *TD);
1763      if (Offset != -1)
1764        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1765                                        L->getType(), L, *TD);
1766    }
1767
1768    // Check to see if we have something like this:
1769    //    load i32* P
1770    //    load i8* (P+1)
1771    // if we have this, replace the later with an extraction from the former.
1772    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1773      // If this is a clobber and L is the first instruction in its block, then
1774      // we have the first instruction in the entry block.
1775      if (DepLI == L)
1776        return false;
1777
1778      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1779                                                 L->getPointerOperand(),
1780                                                 DepLI, *TD);
1781      if (Offset != -1)
1782        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1783    }
1784
1785    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1786    // a value on from it.
1787    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1788      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1789                                                    L->getPointerOperand(),
1790                                                    DepMI, *TD);
1791      if (Offset != -1)
1792        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1793    }
1794
1795    if (AvailVal) {
1796      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1797            << *AvailVal << '\n' << *L << "\n\n\n");
1798
1799      // Replace the load!
1800      L->replaceAllUsesWith(AvailVal);
1801      if (AvailVal->getType()->isPointerTy())
1802        MD->invalidateCachedPointerInfo(AvailVal);
1803      markInstructionForDeletion(L);
1804      ++NumGVNLoad;
1805      return true;
1806    }
1807  }
1808
1809  // If the value isn't available, don't do anything!
1810  if (Dep.isClobber()) {
1811    DEBUG(
1812      // fast print dep, using operator<< on instruction is too slow.
1813      dbgs() << "GVN: load ";
1814      WriteAsOperand(dbgs(), L);
1815      Instruction *I = Dep.getInst();
1816      dbgs() << " is clobbered by " << *I << '\n';
1817    );
1818    return false;
1819  }
1820
1821  // If it is defined in another block, try harder.
1822  if (Dep.isNonLocal())
1823    return processNonLocalLoad(L);
1824
1825  if (!Dep.isDef()) {
1826    DEBUG(
1827      // fast print dep, using operator<< on instruction is too slow.
1828      dbgs() << "GVN: load ";
1829      WriteAsOperand(dbgs(), L);
1830      dbgs() << " has unknown dependence\n";
1831    );
1832    return false;
1833  }
1834
1835  Instruction *DepInst = Dep.getInst();
1836  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1837    Value *StoredVal = DepSI->getValueOperand();
1838
1839    // The store and load are to a must-aliased pointer, but they may not
1840    // actually have the same type.  See if we know how to reuse the stored
1841    // value (depending on its type).
1842    if (StoredVal->getType() != L->getType()) {
1843      if (TD) {
1844        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1845                                                   L, *TD);
1846        if (StoredVal == 0)
1847          return false;
1848
1849        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1850                     << '\n' << *L << "\n\n\n");
1851      }
1852      else
1853        return false;
1854    }
1855
1856    // Remove it!
1857    L->replaceAllUsesWith(StoredVal);
1858    if (StoredVal->getType()->isPointerTy())
1859      MD->invalidateCachedPointerInfo(StoredVal);
1860    markInstructionForDeletion(L);
1861    ++NumGVNLoad;
1862    return true;
1863  }
1864
1865  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1866    Value *AvailableVal = DepLI;
1867
1868    // The loads are of a must-aliased pointer, but they may not actually have
1869    // the same type.  See if we know how to reuse the previously loaded value
1870    // (depending on its type).
1871    if (DepLI->getType() != L->getType()) {
1872      if (TD) {
1873        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1874                                                      L, *TD);
1875        if (AvailableVal == 0)
1876          return false;
1877
1878        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1879                     << "\n" << *L << "\n\n\n");
1880      }
1881      else
1882        return false;
1883    }
1884
1885    // Remove it!
1886    L->replaceAllUsesWith(AvailableVal);
1887    if (DepLI->getType()->isPointerTy())
1888      MD->invalidateCachedPointerInfo(DepLI);
1889    markInstructionForDeletion(L);
1890    ++NumGVNLoad;
1891    return true;
1892  }
1893
1894  // If this load really doesn't depend on anything, then we must be loading an
1895  // undef value.  This can happen when loading for a fresh allocation with no
1896  // intervening stores, for example.
1897  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1898    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1899    markInstructionForDeletion(L);
1900    ++NumGVNLoad;
1901    return true;
1902  }
1903
1904  // If this load occurs either right after a lifetime begin,
1905  // then the loaded value is undefined.
1906  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1907    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1908      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1909      markInstructionForDeletion(L);
1910      ++NumGVNLoad;
1911      return true;
1912    }
1913  }
1914
1915  return false;
1916}
1917
1918// findLeader - In order to find a leader for a given value number at a
1919// specific basic block, we first obtain the list of all Values for that number,
1920// and then scan the list to find one whose block dominates the block in
1921// question.  This is fast because dominator tree queries consist of only
1922// a few comparisons of DFS numbers.
1923Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1924  LeaderTableEntry Vals = LeaderTable[num];
1925  if (!Vals.Val) return 0;
1926
1927  Value *Val = 0;
1928  if (DT->dominates(Vals.BB, BB)) {
1929    Val = Vals.Val;
1930    if (isa<Constant>(Val)) return Val;
1931  }
1932
1933  LeaderTableEntry* Next = Vals.Next;
1934  while (Next) {
1935    if (DT->dominates(Next->BB, BB)) {
1936      if (isa<Constant>(Next->Val)) return Next->Val;
1937      if (!Val) Val = Next->Val;
1938    }
1939
1940    Next = Next->Next;
1941  }
1942
1943  return Val;
1944}
1945
1946/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1947/// use is dominated by the given basic block.  Returns the number of uses that
1948/// were replaced.
1949unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1950                                          BasicBlock *Root) {
1951  unsigned Count = 0;
1952  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1953       UI != UE; ) {
1954    Use &U = (UI++).getUse();
1955
1956    // If From occurs as a phi node operand then the use implicitly lives in the
1957    // corresponding incoming block.  Otherwise it is the block containing the
1958    // user that must be dominated by Root.
1959    BasicBlock *UsingBlock;
1960    if (PHINode *PN = dyn_cast<PHINode>(U.getUser()))
1961      UsingBlock = PN->getIncomingBlock(U);
1962    else
1963      UsingBlock = cast<Instruction>(U.getUser())->getParent();
1964
1965    if (DT->dominates(Root, UsingBlock)) {
1966      U.set(To);
1967      ++Count;
1968    }
1969  }
1970  return Count;
1971}
1972
1973/// propagateEquality - The given values are known to be equal in every block
1974/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1975/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1976bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
1977  if (LHS == RHS) return false;
1978  assert(LHS->getType() == RHS->getType() && "Equal but types differ!");
1979
1980  // Don't try to propagate equalities between constants.
1981  if (isa<Constant>(LHS) && isa<Constant>(RHS))
1982    return false;
1983
1984  // Prefer a constant on the right-hand side, or an Argument if no constants.
1985  if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1986    std::swap(LHS, RHS);
1987  assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1988
1989  // If there is no obvious reason to prefer the left-hand side over the right-
1990  // hand side, ensure the longest lived term is on the right-hand side, so the
1991  // shortest lived term will be replaced by the longest lived.  This tends to
1992  // expose more simplifications.
1993  uint32_t LVN = VN.lookup_or_add(LHS);
1994  if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1995      (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1996    // Move the 'oldest' value to the right-hand side, using the value number as
1997    // a proxy for age.
1998    uint32_t RVN = VN.lookup_or_add(RHS);
1999    if (LVN < RVN) {
2000      std::swap(LHS, RHS);
2001      LVN = RVN;
2002    }
2003  }
2004  assert((!isa<Instruction>(RHS) ||
2005          DT->properlyDominates(cast<Instruction>(RHS)->getParent(), Root)) &&
2006         "Instruction doesn't dominate scope!");
2007
2008  // If value numbering later deduces that an instruction in the scope is equal
2009  // to 'LHS' then ensure it will be turned into 'RHS'.
2010  addToLeaderTable(LVN, RHS, Root);
2011
2012  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2013  // LHS always has at least one use that is not dominated by Root, this will
2014  // never do anything if LHS has only one use.
2015  bool Changed = false;
2016  if (!LHS->hasOneUse()) {
2017    unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2018    Changed |= NumReplacements > 0;
2019    NumGVNEqProp += NumReplacements;
2020  }
2021
2022  // Now try to deduce additional equalities from this one.  For example, if the
2023  // known equality was "(A != B)" == "false" then it follows that A and B are
2024  // equal in the scope.  Only boolean equalities with an explicit true or false
2025  // RHS are currently supported.
2026  if (!RHS->getType()->isIntegerTy(1))
2027    // Not a boolean equality - bail out.
2028    return Changed;
2029  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2030  if (!CI)
2031    // RHS neither 'true' nor 'false' - bail out.
2032    return Changed;
2033  // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2034  bool isKnownTrue = CI->isAllOnesValue();
2035  bool isKnownFalse = !isKnownTrue;
2036
2037  // If "A && B" is known true then both A and B are known true.  If "A || B"
2038  // is known false then both A and B are known false.
2039  Value *A, *B;
2040  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2041      (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2042    Changed |= propagateEquality(A, RHS, Root);
2043    Changed |= propagateEquality(B, RHS, Root);
2044    return Changed;
2045  }
2046
2047  // If we are propagating an equality like "(A == B)" == "true" then also
2048  // propagate the equality A == B.  When propagating a comparison such as
2049  // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2050  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2051    Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2052
2053    // If "A == B" is known true, or "A != B" is known false, then replace
2054    // A with B everywhere in the scope.
2055    if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2056        (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2057      Changed |= propagateEquality(Op0, Op1, Root);
2058
2059    // If "A >= B" is known true, replace "A < B" with false everywhere.
2060    CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2061    Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2062    // Since we don't have the instruction "A < B" immediately to hand, work out
2063    // the value number that it would have and use that to find an appropriate
2064    // instruction (if any).
2065    uint32_t NextNum = VN.getNextUnusedValueNumber();
2066    uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2067    // If the number we were assigned was brand new then there is no point in
2068    // looking for an instruction realizing it: there cannot be one!
2069    if (Num < NextNum) {
2070      Value *NotCmp = findLeader(Root, Num);
2071      if (NotCmp && isa<Instruction>(NotCmp)) {
2072        unsigned NumReplacements =
2073          replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2074        Changed |= NumReplacements > 0;
2075        NumGVNEqProp += NumReplacements;
2076      }
2077    }
2078    // Ensure that any instruction in scope that gets the "A < B" value number
2079    // is replaced with false.
2080    addToLeaderTable(Num, NotVal, Root);
2081
2082    return Changed;
2083  }
2084
2085  return Changed;
2086}
2087
2088/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
2089/// true if every path from the entry block to 'Dst' passes via this edge.  In
2090/// particular 'Dst' must not be reachable via another edge from 'Src'.
2091static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
2092                                       DominatorTree *DT) {
2093  // While in theory it is interesting to consider the case in which Dst has
2094  // more than one predecessor, because Dst might be part of a loop which is
2095  // only reachable from Src, in practice it is pointless since at the time
2096  // GVN runs all such loops have preheaders, which means that Dst will have
2097  // been changed to have only one predecessor, namely Src.
2098  BasicBlock *Pred = Dst->getSinglePredecessor();
2099  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2100  (void)Src;
2101  return Pred != 0;
2102}
2103
2104/// processInstruction - When calculating availability, handle an instruction
2105/// by inserting it into the appropriate sets
2106bool GVN::processInstruction(Instruction *I) {
2107  // Ignore dbg info intrinsics.
2108  if (isa<DbgInfoIntrinsic>(I))
2109    return false;
2110
2111  // If the instruction can be easily simplified then do so now in preference
2112  // to value numbering it.  Value numbering often exposes redundancies, for
2113  // example if it determines that %y is equal to %x then the instruction
2114  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2115  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2116    I->replaceAllUsesWith(V);
2117    if (MD && V->getType()->isPointerTy())
2118      MD->invalidateCachedPointerInfo(V);
2119    markInstructionForDeletion(I);
2120    ++NumGVNSimpl;
2121    return true;
2122  }
2123
2124  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2125    if (processLoad(LI))
2126      return true;
2127
2128    unsigned Num = VN.lookup_or_add(LI);
2129    addToLeaderTable(Num, LI, LI->getParent());
2130    return false;
2131  }
2132
2133  // For conditional branches, we can perform simple conditional propagation on
2134  // the condition value itself.
2135  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2136    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2137      return false;
2138
2139    Value *BranchCond = BI->getCondition();
2140
2141    BasicBlock *TrueSucc = BI->getSuccessor(0);
2142    BasicBlock *FalseSucc = BI->getSuccessor(1);
2143    BasicBlock *Parent = BI->getParent();
2144    bool Changed = false;
2145
2146    if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
2147      Changed |= propagateEquality(BranchCond,
2148                                   ConstantInt::getTrue(TrueSucc->getContext()),
2149                                   TrueSucc);
2150
2151    if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
2152      Changed |= propagateEquality(BranchCond,
2153                                   ConstantInt::getFalse(FalseSucc->getContext()),
2154                                   FalseSucc);
2155
2156    return Changed;
2157  }
2158
2159  // For switches, propagate the case values into the case destinations.
2160  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2161    Value *SwitchCond = SI->getCondition();
2162    BasicBlock *Parent = SI->getParent();
2163    bool Changed = false;
2164    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2165         i != e; ++i) {
2166      BasicBlock *Dst = i.getCaseSuccessor();
2167      if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
2168        Changed |= propagateEquality(SwitchCond, i.getCaseValue(), Dst);
2169    }
2170    return Changed;
2171  }
2172
2173  // Instructions with void type don't return a value, so there's
2174  // no point in trying to find redundancies in them.
2175  if (I->getType()->isVoidTy()) return false;
2176
2177  uint32_t NextNum = VN.getNextUnusedValueNumber();
2178  unsigned Num = VN.lookup_or_add(I);
2179
2180  // Allocations are always uniquely numbered, so we can save time and memory
2181  // by fast failing them.
2182  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2183    addToLeaderTable(Num, I, I->getParent());
2184    return false;
2185  }
2186
2187  // If the number we were assigned was a brand new VN, then we don't
2188  // need to do a lookup to see if the number already exists
2189  // somewhere in the domtree: it can't!
2190  if (Num >= NextNum) {
2191    addToLeaderTable(Num, I, I->getParent());
2192    return false;
2193  }
2194
2195  // Perform fast-path value-number based elimination of values inherited from
2196  // dominators.
2197  Value *repl = findLeader(I->getParent(), Num);
2198  if (repl == 0) {
2199    // Failure, just remember this instance for future use.
2200    addToLeaderTable(Num, I, I->getParent());
2201    return false;
2202  }
2203
2204  // Remove it!
2205  I->replaceAllUsesWith(repl);
2206  if (MD && repl->getType()->isPointerTy())
2207    MD->invalidateCachedPointerInfo(repl);
2208  markInstructionForDeletion(I);
2209  return true;
2210}
2211
2212/// runOnFunction - This is the main transformation entry point for a function.
2213bool GVN::runOnFunction(Function& F) {
2214  if (!NoLoads)
2215    MD = &getAnalysis<MemoryDependenceAnalysis>();
2216  DT = &getAnalysis<DominatorTree>();
2217  TD = getAnalysisIfAvailable<TargetData>();
2218  TLI = &getAnalysis<TargetLibraryInfo>();
2219  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2220  VN.setMemDep(MD);
2221  VN.setDomTree(DT);
2222
2223  bool Changed = false;
2224  bool ShouldContinue = true;
2225
2226  // Merge unconditional branches, allowing PRE to catch more
2227  // optimization opportunities.
2228  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2229    BasicBlock *BB = FI++;
2230
2231    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2232    if (removedBlock) ++NumGVNBlocks;
2233
2234    Changed |= removedBlock;
2235  }
2236
2237  unsigned Iteration = 0;
2238  while (ShouldContinue) {
2239    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2240    ShouldContinue = iterateOnFunction(F);
2241    if (splitCriticalEdges())
2242      ShouldContinue = true;
2243    Changed |= ShouldContinue;
2244    ++Iteration;
2245  }
2246
2247  if (EnablePRE) {
2248    bool PREChanged = true;
2249    while (PREChanged) {
2250      PREChanged = performPRE(F);
2251      Changed |= PREChanged;
2252    }
2253  }
2254  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2255  // computations into blocks where they become fully redundant.  Note that
2256  // we can't do this until PRE's critical edge splitting updates memdep.
2257  // Actually, when this happens, we should just fully integrate PRE into GVN.
2258
2259  cleanupGlobalSets();
2260
2261  return Changed;
2262}
2263
2264
2265bool GVN::processBlock(BasicBlock *BB) {
2266  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2267  // (and incrementing BI before processing an instruction).
2268  assert(InstrsToErase.empty() &&
2269         "We expect InstrsToErase to be empty across iterations");
2270  bool ChangedFunction = false;
2271
2272  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2273       BI != BE;) {
2274    ChangedFunction |= processInstruction(BI);
2275    if (InstrsToErase.empty()) {
2276      ++BI;
2277      continue;
2278    }
2279
2280    // If we need some instructions deleted, do it now.
2281    NumGVNInstr += InstrsToErase.size();
2282
2283    // Avoid iterator invalidation.
2284    bool AtStart = BI == BB->begin();
2285    if (!AtStart)
2286      --BI;
2287
2288    for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2289         E = InstrsToErase.end(); I != E; ++I) {
2290      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2291      if (MD) MD->removeInstruction(*I);
2292      (*I)->eraseFromParent();
2293      DEBUG(verifyRemoved(*I));
2294    }
2295    InstrsToErase.clear();
2296
2297    if (AtStart)
2298      BI = BB->begin();
2299    else
2300      ++BI;
2301  }
2302
2303  return ChangedFunction;
2304}
2305
2306/// performPRE - Perform a purely local form of PRE that looks for diamond
2307/// control flow patterns and attempts to perform simple PRE at the join point.
2308bool GVN::performPRE(Function &F) {
2309  bool Changed = false;
2310  DenseMap<BasicBlock*, Value*> predMap;
2311  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2312       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2313    BasicBlock *CurrentBlock = *DI;
2314
2315    // Nothing to PRE in the entry block.
2316    if (CurrentBlock == &F.getEntryBlock()) continue;
2317
2318    // Don't perform PRE on a landing pad.
2319    if (CurrentBlock->isLandingPad()) continue;
2320
2321    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2322         BE = CurrentBlock->end(); BI != BE; ) {
2323      Instruction *CurInst = BI++;
2324
2325      if (isa<AllocaInst>(CurInst) ||
2326          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2327          CurInst->getType()->isVoidTy() ||
2328          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2329          isa<DbgInfoIntrinsic>(CurInst))
2330        continue;
2331
2332      // We don't currently value number ANY inline asm calls.
2333      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2334        if (CallI->isInlineAsm())
2335          continue;
2336
2337      uint32_t ValNo = VN.lookup(CurInst);
2338
2339      // Look for the predecessors for PRE opportunities.  We're
2340      // only trying to solve the basic diamond case, where
2341      // a value is computed in the successor and one predecessor,
2342      // but not the other.  We also explicitly disallow cases
2343      // where the successor is its own predecessor, because they're
2344      // more complicated to get right.
2345      unsigned NumWith = 0;
2346      unsigned NumWithout = 0;
2347      BasicBlock *PREPred = 0;
2348      predMap.clear();
2349
2350      for (pred_iterator PI = pred_begin(CurrentBlock),
2351           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2352        BasicBlock *P = *PI;
2353        // We're not interested in PRE where the block is its
2354        // own predecessor, or in blocks with predecessors
2355        // that are not reachable.
2356        if (P == CurrentBlock) {
2357          NumWithout = 2;
2358          break;
2359        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2360          NumWithout = 2;
2361          break;
2362        }
2363
2364        Value* predV = findLeader(P, ValNo);
2365        if (predV == 0) {
2366          PREPred = P;
2367          ++NumWithout;
2368        } else if (predV == CurInst) {
2369          NumWithout = 2;
2370        } else {
2371          predMap[P] = predV;
2372          ++NumWith;
2373        }
2374      }
2375
2376      // Don't do PRE when it might increase code size, i.e. when
2377      // we would need to insert instructions in more than one pred.
2378      if (NumWithout != 1 || NumWith == 0)
2379        continue;
2380
2381      // Don't do PRE across indirect branch.
2382      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2383        continue;
2384
2385      // We can't do PRE safely on a critical edge, so instead we schedule
2386      // the edge to be split and perform the PRE the next time we iterate
2387      // on the function.
2388      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2389      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2390        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2391        continue;
2392      }
2393
2394      // Instantiate the expression in the predecessor that lacked it.
2395      // Because we are going top-down through the block, all value numbers
2396      // will be available in the predecessor by the time we need them.  Any
2397      // that weren't originally present will have been instantiated earlier
2398      // in this loop.
2399      Instruction *PREInstr = CurInst->clone();
2400      bool success = true;
2401      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2402        Value *Op = PREInstr->getOperand(i);
2403        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2404          continue;
2405
2406        if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2407          PREInstr->setOperand(i, V);
2408        } else {
2409          success = false;
2410          break;
2411        }
2412      }
2413
2414      // Fail out if we encounter an operand that is not available in
2415      // the PRE predecessor.  This is typically because of loads which
2416      // are not value numbered precisely.
2417      if (!success) {
2418        delete PREInstr;
2419        DEBUG(verifyRemoved(PREInstr));
2420        continue;
2421      }
2422
2423      PREInstr->insertBefore(PREPred->getTerminator());
2424      PREInstr->setName(CurInst->getName() + ".pre");
2425      PREInstr->setDebugLoc(CurInst->getDebugLoc());
2426      predMap[PREPred] = PREInstr;
2427      VN.add(PREInstr, ValNo);
2428      ++NumGVNPRE;
2429
2430      // Update the availability map to include the new instruction.
2431      addToLeaderTable(ValNo, PREInstr, PREPred);
2432
2433      // Create a PHI to make the value available in this block.
2434      pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2435      PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2436                                     CurInst->getName() + ".pre-phi",
2437                                     CurrentBlock->begin());
2438      for (pred_iterator PI = PB; PI != PE; ++PI) {
2439        BasicBlock *P = *PI;
2440        Phi->addIncoming(predMap[P], P);
2441      }
2442
2443      VN.add(Phi, ValNo);
2444      addToLeaderTable(ValNo, Phi, CurrentBlock);
2445      Phi->setDebugLoc(CurInst->getDebugLoc());
2446      CurInst->replaceAllUsesWith(Phi);
2447      if (Phi->getType()->isPointerTy()) {
2448        // Because we have added a PHI-use of the pointer value, it has now
2449        // "escaped" from alias analysis' perspective.  We need to inform
2450        // AA of this.
2451        for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2452             ++ii) {
2453          unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2454          VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2455        }
2456
2457        if (MD)
2458          MD->invalidateCachedPointerInfo(Phi);
2459      }
2460      VN.erase(CurInst);
2461      removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2462
2463      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2464      if (MD) MD->removeInstruction(CurInst);
2465      CurInst->eraseFromParent();
2466      DEBUG(verifyRemoved(CurInst));
2467      Changed = true;
2468    }
2469  }
2470
2471  if (splitCriticalEdges())
2472    Changed = true;
2473
2474  return Changed;
2475}
2476
2477/// splitCriticalEdges - Split critical edges found during the previous
2478/// iteration that may enable further optimization.
2479bool GVN::splitCriticalEdges() {
2480  if (toSplit.empty())
2481    return false;
2482  do {
2483    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2484    SplitCriticalEdge(Edge.first, Edge.second, this);
2485  } while (!toSplit.empty());
2486  if (MD) MD->invalidateCachedPredecessors();
2487  return true;
2488}
2489
2490/// iterateOnFunction - Executes one iteration of GVN
2491bool GVN::iterateOnFunction(Function &F) {
2492  cleanupGlobalSets();
2493
2494  // Top-down walk of the dominator tree
2495  bool Changed = false;
2496#if 0
2497  // Needed for value numbering with phi construction to work.
2498  ReversePostOrderTraversal<Function*> RPOT(&F);
2499  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2500       RE = RPOT.end(); RI != RE; ++RI)
2501    Changed |= processBlock(*RI);
2502#else
2503  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2504       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2505    Changed |= processBlock(DI->getBlock());
2506#endif
2507
2508  return Changed;
2509}
2510
2511void GVN::cleanupGlobalSets() {
2512  VN.clear();
2513  LeaderTable.clear();
2514  TableAllocator.Reset();
2515}
2516
2517/// verifyRemoved - Verify that the specified instruction does not occur in our
2518/// internal data structures.
2519void GVN::verifyRemoved(const Instruction *Inst) const {
2520  VN.verifyRemoved(Inst);
2521
2522  // Walk through the value number scope to make sure the instruction isn't
2523  // ferreted away in it.
2524  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2525       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2526    const LeaderTableEntry *Node = &I->second;
2527    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2528
2529    while (Node->Next) {
2530      Node = Node->Next;
2531      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2532    }
2533  }
2534}
2535