GVN.cpp revision ea3eec9f8588a1fe0fe80324d1413ab165b675ca
15ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
25ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//
35ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//                     The LLVM Compiler Infrastructure
45ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//
55ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka// This file is distributed under the University of Illinois Open Source
65ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka// License. See LICENSE.TXT for details.
75ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//
85ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//===----------------------------------------------------------------------===//
95ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//
105ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka// This pass performs global value numbering to eliminate fully redundant
115ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka// instructions.  It also performs simple dead load elimination.
125ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//
135ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka// Note that this pass does the value numbering itself; it does not use the
1436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines// ValueNumbering analysis passes.
155ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//
1646090914b783b632618268f2a5c99aab83732688Reed Kotler//===----------------------------------------------------------------------===//
1736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines
185ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#define DEBUG_TYPE "gvn"
195ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/Transforms/Scalar.h"
205ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/BasicBlock.h"
2136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines#include "llvm/Constants.h"
225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/DerivedTypes.h"
235ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/GlobalVariable.h"
245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/Function.h"
25dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines#include "llvm/IntrinsicInst.h"
26dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines#include "llvm/LLVMContext.h"
275ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/Operator.h"
285ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/Value.h"
295ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/ADT/DenseMap.h"
305ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/ADT/DepthFirstIterator.h"
315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/ADT/PostOrderIterator.h"
325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/ADT/SmallPtrSet.h"
335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/ADT/SmallVector.h"
345ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka#include "llvm/ADT/Statistic.h"
3590cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Analysis/AliasAnalysis.h"
3690cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Analysis/ConstantFolding.h"
3790cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Analysis/Dominators.h"
3890cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Analysis/MemoryBuiltins.h"
3990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Analysis/MemoryDependenceAnalysis.h"
4090cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Analysis/PHITransAddr.h"
4190cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Support/CFG.h"
4290cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer#include "llvm/Support/CommandLine.h"
43b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Support/Debug.h"
44b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Support/ErrorHandling.h"
45b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Support/GetElementPtrTypeIterator.h"
46b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Support/IRBuilder.h"
47b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Support/raw_ostream.h"
48b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Target/TargetData.h"
49b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Transforms/Utils/BasicBlockUtils.h"
50b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Transforms/Utils/Local.h"
51b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler#include "llvm/Transforms/Utils/SSAUpdater.h"
52b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotlerusing namespace llvm;
53b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler
54b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed KotlerSTATISTIC(NumGVNInstr,  "Number of instructions deleted");
555ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaSTATISTIC(NumGVNLoad,   "Number of loads deleted");
565ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaSTATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
5790cd06e90be1db06bc4812ae9ec96b6638847285Benjamin KramerSTATISTIC(NumGVNBlocks, "Number of blocks merged");
5890cd06e90be1db06bc4812ae9ec96b6638847285Benjamin KramerSTATISTIC(NumPRELoad,   "Number of loads PRE'd");
5990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer
6090cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramerstatic cl::opt<bool> EnablePRE("enable-pre",
6190cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer                               cl::init(true), cl::Hidden);
6290cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramerstatic cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
6390cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramerstatic cl::opt<bool> EnableFullLoadPRE("enable-full-load-pre", cl::init(false));
6490cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer
6590cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer//===----------------------------------------------------------------------===//
6690cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer//                         ValueTable Class
6790cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer//===----------------------------------------------------------------------===//
6890cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer
6990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer/// This class holds the mapping between values and value numbers.  It is used
7090cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer/// as an efficient mechanism to determine the expression-wise equivalence of
7190cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer/// two values.
7290cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramernamespace {
7390cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer  struct Expression {
7490cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    enum ExpressionOpcode {
7590cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      ADD = Instruction::Add,
7690cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      FADD = Instruction::FAdd,
7790cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      SUB = Instruction::Sub,
7890cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      FSUB = Instruction::FSub,
7990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      MUL = Instruction::Mul,
8090cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      FMUL = Instruction::FMul,
8190cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      UDIV = Instruction::UDiv,
8290cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      SDIV = Instruction::SDiv,
8390cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      FDIV = Instruction::FDiv,
8490cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      UREM = Instruction::URem,
8590cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      SREM = Instruction::SRem,
8690cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      FREM = Instruction::FRem,
8790cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      SHL = Instruction::Shl,
8890cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      LSHR = Instruction::LShr,
8990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      ASHR = Instruction::AShr,
9090cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      AND = Instruction::And,
9190cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      OR = Instruction::Or,
9290cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      XOR = Instruction::Xor,
9390cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      TRUNC = Instruction::Trunc,
9490cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      ZEXT = Instruction::ZExt,
95b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      SEXT = Instruction::SExt,
961e07de352947aaf2f9137113cc594d8204da2b77Reed Kotler      FPTOUI = Instruction::FPToUI,
97b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      FPTOSI = Instruction::FPToSI,
98b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      UITOFP = Instruction::UIToFP,
99b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      SITOFP = Instruction::SIToFP,
100b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      FPTRUNC = Instruction::FPTrunc,
101b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      FPEXT = Instruction::FPExt,
102b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      PTRTOINT = Instruction::PtrToInt,
103b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      INTTOPTR = Instruction::IntToPtr,
104b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      BITCAST = Instruction::BitCast,
105b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
106b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
107b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
108b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
109b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
110b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
111b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
112b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler
113b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    ExpressionOpcode opcode;
114b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    const Type* type;
115b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    SmallVector<uint32_t, 4> varargs;
116b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    Value *function;
117b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler
118b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    Expression() { }
119b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    Expression(ExpressionOpcode o) : opcode(o) { }
120b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler
1215ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool operator==(const Expression &other) const {
1225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      if (opcode != other.opcode)
123f8b0a08b6a2e2f4eacdb05eae9a8dd704b692b55Reed Kotler        return false;
1245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      else if (opcode == EMPTY || opcode == TOMBSTONE)
1255ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        return true;
1265ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      else if (type != other.type)
12790cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer        return false;
1285ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      else if (function != other.function)
12990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer        return false;
1305ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      else {
1315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        if (varargs.size() != other.varargs.size())
1325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka          return false;
1335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1345ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        for (size_t i = 0; i < varargs.size(); ++i)
1355ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka          if (varargs[i] != other.varargs[i])
1365ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka            return false;
1375ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1385ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        return true;
1395ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      }
1405ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
1415ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1425ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool operator!=(const Expression &other) const {
1435ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      return !(*this == other);
144b359bda93d410623bbbc96dc9968d94447169a79Reed Kotler    }
145b359bda93d410623bbbc96dc9968d94447169a79Reed Kotler  };
146b359bda93d410623bbbc96dc9968d94447169a79Reed Kotler
147b359bda93d410623bbbc96dc9968d94447169a79Reed Kotler  class ValueTable {
148b359bda93d410623bbbc96dc9968d94447169a79Reed Kotler    private:
1495ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      DenseMap<Value*, uint32_t> valueNumbering;
1505ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      DenseMap<Expression, uint32_t> expressionNumbering;
1515ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      AliasAnalysis* AA;
1525ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      MemoryDependenceAnalysis* MD;
1535ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      DominatorTree* DT;
1545ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1555ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      uint32_t nextValueNumber;
1565ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1575ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression::ExpressionOpcode getOpcode(CmpInst* C);
15836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      Expression create_expression(BinaryOperator* BO);
15936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      Expression create_expression(CmpInst* C);
16036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      Expression create_expression(ShuffleVectorInst* V);
1615ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(ExtractElementInst* C);
1625ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(InsertElementInst* V);
1635ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(SelectInst* V);
1645ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(CastInst* C);
1655ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(GetElementPtrInst* G);
1665ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(CallInst* C);
1675ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(Constant* C);
1685ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(ExtractValueInst* C);
1695ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      Expression create_expression(InsertValueInst* C);
1705ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1715ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      uint32_t lookup_or_add_call(CallInst* C);
1725ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    public:
1735ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      ValueTable() : nextValueNumber(1) { }
1745ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      uint32_t lookup_or_add(Value *V);
1751703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler      uint32_t lookup(Value *V) const;
1765ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      void add(Value *V, uint32_t num);
1771703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler      void clear();
1785ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      void erase(Value *v);
1791703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler      unsigned size();
1805ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
1811703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler      AliasAnalysis *getAliasAnalysis() const { return AA; }
1825ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
1831703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler      void setDomTree(DominatorTree* D) { DT = D; }
1845ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
1851703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler      void verifyRemoved(const Value *) const;
1865ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  };
1871703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler}
1885ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1891703a714954f9ef0c32415423e2a1e15b152e711Reed Kotlernamespace llvm {
1905ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakatemplate <> struct DenseMapInfo<Expression> {
1911703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler  static inline Expression getEmptyKey() {
1925ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return Expression(Expression::EMPTY);
1931703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler  }
1945ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1951703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler  static inline Expression getTombstoneKey() {
1965ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return Expression(Expression::TOMBSTONE);
1971703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler  }
1985ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
1991703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler  static unsigned getHashValue(const Expression e) {
2005ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    unsigned hash = e.opcode;
2011703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler
2025ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
2035ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka            (unsigned)((uintptr_t)e.type >> 9));
2045ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2051703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
2065ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka         E = e.varargs.end(); I != E; ++I)
2071703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler      hash = *I + hash * 37;
2085ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2091703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
2105ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka            (unsigned)((uintptr_t)e.function >> 9)) +
2115ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka           hash * 37;
2125ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2131703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler    return hash;
2145ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
2151703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler  static bool isEqual(const Expression &LHS, const Expression &RHS) {
2165ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return LHS == RHS;
2171703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler  }
2185ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka};
2191703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler
2205ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakatemplate <>
2211703a714954f9ef0c32415423e2a1e15b152e711Reed Kotlerstruct isPodLike<Expression> { static const bool value = true; };
2225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2231703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler}
2245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2251703a714954f9ef0c32415423e2a1e15b152e711Reed Kotler//===----------------------------------------------------------------------===//
2265ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//                     ValueTable Internal Functions
2275ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//===----------------------------------------------------------------------===//
2285ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2295ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
2305ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (isa<ICmpInst>(C)) {
2315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    switch (C->getPredicate()) {
2325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    default:  // THIS SHOULD NEVER HAPPEN
2335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      llvm_unreachable("Comparison with unknown predicate?");
2345ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
2355ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
2365ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
2375ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
2385ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
2395ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
2405ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
2415ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
2425ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
2435ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
2445ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
2455ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  } else {
2465ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    switch (C->getPredicate()) {
2475ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    default: // THIS SHOULD NEVER HAPPEN
2485ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      llvm_unreachable("Comparison with unknown predicate?");
2495ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
2505ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
25190cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
25290cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
25390cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
25490cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
25590cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
25690cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
2575ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
25890cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
25990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
26090cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
2615ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
2625ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
2635ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
2645ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
2655ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
2665ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2675ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(CallInst* C) {
2685ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
2695ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2705ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = C->getType();
2715ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = C->getCalledFunction();
2725ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::CALL;
2735ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2745ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
2755ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka       I != E; ++I)
2765ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    e.varargs.push_back(lookup_or_add(*I));
2775ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2785ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
2795ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
2805ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2815ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(BinaryOperator* BO) {
2825ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
2835ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
2845ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
2855ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
2865ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = BO->getType();
2875ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
2885ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2895ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
2905ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
2915ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2925ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(CmpInst* C) {
2935ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
2945ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
2955ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
2965ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
2975ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
2985ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = C->getType();
2995ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = getOpcode(C);
3005ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3015ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
3025ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3035ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3045ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(CastInst* C) {
3055ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3065ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3075ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
3085ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
3095ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = C->getType();
3105ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
3115ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3125ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
3135ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3145ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3155ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(ShuffleVectorInst* S) {
3165ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3175ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3185ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
3195ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
3205ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
3215ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
3225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = S->getType();
3235ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::SHUFFLE;
3245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3255ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
3265ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3275ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3285ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(ExtractElementInst* E) {
3295ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3305ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
3325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
3335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
3345ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = E->getType();
3355ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::EXTRACT;
3365ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3375ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
3385ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3395ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3405ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(InsertElementInst* I) {
3415ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3425ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3435ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
3445ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
3455ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
3465ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
3475ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = I->getType();
3485ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::INSERT;
3495ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
350dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines  return e;
3515ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3525ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3535ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(SelectInst* I) {
3545ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3555ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3565ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(I->getCondition()));
3575ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
3585ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
3595ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
3605ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = I->getType();
3615ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::SELECT;
3625ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3635ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
3645ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3655ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3665ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(GetElementPtrInst* G) {
3675ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3685ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3695ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
3705ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
3715ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = G->getType();
3725ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::GEP;
3735ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3745ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
3755ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka       I != E; ++I)
3765ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    e.varargs.push_back(lookup_or_add(*I));
3775ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3785ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
3795ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3805ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3815ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(ExtractValueInst* E) {
3825ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3835ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3845ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
3855ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
3865ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka       II != IE; ++II)
3875ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    e.varargs.push_back(*II);
3885ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
3895ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = E->getType();
3905ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::EXTRACTVALUE;
3915ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3925ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
3935ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
3945ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3955ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaExpression ValueTable::create_expression(InsertValueInst* E) {
3965ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression e;
3975ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
3985ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
3995ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
4005ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
4015ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka       II != IE; ++II)
4025ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    e.varargs.push_back(*II);
4035ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.function = 0;
4045ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.type = E->getType();
4055ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  e.opcode = Expression::INSERTVALUE;
4065ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
4075ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
4085ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
4095ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
4105ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//===----------------------------------------------------------------------===//
4115ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//                     ValueTable External Functions
4125ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//===----------------------------------------------------------------------===//
4135ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
4145ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// add - Insert a value into the table with a specified value number.
4155ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakavoid ValueTable::add(Value *V, uint32_t num) {
4165ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  valueNumbering.insert(std::make_pair(V, num));
4175ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
4185ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
4195ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakauint32_t ValueTable::lookup_or_add_call(CallInst* C) {
4205ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (AA->doesNotAccessMemory(C)) {
4215ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    Expression exp = create_expression(C);
4225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    uint32_t& e = expressionNumbering[exp];
4235ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (!e) e = nextValueNumber++;
4245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    valueNumbering[C] = e;
4256ff59a16a05d43fdda587ce600b5b42a63cf3d33Akira Hatanaka    return e;
4266ff59a16a05d43fdda587ce600b5b42a63cf3d33Akira Hatanaka  } else if (AA->onlyReadsMemory(C)) {
427dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines    Expression exp = create_expression(C);
4285ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    uint32_t& e = expressionNumbering[exp];
4295ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (!e) {
43036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      e = nextValueNumber++;
4315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      valueNumbering[C] = e;
4325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      return e;
4335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
4345ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (!MD) {
4355ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      e = nextValueNumber++;
4365ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      valueNumbering[C] = e;
4375ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      return e;
43890cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer    }
43990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer
440dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines    MemDepResult local_dep = MD->getDependency(C);
441dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines
4425ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
443b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler      valueNumbering[C] =  nextValueNumber;
44436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      return nextValueNumber++;
44536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines    }
44636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines
44736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines    if (local_dep.isDef()) {
44836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
44936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines
45036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      if (local_cdep->getNumOperands() != C->getNumOperands()) {
45136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines        valueNumbering[C] = nextValueNumber;
45236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines        return nextValueNumber++;
45336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      }
45436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines
45536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
45636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines        uint32_t c_vn = lookup_or_add(C->getOperand(i));
45736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines        uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
45836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines        if (c_vn != cd_vn) {
45936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines          valueNumbering[C] = nextValueNumber;
46036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines          return nextValueNumber++;
46136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines        }
46236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      }
46336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines
46436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      uint32_t v = lookup_or_add(local_cdep);
46536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      valueNumbering[C] = v;
46636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      return v;
467b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    }
468dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines
469dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines    // Non-local case.
470dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
471dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines      MD->getNonLocalCallDependency(CallSite(C));
472dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines    // FIXME: call/call dependencies for readonly calls should return def, not
473dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines    // clobber!  Move the checking logic to MemDep!
474b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    CallInst* cdep = 0;
475b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler
476b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    // Check to see if we have a single dominating call instruction that is
477b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    // identical to C.
478b1fa7d4d26533bdd021c3269d14c30eb6096fb7aReed Kotler    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
47990cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      const NonLocalDepEntry *I = &deps[i];
48090cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      // Ignore non-local dependencies.
48190cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer      if (I->getResult().isNonLocal())
48290cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer        continue;
48390cd06e90be1db06bc4812ae9ec96b6638847285Benjamin Kramer
484dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines      // We don't handle non-depedencies.  If we already have a call, reject
485dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines      // instruction dependencies.
486bf00bf9ad2f07c5c06986930842ace28b8fb2518Reed Kotler      if (I->getResult().isClobber() || cdep != 0) {
487bf00bf9ad2f07c5c06986930842ace28b8fb2518Reed Kotler        cdep = 0;
488dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines        break;
489dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines      }
490dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines
4915ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
4925ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      // FIXME: All duplicated with non-local case.
4935ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
4945ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        cdep = NonLocalDepCall;
4955ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        continue;
4965ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      }
4975ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
4985ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      cdep = 0;
4995ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5005ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
5015ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
5026ff59a16a05d43fdda587ce600b5b42a63cf3d33Akira Hatanaka    if (!cdep) {
5036ff59a16a05d43fdda587ce600b5b42a63cf3d33Akira Hatanaka      valueNumbering[C] = nextValueNumber;
5046ff59a16a05d43fdda587ce600b5b42a63cf3d33Akira Hatanaka      return nextValueNumber++;
5056ff59a16a05d43fdda587ce600b5b42a63cf3d33Akira Hatanaka    }
5065ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
5075ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (cdep->getNumOperands() != C->getNumOperands()) {
5085ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      valueNumbering[C] = nextValueNumber;
5095ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      return nextValueNumber++;
5105ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
5115ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    for (unsigned i = 1; i < C->getNumOperands(); ++i) {
5125ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      uint32_t c_vn = lookup_or_add(C->getOperand(i));
5135ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
5145ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      if (c_vn != cd_vn) {
5155ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        valueNumbering[C] = nextValueNumber;
5165ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        return nextValueNumber++;
5175ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      }
5185ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
5195ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
5205ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    uint32_t v = lookup_or_add(cdep);
5215ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    valueNumbering[C] = v;
5225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return v;
5235ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
5245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  } else {
5255ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    valueNumbering[C] = nextValueNumber;
5265ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return nextValueNumber++;
5275ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
5285ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
5295ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
5305ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// lookup_or_add - Returns the value number for the specified value, assigning
5315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// it a new number if it did not have one before.
5325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakauint32_t ValueTable::lookup_or_add(Value *V) {
5335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
5345ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (VI != valueNumbering.end())
5355ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return VI->second;
5365ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
5375ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (!isa<Instruction>(V)) {
5385ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    valueNumbering[V] = nextValueNumber;
5395ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return nextValueNumber++;
5405ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
5415ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
5425ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Instruction* I = cast<Instruction>(V);
5435ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Expression exp;
5445ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  switch (I->getOpcode()) {
54536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines    case Instruction::Call:
5465ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      return lookup_or_add_call(cast<CallInst>(I));
5475ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Add:
5485ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FAdd:
5495ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Sub:
5505ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FSub:
5515ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Mul:
5525ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FMul:
5535ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::UDiv:
5545ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::SDiv:
5555ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FDiv:
5565ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::URem:
5575ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::SRem:
5585ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FRem:
5595ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Shl:
5605ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::LShr:
5615ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::AShr:
5625ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::And:
5635ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Or :
5645ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Xor:
5655ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<BinaryOperator>(I));
5665ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5675ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::ICmp:
5685ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FCmp:
5695ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<CmpInst>(I));
5705ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5715ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Trunc:
5725ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::ZExt:
5735ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::SExt:
5745ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FPToUI:
5755ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FPToSI:
5765ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::UIToFP:
5775ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::SIToFP:
5785ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FPTrunc:
5795ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::FPExt:
5805ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::PtrToInt:
5815ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::IntToPtr:
5825ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::BitCast:
5835ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<CastInst>(I));
5845ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5855ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::Select:
5865ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<SelectInst>(I));
5875ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5885ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::ExtractElement:
5895ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<ExtractElementInst>(I));
5905ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5915ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::InsertElement:
5925ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<InsertElementInst>(I));
5935ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5945ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::ShuffleVector:
5955ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<ShuffleVectorInst>(I));
5965ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
5975ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::ExtractValue:
5985ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<ExtractValueInst>(I));
5995ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
6005ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::InsertValue:
6015ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<InsertValueInst>(I));
6025ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
6035ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    case Instruction::GetElementPtr:
6045ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      exp = create_expression(cast<GetElementPtrInst>(I));
6055ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      break;
6065ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    default:
60736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines      valueNumbering[V] = nextValueNumber;
6085ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      return nextValueNumber++;
6095ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
6105ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6115ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  uint32_t& e = expressionNumbering[exp];
6125ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (!e) e = nextValueNumber++;
6135ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  valueNumbering[V] = e;
6145ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return e;
6155ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
6165ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6175ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// lookup - Returns the value number of the specified value. Fails if
6185ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// the value has not yet been numbered.
6195ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakauint32_t ValueTable::lookup(Value *V) const {
6205ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
6215ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  assert(VI != valueNumbering.end() && "Value not numbered?");
6225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return VI->second;
6235ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
6245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6255ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// clear - Remove all entries from the ValueTable
6265ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakavoid ValueTable::clear() {
6275ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  valueNumbering.clear();
6285ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  expressionNumbering.clear();
6295ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  nextValueNumber = 1;
6305ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
6315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// erase - Remove a value from the value numbering
6335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakavoid ValueTable::erase(Value *V) {
6345ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  valueNumbering.erase(V);
6355ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
6365ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6375ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// verifyRemoved - Verify that the value is removed from all internal data
6385ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// structures.
6395ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakavoid ValueTable::verifyRemoved(const Value *V) const {
6405ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  for (DenseMap<Value*, uint32_t>::const_iterator
6415ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
6425ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    assert(I->first != V && "Inst still occurs in value numbering map!");
6435ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
6445ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
6455ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6465ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//===----------------------------------------------------------------------===//
6475ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//                                GVN Pass
6485ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka//===----------------------------------------------------------------------===//
6495ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6505ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakanamespace {
6515ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  struct ValueNumberScope {
6525ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    ValueNumberScope* parent;
6535ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    DenseMap<uint32_t, Value*> table;
6545ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6555ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
6565ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  };
6575ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
6585ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6595ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakanamespace {
6605ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6615ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  class GVN : public FunctionPass {
6625ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool runOnFunction(Function &F);
6635ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  public:
6645ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    static char ID; // Pass identification, replacement for typeid
6655ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    explicit GVN(bool noloads = false)
6665ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      : FunctionPass(&ID), NoLoads(noloads), MD(0) { }
6675ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6685ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  private:
6695ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool NoLoads;
6705ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    MemoryDependenceAnalysis *MD;
67136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines    DominatorTree *DT;
6725ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6735ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    ValueTable VN;
6745ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
6755ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6765ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    // List of critical edges to be split between iterations.
6775ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
6785ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6795ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    // This transformation requires dominator postdominator info
6805ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
6815ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      AU.addRequired<DominatorTree>();
6825ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      if (!NoLoads)
6835ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        AU.addRequired<MemoryDependenceAnalysis>();
6845ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      AU.addRequired<AliasAnalysis>();
6855ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6865ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      AU.addPreserved<DominatorTree>();
6875ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      AU.addPreserved<AliasAnalysis>();
6885ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    }
6895ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
6905ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    // Helper fuctions
6915ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    // FIXME: eliminate or document these better
6925ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool processLoad(LoadInst* L,
6935ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka                     SmallVectorImpl<Instruction*> &toErase);
6945ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool processInstruction(Instruction *I,
6955ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka                            SmallVectorImpl<Instruction*> &toErase);
6965ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool processNonLocalLoad(LoadInst* L,
6975ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka                             SmallVectorImpl<Instruction*> &toErase);
6985ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool processBlock(BasicBlock *BB);
6995ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    void dump(DenseMap<uint32_t, Value*>& d);
7005ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool iterateOnFunction(Function &F);
7015ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    Value *CollapsePhi(PHINode* p);
7025ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool performPRE(Function& F);
7035ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    Value *lookupNumber(BasicBlock *BB, uint32_t num);
7045ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    void cleanupGlobalSets();
7055ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    void verifyRemoved(const Instruction *I) const;
7065ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    bool splitCriticalEdges();
7075ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  };
7085ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7095ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  char GVN::ID = 0;
7105ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
7115ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7125ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka// createGVNPass - The public interface to this file...
7135ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaFunctionPass *llvm::createGVNPass(bool NoLoads) {
7145ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return new GVN(NoLoads);
715b109ea8245e2948ea6d06a6e6cbab7c6788da211Akira Hatanaka}
716b109ea8245e2948ea6d06a6e6cbab7c6788da211Akira Hatanaka
7175ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakastatic RegisterPass<GVN> X("gvn",
7185ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka                           "Global Value Numbering");
7195ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7205ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakavoid GVN::dump(DenseMap<uint32_t, Value*>& d) {
7215ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  errs() << "{\n";
7225ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
723b0ee97a366a07c05b2c8ab314e29f5e72a9b7bfbReed Kotler       E = d.end(); I != E; ++I) {
7245ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      errs() << I->first << "\n";
7255ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      I->second->dump();
7265ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
7275ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  errs() << "}\n";
7285ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
7295ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7305ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakastatic bool isSafeReplacement(PHINode* p, Instruction *inst) {
7315ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (!isa<PHINode>(inst))
7325ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return true;
7335ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
734b0ee97a366a07c05b2c8ab314e29f5e72a9b7bfbReed Kotler  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
735b0ee97a366a07c05b2c8ab314e29f5e72a9b7bfbReed Kotler       UI != E; ++UI)
7365ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
7375ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      if (use_phi->getParent() == inst->getParent())
7385ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka        return false;
739b109ea8245e2948ea6d06a6e6cbab7c6788da211Akira Hatanaka
740b109ea8245e2948ea6d06a6e6cbab7c6788da211Akira Hatanaka  return true;
7415ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
7425ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7435ac065a79767cc112eba63136183b7103765d0d3Akira HatanakaValue *GVN::CollapsePhi(PHINode *PN) {
7445ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Value *ConstVal = PN->hasConstantValue(DT);
7455ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (!ConstVal) return 0;
7465ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7475ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
7485ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (!Inst)
7495ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return ConstVal;
7505ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7515ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (DT->dominates(Inst, PN))
7525ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (isSafeReplacement(PN, Inst))
7535ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      return Inst;
7545ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  return 0;
7555ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka}
7565ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7575ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
7585ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// we're analyzing is fully available in the specified block.  As we go, keep
7595ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
7605ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka/// map is actually a tri-state map with the following values:
7615ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka///   0) we know the block *is not* fully available.
7625ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka///   1) we know the block *is* fully available.
7635ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka///   2) we do not know whether the block is fully available or not, but we are
7645ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka///      currently speculating that it will be.
76536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines///   3) we are speculating for this block and have used that to speculate for
76636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines///      other blocks.
7675ac065a79767cc112eba63136183b7103765d0d3Akira Hatanakastatic bool IsValueFullyAvailableInBlock(BasicBlock *BB,
7685ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
7695ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  // Optimistically assume that the block is fully available and check to see
7705ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  // if we already know about this block in one lookup.
7715ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
7725ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
7735ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7745ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  // If the entry already existed for this block, return the precomputed value.
7755ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (!IV.second) {
7765ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    // If this is a speculative "available" value, mark it as being used for
7775ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    // speculation of other blocks.
7785ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    if (IV.first->second == 2)
7795ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka      IV.first->second = 3;
7805ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    return IV.first->second != 0;
7815ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  }
7825ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7835ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  // Otherwise, see if it is fully available in all predecessors.
7845ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
7855ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7865ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  // If this block has no predecessors, it isn't live-in here.
7875ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  if (PI == PE)
7885ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka    goto SpeculationFailure;
7895ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka
7905ac065a79767cc112eba63136183b7103765d0d3Akira Hatanaka  for (; PI != PE; ++PI)
791    // If the value isn't fully available in one of our predecessors, then it
792    // isn't fully available in this block either.  Undo our previous
793    // optimistic assumption and bail out.
794    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
795      goto SpeculationFailure;
796
797  return true;
798
799// SpeculationFailure - If we get here, we found out that this is not, after
800// all, a fully-available block.  We have a problem if we speculated on this and
801// used the speculation to mark other blocks as available.
802SpeculationFailure:
803  char &BBVal = FullyAvailableBlocks[BB];
804
805  // If we didn't speculate on this, just return with it set to false.
806  if (BBVal == 2) {
807    BBVal = 0;
808    return false;
809  }
810
811  // If we did speculate on this value, we could have blocks set to 1 that are
812  // incorrect.  Walk the (transitive) successors of this block and mark them as
813  // 0 if set to one.
814  SmallVector<BasicBlock*, 32> BBWorklist;
815  BBWorklist.push_back(BB);
816
817  do {
818    BasicBlock *Entry = BBWorklist.pop_back_val();
819    // Note that this sets blocks to 0 (unavailable) if they happen to not
820    // already be in FullyAvailableBlocks.  This is safe.
821    char &EntryVal = FullyAvailableBlocks[Entry];
822    if (EntryVal == 0) continue;  // Already unavailable.
823
824    // Mark as unavailable.
825    EntryVal = 0;
826
827    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
828      BBWorklist.push_back(*I);
829  } while (!BBWorklist.empty());
830
831  return false;
832}
833
834
835/// CanCoerceMustAliasedValueToLoad - Return true if
836/// CoerceAvailableValueToLoadType will succeed.
837static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
838                                            const Type *LoadTy,
839                                            const TargetData &TD) {
840  // If the loaded or stored value is an first class array or struct, don't try
841  // to transform them.  We need to be able to bitcast to integer.
842  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
843      StoredVal->getType()->isStructTy() ||
844      StoredVal->getType()->isArrayTy())
845    return false;
846
847  // The store has to be at least as big as the load.
848  if (TD.getTypeSizeInBits(StoredVal->getType()) <
849        TD.getTypeSizeInBits(LoadTy))
850    return false;
851
852  return true;
853}
854
855
856/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
857/// then a load from a must-aliased pointer of a different type, try to coerce
858/// the stored value.  LoadedTy is the type of the load we want to replace and
859/// InsertPt is the place to insert new instructions.
860///
861/// If we can't do it, return null.
862static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
863                                             const Type *LoadedTy,
864                                             Instruction *InsertPt,
865                                             const TargetData &TD) {
866  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
867    return 0;
868
869  const Type *StoredValTy = StoredVal->getType();
870
871  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
872  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
873
874  // If the store and reload are the same size, we can always reuse it.
875  if (StoreSize == LoadSize) {
876    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
877      // Pointer to Pointer -> use bitcast.
878      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
879    }
880
881    // Convert source pointers to integers, which can be bitcast.
882    if (StoredValTy->isPointerTy()) {
883      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
884      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
885    }
886
887    const Type *TypeToCastTo = LoadedTy;
888    if (TypeToCastTo->isPointerTy())
889      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
890
891    if (StoredValTy != TypeToCastTo)
892      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
893
894    // Cast to pointer if the load needs a pointer type.
895    if (LoadedTy->isPointerTy())
896      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
897
898    return StoredVal;
899  }
900
901  // If the loaded value is smaller than the available value, then we can
902  // extract out a piece from it.  If the available value is too small, then we
903  // can't do anything.
904  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
905
906  // Convert source pointers to integers, which can be manipulated.
907  if (StoredValTy->isPointerTy()) {
908    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
909    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
910  }
911
912  // Convert vectors and fp to integer, which can be manipulated.
913  if (!StoredValTy->isIntegerTy()) {
914    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
915    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
916  }
917
918  // If this is a big-endian system, we need to shift the value down to the low
919  // bits so that a truncate will work.
920  if (TD.isBigEndian()) {
921    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
922    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
923  }
924
925  // Truncate the integer to the right size now.
926  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
927  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
928
929  if (LoadedTy == NewIntTy)
930    return StoredVal;
931
932  // If the result is a pointer, inttoptr.
933  if (LoadedTy->isPointerTy())
934    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
935
936  // Otherwise, bitcast.
937  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
938}
939
940/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
941/// be expressed as a base pointer plus a constant offset.  Return the base and
942/// offset to the caller.
943static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
944                                        const TargetData &TD) {
945  Operator *PtrOp = dyn_cast<Operator>(Ptr);
946  if (PtrOp == 0) return Ptr;
947
948  // Just look through bitcasts.
949  if (PtrOp->getOpcode() == Instruction::BitCast)
950    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
951
952  // If this is a GEP with constant indices, we can look through it.
953  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
954  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
955
956  gep_type_iterator GTI = gep_type_begin(GEP);
957  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
958       ++I, ++GTI) {
959    ConstantInt *OpC = cast<ConstantInt>(*I);
960    if (OpC->isZero()) continue;
961
962    // Handle a struct and array indices which add their offset to the pointer.
963    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
964      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
965    } else {
966      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
967      Offset += OpC->getSExtValue()*Size;
968    }
969  }
970
971  // Re-sign extend from the pointer size if needed to get overflow edge cases
972  // right.
973  unsigned PtrSize = TD.getPointerSizeInBits();
974  if (PtrSize < 64)
975    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
976
977  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
978}
979
980
981/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
982/// memdep query of a load that ends up being a clobbering memory write (store,
983/// memset, memcpy, memmove).  This means that the write *may* provide bits used
984/// by the load but we can't be sure because the pointers don't mustalias.
985///
986/// Check this case to see if there is anything more we can do before we give
987/// up.  This returns -1 if we have to give up, or a byte number in the stored
988/// value of the piece that feeds the load.
989static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
990                                          Value *WritePtr,
991                                          uint64_t WriteSizeInBits,
992                                          const TargetData &TD) {
993  // If the loaded or stored value is an first class array or struct, don't try
994  // to transform them.  We need to be able to bitcast to integer.
995  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
996    return -1;
997
998  int64_t StoreOffset = 0, LoadOffset = 0;
999  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1000  Value *LoadBase =
1001    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1002  if (StoreBase != LoadBase)
1003    return -1;
1004
1005  // If the load and store are to the exact same address, they should have been
1006  // a must alias.  AA must have gotten confused.
1007  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1008  // to a load from the base of the memset.
1009#if 0
1010  if (LoadOffset == StoreOffset) {
1011    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1012    << "Base       = " << *StoreBase << "\n"
1013    << "Store Ptr  = " << *WritePtr << "\n"
1014    << "Store Offs = " << StoreOffset << "\n"
1015    << "Load Ptr   = " << *LoadPtr << "\n";
1016    abort();
1017  }
1018#endif
1019
1020  // If the load and store don't overlap at all, the store doesn't provide
1021  // anything to the load.  In this case, they really don't alias at all, AA
1022  // must have gotten confused.
1023  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1024  // remove this check, as it is duplicated with what we have below.
1025  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1026
1027  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1028    return -1;
1029  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1030  LoadSize >>= 3;
1031
1032
1033  bool isAAFailure = false;
1034  if (StoreOffset < LoadOffset)
1035    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1036  else
1037    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1038
1039  if (isAAFailure) {
1040#if 0
1041    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1042    << "Base       = " << *StoreBase << "\n"
1043    << "Store Ptr  = " << *WritePtr << "\n"
1044    << "Store Offs = " << StoreOffset << "\n"
1045    << "Load Ptr   = " << *LoadPtr << "\n";
1046    abort();
1047#endif
1048    return -1;
1049  }
1050
1051  // If the Load isn't completely contained within the stored bits, we don't
1052  // have all the bits to feed it.  We could do something crazy in the future
1053  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1054  // valuable.
1055  if (StoreOffset > LoadOffset ||
1056      StoreOffset+StoreSize < LoadOffset+LoadSize)
1057    return -1;
1058
1059  // Okay, we can do this transformation.  Return the number of bytes into the
1060  // store that the load is.
1061  return LoadOffset-StoreOffset;
1062}
1063
1064/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1065/// memdep query of a load that ends up being a clobbering store.
1066static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1067                                          StoreInst *DepSI,
1068                                          const TargetData &TD) {
1069  // Cannot handle reading from store of first-class aggregate yet.
1070  if (DepSI->getOperand(0)->getType()->isStructTy() ||
1071      DepSI->getOperand(0)->getType()->isArrayTy())
1072    return -1;
1073
1074  Value *StorePtr = DepSI->getPointerOperand();
1075  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1076  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1077                                        StorePtr, StoreSize, TD);
1078}
1079
1080static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1081                                            MemIntrinsic *MI,
1082                                            const TargetData &TD) {
1083  // If the mem operation is a non-constant size, we can't handle it.
1084  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1085  if (SizeCst == 0) return -1;
1086  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1087
1088  // If this is memset, we just need to see if the offset is valid in the size
1089  // of the memset..
1090  if (MI->getIntrinsicID() == Intrinsic::memset)
1091    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1092                                          MemSizeInBits, TD);
1093
1094  // If we have a memcpy/memmove, the only case we can handle is if this is a
1095  // copy from constant memory.  In that case, we can read directly from the
1096  // constant memory.
1097  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1098
1099  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1100  if (Src == 0) return -1;
1101
1102  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1103  if (GV == 0 || !GV->isConstant()) return -1;
1104
1105  // See if the access is within the bounds of the transfer.
1106  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1107                                              MI->getDest(), MemSizeInBits, TD);
1108  if (Offset == -1)
1109    return Offset;
1110
1111  // Otherwise, see if we can constant fold a load from the constant with the
1112  // offset applied as appropriate.
1113  Src = ConstantExpr::getBitCast(Src,
1114                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1115  Constant *OffsetCst =
1116    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1117  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1118  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1119  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1120    return Offset;
1121  return -1;
1122}
1123
1124
1125/// GetStoreValueForLoad - This function is called when we have a
1126/// memdep query of a load that ends up being a clobbering store.  This means
1127/// that the store *may* provide bits used by the load but we can't be sure
1128/// because the pointers don't mustalias.  Check this case to see if there is
1129/// anything more we can do before we give up.
1130static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1131                                   const Type *LoadTy,
1132                                   Instruction *InsertPt, const TargetData &TD){
1133  LLVMContext &Ctx = SrcVal->getType()->getContext();
1134
1135  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1136  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1137
1138  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1139
1140  // Compute which bits of the stored value are being used by the load.  Convert
1141  // to an integer type to start with.
1142  if (SrcVal->getType()->isPointerTy())
1143    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1144  if (!SrcVal->getType()->isIntegerTy())
1145    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1146                                   "tmp");
1147
1148  // Shift the bits to the least significant depending on endianness.
1149  unsigned ShiftAmt;
1150  if (TD.isLittleEndian())
1151    ShiftAmt = Offset*8;
1152  else
1153    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1154
1155  if (ShiftAmt)
1156    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1157
1158  if (LoadSize != StoreSize)
1159    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1160                                 "tmp");
1161
1162  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1163}
1164
1165/// GetMemInstValueForLoad - This function is called when we have a
1166/// memdep query of a load that ends up being a clobbering mem intrinsic.
1167static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1168                                     const Type *LoadTy, Instruction *InsertPt,
1169                                     const TargetData &TD){
1170  LLVMContext &Ctx = LoadTy->getContext();
1171  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1172
1173  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1174
1175  // We know that this method is only called when the mem transfer fully
1176  // provides the bits for the load.
1177  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1178    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1179    // independently of what the offset is.
1180    Value *Val = MSI->getValue();
1181    if (LoadSize != 1)
1182      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1183
1184    Value *OneElt = Val;
1185
1186    // Splat the value out to the right number of bits.
1187    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1188      // If we can double the number of bytes set, do it.
1189      if (NumBytesSet*2 <= LoadSize) {
1190        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1191        Val = Builder.CreateOr(Val, ShVal);
1192        NumBytesSet <<= 1;
1193        continue;
1194      }
1195
1196      // Otherwise insert one byte at a time.
1197      Value *ShVal = Builder.CreateShl(Val, 1*8);
1198      Val = Builder.CreateOr(OneElt, ShVal);
1199      ++NumBytesSet;
1200    }
1201
1202    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1203  }
1204
1205  // Otherwise, this is a memcpy/memmove from a constant global.
1206  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1207  Constant *Src = cast<Constant>(MTI->getSource());
1208
1209  // Otherwise, see if we can constant fold a load from the constant with the
1210  // offset applied as appropriate.
1211  Src = ConstantExpr::getBitCast(Src,
1212                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1213  Constant *OffsetCst =
1214  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1215  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1216  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1217  return ConstantFoldLoadFromConstPtr(Src, &TD);
1218}
1219
1220
1221
1222struct AvailableValueInBlock {
1223  /// BB - The basic block in question.
1224  BasicBlock *BB;
1225  enum ValType {
1226    SimpleVal,  // A simple offsetted value that is accessed.
1227    MemIntrin   // A memory intrinsic which is loaded from.
1228  };
1229
1230  /// V - The value that is live out of the block.
1231  PointerIntPair<Value *, 1, ValType> Val;
1232
1233  /// Offset - The byte offset in Val that is interesting for the load query.
1234  unsigned Offset;
1235
1236  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1237                                   unsigned Offset = 0) {
1238    AvailableValueInBlock Res;
1239    Res.BB = BB;
1240    Res.Val.setPointer(V);
1241    Res.Val.setInt(SimpleVal);
1242    Res.Offset = Offset;
1243    return Res;
1244  }
1245
1246  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1247                                     unsigned Offset = 0) {
1248    AvailableValueInBlock Res;
1249    Res.BB = BB;
1250    Res.Val.setPointer(MI);
1251    Res.Val.setInt(MemIntrin);
1252    Res.Offset = Offset;
1253    return Res;
1254  }
1255
1256  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1257  Value *getSimpleValue() const {
1258    assert(isSimpleValue() && "Wrong accessor");
1259    return Val.getPointer();
1260  }
1261
1262  MemIntrinsic *getMemIntrinValue() const {
1263    assert(!isSimpleValue() && "Wrong accessor");
1264    return cast<MemIntrinsic>(Val.getPointer());
1265  }
1266
1267  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1268  /// defined here to the specified type.  This handles various coercion cases.
1269  Value *MaterializeAdjustedValue(const Type *LoadTy,
1270                                  const TargetData *TD) const {
1271    Value *Res;
1272    if (isSimpleValue()) {
1273      Res = getSimpleValue();
1274      if (Res->getType() != LoadTy) {
1275        assert(TD && "Need target data to handle type mismatch case");
1276        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1277                                   *TD);
1278
1279        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1280                     << *getSimpleValue() << '\n'
1281                     << *Res << '\n' << "\n\n\n");
1282      }
1283    } else {
1284      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1285                                   LoadTy, BB->getTerminator(), *TD);
1286      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1287                   << "  " << *getMemIntrinValue() << '\n'
1288                   << *Res << '\n' << "\n\n\n");
1289    }
1290    return Res;
1291  }
1292};
1293
1294/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1295/// construct SSA form, allowing us to eliminate LI.  This returns the value
1296/// that should be used at LI's definition site.
1297static Value *ConstructSSAForLoadSet(LoadInst *LI,
1298                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1299                                     const TargetData *TD,
1300                                     const DominatorTree &DT,
1301                                     AliasAnalysis *AA) {
1302  // Check for the fully redundant, dominating load case.  In this case, we can
1303  // just use the dominating value directly.
1304  if (ValuesPerBlock.size() == 1 &&
1305      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1306    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1307
1308  // Otherwise, we have to construct SSA form.
1309  SmallVector<PHINode*, 8> NewPHIs;
1310  SSAUpdater SSAUpdate(&NewPHIs);
1311  SSAUpdate.Initialize(LI);
1312
1313  const Type *LoadTy = LI->getType();
1314
1315  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1316    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1317    BasicBlock *BB = AV.BB;
1318
1319    if (SSAUpdate.HasValueForBlock(BB))
1320      continue;
1321
1322    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1323  }
1324
1325  // Perform PHI construction.
1326  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1327
1328  // If new PHI nodes were created, notify alias analysis.
1329  if (V->getType()->isPointerTy())
1330    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1331      AA->copyValue(LI, NewPHIs[i]);
1332
1333  return V;
1334}
1335
1336static bool isLifetimeStart(const Instruction *Inst) {
1337  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1338    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1339  return false;
1340}
1341
1342/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1343/// non-local by performing PHI construction.
1344bool GVN::processNonLocalLoad(LoadInst *LI,
1345                              SmallVectorImpl<Instruction*> &toErase) {
1346  // Find the non-local dependencies of the load.
1347  SmallVector<NonLocalDepResult, 64> Deps;
1348  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1349                                   Deps);
1350  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1351  //             << Deps.size() << *LI << '\n');
1352
1353  // If we had to process more than one hundred blocks to find the
1354  // dependencies, this load isn't worth worrying about.  Optimizing
1355  // it will be too expensive.
1356  if (Deps.size() > 100)
1357    return false;
1358
1359  // If we had a phi translation failure, we'll have a single entry which is a
1360  // clobber in the current block.  Reject this early.
1361  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1362    DEBUG(
1363      dbgs() << "GVN: non-local load ";
1364      WriteAsOperand(dbgs(), LI);
1365      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1366    );
1367    return false;
1368  }
1369
1370  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1371  // where we have a value available in repl, also keep track of whether we see
1372  // dependencies that produce an unknown value for the load (such as a call
1373  // that could potentially clobber the load).
1374  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1375  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1376
1377  const TargetData *TD = 0;
1378
1379  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1380    BasicBlock *DepBB = Deps[i].getBB();
1381    MemDepResult DepInfo = Deps[i].getResult();
1382
1383    if (DepInfo.isClobber()) {
1384      // The address being loaded in this non-local block may not be the same as
1385      // the pointer operand of the load if PHI translation occurs.  Make sure
1386      // to consider the right address.
1387      Value *Address = Deps[i].getAddress();
1388
1389      // If the dependence is to a store that writes to a superset of the bits
1390      // read by the load, we can extract the bits we need for the load from the
1391      // stored value.
1392      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1393        if (TD == 0)
1394          TD = getAnalysisIfAvailable<TargetData>();
1395        if (TD && Address) {
1396          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1397                                                      DepSI, *TD);
1398          if (Offset != -1) {
1399            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1400                                                           DepSI->getOperand(0),
1401                                                                Offset));
1402            continue;
1403          }
1404        }
1405      }
1406
1407      // If the clobbering value is a memset/memcpy/memmove, see if we can
1408      // forward a value on from it.
1409      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1410        if (TD == 0)
1411          TD = getAnalysisIfAvailable<TargetData>();
1412        if (TD && Address) {
1413          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1414                                                        DepMI, *TD);
1415          if (Offset != -1) {
1416            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1417                                                                  Offset));
1418            continue;
1419          }
1420        }
1421      }
1422
1423      UnavailableBlocks.push_back(DepBB);
1424      continue;
1425    }
1426
1427    Instruction *DepInst = DepInfo.getInst();
1428
1429    // Loading the allocation -> undef.
1430    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1431        // Loading immediately after lifetime begin -> undef.
1432        isLifetimeStart(DepInst)) {
1433      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1434                                             UndefValue::get(LI->getType())));
1435      continue;
1436    }
1437
1438    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1439      // Reject loads and stores that are to the same address but are of
1440      // different types if we have to.
1441      if (S->getOperand(0)->getType() != LI->getType()) {
1442        if (TD == 0)
1443          TD = getAnalysisIfAvailable<TargetData>();
1444
1445        // If the stored value is larger or equal to the loaded value, we can
1446        // reuse it.
1447        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1448                                                        LI->getType(), *TD)) {
1449          UnavailableBlocks.push_back(DepBB);
1450          continue;
1451        }
1452      }
1453
1454      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1455                                                          S->getOperand(0)));
1456      continue;
1457    }
1458
1459    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1460      // If the types mismatch and we can't handle it, reject reuse of the load.
1461      if (LD->getType() != LI->getType()) {
1462        if (TD == 0)
1463          TD = getAnalysisIfAvailable<TargetData>();
1464
1465        // If the stored value is larger or equal to the loaded value, we can
1466        // reuse it.
1467        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1468          UnavailableBlocks.push_back(DepBB);
1469          continue;
1470        }
1471      }
1472      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1473      continue;
1474    }
1475
1476    UnavailableBlocks.push_back(DepBB);
1477    continue;
1478  }
1479
1480  // If we have no predecessors that produce a known value for this load, exit
1481  // early.
1482  if (ValuesPerBlock.empty()) return false;
1483
1484  // If all of the instructions we depend on produce a known value for this
1485  // load, then it is fully redundant and we can use PHI insertion to compute
1486  // its value.  Insert PHIs and remove the fully redundant value now.
1487  if (UnavailableBlocks.empty()) {
1488    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1489
1490    // Perform PHI construction.
1491    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1492                                      VN.getAliasAnalysis());
1493    LI->replaceAllUsesWith(V);
1494
1495    if (isa<PHINode>(V))
1496      V->takeName(LI);
1497    if (V->getType()->isPointerTy())
1498      MD->invalidateCachedPointerInfo(V);
1499    VN.erase(LI);
1500    toErase.push_back(LI);
1501    NumGVNLoad++;
1502    return true;
1503  }
1504
1505  if (!EnablePRE || !EnableLoadPRE)
1506    return false;
1507
1508  // Okay, we have *some* definitions of the value.  This means that the value
1509  // is available in some of our (transitive) predecessors.  Lets think about
1510  // doing PRE of this load.  This will involve inserting a new load into the
1511  // predecessor when it's not available.  We could do this in general, but
1512  // prefer to not increase code size.  As such, we only do this when we know
1513  // that we only have to insert *one* load (which means we're basically moving
1514  // the load, not inserting a new one).
1515
1516  SmallPtrSet<BasicBlock *, 4> Blockers;
1517  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1518    Blockers.insert(UnavailableBlocks[i]);
1519
1520  // Lets find first basic block with more than one predecessor.  Walk backwards
1521  // through predecessors if needed.
1522  BasicBlock *LoadBB = LI->getParent();
1523  BasicBlock *TmpBB = LoadBB;
1524
1525  bool isSinglePred = false;
1526  bool allSingleSucc = true;
1527  while (TmpBB->getSinglePredecessor()) {
1528    isSinglePred = true;
1529    TmpBB = TmpBB->getSinglePredecessor();
1530    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1531      return false;
1532    if (Blockers.count(TmpBB))
1533      return false;
1534    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1535      allSingleSucc = false;
1536  }
1537
1538  assert(TmpBB);
1539  LoadBB = TmpBB;
1540
1541  // If we have a repl set with LI itself in it, this means we have a loop where
1542  // at least one of the values is LI.  Since this means that we won't be able
1543  // to eliminate LI even if we insert uses in the other predecessors, we will
1544  // end up increasing code size.  Reject this by scanning for LI.
1545  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1546    if (ValuesPerBlock[i].isSimpleValue() &&
1547        ValuesPerBlock[i].getSimpleValue() == LI) {
1548      // Skip cases where LI is the only definition, even for EnableFullLoadPRE.
1549      if (!EnableFullLoadPRE || e == 1)
1550        return false;
1551    }
1552  }
1553
1554  // FIXME: It is extremely unclear what this loop is doing, other than
1555  // artificially restricting loadpre.
1556  if (isSinglePred) {
1557    bool isHot = false;
1558    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1559      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1560      if (AV.isSimpleValue())
1561        // "Hot" Instruction is in some loop (because it dominates its dep.
1562        // instruction).
1563        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1564          if (DT->dominates(LI, I)) {
1565            isHot = true;
1566            break;
1567          }
1568    }
1569
1570    // We are interested only in "hot" instructions. We don't want to do any
1571    // mis-optimizations here.
1572    if (!isHot)
1573      return false;
1574  }
1575
1576  // Check to see how many predecessors have the loaded value fully
1577  // available.
1578  DenseMap<BasicBlock*, Value*> PredLoads;
1579  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1580  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1581    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1582  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1583    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1584
1585  bool NeedToSplitEdges = false;
1586  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1587       PI != E; ++PI) {
1588    BasicBlock *Pred = *PI;
1589    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1590      continue;
1591    }
1592    PredLoads[Pred] = 0;
1593
1594    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1595      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1596        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1597              << Pred->getName() << "': " << *LI << '\n');
1598        return false;
1599      }
1600      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1601      toSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1602      NeedToSplitEdges = true;
1603    }
1604  }
1605  if (NeedToSplitEdges)
1606    return false;
1607
1608  // Decide whether PRE is profitable for this load.
1609  unsigned NumUnavailablePreds = PredLoads.size();
1610  assert(NumUnavailablePreds != 0 &&
1611         "Fully available value should be eliminated above!");
1612  if (!EnableFullLoadPRE) {
1613    // If this load is unavailable in multiple predecessors, reject it.
1614    // FIXME: If we could restructure the CFG, we could make a common pred with
1615    // all the preds that don't have an available LI and insert a new load into
1616    // that one block.
1617    if (NumUnavailablePreds != 1)
1618      return false;
1619  }
1620
1621  // Check if the load can safely be moved to all the unavailable predecessors.
1622  bool CanDoPRE = true;
1623  SmallVector<Instruction*, 8> NewInsts;
1624  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1625         E = PredLoads.end(); I != E; ++I) {
1626    BasicBlock *UnavailablePred = I->first;
1627
1628    // Do PHI translation to get its value in the predecessor if necessary.  The
1629    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1630
1631    // If all preds have a single successor, then we know it is safe to insert
1632    // the load on the pred (?!?), so we can insert code to materialize the
1633    // pointer if it is not available.
1634    PHITransAddr Address(LI->getOperand(0), TD);
1635    Value *LoadPtr = 0;
1636    if (allSingleSucc) {
1637      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1638                                                  *DT, NewInsts);
1639    } else {
1640      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1641      LoadPtr = Address.getAddr();
1642    }
1643
1644    // If we couldn't find or insert a computation of this phi translated value,
1645    // we fail PRE.
1646    if (LoadPtr == 0) {
1647      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1648            << *LI->getOperand(0) << "\n");
1649      CanDoPRE = false;
1650      break;
1651    }
1652
1653    // Make sure it is valid to move this load here.  We have to watch out for:
1654    //  @1 = getelementptr (i8* p, ...
1655    //  test p and branch if == 0
1656    //  load @1
1657    // It is valid to have the getelementptr before the test, even if p can be 0,
1658    // as getelementptr only does address arithmetic.
1659    // If we are not pushing the value through any multiple-successor blocks
1660    // we do not have this case.  Otherwise, check that the load is safe to
1661    // put anywhere; this can be improved, but should be conservatively safe.
1662    if (!allSingleSucc &&
1663        // FIXME: REEVALUTE THIS.
1664        !isSafeToLoadUnconditionally(LoadPtr,
1665                                     UnavailablePred->getTerminator(),
1666                                     LI->getAlignment(), TD)) {
1667      CanDoPRE = false;
1668      break;
1669    }
1670
1671    I->second = LoadPtr;
1672  }
1673
1674  if (!CanDoPRE) {
1675    while (!NewInsts.empty())
1676      NewInsts.pop_back_val()->eraseFromParent();
1677    return false;
1678  }
1679
1680  // Okay, we can eliminate this load by inserting a reload in the predecessor
1681  // and using PHI construction to get the value in the other predecessors, do
1682  // it.
1683  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1684  DEBUG(if (!NewInsts.empty())
1685          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1686                 << *NewInsts.back() << '\n');
1687
1688  // Assign value numbers to the new instructions.
1689  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1690    // FIXME: We really _ought_ to insert these value numbers into their
1691    // parent's availability map.  However, in doing so, we risk getting into
1692    // ordering issues.  If a block hasn't been processed yet, we would be
1693    // marking a value as AVAIL-IN, which isn't what we intend.
1694    VN.lookup_or_add(NewInsts[i]);
1695  }
1696
1697  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1698         E = PredLoads.end(); I != E; ++I) {
1699    BasicBlock *UnavailablePred = I->first;
1700    Value *LoadPtr = I->second;
1701
1702    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1703                                  LI->getAlignment(),
1704                                  UnavailablePred->getTerminator());
1705
1706    // Add the newly created load.
1707    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1708                                                        NewLoad));
1709    MD->invalidateCachedPointerInfo(LoadPtr);
1710    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1711  }
1712
1713  // Perform PHI construction.
1714  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1715                                    VN.getAliasAnalysis());
1716  LI->replaceAllUsesWith(V);
1717  if (isa<PHINode>(V))
1718    V->takeName(LI);
1719  if (V->getType()->isPointerTy())
1720    MD->invalidateCachedPointerInfo(V);
1721  VN.erase(LI);
1722  toErase.push_back(LI);
1723  NumPRELoad++;
1724  return true;
1725}
1726
1727/// processLoad - Attempt to eliminate a load, first by eliminating it
1728/// locally, and then attempting non-local elimination if that fails.
1729bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1730  if (!MD)
1731    return false;
1732
1733  if (L->isVolatile())
1734    return false;
1735
1736  // ... to a pointer that has been loaded from before...
1737  MemDepResult Dep = MD->getDependency(L);
1738
1739  // If the value isn't available, don't do anything!
1740  if (Dep.isClobber()) {
1741    // Check to see if we have something like this:
1742    //   store i32 123, i32* %P
1743    //   %A = bitcast i32* %P to i8*
1744    //   %B = gep i8* %A, i32 1
1745    //   %C = load i8* %B
1746    //
1747    // We could do that by recognizing if the clobber instructions are obviously
1748    // a common base + constant offset, and if the previous store (or memset)
1749    // completely covers this load.  This sort of thing can happen in bitfield
1750    // access code.
1751    Value *AvailVal = 0;
1752    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1753      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1754        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1755                                                    L->getPointerOperand(),
1756                                                    DepSI, *TD);
1757        if (Offset != -1)
1758          AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1759                                          L->getType(), L, *TD);
1760      }
1761
1762    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1763    // a value on from it.
1764    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1765      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1766        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1767                                                      L->getPointerOperand(),
1768                                                      DepMI, *TD);
1769        if (Offset != -1)
1770          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1771      }
1772    }
1773
1774    if (AvailVal) {
1775      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1776            << *AvailVal << '\n' << *L << "\n\n\n");
1777
1778      // Replace the load!
1779      L->replaceAllUsesWith(AvailVal);
1780      if (AvailVal->getType()->isPointerTy())
1781        MD->invalidateCachedPointerInfo(AvailVal);
1782      VN.erase(L);
1783      toErase.push_back(L);
1784      NumGVNLoad++;
1785      return true;
1786    }
1787
1788    DEBUG(
1789      // fast print dep, using operator<< on instruction would be too slow
1790      dbgs() << "GVN: load ";
1791      WriteAsOperand(dbgs(), L);
1792      Instruction *I = Dep.getInst();
1793      dbgs() << " is clobbered by " << *I << '\n';
1794    );
1795    return false;
1796  }
1797
1798  // If it is defined in another block, try harder.
1799  if (Dep.isNonLocal())
1800    return processNonLocalLoad(L, toErase);
1801
1802  Instruction *DepInst = Dep.getInst();
1803  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1804    Value *StoredVal = DepSI->getOperand(0);
1805
1806    // The store and load are to a must-aliased pointer, but they may not
1807    // actually have the same type.  See if we know how to reuse the stored
1808    // value (depending on its type).
1809    const TargetData *TD = 0;
1810    if (StoredVal->getType() != L->getType()) {
1811      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1812        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1813                                                   L, *TD);
1814        if (StoredVal == 0)
1815          return false;
1816
1817        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1818                     << '\n' << *L << "\n\n\n");
1819      }
1820      else
1821        return false;
1822    }
1823
1824    // Remove it!
1825    L->replaceAllUsesWith(StoredVal);
1826    if (StoredVal->getType()->isPointerTy())
1827      MD->invalidateCachedPointerInfo(StoredVal);
1828    VN.erase(L);
1829    toErase.push_back(L);
1830    NumGVNLoad++;
1831    return true;
1832  }
1833
1834  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1835    Value *AvailableVal = DepLI;
1836
1837    // The loads are of a must-aliased pointer, but they may not actually have
1838    // the same type.  See if we know how to reuse the previously loaded value
1839    // (depending on its type).
1840    const TargetData *TD = 0;
1841    if (DepLI->getType() != L->getType()) {
1842      if ((TD = getAnalysisIfAvailable<TargetData>())) {
1843        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1844        if (AvailableVal == 0)
1845          return false;
1846
1847        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1848                     << "\n" << *L << "\n\n\n");
1849      }
1850      else
1851        return false;
1852    }
1853
1854    // Remove it!
1855    L->replaceAllUsesWith(AvailableVal);
1856    if (DepLI->getType()->isPointerTy())
1857      MD->invalidateCachedPointerInfo(DepLI);
1858    VN.erase(L);
1859    toErase.push_back(L);
1860    NumGVNLoad++;
1861    return true;
1862  }
1863
1864  // If this load really doesn't depend on anything, then we must be loading an
1865  // undef value.  This can happen when loading for a fresh allocation with no
1866  // intervening stores, for example.
1867  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1868    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1869    VN.erase(L);
1870    toErase.push_back(L);
1871    NumGVNLoad++;
1872    return true;
1873  }
1874
1875  // If this load occurs either right after a lifetime begin,
1876  // then the loaded value is undefined.
1877  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1878    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1879      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1880      VN.erase(L);
1881      toErase.push_back(L);
1882      NumGVNLoad++;
1883      return true;
1884    }
1885  }
1886
1887  return false;
1888}
1889
1890Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1891  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1892  if (I == localAvail.end())
1893    return 0;
1894
1895  ValueNumberScope *Locals = I->second;
1896  while (Locals) {
1897    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1898    if (I != Locals->table.end())
1899      return I->second;
1900    Locals = Locals->parent;
1901  }
1902
1903  return 0;
1904}
1905
1906
1907/// processInstruction - When calculating availability, handle an instruction
1908/// by inserting it into the appropriate sets
1909bool GVN::processInstruction(Instruction *I,
1910                             SmallVectorImpl<Instruction*> &toErase) {
1911  // Ignore dbg info intrinsics.
1912  if (isa<DbgInfoIntrinsic>(I))
1913    return false;
1914
1915  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1916    bool Changed = processLoad(LI, toErase);
1917
1918    if (!Changed) {
1919      unsigned Num = VN.lookup_or_add(LI);
1920      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1921    }
1922
1923    return Changed;
1924  }
1925
1926  uint32_t NextNum = VN.getNextUnusedValueNumber();
1927  unsigned Num = VN.lookup_or_add(I);
1928
1929  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1930    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1931
1932    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1933      return false;
1934
1935    Value *BranchCond = BI->getCondition();
1936    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1937
1938    BasicBlock *TrueSucc = BI->getSuccessor(0);
1939    BasicBlock *FalseSucc = BI->getSuccessor(1);
1940
1941    if (TrueSucc->getSinglePredecessor())
1942      localAvail[TrueSucc]->table[CondVN] =
1943        ConstantInt::getTrue(TrueSucc->getContext());
1944    if (FalseSucc->getSinglePredecessor())
1945      localAvail[FalseSucc]->table[CondVN] =
1946        ConstantInt::getFalse(TrueSucc->getContext());
1947
1948    return false;
1949
1950  // Allocations are always uniquely numbered, so we can save time and memory
1951  // by fast failing them.
1952  } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1953    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1954    return false;
1955  }
1956
1957  // Collapse PHI nodes
1958  if (PHINode* p = dyn_cast<PHINode>(I)) {
1959    Value *constVal = CollapsePhi(p);
1960
1961    if (constVal) {
1962      p->replaceAllUsesWith(constVal);
1963      if (MD && constVal->getType()->isPointerTy())
1964        MD->invalidateCachedPointerInfo(constVal);
1965      VN.erase(p);
1966
1967      toErase.push_back(p);
1968    } else {
1969      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1970    }
1971
1972  // If the number we were assigned was a brand new VN, then we don't
1973  // need to do a lookup to see if the number already exists
1974  // somewhere in the domtree: it can't!
1975  } else if (Num == NextNum) {
1976    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1977
1978  // Perform fast-path value-number based elimination of values inherited from
1979  // dominators.
1980  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1981    // Remove it!
1982    VN.erase(I);
1983    I->replaceAllUsesWith(repl);
1984    if (MD && repl->getType()->isPointerTy())
1985      MD->invalidateCachedPointerInfo(repl);
1986    toErase.push_back(I);
1987    return true;
1988
1989  } else {
1990    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1991  }
1992
1993  return false;
1994}
1995
1996/// runOnFunction - This is the main transformation entry point for a function.
1997bool GVN::runOnFunction(Function& F) {
1998  if (!NoLoads)
1999    MD = &getAnalysis<MemoryDependenceAnalysis>();
2000  DT = &getAnalysis<DominatorTree>();
2001  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2002  VN.setMemDep(MD);
2003  VN.setDomTree(DT);
2004
2005  bool Changed = false;
2006  bool ShouldContinue = true;
2007
2008  // Merge unconditional branches, allowing PRE to catch more
2009  // optimization opportunities.
2010  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2011    BasicBlock *BB = FI;
2012    ++FI;
2013    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2014    if (removedBlock) NumGVNBlocks++;
2015
2016    Changed |= removedBlock;
2017  }
2018
2019  unsigned Iteration = 0;
2020
2021  while (ShouldContinue) {
2022    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2023    ShouldContinue = iterateOnFunction(F);
2024    if (splitCriticalEdges())
2025      ShouldContinue = true;
2026    Changed |= ShouldContinue;
2027    ++Iteration;
2028  }
2029
2030  if (EnablePRE) {
2031    bool PREChanged = true;
2032    while (PREChanged) {
2033      PREChanged = performPRE(F);
2034      Changed |= PREChanged;
2035    }
2036  }
2037  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2038  // computations into blocks where they become fully redundant.  Note that
2039  // we can't do this until PRE's critical edge splitting updates memdep.
2040  // Actually, when this happens, we should just fully integrate PRE into GVN.
2041
2042  cleanupGlobalSets();
2043
2044  return Changed;
2045}
2046
2047
2048bool GVN::processBlock(BasicBlock *BB) {
2049  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2050  // incrementing BI before processing an instruction).
2051  SmallVector<Instruction*, 8> toErase;
2052  bool ChangedFunction = false;
2053
2054  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2055       BI != BE;) {
2056    ChangedFunction |= processInstruction(BI, toErase);
2057    if (toErase.empty()) {
2058      ++BI;
2059      continue;
2060    }
2061
2062    // If we need some instructions deleted, do it now.
2063    NumGVNInstr += toErase.size();
2064
2065    // Avoid iterator invalidation.
2066    bool AtStart = BI == BB->begin();
2067    if (!AtStart)
2068      --BI;
2069
2070    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2071         E = toErase.end(); I != E; ++I) {
2072      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2073      if (MD) MD->removeInstruction(*I);
2074      (*I)->eraseFromParent();
2075      DEBUG(verifyRemoved(*I));
2076    }
2077    toErase.clear();
2078
2079    if (AtStart)
2080      BI = BB->begin();
2081    else
2082      ++BI;
2083  }
2084
2085  return ChangedFunction;
2086}
2087
2088/// performPRE - Perform a purely local form of PRE that looks for diamond
2089/// control flow patterns and attempts to perform simple PRE at the join point.
2090bool GVN::performPRE(Function &F) {
2091  bool Changed = false;
2092  DenseMap<BasicBlock*, Value*> predMap;
2093  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2094       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2095    BasicBlock *CurrentBlock = *DI;
2096
2097    // Nothing to PRE in the entry block.
2098    if (CurrentBlock == &F.getEntryBlock()) continue;
2099
2100    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2101         BE = CurrentBlock->end(); BI != BE; ) {
2102      Instruction *CurInst = BI++;
2103
2104      if (isa<AllocaInst>(CurInst) ||
2105          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2106          CurInst->getType()->isVoidTy() ||
2107          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2108          isa<DbgInfoIntrinsic>(CurInst))
2109        continue;
2110
2111      uint32_t ValNo = VN.lookup(CurInst);
2112
2113      // Look for the predecessors for PRE opportunities.  We're
2114      // only trying to solve the basic diamond case, where
2115      // a value is computed in the successor and one predecessor,
2116      // but not the other.  We also explicitly disallow cases
2117      // where the successor is its own predecessor, because they're
2118      // more complicated to get right.
2119      unsigned NumWith = 0;
2120      unsigned NumWithout = 0;
2121      BasicBlock *PREPred = 0;
2122      predMap.clear();
2123
2124      for (pred_iterator PI = pred_begin(CurrentBlock),
2125           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2126        // We're not interested in PRE where the block is its
2127        // own predecessor, or in blocks with predecessors
2128        // that are not reachable.
2129        if (*PI == CurrentBlock) {
2130          NumWithout = 2;
2131          break;
2132        } else if (!localAvail.count(*PI))  {
2133          NumWithout = 2;
2134          break;
2135        }
2136
2137        DenseMap<uint32_t, Value*>::iterator predV =
2138                                            localAvail[*PI]->table.find(ValNo);
2139        if (predV == localAvail[*PI]->table.end()) {
2140          PREPred = *PI;
2141          NumWithout++;
2142        } else if (predV->second == CurInst) {
2143          NumWithout = 2;
2144        } else {
2145          predMap[*PI] = predV->second;
2146          NumWith++;
2147        }
2148      }
2149
2150      // Don't do PRE when it might increase code size, i.e. when
2151      // we would need to insert instructions in more than one pred.
2152      if (NumWithout != 1 || NumWith == 0)
2153        continue;
2154
2155      // Don't do PRE across indirect branch.
2156      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2157        continue;
2158
2159      // We can't do PRE safely on a critical edge, so instead we schedule
2160      // the edge to be split and perform the PRE the next time we iterate
2161      // on the function.
2162      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2163      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2164        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2165        continue;
2166      }
2167
2168      // Instantiate the expression in the predecessor that lacked it.
2169      // Because we are going top-down through the block, all value numbers
2170      // will be available in the predecessor by the time we need them.  Any
2171      // that weren't originally present will have been instantiated earlier
2172      // in this loop.
2173      Instruction *PREInstr = CurInst->clone();
2174      bool success = true;
2175      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2176        Value *Op = PREInstr->getOperand(i);
2177        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2178          continue;
2179
2180        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2181          PREInstr->setOperand(i, V);
2182        } else {
2183          success = false;
2184          break;
2185        }
2186      }
2187
2188      // Fail out if we encounter an operand that is not available in
2189      // the PRE predecessor.  This is typically because of loads which
2190      // are not value numbered precisely.
2191      if (!success) {
2192        delete PREInstr;
2193        DEBUG(verifyRemoved(PREInstr));
2194        continue;
2195      }
2196
2197      PREInstr->insertBefore(PREPred->getTerminator());
2198      PREInstr->setName(CurInst->getName() + ".pre");
2199      predMap[PREPred] = PREInstr;
2200      VN.add(PREInstr, ValNo);
2201      NumGVNPRE++;
2202
2203      // Update the availability map to include the new instruction.
2204      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2205
2206      // Create a PHI to make the value available in this block.
2207      PHINode* Phi = PHINode::Create(CurInst->getType(),
2208                                     CurInst->getName() + ".pre-phi",
2209                                     CurrentBlock->begin());
2210      for (pred_iterator PI = pred_begin(CurrentBlock),
2211           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2212        Phi->addIncoming(predMap[*PI], *PI);
2213
2214      VN.add(Phi, ValNo);
2215      localAvail[CurrentBlock]->table[ValNo] = Phi;
2216
2217      CurInst->replaceAllUsesWith(Phi);
2218      if (MD && Phi->getType()->isPointerTy())
2219        MD->invalidateCachedPointerInfo(Phi);
2220      VN.erase(CurInst);
2221
2222      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2223      if (MD) MD->removeInstruction(CurInst);
2224      CurInst->eraseFromParent();
2225      DEBUG(verifyRemoved(CurInst));
2226      Changed = true;
2227    }
2228  }
2229
2230  if (splitCriticalEdges())
2231    Changed = true;
2232
2233  return Changed;
2234}
2235
2236/// splitCriticalEdges - Split critical edges found during the previous
2237/// iteration that may enable further optimization.
2238bool GVN::splitCriticalEdges() {
2239  if (toSplit.empty())
2240    return false;
2241  do {
2242    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2243    SplitCriticalEdge(Edge.first, Edge.second, this);
2244  } while (!toSplit.empty());
2245  if (MD) MD->invalidateCachedPredecessors();
2246  return true;
2247}
2248
2249/// iterateOnFunction - Executes one iteration of GVN
2250bool GVN::iterateOnFunction(Function &F) {
2251  cleanupGlobalSets();
2252
2253  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2254       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2255    if (DI->getIDom())
2256      localAvail[DI->getBlock()] =
2257                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2258    else
2259      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2260  }
2261
2262  // Top-down walk of the dominator tree
2263  bool Changed = false;
2264#if 0
2265  // Needed for value numbering with phi construction to work.
2266  ReversePostOrderTraversal<Function*> RPOT(&F);
2267  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2268       RE = RPOT.end(); RI != RE; ++RI)
2269    Changed |= processBlock(*RI);
2270#else
2271  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2272       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2273    Changed |= processBlock(DI->getBlock());
2274#endif
2275
2276  return Changed;
2277}
2278
2279void GVN::cleanupGlobalSets() {
2280  VN.clear();
2281
2282  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2283       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2284    delete I->second;
2285  localAvail.clear();
2286}
2287
2288/// verifyRemoved - Verify that the specified instruction does not occur in our
2289/// internal data structures.
2290void GVN::verifyRemoved(const Instruction *Inst) const {
2291  VN.verifyRemoved(Inst);
2292
2293  // Walk through the value number scope to make sure the instruction isn't
2294  // ferreted away in it.
2295  for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
2296         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2297    const ValueNumberScope *VNS = I->second;
2298
2299    while (VNS) {
2300      for (DenseMap<uint32_t, Value*>::const_iterator
2301             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2302        assert(II->second != Inst && "Inst still in value numbering scope!");
2303      }
2304
2305      VNS = VNS->parent;
2306    }
2307  }
2308}
2309