GVN.cpp revision fcf8d7c73d7517e26f9f9d1a9af22ad4314e4984
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Value.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/PostOrderIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/InstructionSimplify.h"
39#include "llvm/Analysis/Loads.h"
40#include "llvm/Analysis/MemoryBuiltins.h"
41#include "llvm/Analysis/MemoryDependenceAnalysis.h"
42#include "llvm/Analysis/PHITransAddr.h"
43#include "llvm/Support/Allocator.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Support/IRBuilder.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Target/TargetData.h"
52#include "llvm/Transforms/Utils/BasicBlockUtils.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Transforms/Utils/SSAUpdater.h"
55#include <list>
56using namespace llvm;
57
58STATISTIC(NumGVNInstr,  "Number of instructions deleted");
59STATISTIC(NumGVNLoad,   "Number of loads deleted");
60STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
61STATISTIC(NumGVNBlocks, "Number of blocks merged");
62STATISTIC(NumPRELoad,   "Number of loads PRE'd");
63
64static cl::opt<bool> EnablePRE("enable-pre",
65                               cl::init(true), cl::Hidden);
66static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
67
68//===----------------------------------------------------------------------===//
69//                         ValueTable Class
70//===----------------------------------------------------------------------===//
71
72/// This class holds the mapping between values and value numbers.  It is used
73/// as an efficient mechanism to determine the expression-wise equivalence of
74/// two values.
75namespace {
76  struct Expression {
77    enum ExpressionOpcode {
78      ADD = Instruction::Add,
79      FADD = Instruction::FAdd,
80      SUB = Instruction::Sub,
81      FSUB = Instruction::FSub,
82      MUL = Instruction::Mul,
83      FMUL = Instruction::FMul,
84      UDIV = Instruction::UDiv,
85      SDIV = Instruction::SDiv,
86      FDIV = Instruction::FDiv,
87      UREM = Instruction::URem,
88      SREM = Instruction::SRem,
89      FREM = Instruction::FRem,
90      SHL = Instruction::Shl,
91      LSHR = Instruction::LShr,
92      ASHR = Instruction::AShr,
93      AND = Instruction::And,
94      OR = Instruction::Or,
95      XOR = Instruction::Xor,
96      TRUNC = Instruction::Trunc,
97      ZEXT = Instruction::ZExt,
98      SEXT = Instruction::SExt,
99      FPTOUI = Instruction::FPToUI,
100      FPTOSI = Instruction::FPToSI,
101      UITOFP = Instruction::UIToFP,
102      SITOFP = Instruction::SIToFP,
103      FPTRUNC = Instruction::FPTrunc,
104      FPEXT = Instruction::FPExt,
105      PTRTOINT = Instruction::PtrToInt,
106      INTTOPTR = Instruction::IntToPtr,
107      BITCAST = Instruction::BitCast,
108      ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
109      ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
110      FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
111      FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
112      FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
113      SHUFFLE, SELECT, GEP, CALL, CONSTANT,
114      INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
115
116    ExpressionOpcode opcode;
117    const Type* type;
118    SmallVector<uint32_t, 4> varargs;
119    Value *function;
120
121    Expression() { }
122    Expression(ExpressionOpcode o) : opcode(o) { }
123
124    bool operator==(const Expression &other) const {
125      if (opcode != other.opcode)
126        return false;
127      else if (opcode == EMPTY || opcode == TOMBSTONE)
128        return true;
129      else if (type != other.type)
130        return false;
131      else if (function != other.function)
132        return false;
133      else {
134        if (varargs.size() != other.varargs.size())
135          return false;
136
137        for (size_t i = 0; i < varargs.size(); ++i)
138          if (varargs[i] != other.varargs[i])
139            return false;
140
141        return true;
142      }
143    }
144
145    /*bool operator!=(const Expression &other) const {
146      return !(*this == other);
147    }*/
148  };
149
150  class ValueTable {
151    private:
152      DenseMap<Value*, uint32_t> valueNumbering;
153      DenseMap<Expression, uint32_t> expressionNumbering;
154      AliasAnalysis* AA;
155      MemoryDependenceAnalysis* MD;
156      DominatorTree* DT;
157
158      uint32_t nextValueNumber;
159
160      Expression::ExpressionOpcode getOpcode(CmpInst* C);
161      Expression create_expression(BinaryOperator* BO);
162      Expression create_expression(CmpInst* C);
163      Expression create_expression(ShuffleVectorInst* V);
164      Expression create_expression(ExtractElementInst* C);
165      Expression create_expression(InsertElementInst* V);
166      Expression create_expression(SelectInst* V);
167      Expression create_expression(CastInst* C);
168      Expression create_expression(GetElementPtrInst* G);
169      Expression create_expression(CallInst* C);
170      Expression create_expression(ExtractValueInst* C);
171      Expression create_expression(InsertValueInst* C);
172
173      uint32_t lookup_or_add_call(CallInst* C);
174    public:
175      ValueTable() : nextValueNumber(1) { }
176      uint32_t lookup_or_add(Value *V);
177      uint32_t lookup(Value *V) const;
178      void add(Value *V, uint32_t num);
179      void clear();
180      void erase(Value *v);
181      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
182      AliasAnalysis *getAliasAnalysis() const { return AA; }
183      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
184      void setDomTree(DominatorTree* D) { DT = D; }
185      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
186      void verifyRemoved(const Value *) const;
187  };
188}
189
190namespace llvm {
191template <> struct DenseMapInfo<Expression> {
192  static inline Expression getEmptyKey() {
193    return Expression(Expression::EMPTY);
194  }
195
196  static inline Expression getTombstoneKey() {
197    return Expression(Expression::TOMBSTONE);
198  }
199
200  static unsigned getHashValue(const Expression e) {
201    unsigned hash = e.opcode;
202
203    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
204            (unsigned)((uintptr_t)e.type >> 9));
205
206    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
207         E = e.varargs.end(); I != E; ++I)
208      hash = *I + hash * 37;
209
210    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
211            (unsigned)((uintptr_t)e.function >> 9)) +
212           hash * 37;
213
214    return hash;
215  }
216  static bool isEqual(const Expression &LHS, const Expression &RHS) {
217    return LHS == RHS;
218  }
219};
220
221template <>
222struct isPodLike<Expression> { static const bool value = true; };
223
224}
225
226//===----------------------------------------------------------------------===//
227//                     ValueTable Internal Functions
228//===----------------------------------------------------------------------===//
229
230Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
231  if (isa<ICmpInst>(C)) {
232    switch (C->getPredicate()) {
233    default:  // THIS SHOULD NEVER HAPPEN
234      llvm_unreachable("Comparison with unknown predicate?");
235    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
236    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
237    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
238    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
239    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
240    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
241    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
242    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
243    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
244    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
245    }
246  } else {
247    switch (C->getPredicate()) {
248    default: // THIS SHOULD NEVER HAPPEN
249      llvm_unreachable("Comparison with unknown predicate?");
250    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
251    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
252    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
253    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
254    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
255    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
256    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
257    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
258    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
259    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
260    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
261    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
262    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
263    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
264    }
265  }
266}
267
268Expression ValueTable::create_expression(CallInst* C) {
269  Expression e;
270
271  e.type = C->getType();
272  e.function = C->getCalledFunction();
273  e.opcode = Expression::CALL;
274
275  CallSite CS(C);
276  for (CallInst::op_iterator I = CS.arg_begin(), E = CS.arg_end();
277       I != E; ++I)
278    e.varargs.push_back(lookup_or_add(*I));
279
280  return e;
281}
282
283Expression ValueTable::create_expression(BinaryOperator* BO) {
284  Expression e;
285  e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
286  e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
287  e.function = 0;
288  e.type = BO->getType();
289  e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
290
291  return e;
292}
293
294Expression ValueTable::create_expression(CmpInst* C) {
295  Expression e;
296
297  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
298  e.varargs.push_back(lookup_or_add(C->getOperand(1)));
299  e.function = 0;
300  e.type = C->getType();
301  e.opcode = getOpcode(C);
302
303  return e;
304}
305
306Expression ValueTable::create_expression(CastInst* C) {
307  Expression e;
308
309  e.varargs.push_back(lookup_or_add(C->getOperand(0)));
310  e.function = 0;
311  e.type = C->getType();
312  e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
313
314  return e;
315}
316
317Expression ValueTable::create_expression(ShuffleVectorInst* S) {
318  Expression e;
319
320  e.varargs.push_back(lookup_or_add(S->getOperand(0)));
321  e.varargs.push_back(lookup_or_add(S->getOperand(1)));
322  e.varargs.push_back(lookup_or_add(S->getOperand(2)));
323  e.function = 0;
324  e.type = S->getType();
325  e.opcode = Expression::SHUFFLE;
326
327  return e;
328}
329
330Expression ValueTable::create_expression(ExtractElementInst* E) {
331  Expression e;
332
333  e.varargs.push_back(lookup_or_add(E->getOperand(0)));
334  e.varargs.push_back(lookup_or_add(E->getOperand(1)));
335  e.function = 0;
336  e.type = E->getType();
337  e.opcode = Expression::EXTRACT;
338
339  return e;
340}
341
342Expression ValueTable::create_expression(InsertElementInst* I) {
343  Expression e;
344
345  e.varargs.push_back(lookup_or_add(I->getOperand(0)));
346  e.varargs.push_back(lookup_or_add(I->getOperand(1)));
347  e.varargs.push_back(lookup_or_add(I->getOperand(2)));
348  e.function = 0;
349  e.type = I->getType();
350  e.opcode = Expression::INSERT;
351
352  return e;
353}
354
355Expression ValueTable::create_expression(SelectInst* I) {
356  Expression e;
357
358  e.varargs.push_back(lookup_or_add(I->getCondition()));
359  e.varargs.push_back(lookup_or_add(I->getTrueValue()));
360  e.varargs.push_back(lookup_or_add(I->getFalseValue()));
361  e.function = 0;
362  e.type = I->getType();
363  e.opcode = Expression::SELECT;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(GetElementPtrInst* G) {
369  Expression e;
370
371  e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
372  e.function = 0;
373  e.type = G->getType();
374  e.opcode = Expression::GEP;
375
376  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
377       I != E; ++I)
378    e.varargs.push_back(lookup_or_add(*I));
379
380  return e;
381}
382
383Expression ValueTable::create_expression(ExtractValueInst* E) {
384  Expression e;
385
386  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
387  for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
388       II != IE; ++II)
389    e.varargs.push_back(*II);
390  e.function = 0;
391  e.type = E->getType();
392  e.opcode = Expression::EXTRACTVALUE;
393
394  return e;
395}
396
397Expression ValueTable::create_expression(InsertValueInst* E) {
398  Expression e;
399
400  e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
401  e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
402  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
403       II != IE; ++II)
404    e.varargs.push_back(*II);
405  e.function = 0;
406  e.type = E->getType();
407  e.opcode = Expression::INSERTVALUE;
408
409  return e;
410}
411
412//===----------------------------------------------------------------------===//
413//                     ValueTable External Functions
414//===----------------------------------------------------------------------===//
415
416/// add - Insert a value into the table with a specified value number.
417void ValueTable::add(Value *V, uint32_t num) {
418  valueNumbering.insert(std::make_pair(V, num));
419}
420
421uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
422  if (AA->doesNotAccessMemory(C)) {
423    Expression exp = create_expression(C);
424    uint32_t& e = expressionNumbering[exp];
425    if (!e) e = nextValueNumber++;
426    valueNumbering[C] = e;
427    return e;
428  } else if (AA->onlyReadsMemory(C)) {
429    Expression exp = create_expression(C);
430    uint32_t& e = expressionNumbering[exp];
431    if (!e) {
432      e = nextValueNumber++;
433      valueNumbering[C] = e;
434      return e;
435    }
436    if (!MD) {
437      e = nextValueNumber++;
438      valueNumbering[C] = e;
439      return e;
440    }
441
442    MemDepResult local_dep = MD->getDependency(C);
443
444    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
445      valueNumbering[C] =  nextValueNumber;
446      return nextValueNumber++;
447    }
448
449    if (local_dep.isDef()) {
450      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
451
452      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
453        valueNumbering[C] = nextValueNumber;
454        return nextValueNumber++;
455      }
456
457      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
458        uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
459        uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
460        if (c_vn != cd_vn) {
461          valueNumbering[C] = nextValueNumber;
462          return nextValueNumber++;
463        }
464      }
465
466      uint32_t v = lookup_or_add(local_cdep);
467      valueNumbering[C] = v;
468      return v;
469    }
470
471    // Non-local case.
472    const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
473      MD->getNonLocalCallDependency(CallSite(C));
474    // FIXME: call/call dependencies for readonly calls should return def, not
475    // clobber!  Move the checking logic to MemDep!
476    CallInst* cdep = 0;
477
478    // Check to see if we have a single dominating call instruction that is
479    // identical to C.
480    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
481      const NonLocalDepEntry *I = &deps[i];
482      // Ignore non-local dependencies.
483      if (I->getResult().isNonLocal())
484        continue;
485
486      // We don't handle non-depedencies.  If we already have a call, reject
487      // instruction dependencies.
488      if (I->getResult().isClobber() || cdep != 0) {
489        cdep = 0;
490        break;
491      }
492
493      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
494      // FIXME: All duplicated with non-local case.
495      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
496        cdep = NonLocalDepCall;
497        continue;
498      }
499
500      cdep = 0;
501      break;
502    }
503
504    if (!cdep) {
505      valueNumbering[C] = nextValueNumber;
506      return nextValueNumber++;
507    }
508
509    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
510      valueNumbering[C] = nextValueNumber;
511      return nextValueNumber++;
512    }
513    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
514      uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
515      uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
516      if (c_vn != cd_vn) {
517        valueNumbering[C] = nextValueNumber;
518        return nextValueNumber++;
519      }
520    }
521
522    uint32_t v = lookup_or_add(cdep);
523    valueNumbering[C] = v;
524    return v;
525
526  } else {
527    valueNumbering[C] = nextValueNumber;
528    return nextValueNumber++;
529  }
530}
531
532/// lookup_or_add - Returns the value number for the specified value, assigning
533/// it a new number if it did not have one before.
534uint32_t ValueTable::lookup_or_add(Value *V) {
535  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
536  if (VI != valueNumbering.end())
537    return VI->second;
538
539  if (!isa<Instruction>(V)) {
540    valueNumbering[V] = nextValueNumber;
541    return nextValueNumber++;
542  }
543
544  Instruction* I = cast<Instruction>(V);
545  Expression exp;
546  switch (I->getOpcode()) {
547    case Instruction::Call:
548      return lookup_or_add_call(cast<CallInst>(I));
549    case Instruction::Add:
550    case Instruction::FAdd:
551    case Instruction::Sub:
552    case Instruction::FSub:
553    case Instruction::Mul:
554    case Instruction::FMul:
555    case Instruction::UDiv:
556    case Instruction::SDiv:
557    case Instruction::FDiv:
558    case Instruction::URem:
559    case Instruction::SRem:
560    case Instruction::FRem:
561    case Instruction::Shl:
562    case Instruction::LShr:
563    case Instruction::AShr:
564    case Instruction::And:
565    case Instruction::Or :
566    case Instruction::Xor:
567      exp = create_expression(cast<BinaryOperator>(I));
568      break;
569    case Instruction::ICmp:
570    case Instruction::FCmp:
571      exp = create_expression(cast<CmpInst>(I));
572      break;
573    case Instruction::Trunc:
574    case Instruction::ZExt:
575    case Instruction::SExt:
576    case Instruction::FPToUI:
577    case Instruction::FPToSI:
578    case Instruction::UIToFP:
579    case Instruction::SIToFP:
580    case Instruction::FPTrunc:
581    case Instruction::FPExt:
582    case Instruction::PtrToInt:
583    case Instruction::IntToPtr:
584    case Instruction::BitCast:
585      exp = create_expression(cast<CastInst>(I));
586      break;
587    case Instruction::Select:
588      exp = create_expression(cast<SelectInst>(I));
589      break;
590    case Instruction::ExtractElement:
591      exp = create_expression(cast<ExtractElementInst>(I));
592      break;
593    case Instruction::InsertElement:
594      exp = create_expression(cast<InsertElementInst>(I));
595      break;
596    case Instruction::ShuffleVector:
597      exp = create_expression(cast<ShuffleVectorInst>(I));
598      break;
599    case Instruction::ExtractValue:
600      exp = create_expression(cast<ExtractValueInst>(I));
601      break;
602    case Instruction::InsertValue:
603      exp = create_expression(cast<InsertValueInst>(I));
604      break;
605    case Instruction::GetElementPtr:
606      exp = create_expression(cast<GetElementPtrInst>(I));
607      break;
608    default:
609      valueNumbering[V] = nextValueNumber;
610      return nextValueNumber++;
611  }
612
613  uint32_t& e = expressionNumbering[exp];
614  if (!e) e = nextValueNumber++;
615  valueNumbering[V] = e;
616  return e;
617}
618
619/// lookup - Returns the value number of the specified value. Fails if
620/// the value has not yet been numbered.
621uint32_t ValueTable::lookup(Value *V) const {
622  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
623  assert(VI != valueNumbering.end() && "Value not numbered?");
624  return VI->second;
625}
626
627/// clear - Remove all entries from the ValueTable
628void ValueTable::clear() {
629  valueNumbering.clear();
630  expressionNumbering.clear();
631  nextValueNumber = 1;
632}
633
634/// erase - Remove a value from the value numbering
635void ValueTable::erase(Value *V) {
636  valueNumbering.erase(V);
637}
638
639/// verifyRemoved - Verify that the value is removed from all internal data
640/// structures.
641void ValueTable::verifyRemoved(const Value *V) const {
642  for (DenseMap<Value*, uint32_t>::const_iterator
643         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
644    assert(I->first != V && "Inst still occurs in value numbering map!");
645  }
646}
647
648//===----------------------------------------------------------------------===//
649//                                GVN Pass
650//===----------------------------------------------------------------------===//
651
652namespace {
653  struct ValueNumberScope {
654    ValueNumberScope* parent;
655    DenseMap<uint32_t, Value*> table;
656
657    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
658  };
659}
660
661namespace {
662
663  class GVN : public FunctionPass {
664    bool runOnFunction(Function &F);
665  public:
666    static char ID; // Pass identification, replacement for typeid
667    explicit GVN(bool noloads = false)
668        : FunctionPass(ID), NoLoads(noloads), MD(0) {
669      initializeGVNPass(*PassRegistry::getPassRegistry());
670    }
671
672  private:
673    bool NoLoads;
674    MemoryDependenceAnalysis *MD;
675    DominatorTree *DT;
676    const TargetData* TD;
677
678    ValueTable VN;
679
680    /// NumberTable - A mapping from value numers to lists of Value*'s that
681    /// have that value number.  Use lookupNumber to query it.
682    DenseMap<uint32_t, std::pair<Value*, void*> > NumberTable;
683    BumpPtrAllocator TableAllocator;
684
685    /// insert_table - Push a new Value to the NumberTable onto the list for
686    /// its value number.
687    void insert_table(uint32_t N, Value *V) {
688      std::pair<Value*, void*>& Curr = NumberTable[N];
689      if (!Curr.first) {
690        Curr.first = V;
691        return;
692      }
693
694      std::pair<Value*, void*>* Node =
695        TableAllocator.Allocate<std::pair<Value*, void*> >();
696      Node->first = V;
697      Node->second = Curr.second;
698      Curr.second = Node;
699    }
700
701    /// erase_table - Scan the list of values corresponding to a given value
702    /// number, and remove the given value if encountered.
703    void erase_table(uint32_t N, Value *V) {
704      std::pair<Value*, void*>* Prev = 0;
705      std::pair<Value*, void*>* Curr = &NumberTable[N];
706
707      while (Curr->first != V) {
708        Prev = Curr;
709        Curr = static_cast<std::pair<Value*, void*>*>(Curr->second);
710      }
711
712      if (Prev) {
713        Prev->second = Curr->second;
714      } else {
715        if (!Curr->second) {
716          Curr->first = 0;
717        } else {
718          std::pair<Value*, void*>* Next =
719            static_cast<std::pair<Value*, void*>*>(Curr->second);
720          Curr->first = Next->first;
721          Curr->second = Next->second;
722        }
723      }
724    }
725
726    // List of critical edges to be split between iterations.
727    SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
728
729    // This transformation requires dominator postdominator info
730    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
731      AU.addRequired<DominatorTree>();
732      if (!NoLoads)
733        AU.addRequired<MemoryDependenceAnalysis>();
734      AU.addRequired<AliasAnalysis>();
735
736      AU.addPreserved<DominatorTree>();
737      AU.addPreserved<AliasAnalysis>();
738    }
739
740    // Helper fuctions
741    // FIXME: eliminate or document these better
742    bool processLoad(LoadInst* L,
743                     SmallVectorImpl<Instruction*> &toErase);
744    bool processInstruction(Instruction *I,
745                            SmallVectorImpl<Instruction*> &toErase);
746    bool processNonLocalLoad(LoadInst* L,
747                             SmallVectorImpl<Instruction*> &toErase);
748    bool processBlock(BasicBlock *BB);
749    void dump(DenseMap<uint32_t, Value*>& d);
750    bool iterateOnFunction(Function &F);
751    bool performPRE(Function& F);
752    Value *lookupNumber(BasicBlock *BB, uint32_t num);
753    void cleanupGlobalSets();
754    void verifyRemoved(const Instruction *I) const;
755    bool splitCriticalEdges();
756  };
757
758  char GVN::ID = 0;
759}
760
761// createGVNPass - The public interface to this file...
762FunctionPass *llvm::createGVNPass(bool NoLoads) {
763  return new GVN(NoLoads);
764}
765
766INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
767INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
768INITIALIZE_PASS_DEPENDENCY(DominatorTree)
769INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
770INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
771
772void GVN::dump(DenseMap<uint32_t, Value*>& d) {
773  errs() << "{\n";
774  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
775       E = d.end(); I != E; ++I) {
776      errs() << I->first << "\n";
777      I->second->dump();
778  }
779  errs() << "}\n";
780}
781
782/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
783/// we're analyzing is fully available in the specified block.  As we go, keep
784/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
785/// map is actually a tri-state map with the following values:
786///   0) we know the block *is not* fully available.
787///   1) we know the block *is* fully available.
788///   2) we do not know whether the block is fully available or not, but we are
789///      currently speculating that it will be.
790///   3) we are speculating for this block and have used that to speculate for
791///      other blocks.
792static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
793                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
794  // Optimistically assume that the block is fully available and check to see
795  // if we already know about this block in one lookup.
796  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
797    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
798
799  // If the entry already existed for this block, return the precomputed value.
800  if (!IV.second) {
801    // If this is a speculative "available" value, mark it as being used for
802    // speculation of other blocks.
803    if (IV.first->second == 2)
804      IV.first->second = 3;
805    return IV.first->second != 0;
806  }
807
808  // Otherwise, see if it is fully available in all predecessors.
809  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
810
811  // If this block has no predecessors, it isn't live-in here.
812  if (PI == PE)
813    goto SpeculationFailure;
814
815  for (; PI != PE; ++PI)
816    // If the value isn't fully available in one of our predecessors, then it
817    // isn't fully available in this block either.  Undo our previous
818    // optimistic assumption and bail out.
819    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
820      goto SpeculationFailure;
821
822  return true;
823
824// SpeculationFailure - If we get here, we found out that this is not, after
825// all, a fully-available block.  We have a problem if we speculated on this and
826// used the speculation to mark other blocks as available.
827SpeculationFailure:
828  char &BBVal = FullyAvailableBlocks[BB];
829
830  // If we didn't speculate on this, just return with it set to false.
831  if (BBVal == 2) {
832    BBVal = 0;
833    return false;
834  }
835
836  // If we did speculate on this value, we could have blocks set to 1 that are
837  // incorrect.  Walk the (transitive) successors of this block and mark them as
838  // 0 if set to one.
839  SmallVector<BasicBlock*, 32> BBWorklist;
840  BBWorklist.push_back(BB);
841
842  do {
843    BasicBlock *Entry = BBWorklist.pop_back_val();
844    // Note that this sets blocks to 0 (unavailable) if they happen to not
845    // already be in FullyAvailableBlocks.  This is safe.
846    char &EntryVal = FullyAvailableBlocks[Entry];
847    if (EntryVal == 0) continue;  // Already unavailable.
848
849    // Mark as unavailable.
850    EntryVal = 0;
851
852    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
853      BBWorklist.push_back(*I);
854  } while (!BBWorklist.empty());
855
856  return false;
857}
858
859
860/// CanCoerceMustAliasedValueToLoad - Return true if
861/// CoerceAvailableValueToLoadType will succeed.
862static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
863                                            const Type *LoadTy,
864                                            const TargetData &TD) {
865  // If the loaded or stored value is an first class array or struct, don't try
866  // to transform them.  We need to be able to bitcast to integer.
867  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
868      StoredVal->getType()->isStructTy() ||
869      StoredVal->getType()->isArrayTy())
870    return false;
871
872  // The store has to be at least as big as the load.
873  if (TD.getTypeSizeInBits(StoredVal->getType()) <
874        TD.getTypeSizeInBits(LoadTy))
875    return false;
876
877  return true;
878}
879
880
881/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
882/// then a load from a must-aliased pointer of a different type, try to coerce
883/// the stored value.  LoadedTy is the type of the load we want to replace and
884/// InsertPt is the place to insert new instructions.
885///
886/// If we can't do it, return null.
887static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
888                                             const Type *LoadedTy,
889                                             Instruction *InsertPt,
890                                             const TargetData &TD) {
891  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
892    return 0;
893
894  const Type *StoredValTy = StoredVal->getType();
895
896  uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
897  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
898
899  // If the store and reload are the same size, we can always reuse it.
900  if (StoreSize == LoadSize) {
901    if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) {
902      // Pointer to Pointer -> use bitcast.
903      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
904    }
905
906    // Convert source pointers to integers, which can be bitcast.
907    if (StoredValTy->isPointerTy()) {
908      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
909      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
910    }
911
912    const Type *TypeToCastTo = LoadedTy;
913    if (TypeToCastTo->isPointerTy())
914      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
915
916    if (StoredValTy != TypeToCastTo)
917      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
918
919    // Cast to pointer if the load needs a pointer type.
920    if (LoadedTy->isPointerTy())
921      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
922
923    return StoredVal;
924  }
925
926  // If the loaded value is smaller than the available value, then we can
927  // extract out a piece from it.  If the available value is too small, then we
928  // can't do anything.
929  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
930
931  // Convert source pointers to integers, which can be manipulated.
932  if (StoredValTy->isPointerTy()) {
933    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
934    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
935  }
936
937  // Convert vectors and fp to integer, which can be manipulated.
938  if (!StoredValTy->isIntegerTy()) {
939    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
940    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
941  }
942
943  // If this is a big-endian system, we need to shift the value down to the low
944  // bits so that a truncate will work.
945  if (TD.isBigEndian()) {
946    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
947    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
948  }
949
950  // Truncate the integer to the right size now.
951  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
952  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
953
954  if (LoadedTy == NewIntTy)
955    return StoredVal;
956
957  // If the result is a pointer, inttoptr.
958  if (LoadedTy->isPointerTy())
959    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
960
961  // Otherwise, bitcast.
962  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
963}
964
965/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
966/// be expressed as a base pointer plus a constant offset.  Return the base and
967/// offset to the caller.
968static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
969                                        const TargetData &TD) {
970  Operator *PtrOp = dyn_cast<Operator>(Ptr);
971  if (PtrOp == 0) return Ptr;
972
973  // Just look through bitcasts.
974  if (PtrOp->getOpcode() == Instruction::BitCast)
975    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
976
977  // If this is a GEP with constant indices, we can look through it.
978  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
979  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
980
981  gep_type_iterator GTI = gep_type_begin(GEP);
982  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
983       ++I, ++GTI) {
984    ConstantInt *OpC = cast<ConstantInt>(*I);
985    if (OpC->isZero()) continue;
986
987    // Handle a struct and array indices which add their offset to the pointer.
988    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
989      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
990    } else {
991      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
992      Offset += OpC->getSExtValue()*Size;
993    }
994  }
995
996  // Re-sign extend from the pointer size if needed to get overflow edge cases
997  // right.
998  unsigned PtrSize = TD.getPointerSizeInBits();
999  if (PtrSize < 64)
1000    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1001
1002  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1003}
1004
1005
1006/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
1007/// memdep query of a load that ends up being a clobbering memory write (store,
1008/// memset, memcpy, memmove).  This means that the write *may* provide bits used
1009/// by the load but we can't be sure because the pointers don't mustalias.
1010///
1011/// Check this case to see if there is anything more we can do before we give
1012/// up.  This returns -1 if we have to give up, or a byte number in the stored
1013/// value of the piece that feeds the load.
1014static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
1015                                          Value *WritePtr,
1016                                          uint64_t WriteSizeInBits,
1017                                          const TargetData &TD) {
1018  // If the loaded or stored value is an first class array or struct, don't try
1019  // to transform them.  We need to be able to bitcast to integer.
1020  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
1021    return -1;
1022
1023  int64_t StoreOffset = 0, LoadOffset = 0;
1024  Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
1025  Value *LoadBase =
1026    GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
1027  if (StoreBase != LoadBase)
1028    return -1;
1029
1030  // If the load and store are to the exact same address, they should have been
1031  // a must alias.  AA must have gotten confused.
1032  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
1033  // to a load from the base of the memset.
1034#if 0
1035  if (LoadOffset == StoreOffset) {
1036    dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1037    << "Base       = " << *StoreBase << "\n"
1038    << "Store Ptr  = " << *WritePtr << "\n"
1039    << "Store Offs = " << StoreOffset << "\n"
1040    << "Load Ptr   = " << *LoadPtr << "\n";
1041    abort();
1042  }
1043#endif
1044
1045  // If the load and store don't overlap at all, the store doesn't provide
1046  // anything to the load.  In this case, they really don't alias at all, AA
1047  // must have gotten confused.
1048  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
1049
1050  if ((WriteSizeInBits & 7) | (LoadSize & 7))
1051    return -1;
1052  uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
1053  LoadSize >>= 3;
1054
1055
1056  bool isAAFailure = false;
1057  if (StoreOffset < LoadOffset)
1058    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1059  else
1060    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1061
1062  if (isAAFailure) {
1063#if 0
1064    dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1065    << "Base       = " << *StoreBase << "\n"
1066    << "Store Ptr  = " << *WritePtr << "\n"
1067    << "Store Offs = " << StoreOffset << "\n"
1068    << "Load Ptr   = " << *LoadPtr << "\n";
1069    abort();
1070#endif
1071    return -1;
1072  }
1073
1074  // If the Load isn't completely contained within the stored bits, we don't
1075  // have all the bits to feed it.  We could do something crazy in the future
1076  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1077  // valuable.
1078  if (StoreOffset > LoadOffset ||
1079      StoreOffset+StoreSize < LoadOffset+LoadSize)
1080    return -1;
1081
1082  // Okay, we can do this transformation.  Return the number of bytes into the
1083  // store that the load is.
1084  return LoadOffset-StoreOffset;
1085}
1086
1087/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1088/// memdep query of a load that ends up being a clobbering store.
1089static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
1090                                          StoreInst *DepSI,
1091                                          const TargetData &TD) {
1092  // Cannot handle reading from store of first-class aggregate yet.
1093  if (DepSI->getValueOperand()->getType()->isStructTy() ||
1094      DepSI->getValueOperand()->getType()->isArrayTy())
1095    return -1;
1096
1097  Value *StorePtr = DepSI->getPointerOperand();
1098  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1099  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1100                                        StorePtr, StoreSize, TD);
1101}
1102
1103static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
1104                                            MemIntrinsic *MI,
1105                                            const TargetData &TD) {
1106  // If the mem operation is a non-constant size, we can't handle it.
1107  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1108  if (SizeCst == 0) return -1;
1109  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1110
1111  // If this is memset, we just need to see if the offset is valid in the size
1112  // of the memset..
1113  if (MI->getIntrinsicID() == Intrinsic::memset)
1114    return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1115                                          MemSizeInBits, TD);
1116
1117  // If we have a memcpy/memmove, the only case we can handle is if this is a
1118  // copy from constant memory.  In that case, we can read directly from the
1119  // constant memory.
1120  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1121
1122  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1123  if (Src == 0) return -1;
1124
1125  GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
1126  if (GV == 0 || !GV->isConstant()) return -1;
1127
1128  // See if the access is within the bounds of the transfer.
1129  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1130                                              MI->getDest(), MemSizeInBits, TD);
1131  if (Offset == -1)
1132    return Offset;
1133
1134  // Otherwise, see if we can constant fold a load from the constant with the
1135  // offset applied as appropriate.
1136  Src = ConstantExpr::getBitCast(Src,
1137                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1138  Constant *OffsetCst =
1139    ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1140  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1141  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1142  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1143    return Offset;
1144  return -1;
1145}
1146
1147
1148/// GetStoreValueForLoad - This function is called when we have a
1149/// memdep query of a load that ends up being a clobbering store.  This means
1150/// that the store *may* provide bits used by the load but we can't be sure
1151/// because the pointers don't mustalias.  Check this case to see if there is
1152/// anything more we can do before we give up.
1153static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1154                                   const Type *LoadTy,
1155                                   Instruction *InsertPt, const TargetData &TD){
1156  LLVMContext &Ctx = SrcVal->getType()->getContext();
1157
1158  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1159  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1160
1161  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1162
1163  // Compute which bits of the stored value are being used by the load.  Convert
1164  // to an integer type to start with.
1165  if (SrcVal->getType()->isPointerTy())
1166    SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
1167  if (!SrcVal->getType()->isIntegerTy())
1168    SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1169                                   "tmp");
1170
1171  // Shift the bits to the least significant depending on endianness.
1172  unsigned ShiftAmt;
1173  if (TD.isLittleEndian())
1174    ShiftAmt = Offset*8;
1175  else
1176    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1177
1178  if (ShiftAmt)
1179    SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
1180
1181  if (LoadSize != StoreSize)
1182    SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1183                                 "tmp");
1184
1185  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1186}
1187
1188/// GetMemInstValueForLoad - This function is called when we have a
1189/// memdep query of a load that ends up being a clobbering mem intrinsic.
1190static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1191                                     const Type *LoadTy, Instruction *InsertPt,
1192                                     const TargetData &TD){
1193  LLVMContext &Ctx = LoadTy->getContext();
1194  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1195
1196  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1197
1198  // We know that this method is only called when the mem transfer fully
1199  // provides the bits for the load.
1200  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1201    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1202    // independently of what the offset is.
1203    Value *Val = MSI->getValue();
1204    if (LoadSize != 1)
1205      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1206
1207    Value *OneElt = Val;
1208
1209    // Splat the value out to the right number of bits.
1210    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1211      // If we can double the number of bytes set, do it.
1212      if (NumBytesSet*2 <= LoadSize) {
1213        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1214        Val = Builder.CreateOr(Val, ShVal);
1215        NumBytesSet <<= 1;
1216        continue;
1217      }
1218
1219      // Otherwise insert one byte at a time.
1220      Value *ShVal = Builder.CreateShl(Val, 1*8);
1221      Val = Builder.CreateOr(OneElt, ShVal);
1222      ++NumBytesSet;
1223    }
1224
1225    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1226  }
1227
1228  // Otherwise, this is a memcpy/memmove from a constant global.
1229  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1230  Constant *Src = cast<Constant>(MTI->getSource());
1231
1232  // Otherwise, see if we can constant fold a load from the constant with the
1233  // offset applied as appropriate.
1234  Src = ConstantExpr::getBitCast(Src,
1235                                 llvm::Type::getInt8PtrTy(Src->getContext()));
1236  Constant *OffsetCst =
1237  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1238  Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1239  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1240  return ConstantFoldLoadFromConstPtr(Src, &TD);
1241}
1242
1243namespace {
1244
1245struct AvailableValueInBlock {
1246  /// BB - The basic block in question.
1247  BasicBlock *BB;
1248  enum ValType {
1249    SimpleVal,  // A simple offsetted value that is accessed.
1250    MemIntrin   // A memory intrinsic which is loaded from.
1251  };
1252
1253  /// V - The value that is live out of the block.
1254  PointerIntPair<Value *, 1, ValType> Val;
1255
1256  /// Offset - The byte offset in Val that is interesting for the load query.
1257  unsigned Offset;
1258
1259  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1260                                   unsigned Offset = 0) {
1261    AvailableValueInBlock Res;
1262    Res.BB = BB;
1263    Res.Val.setPointer(V);
1264    Res.Val.setInt(SimpleVal);
1265    Res.Offset = Offset;
1266    return Res;
1267  }
1268
1269  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1270                                     unsigned Offset = 0) {
1271    AvailableValueInBlock Res;
1272    Res.BB = BB;
1273    Res.Val.setPointer(MI);
1274    Res.Val.setInt(MemIntrin);
1275    Res.Offset = Offset;
1276    return Res;
1277  }
1278
1279  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1280  Value *getSimpleValue() const {
1281    assert(isSimpleValue() && "Wrong accessor");
1282    return Val.getPointer();
1283  }
1284
1285  MemIntrinsic *getMemIntrinValue() const {
1286    assert(!isSimpleValue() && "Wrong accessor");
1287    return cast<MemIntrinsic>(Val.getPointer());
1288  }
1289
1290  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1291  /// defined here to the specified type.  This handles various coercion cases.
1292  Value *MaterializeAdjustedValue(const Type *LoadTy,
1293                                  const TargetData *TD) const {
1294    Value *Res;
1295    if (isSimpleValue()) {
1296      Res = getSimpleValue();
1297      if (Res->getType() != LoadTy) {
1298        assert(TD && "Need target data to handle type mismatch case");
1299        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1300                                   *TD);
1301
1302        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
1303                     << *getSimpleValue() << '\n'
1304                     << *Res << '\n' << "\n\n\n");
1305      }
1306    } else {
1307      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1308                                   LoadTy, BB->getTerminator(), *TD);
1309      DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1310                   << "  " << *getMemIntrinValue() << '\n'
1311                   << *Res << '\n' << "\n\n\n");
1312    }
1313    return Res;
1314  }
1315};
1316
1317}
1318
1319/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1320/// construct SSA form, allowing us to eliminate LI.  This returns the value
1321/// that should be used at LI's definition site.
1322static Value *ConstructSSAForLoadSet(LoadInst *LI,
1323                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1324                                     const TargetData *TD,
1325                                     const DominatorTree &DT,
1326                                     AliasAnalysis *AA) {
1327  // Check for the fully redundant, dominating load case.  In this case, we can
1328  // just use the dominating value directly.
1329  if (ValuesPerBlock.size() == 1 &&
1330      DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
1331    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
1332
1333  // Otherwise, we have to construct SSA form.
1334  SmallVector<PHINode*, 8> NewPHIs;
1335  SSAUpdater SSAUpdate(&NewPHIs);
1336  SSAUpdate.Initialize(LI->getType(), LI->getName());
1337
1338  const Type *LoadTy = LI->getType();
1339
1340  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1341    const AvailableValueInBlock &AV = ValuesPerBlock[i];
1342    BasicBlock *BB = AV.BB;
1343
1344    if (SSAUpdate.HasValueForBlock(BB))
1345      continue;
1346
1347    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
1348  }
1349
1350  // Perform PHI construction.
1351  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1352
1353  // If new PHI nodes were created, notify alias analysis.
1354  if (V->getType()->isPointerTy())
1355    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1356      AA->copyValue(LI, NewPHIs[i]);
1357
1358  return V;
1359}
1360
1361static bool isLifetimeStart(const Instruction *Inst) {
1362  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1363    return II->getIntrinsicID() == Intrinsic::lifetime_start;
1364  return false;
1365}
1366
1367/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1368/// non-local by performing PHI construction.
1369bool GVN::processNonLocalLoad(LoadInst *LI,
1370                              SmallVectorImpl<Instruction*> &toErase) {
1371  // Find the non-local dependencies of the load.
1372  SmallVector<NonLocalDepResult, 64> Deps;
1373  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1374  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1375  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1376  //             << Deps.size() << *LI << '\n');
1377
1378  // If we had to process more than one hundred blocks to find the
1379  // dependencies, this load isn't worth worrying about.  Optimizing
1380  // it will be too expensive.
1381  if (Deps.size() > 100)
1382    return false;
1383
1384  // If we had a phi translation failure, we'll have a single entry which is a
1385  // clobber in the current block.  Reject this early.
1386  if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
1387    DEBUG(
1388      dbgs() << "GVN: non-local load ";
1389      WriteAsOperand(dbgs(), LI);
1390      dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
1391    );
1392    return false;
1393  }
1394
1395  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1396  // where we have a value available in repl, also keep track of whether we see
1397  // dependencies that produce an unknown value for the load (such as a call
1398  // that could potentially clobber the load).
1399  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1400  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1401
1402  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1403    BasicBlock *DepBB = Deps[i].getBB();
1404    MemDepResult DepInfo = Deps[i].getResult();
1405
1406    if (DepInfo.isClobber()) {
1407      // The address being loaded in this non-local block may not be the same as
1408      // the pointer operand of the load if PHI translation occurs.  Make sure
1409      // to consider the right address.
1410      Value *Address = Deps[i].getAddress();
1411
1412      // If the dependence is to a store that writes to a superset of the bits
1413      // read by the load, we can extract the bits we need for the load from the
1414      // stored value.
1415      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1416        if (TD && Address) {
1417          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1418                                                      DepSI, *TD);
1419          if (Offset != -1) {
1420            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1421                                                       DepSI->getValueOperand(),
1422                                                                Offset));
1423            continue;
1424          }
1425        }
1426      }
1427
1428      // If the clobbering value is a memset/memcpy/memmove, see if we can
1429      // forward a value on from it.
1430      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1431        if (TD && Address) {
1432          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1433                                                        DepMI, *TD);
1434          if (Offset != -1) {
1435            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1436                                                                  Offset));
1437            continue;
1438          }
1439        }
1440      }
1441
1442      UnavailableBlocks.push_back(DepBB);
1443      continue;
1444    }
1445
1446    Instruction *DepInst = DepInfo.getInst();
1447
1448    // Loading the allocation -> undef.
1449    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1450        // Loading immediately after lifetime begin -> undef.
1451        isLifetimeStart(DepInst)) {
1452      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1453                                             UndefValue::get(LI->getType())));
1454      continue;
1455    }
1456
1457    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1458      // Reject loads and stores that are to the same address but are of
1459      // different types if we have to.
1460      if (S->getValueOperand()->getType() != LI->getType()) {
1461        // If the stored value is larger or equal to the loaded value, we can
1462        // reuse it.
1463        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1464                                                        LI->getType(), *TD)) {
1465          UnavailableBlocks.push_back(DepBB);
1466          continue;
1467        }
1468      }
1469
1470      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1471                                                         S->getValueOperand()));
1472      continue;
1473    }
1474
1475    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1476      // If the types mismatch and we can't handle it, reject reuse of the load.
1477      if (LD->getType() != LI->getType()) {
1478        // If the stored value is larger or equal to the loaded value, we can
1479        // reuse it.
1480        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1481          UnavailableBlocks.push_back(DepBB);
1482          continue;
1483        }
1484      }
1485      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1486      continue;
1487    }
1488
1489    UnavailableBlocks.push_back(DepBB);
1490    continue;
1491  }
1492
1493  // If we have no predecessors that produce a known value for this load, exit
1494  // early.
1495  if (ValuesPerBlock.empty()) return false;
1496
1497  // If all of the instructions we depend on produce a known value for this
1498  // load, then it is fully redundant and we can use PHI insertion to compute
1499  // its value.  Insert PHIs and remove the fully redundant value now.
1500  if (UnavailableBlocks.empty()) {
1501    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1502
1503    // Perform PHI construction.
1504    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1505                                      VN.getAliasAnalysis());
1506    LI->replaceAllUsesWith(V);
1507
1508    if (isa<PHINode>(V))
1509      V->takeName(LI);
1510    if (V->getType()->isPointerTy())
1511      MD->invalidateCachedPointerInfo(V);
1512    VN.erase(LI);
1513    toErase.push_back(LI);
1514    ++NumGVNLoad;
1515    return true;
1516  }
1517
1518  if (!EnablePRE || !EnableLoadPRE)
1519    return false;
1520
1521  // Okay, we have *some* definitions of the value.  This means that the value
1522  // is available in some of our (transitive) predecessors.  Lets think about
1523  // doing PRE of this load.  This will involve inserting a new load into the
1524  // predecessor when it's not available.  We could do this in general, but
1525  // prefer to not increase code size.  As such, we only do this when we know
1526  // that we only have to insert *one* load (which means we're basically moving
1527  // the load, not inserting a new one).
1528
1529  SmallPtrSet<BasicBlock *, 4> Blockers;
1530  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1531    Blockers.insert(UnavailableBlocks[i]);
1532
1533  // Lets find first basic block with more than one predecessor.  Walk backwards
1534  // through predecessors if needed.
1535  BasicBlock *LoadBB = LI->getParent();
1536  BasicBlock *TmpBB = LoadBB;
1537
1538  bool isSinglePred = false;
1539  bool allSingleSucc = true;
1540  while (TmpBB->getSinglePredecessor()) {
1541    isSinglePred = true;
1542    TmpBB = TmpBB->getSinglePredecessor();
1543    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1544      return false;
1545    if (Blockers.count(TmpBB))
1546      return false;
1547
1548    // If any of these blocks has more than one successor (i.e. if the edge we
1549    // just traversed was critical), then there are other paths through this
1550    // block along which the load may not be anticipated.  Hoisting the load
1551    // above this block would be adding the load to execution paths along
1552    // which it was not previously executed.
1553    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1554      return false;
1555  }
1556
1557  assert(TmpBB);
1558  LoadBB = TmpBB;
1559
1560  // FIXME: It is extremely unclear what this loop is doing, other than
1561  // artificially restricting loadpre.
1562  if (isSinglePred) {
1563    bool isHot = false;
1564    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1565      const AvailableValueInBlock &AV = ValuesPerBlock[i];
1566      if (AV.isSimpleValue())
1567        // "Hot" Instruction is in some loop (because it dominates its dep.
1568        // instruction).
1569        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1570          if (DT->dominates(LI, I)) {
1571            isHot = true;
1572            break;
1573          }
1574    }
1575
1576    // We are interested only in "hot" instructions. We don't want to do any
1577    // mis-optimizations here.
1578    if (!isHot)
1579      return false;
1580  }
1581
1582  // Check to see how many predecessors have the loaded value fully
1583  // available.
1584  DenseMap<BasicBlock*, Value*> PredLoads;
1585  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1586  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1587    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1588  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1589    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1590
1591  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1592  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1593       PI != E; ++PI) {
1594    BasicBlock *Pred = *PI;
1595    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1596      continue;
1597    }
1598    PredLoads[Pred] = 0;
1599
1600    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1601      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1602        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1603              << Pred->getName() << "': " << *LI << '\n');
1604        return false;
1605      }
1606      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1607      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1608    }
1609  }
1610  if (!NeedToSplit.empty()) {
1611    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1612    return false;
1613  }
1614
1615  // Decide whether PRE is profitable for this load.
1616  unsigned NumUnavailablePreds = PredLoads.size();
1617  assert(NumUnavailablePreds != 0 &&
1618         "Fully available value should be eliminated above!");
1619
1620  // If this load is unavailable in multiple predecessors, reject it.
1621  // FIXME: If we could restructure the CFG, we could make a common pred with
1622  // all the preds that don't have an available LI and insert a new load into
1623  // that one block.
1624  if (NumUnavailablePreds != 1)
1625      return false;
1626
1627  // Check if the load can safely be moved to all the unavailable predecessors.
1628  bool CanDoPRE = true;
1629  SmallVector<Instruction*, 8> NewInsts;
1630  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1631         E = PredLoads.end(); I != E; ++I) {
1632    BasicBlock *UnavailablePred = I->first;
1633
1634    // Do PHI translation to get its value in the predecessor if necessary.  The
1635    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1636
1637    // If all preds have a single successor, then we know it is safe to insert
1638    // the load on the pred (?!?), so we can insert code to materialize the
1639    // pointer if it is not available.
1640    PHITransAddr Address(LI->getPointerOperand(), TD);
1641    Value *LoadPtr = 0;
1642    if (allSingleSucc) {
1643      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1644                                                  *DT, NewInsts);
1645    } else {
1646      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1647      LoadPtr = Address.getAddr();
1648    }
1649
1650    // If we couldn't find or insert a computation of this phi translated value,
1651    // we fail PRE.
1652    if (LoadPtr == 0) {
1653      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1654            << *LI->getPointerOperand() << "\n");
1655      CanDoPRE = false;
1656      break;
1657    }
1658
1659    // Make sure it is valid to move this load here.  We have to watch out for:
1660    //  @1 = getelementptr (i8* p, ...
1661    //  test p and branch if == 0
1662    //  load @1
1663    // It is valid to have the getelementptr before the test, even if p can be 0,
1664    // as getelementptr only does address arithmetic.
1665    // If we are not pushing the value through any multiple-successor blocks
1666    // we do not have this case.  Otherwise, check that the load is safe to
1667    // put anywhere; this can be improved, but should be conservatively safe.
1668    if (!allSingleSucc &&
1669        // FIXME: REEVALUTE THIS.
1670        !isSafeToLoadUnconditionally(LoadPtr,
1671                                     UnavailablePred->getTerminator(),
1672                                     LI->getAlignment(), TD)) {
1673      CanDoPRE = false;
1674      break;
1675    }
1676
1677    I->second = LoadPtr;
1678  }
1679
1680  if (!CanDoPRE) {
1681    while (!NewInsts.empty())
1682      NewInsts.pop_back_val()->eraseFromParent();
1683    return false;
1684  }
1685
1686  // Okay, we can eliminate this load by inserting a reload in the predecessor
1687  // and using PHI construction to get the value in the other predecessors, do
1688  // it.
1689  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1690  DEBUG(if (!NewInsts.empty())
1691          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1692                 << *NewInsts.back() << '\n');
1693
1694  // Assign value numbers to the new instructions.
1695  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1696    // FIXME: We really _ought_ to insert these value numbers into their
1697    // parent's availability map.  However, in doing so, we risk getting into
1698    // ordering issues.  If a block hasn't been processed yet, we would be
1699    // marking a value as AVAIL-IN, which isn't what we intend.
1700    VN.lookup_or_add(NewInsts[i]);
1701  }
1702
1703  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1704         E = PredLoads.end(); I != E; ++I) {
1705    BasicBlock *UnavailablePred = I->first;
1706    Value *LoadPtr = I->second;
1707
1708    Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1709                                  LI->getAlignment(),
1710                                  UnavailablePred->getTerminator());
1711
1712    // Add the newly created load.
1713    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1714                                                        NewLoad));
1715    MD->invalidateCachedPointerInfo(LoadPtr);
1716    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1717  }
1718
1719  // Perform PHI construction.
1720  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
1721                                    VN.getAliasAnalysis());
1722  LI->replaceAllUsesWith(V);
1723  if (isa<PHINode>(V))
1724    V->takeName(LI);
1725  if (V->getType()->isPointerTy())
1726    MD->invalidateCachedPointerInfo(V);
1727  VN.erase(LI);
1728  toErase.push_back(LI);
1729  ++NumPRELoad;
1730  return true;
1731}
1732
1733/// processLoad - Attempt to eliminate a load, first by eliminating it
1734/// locally, and then attempting non-local elimination if that fails.
1735bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1736  if (!MD)
1737    return false;
1738
1739  if (L->isVolatile())
1740    return false;
1741
1742  // ... to a pointer that has been loaded from before...
1743  MemDepResult Dep = MD->getDependency(L);
1744
1745  // If the value isn't available, don't do anything!
1746  if (Dep.isClobber()) {
1747    // Check to see if we have something like this:
1748    //   store i32 123, i32* %P
1749    //   %A = bitcast i32* %P to i8*
1750    //   %B = gep i8* %A, i32 1
1751    //   %C = load i8* %B
1752    //
1753    // We could do that by recognizing if the clobber instructions are obviously
1754    // a common base + constant offset, and if the previous store (or memset)
1755    // completely covers this load.  This sort of thing can happen in bitfield
1756    // access code.
1757    Value *AvailVal = 0;
1758    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1759      if (TD) {
1760        int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1761                                                    L->getPointerOperand(),
1762                                                    DepSI, *TD);
1763        if (Offset != -1)
1764          AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1765                                          L->getType(), L, *TD);
1766      }
1767
1768    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1769    // a value on from it.
1770    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1771      if (TD) {
1772        int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1773                                                      L->getPointerOperand(),
1774                                                      DepMI, *TD);
1775        if (Offset != -1)
1776          AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
1777      }
1778    }
1779
1780    if (AvailVal) {
1781      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1782            << *AvailVal << '\n' << *L << "\n\n\n");
1783
1784      // Replace the load!
1785      L->replaceAllUsesWith(AvailVal);
1786      if (AvailVal->getType()->isPointerTy())
1787        MD->invalidateCachedPointerInfo(AvailVal);
1788      VN.erase(L);
1789      toErase.push_back(L);
1790      ++NumGVNLoad;
1791      return true;
1792    }
1793
1794    DEBUG(
1795      // fast print dep, using operator<< on instruction would be too slow
1796      dbgs() << "GVN: load ";
1797      WriteAsOperand(dbgs(), L);
1798      Instruction *I = Dep.getInst();
1799      dbgs() << " is clobbered by " << *I << '\n';
1800    );
1801    return false;
1802  }
1803
1804  // If it is defined in another block, try harder.
1805  if (Dep.isNonLocal())
1806    return processNonLocalLoad(L, toErase);
1807
1808  Instruction *DepInst = Dep.getInst();
1809  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1810    Value *StoredVal = DepSI->getValueOperand();
1811
1812    // The store and load are to a must-aliased pointer, but they may not
1813    // actually have the same type.  See if we know how to reuse the stored
1814    // value (depending on its type).
1815    if (StoredVal->getType() != L->getType()) {
1816      if (TD) {
1817        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1818                                                   L, *TD);
1819        if (StoredVal == 0)
1820          return false;
1821
1822        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1823                     << '\n' << *L << "\n\n\n");
1824      }
1825      else
1826        return false;
1827    }
1828
1829    // Remove it!
1830    L->replaceAllUsesWith(StoredVal);
1831    if (StoredVal->getType()->isPointerTy())
1832      MD->invalidateCachedPointerInfo(StoredVal);
1833    VN.erase(L);
1834    toErase.push_back(L);
1835    ++NumGVNLoad;
1836    return true;
1837  }
1838
1839  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1840    Value *AvailableVal = DepLI;
1841
1842    // The loads are of a must-aliased pointer, but they may not actually have
1843    // the same type.  See if we know how to reuse the previously loaded value
1844    // (depending on its type).
1845    if (DepLI->getType() != L->getType()) {
1846      if (TD) {
1847        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1848        if (AvailableVal == 0)
1849          return false;
1850
1851        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1852                     << "\n" << *L << "\n\n\n");
1853      }
1854      else
1855        return false;
1856    }
1857
1858    // Remove it!
1859    L->replaceAllUsesWith(AvailableVal);
1860    if (DepLI->getType()->isPointerTy())
1861      MD->invalidateCachedPointerInfo(DepLI);
1862    VN.erase(L);
1863    toErase.push_back(L);
1864    ++NumGVNLoad;
1865    return true;
1866  }
1867
1868  // If this load really doesn't depend on anything, then we must be loading an
1869  // undef value.  This can happen when loading for a fresh allocation with no
1870  // intervening stores, for example.
1871  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1872    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1873    VN.erase(L);
1874    toErase.push_back(L);
1875    ++NumGVNLoad;
1876    return true;
1877  }
1878
1879  // If this load occurs either right after a lifetime begin,
1880  // then the loaded value is undefined.
1881  if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
1882    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1883      L->replaceAllUsesWith(UndefValue::get(L->getType()));
1884      VN.erase(L);
1885      toErase.push_back(L);
1886      ++NumGVNLoad;
1887      return true;
1888    }
1889  }
1890
1891  return false;
1892}
1893
1894// lookupNumber - In order to find a leader for a given value number at a
1895// specific basic block, we first obtain the list of all Values for that number,
1896// and then scan the list to find one whose block dominates the block in
1897// question.  This is fast because dominator tree queries consist of only
1898// a few comparisons of DFS numbers.
1899Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1900  std::pair<Value*, void*> Vals = NumberTable[num];
1901  if (!Vals.first) return 0;
1902  Instruction *Inst = dyn_cast<Instruction>(Vals.first);
1903  if (!Inst) return Vals.first;
1904  BasicBlock *Parent = Inst->getParent();
1905  if (DT->dominates(Parent, BB))
1906    return Inst;
1907
1908  std::pair<Value*, void*>* Next =
1909    static_cast<std::pair<Value*, void*>*>(Vals.second);
1910  while (Next) {
1911    Instruction *CurrInst = dyn_cast<Instruction>(Next->first);
1912    if (!CurrInst) return Next->first;
1913
1914    BasicBlock *Parent = CurrInst->getParent();
1915    if (DT->dominates(Parent, BB))
1916      return CurrInst;
1917
1918    Next = static_cast<std::pair<Value*, void*>*>(Next->second);
1919  }
1920
1921  return 0;
1922}
1923
1924
1925/// processInstruction - When calculating availability, handle an instruction
1926/// by inserting it into the appropriate sets
1927bool GVN::processInstruction(Instruction *I,
1928                             SmallVectorImpl<Instruction*> &toErase) {
1929  // Ignore dbg info intrinsics.
1930  if (isa<DbgInfoIntrinsic>(I))
1931    return false;
1932
1933  // If the instruction can be easily simplified then do so now in preference
1934  // to value numbering it.  Value numbering often exposes redundancies, for
1935  // example if it determines that %y is equal to %x then the instruction
1936  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1937  if (Value *V = SimplifyInstruction(I, TD, DT)) {
1938    I->replaceAllUsesWith(V);
1939    if (MD && V->getType()->isPointerTy())
1940      MD->invalidateCachedPointerInfo(V);
1941    VN.erase(I);
1942    toErase.push_back(I);
1943    return true;
1944  }
1945
1946  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1947    bool Changed = processLoad(LI, toErase);
1948
1949    if (!Changed) {
1950      unsigned Num = VN.lookup_or_add(LI);
1951      insert_table(Num, LI);
1952    }
1953
1954    return Changed;
1955  }
1956
1957  uint32_t NextNum = VN.getNextUnusedValueNumber();
1958  unsigned Num = VN.lookup_or_add(I);
1959
1960  // Allocations are always uniquely numbered, so we can save time and memory
1961  // by fast failing them.
1962  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
1963    insert_table(Num, I);
1964    return false;
1965  }
1966
1967  if (isa<PHINode>(I)) {
1968    insert_table(Num, I);
1969
1970  // If the number we were assigned was a brand new VN, then we don't
1971  // need to do a lookup to see if the number already exists
1972  // somewhere in the domtree: it can't!
1973  } else if (Num == NextNum) {
1974    insert_table(Num, I);
1975
1976  // Perform fast-path value-number based elimination of values inherited from
1977  // dominators.
1978  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1979    // Remove it!
1980    VN.erase(I);
1981    I->replaceAllUsesWith(repl);
1982    if (MD && repl->getType()->isPointerTy())
1983      MD->invalidateCachedPointerInfo(repl);
1984    toErase.push_back(I);
1985    return true;
1986
1987  } else {
1988    insert_table(Num, I);
1989  }
1990
1991  return false;
1992}
1993
1994/// runOnFunction - This is the main transformation entry point for a function.
1995bool GVN::runOnFunction(Function& F) {
1996  if (!NoLoads)
1997    MD = &getAnalysis<MemoryDependenceAnalysis>();
1998  DT = &getAnalysis<DominatorTree>();
1999  TD = getAnalysisIfAvailable<TargetData>();
2000  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2001  VN.setMemDep(MD);
2002  VN.setDomTree(DT);
2003
2004  bool Changed = false;
2005  bool ShouldContinue = true;
2006
2007  // Merge unconditional branches, allowing PRE to catch more
2008  // optimization opportunities.
2009  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2010    BasicBlock *BB = FI;
2011    ++FI;
2012    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2013    if (removedBlock) ++NumGVNBlocks;
2014
2015    Changed |= removedBlock;
2016  }
2017
2018  unsigned Iteration = 0;
2019
2020  while (ShouldContinue) {
2021    DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2022    ShouldContinue = iterateOnFunction(F);
2023    if (splitCriticalEdges())
2024      ShouldContinue = true;
2025    Changed |= ShouldContinue;
2026    ++Iteration;
2027  }
2028
2029  if (EnablePRE) {
2030    bool PREChanged = true;
2031    while (PREChanged) {
2032      PREChanged = performPRE(F);
2033      Changed |= PREChanged;
2034    }
2035  }
2036  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2037  // computations into blocks where they become fully redundant.  Note that
2038  // we can't do this until PRE's critical edge splitting updates memdep.
2039  // Actually, when this happens, we should just fully integrate PRE into GVN.
2040
2041  cleanupGlobalSets();
2042
2043  return Changed;
2044}
2045
2046
2047bool GVN::processBlock(BasicBlock *BB) {
2048  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
2049  // incrementing BI before processing an instruction).
2050  SmallVector<Instruction*, 8> toErase;
2051  bool ChangedFunction = false;
2052
2053  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2054       BI != BE;) {
2055    ChangedFunction |= processInstruction(BI, toErase);
2056    if (toErase.empty()) {
2057      ++BI;
2058      continue;
2059    }
2060
2061    // If we need some instructions deleted, do it now.
2062    NumGVNInstr += toErase.size();
2063
2064    // Avoid iterator invalidation.
2065    bool AtStart = BI == BB->begin();
2066    if (!AtStart)
2067      --BI;
2068
2069    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
2070         E = toErase.end(); I != E; ++I) {
2071      DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2072      if (MD) MD->removeInstruction(*I);
2073      (*I)->eraseFromParent();
2074      DEBUG(verifyRemoved(*I));
2075    }
2076    toErase.clear();
2077
2078    if (AtStart)
2079      BI = BB->begin();
2080    else
2081      ++BI;
2082  }
2083
2084  return ChangedFunction;
2085}
2086
2087/// performPRE - Perform a purely local form of PRE that looks for diamond
2088/// control flow patterns and attempts to perform simple PRE at the join point.
2089bool GVN::performPRE(Function &F) {
2090  bool Changed = false;
2091  DenseMap<BasicBlock*, Value*> predMap;
2092  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2093       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2094    BasicBlock *CurrentBlock = *DI;
2095
2096    // Nothing to PRE in the entry block.
2097    if (CurrentBlock == &F.getEntryBlock()) continue;
2098
2099    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2100         BE = CurrentBlock->end(); BI != BE; ) {
2101      Instruction *CurInst = BI++;
2102
2103      if (isa<AllocaInst>(CurInst) ||
2104          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2105          CurInst->getType()->isVoidTy() ||
2106          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2107          isa<DbgInfoIntrinsic>(CurInst))
2108        continue;
2109
2110      // We don't currently value number ANY inline asm calls.
2111      if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2112        if (CallI->isInlineAsm())
2113          continue;
2114
2115      uint32_t ValNo = VN.lookup(CurInst);
2116
2117      // Look for the predecessors for PRE opportunities.  We're
2118      // only trying to solve the basic diamond case, where
2119      // a value is computed in the successor and one predecessor,
2120      // but not the other.  We also explicitly disallow cases
2121      // where the successor is its own predecessor, because they're
2122      // more complicated to get right.
2123      unsigned NumWith = 0;
2124      unsigned NumWithout = 0;
2125      BasicBlock *PREPred = 0;
2126      predMap.clear();
2127
2128      for (pred_iterator PI = pred_begin(CurrentBlock),
2129           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2130        BasicBlock *P = *PI;
2131        // We're not interested in PRE where the block is its
2132        // own predecessor, or in blocks with predecessors
2133        // that are not reachable.
2134        if (P == CurrentBlock) {
2135          NumWithout = 2;
2136          break;
2137        } else if (!DT->dominates(&F.getEntryBlock(), P))  {
2138          NumWithout = 2;
2139          break;
2140        }
2141
2142        Value* predV = lookupNumber(P, ValNo);
2143        if (predV == 0) {
2144          PREPred = P;
2145          ++NumWithout;
2146        } else if (predV == CurInst) {
2147          NumWithout = 2;
2148        } else {
2149          predMap[P] = predV;
2150          ++NumWith;
2151        }
2152      }
2153
2154      // Don't do PRE when it might increase code size, i.e. when
2155      // we would need to insert instructions in more than one pred.
2156      if (NumWithout != 1 || NumWith == 0)
2157        continue;
2158
2159      // Don't do PRE across indirect branch.
2160      if (isa<IndirectBrInst>(PREPred->getTerminator()))
2161        continue;
2162
2163      // We can't do PRE safely on a critical edge, so instead we schedule
2164      // the edge to be split and perform the PRE the next time we iterate
2165      // on the function.
2166      unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2167      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2168        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2169        continue;
2170      }
2171
2172      // Instantiate the expression in the predecessor that lacked it.
2173      // Because we are going top-down through the block, all value numbers
2174      // will be available in the predecessor by the time we need them.  Any
2175      // that weren't originally present will have been instantiated earlier
2176      // in this loop.
2177      Instruction *PREInstr = CurInst->clone();
2178      bool success = true;
2179      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2180        Value *Op = PREInstr->getOperand(i);
2181        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2182          continue;
2183
2184        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2185          PREInstr->setOperand(i, V);
2186        } else {
2187          success = false;
2188          break;
2189        }
2190      }
2191
2192      // Fail out if we encounter an operand that is not available in
2193      // the PRE predecessor.  This is typically because of loads which
2194      // are not value numbered precisely.
2195      if (!success) {
2196        delete PREInstr;
2197        DEBUG(verifyRemoved(PREInstr));
2198        continue;
2199      }
2200
2201      PREInstr->insertBefore(PREPred->getTerminator());
2202      PREInstr->setName(CurInst->getName() + ".pre");
2203      predMap[PREPred] = PREInstr;
2204      VN.add(PREInstr, ValNo);
2205      ++NumGVNPRE;
2206
2207      // Update the availability map to include the new instruction.
2208      insert_table(ValNo, PREInstr);
2209
2210      // Create a PHI to make the value available in this block.
2211      PHINode* Phi = PHINode::Create(CurInst->getType(),
2212                                     CurInst->getName() + ".pre-phi",
2213                                     CurrentBlock->begin());
2214      for (pred_iterator PI = pred_begin(CurrentBlock),
2215           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2216        BasicBlock *P = *PI;
2217        Phi->addIncoming(predMap[P], P);
2218      }
2219
2220      VN.add(Phi, ValNo);
2221      insert_table(ValNo, Phi);
2222
2223      CurInst->replaceAllUsesWith(Phi);
2224      if (MD && Phi->getType()->isPointerTy())
2225        MD->invalidateCachedPointerInfo(Phi);
2226      VN.erase(CurInst);
2227      erase_table(ValNo, CurInst);
2228
2229      DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2230      if (MD) MD->removeInstruction(CurInst);
2231      CurInst->eraseFromParent();
2232      DEBUG(verifyRemoved(CurInst));
2233      Changed = true;
2234    }
2235  }
2236
2237  if (splitCriticalEdges())
2238    Changed = true;
2239
2240  return Changed;
2241}
2242
2243/// splitCriticalEdges - Split critical edges found during the previous
2244/// iteration that may enable further optimization.
2245bool GVN::splitCriticalEdges() {
2246  if (toSplit.empty())
2247    return false;
2248  do {
2249    std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2250    SplitCriticalEdge(Edge.first, Edge.second, this);
2251  } while (!toSplit.empty());
2252  if (MD) MD->invalidateCachedPredecessors();
2253  return true;
2254}
2255
2256/// iterateOnFunction - Executes one iteration of GVN
2257bool GVN::iterateOnFunction(Function &F) {
2258  cleanupGlobalSets();
2259
2260  // Top-down walk of the dominator tree
2261  bool Changed = false;
2262#if 0
2263  // Needed for value numbering with phi construction to work.
2264  ReversePostOrderTraversal<Function*> RPOT(&F);
2265  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2266       RE = RPOT.end(); RI != RE; ++RI)
2267    Changed |= processBlock(*RI);
2268#else
2269  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2270       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2271    Changed |= processBlock(DI->getBlock());
2272#endif
2273
2274  return Changed;
2275}
2276
2277void GVN::cleanupGlobalSets() {
2278  VN.clear();
2279  NumberTable.clear();
2280  TableAllocator.Reset();
2281}
2282
2283/// verifyRemoved - Verify that the specified instruction does not occur in our
2284/// internal data structures.
2285void GVN::verifyRemoved(const Instruction *Inst) const {
2286  VN.verifyRemoved(Inst);
2287
2288  // Walk through the value number scope to make sure the instruction isn't
2289  // ferreted away in it.
2290  for (DenseMap<uint32_t, std::pair<Value*, void*> >::const_iterator
2291       I = NumberTable.begin(), E = NumberTable.end(); I != E; ++I) {
2292    std::pair<Value*, void*> const * Node = &I->second;
2293    assert(Node->first != Inst && "Inst still in value numbering scope!");
2294
2295    while (Node->second) {
2296      Node = static_cast<std::pair<Value*, void*>*>(Node->second);
2297      assert(Node->first != Inst && "Inst still in value numbering scope!");
2298    }
2299  }
2300}
2301