IndVarSimplify.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28#include "llvm/Transforms/Scalar.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/LoopInfo.h"
33#include "llvm/Analysis/LoopPass.h"
34#include "llvm/Analysis/ScalarEvolutionExpander.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/CFG.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Type.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetLibraryInfo.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
51using namespace llvm;
52
53STATISTIC(NumWidened     , "Number of indvars widened");
54STATISTIC(NumReplaced    , "Number of exit values replaced");
55STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
56STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
57STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
58
59// Trip count verification can be enabled by default under NDEBUG if we
60// implement a strong expression equivalence checker in SCEV. Until then, we
61// use the verify-indvars flag, which may assert in some cases.
62static cl::opt<bool> VerifyIndvars(
63  "verify-indvars", cl::Hidden,
64  cl::desc("Verify the ScalarEvolution result after running indvars"));
65
66static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
67  cl::desc("Reduce live induction variables."));
68
69namespace {
70  class IndVarSimplify : public LoopPass {
71    LoopInfo        *LI;
72    ScalarEvolution *SE;
73    DominatorTree   *DT;
74    const DataLayout *DL;
75    TargetLibraryInfo *TLI;
76
77    SmallVector<WeakVH, 16> DeadInsts;
78    bool Changed;
79  public:
80
81    static char ID; // Pass identification, replacement for typeid
82    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), DL(0),
83                       Changed(false) {
84      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
85    }
86
87    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
88
89    void getAnalysisUsage(AnalysisUsage &AU) const override {
90      AU.addRequired<DominatorTreeWrapperPass>();
91      AU.addRequired<LoopInfo>();
92      AU.addRequired<ScalarEvolution>();
93      AU.addRequiredID(LoopSimplifyID);
94      AU.addRequiredID(LCSSAID);
95      AU.addPreserved<ScalarEvolution>();
96      AU.addPreservedID(LoopSimplifyID);
97      AU.addPreservedID(LCSSAID);
98      AU.setPreservesCFG();
99    }
100
101  private:
102    void releaseMemory() override {
103      DeadInsts.clear();
104    }
105
106    bool isValidRewrite(Value *FromVal, Value *ToVal);
107
108    void HandleFloatingPointIV(Loop *L, PHINode *PH);
109    void RewriteNonIntegerIVs(Loop *L);
110
111    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
112
113    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
114
115    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
116                                     PHINode *IndVar, SCEVExpander &Rewriter);
117
118    void SinkUnusedInvariants(Loop *L);
119  };
120}
121
122char IndVarSimplify::ID = 0;
123INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
124                "Induction Variable Simplification", false, false)
125INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
126INITIALIZE_PASS_DEPENDENCY(LoopInfo)
127INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
128INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
129INITIALIZE_PASS_DEPENDENCY(LCSSA)
130INITIALIZE_PASS_END(IndVarSimplify, "indvars",
131                "Induction Variable Simplification", false, false)
132
133Pass *llvm::createIndVarSimplifyPass() {
134  return new IndVarSimplify();
135}
136
137/// isValidRewrite - Return true if the SCEV expansion generated by the
138/// rewriter can replace the original value. SCEV guarantees that it
139/// produces the same value, but the way it is produced may be illegal IR.
140/// Ideally, this function will only be called for verification.
141bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
142  // If an SCEV expression subsumed multiple pointers, its expansion could
143  // reassociate the GEP changing the base pointer. This is illegal because the
144  // final address produced by a GEP chain must be inbounds relative to its
145  // underlying object. Otherwise basic alias analysis, among other things,
146  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
147  // producing an expression involving multiple pointers. Until then, we must
148  // bail out here.
149  //
150  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
151  // because it understands lcssa phis while SCEV does not.
152  Value *FromPtr = FromVal;
153  Value *ToPtr = ToVal;
154  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
155    FromPtr = GEP->getPointerOperand();
156  }
157  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
158    ToPtr = GEP->getPointerOperand();
159  }
160  if (FromPtr != FromVal || ToPtr != ToVal) {
161    // Quickly check the common case
162    if (FromPtr == ToPtr)
163      return true;
164
165    // SCEV may have rewritten an expression that produces the GEP's pointer
166    // operand. That's ok as long as the pointer operand has the same base
167    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
168    // base of a recurrence. This handles the case in which SCEV expansion
169    // converts a pointer type recurrence into a nonrecurrent pointer base
170    // indexed by an integer recurrence.
171
172    // If the GEP base pointer is a vector of pointers, abort.
173    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
174      return false;
175
176    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
177    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
178    if (FromBase == ToBase)
179      return true;
180
181    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
182          << *FromBase << " != " << *ToBase << "\n");
183
184    return false;
185  }
186  return true;
187}
188
189/// Determine the insertion point for this user. By default, insert immediately
190/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
191/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
192/// common dominator for the incoming blocks.
193static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
194                                          DominatorTree *DT) {
195  PHINode *PHI = dyn_cast<PHINode>(User);
196  if (!PHI)
197    return User;
198
199  Instruction *InsertPt = 0;
200  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
201    if (PHI->getIncomingValue(i) != Def)
202      continue;
203
204    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
205    if (!InsertPt) {
206      InsertPt = InsertBB->getTerminator();
207      continue;
208    }
209    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
210    InsertPt = InsertBB->getTerminator();
211  }
212  assert(InsertPt && "Missing phi operand");
213  assert((!isa<Instruction>(Def) ||
214          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
215         "def does not dominate all uses");
216  return InsertPt;
217}
218
219//===----------------------------------------------------------------------===//
220// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
221//===----------------------------------------------------------------------===//
222
223/// ConvertToSInt - Convert APF to an integer, if possible.
224static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
225  bool isExact = false;
226  // See if we can convert this to an int64_t
227  uint64_t UIntVal;
228  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
229                           &isExact) != APFloat::opOK || !isExact)
230    return false;
231  IntVal = UIntVal;
232  return true;
233}
234
235/// HandleFloatingPointIV - If the loop has floating induction variable
236/// then insert corresponding integer induction variable if possible.
237/// For example,
238/// for(double i = 0; i < 10000; ++i)
239///   bar(i)
240/// is converted into
241/// for(int i = 0; i < 10000; ++i)
242///   bar((double)i);
243///
244void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
245  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
246  unsigned BackEdge     = IncomingEdge^1;
247
248  // Check incoming value.
249  ConstantFP *InitValueVal =
250    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
251
252  int64_t InitValue;
253  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
254    return;
255
256  // Check IV increment. Reject this PN if increment operation is not
257  // an add or increment value can not be represented by an integer.
258  BinaryOperator *Incr =
259    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
260  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
261
262  // If this is not an add of the PHI with a constantfp, or if the constant fp
263  // is not an integer, bail out.
264  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
265  int64_t IncValue;
266  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
267      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
268    return;
269
270  // Check Incr uses. One user is PN and the other user is an exit condition
271  // used by the conditional terminator.
272  Value::user_iterator IncrUse = Incr->user_begin();
273  Instruction *U1 = cast<Instruction>(*IncrUse++);
274  if (IncrUse == Incr->user_end()) return;
275  Instruction *U2 = cast<Instruction>(*IncrUse++);
276  if (IncrUse != Incr->user_end()) return;
277
278  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
279  // only used by a branch, we can't transform it.
280  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
281  if (!Compare)
282    Compare = dyn_cast<FCmpInst>(U2);
283  if (Compare == 0 || !Compare->hasOneUse() ||
284      !isa<BranchInst>(Compare->user_back()))
285    return;
286
287  BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
288
289  // We need to verify that the branch actually controls the iteration count
290  // of the loop.  If not, the new IV can overflow and no one will notice.
291  // The branch block must be in the loop and one of the successors must be out
292  // of the loop.
293  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
294  if (!L->contains(TheBr->getParent()) ||
295      (L->contains(TheBr->getSuccessor(0)) &&
296       L->contains(TheBr->getSuccessor(1))))
297    return;
298
299
300  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
301  // transform it.
302  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
303  int64_t ExitValue;
304  if (ExitValueVal == 0 ||
305      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
306    return;
307
308  // Find new predicate for integer comparison.
309  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
310  switch (Compare->getPredicate()) {
311  default: return;  // Unknown comparison.
312  case CmpInst::FCMP_OEQ:
313  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
314  case CmpInst::FCMP_ONE:
315  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
316  case CmpInst::FCMP_OGT:
317  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
318  case CmpInst::FCMP_OGE:
319  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
320  case CmpInst::FCMP_OLT:
321  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
322  case CmpInst::FCMP_OLE:
323  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
324  }
325
326  // We convert the floating point induction variable to a signed i32 value if
327  // we can.  This is only safe if the comparison will not overflow in a way
328  // that won't be trapped by the integer equivalent operations.  Check for this
329  // now.
330  // TODO: We could use i64 if it is native and the range requires it.
331
332  // The start/stride/exit values must all fit in signed i32.
333  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
334    return;
335
336  // If not actually striding (add x, 0.0), avoid touching the code.
337  if (IncValue == 0)
338    return;
339
340  // Positive and negative strides have different safety conditions.
341  if (IncValue > 0) {
342    // If we have a positive stride, we require the init to be less than the
343    // exit value.
344    if (InitValue >= ExitValue)
345      return;
346
347    uint32_t Range = uint32_t(ExitValue-InitValue);
348    // Check for infinite loop, either:
349    // while (i <= Exit) or until (i > Exit)
350    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
351      if (++Range == 0) return;  // Range overflows.
352    }
353
354    unsigned Leftover = Range % uint32_t(IncValue);
355
356    // If this is an equality comparison, we require that the strided value
357    // exactly land on the exit value, otherwise the IV condition will wrap
358    // around and do things the fp IV wouldn't.
359    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
360        Leftover != 0)
361      return;
362
363    // If the stride would wrap around the i32 before exiting, we can't
364    // transform the IV.
365    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
366      return;
367
368  } else {
369    // If we have a negative stride, we require the init to be greater than the
370    // exit value.
371    if (InitValue <= ExitValue)
372      return;
373
374    uint32_t Range = uint32_t(InitValue-ExitValue);
375    // Check for infinite loop, either:
376    // while (i >= Exit) or until (i < Exit)
377    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
378      if (++Range == 0) return;  // Range overflows.
379    }
380
381    unsigned Leftover = Range % uint32_t(-IncValue);
382
383    // If this is an equality comparison, we require that the strided value
384    // exactly land on the exit value, otherwise the IV condition will wrap
385    // around and do things the fp IV wouldn't.
386    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
387        Leftover != 0)
388      return;
389
390    // If the stride would wrap around the i32 before exiting, we can't
391    // transform the IV.
392    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
393      return;
394  }
395
396  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
397
398  // Insert new integer induction variable.
399  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
400  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
401                      PN->getIncomingBlock(IncomingEdge));
402
403  Value *NewAdd =
404    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
405                              Incr->getName()+".int", Incr);
406  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
407
408  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
409                                      ConstantInt::get(Int32Ty, ExitValue),
410                                      Compare->getName());
411
412  // In the following deletions, PN may become dead and may be deleted.
413  // Use a WeakVH to observe whether this happens.
414  WeakVH WeakPH = PN;
415
416  // Delete the old floating point exit comparison.  The branch starts using the
417  // new comparison.
418  NewCompare->takeName(Compare);
419  Compare->replaceAllUsesWith(NewCompare);
420  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
421
422  // Delete the old floating point increment.
423  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
424  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
425
426  // If the FP induction variable still has uses, this is because something else
427  // in the loop uses its value.  In order to canonicalize the induction
428  // variable, we chose to eliminate the IV and rewrite it in terms of an
429  // int->fp cast.
430  //
431  // We give preference to sitofp over uitofp because it is faster on most
432  // platforms.
433  if (WeakPH) {
434    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
435                                 PN->getParent()->getFirstInsertionPt());
436    PN->replaceAllUsesWith(Conv);
437    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
438  }
439  Changed = true;
440}
441
442void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
443  // First step.  Check to see if there are any floating-point recurrences.
444  // If there are, change them into integer recurrences, permitting analysis by
445  // the SCEV routines.
446  //
447  BasicBlock *Header = L->getHeader();
448
449  SmallVector<WeakVH, 8> PHIs;
450  for (BasicBlock::iterator I = Header->begin();
451       PHINode *PN = dyn_cast<PHINode>(I); ++I)
452    PHIs.push_back(PN);
453
454  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
455    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
456      HandleFloatingPointIV(L, PN);
457
458  // If the loop previously had floating-point IV, ScalarEvolution
459  // may not have been able to compute a trip count. Now that we've done some
460  // re-writing, the trip count may be computable.
461  if (Changed)
462    SE->forgetLoop(L);
463}
464
465//===----------------------------------------------------------------------===//
466// RewriteLoopExitValues - Optimize IV users outside the loop.
467// As a side effect, reduces the amount of IV processing within the loop.
468//===----------------------------------------------------------------------===//
469
470/// RewriteLoopExitValues - Check to see if this loop has a computable
471/// loop-invariant execution count.  If so, this means that we can compute the
472/// final value of any expressions that are recurrent in the loop, and
473/// substitute the exit values from the loop into any instructions outside of
474/// the loop that use the final values of the current expressions.
475///
476/// This is mostly redundant with the regular IndVarSimplify activities that
477/// happen later, except that it's more powerful in some cases, because it's
478/// able to brute-force evaluate arbitrary instructions as long as they have
479/// constant operands at the beginning of the loop.
480void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
481  // Verify the input to the pass in already in LCSSA form.
482  assert(L->isLCSSAForm(*DT));
483
484  SmallVector<BasicBlock*, 8> ExitBlocks;
485  L->getUniqueExitBlocks(ExitBlocks);
486
487  // Find all values that are computed inside the loop, but used outside of it.
488  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
489  // the exit blocks of the loop to find them.
490  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
491    BasicBlock *ExitBB = ExitBlocks[i];
492
493    // If there are no PHI nodes in this exit block, then no values defined
494    // inside the loop are used on this path, skip it.
495    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
496    if (!PN) continue;
497
498    unsigned NumPreds = PN->getNumIncomingValues();
499
500    // We would like to be able to RAUW single-incoming value PHI nodes. We
501    // have to be certain this is safe even when this is an LCSSA PHI node.
502    // While the computed exit value is no longer varying in *this* loop, the
503    // exit block may be an exit block for an outer containing loop as well,
504    // the exit value may be varying in the outer loop, and thus it may still
505    // require an LCSSA PHI node. The safe case is when this is
506    // single-predecessor PHI node (LCSSA) and the exit block containing it is
507    // part of the enclosing loop, or this is the outer most loop of the nest.
508    // In either case the exit value could (at most) be varying in the same
509    // loop body as the phi node itself. Thus if it is in turn used outside of
510    // an enclosing loop it will only be via a separate LCSSA node.
511    bool LCSSASafePhiForRAUW =
512        NumPreds == 1 &&
513        (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
514
515    // Iterate over all of the PHI nodes.
516    BasicBlock::iterator BBI = ExitBB->begin();
517    while ((PN = dyn_cast<PHINode>(BBI++))) {
518      if (PN->use_empty())
519        continue; // dead use, don't replace it
520
521      // SCEV only supports integer expressions for now.
522      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
523        continue;
524
525      // It's necessary to tell ScalarEvolution about this explicitly so that
526      // it can walk the def-use list and forget all SCEVs, as it may not be
527      // watching the PHI itself. Once the new exit value is in place, there
528      // may not be a def-use connection between the loop and every instruction
529      // which got a SCEVAddRecExpr for that loop.
530      SE->forgetValue(PN);
531
532      // Iterate over all of the values in all the PHI nodes.
533      for (unsigned i = 0; i != NumPreds; ++i) {
534        // If the value being merged in is not integer or is not defined
535        // in the loop, skip it.
536        Value *InVal = PN->getIncomingValue(i);
537        if (!isa<Instruction>(InVal))
538          continue;
539
540        // If this pred is for a subloop, not L itself, skip it.
541        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
542          continue; // The Block is in a subloop, skip it.
543
544        // Check that InVal is defined in the loop.
545        Instruction *Inst = cast<Instruction>(InVal);
546        if (!L->contains(Inst))
547          continue;
548
549        // Okay, this instruction has a user outside of the current loop
550        // and varies predictably *inside* the loop.  Evaluate the value it
551        // contains when the loop exits, if possible.
552        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
553        if (!SE->isLoopInvariant(ExitValue, L) ||
554            !isSafeToExpand(ExitValue, *SE))
555          continue;
556
557        // Computing the value outside of the loop brings no benefit if :
558        //  - it is definitely used inside the loop in a way which can not be
559        //    optimized away.
560        //  - no use outside of the loop can take advantage of hoisting the
561        //    computation out of the loop
562        if (ExitValue->getSCEVType()>=scMulExpr) {
563          unsigned NumHardInternalUses = 0;
564          unsigned NumSoftExternalUses = 0;
565          unsigned NumUses = 0;
566          for (auto IB = Inst->user_begin(), IE = Inst->user_end();
567               IB != IE && NumUses <= 6; ++IB) {
568            Instruction *UseInstr = cast<Instruction>(*IB);
569            unsigned Opc = UseInstr->getOpcode();
570            NumUses++;
571            if (L->contains(UseInstr)) {
572              if (Opc == Instruction::Call || Opc == Instruction::Ret)
573                NumHardInternalUses++;
574            } else {
575              if (Opc == Instruction::PHI) {
576                // Do not count the Phi as a use. LCSSA may have inserted
577                // plenty of trivial ones.
578                NumUses--;
579                for (auto PB = UseInstr->user_begin(),
580                          PE = UseInstr->user_end();
581                     PB != PE && NumUses <= 6; ++PB, ++NumUses) {
582                  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
583                  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
584                    NumSoftExternalUses++;
585                }
586                continue;
587              }
588              if (Opc != Instruction::Call && Opc != Instruction::Ret)
589                NumSoftExternalUses++;
590            }
591          }
592          if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
593            continue;
594        }
595
596        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
597
598        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
599                     << "  LoopVal = " << *Inst << "\n");
600
601        if (!isValidRewrite(Inst, ExitVal)) {
602          DeadInsts.push_back(ExitVal);
603          continue;
604        }
605        Changed = true;
606        ++NumReplaced;
607
608        PN->setIncomingValue(i, ExitVal);
609
610        // If this instruction is dead now, delete it. Don't do it now to avoid
611        // invalidating iterators.
612        if (isInstructionTriviallyDead(Inst, TLI))
613          DeadInsts.push_back(Inst);
614
615        // If we determined that this PHI is safe to replace even if an LCSSA
616        // PHI, do so.
617        if (LCSSASafePhiForRAUW) {
618          PN->replaceAllUsesWith(ExitVal);
619          PN->eraseFromParent();
620        }
621      }
622
623      // If we were unable to completely replace the PHI node, clone the PHI
624      // and delete the original one. This lets IVUsers and any other maps
625      // purge the original user from their records.
626      if (!LCSSASafePhiForRAUW) {
627        PHINode *NewPN = cast<PHINode>(PN->clone());
628        NewPN->takeName(PN);
629        NewPN->insertBefore(PN);
630        PN->replaceAllUsesWith(NewPN);
631        PN->eraseFromParent();
632      }
633    }
634  }
635
636  // The insertion point instruction may have been deleted; clear it out
637  // so that the rewriter doesn't trip over it later.
638  Rewriter.clearInsertPoint();
639}
640
641//===----------------------------------------------------------------------===//
642//  IV Widening - Extend the width of an IV to cover its widest uses.
643//===----------------------------------------------------------------------===//
644
645namespace {
646  // Collect information about induction variables that are used by sign/zero
647  // extend operations. This information is recorded by CollectExtend and
648  // provides the input to WidenIV.
649  struct WideIVInfo {
650    PHINode *NarrowIV;
651    Type *WidestNativeType; // Widest integer type created [sz]ext
652    bool IsSigned;          // Was an sext user seen before a zext?
653
654    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
655  };
656}
657
658/// visitCast - Update information about the induction variable that is
659/// extended by this sign or zero extend operation. This is used to determine
660/// the final width of the IV before actually widening it.
661static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
662                        const DataLayout *DL) {
663  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
664  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
665    return;
666
667  Type *Ty = Cast->getType();
668  uint64_t Width = SE->getTypeSizeInBits(Ty);
669  if (DL && !DL->isLegalInteger(Width))
670    return;
671
672  if (!WI.WidestNativeType) {
673    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
674    WI.IsSigned = IsSigned;
675    return;
676  }
677
678  // We extend the IV to satisfy the sign of its first user, arbitrarily.
679  if (WI.IsSigned != IsSigned)
680    return;
681
682  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
683    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
684}
685
686namespace {
687
688/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
689/// WideIV that computes the same value as the Narrow IV def.  This avoids
690/// caching Use* pointers.
691struct NarrowIVDefUse {
692  Instruction *NarrowDef;
693  Instruction *NarrowUse;
694  Instruction *WideDef;
695
696  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
697
698  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
699    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
700};
701
702/// WidenIV - The goal of this transform is to remove sign and zero extends
703/// without creating any new induction variables. To do this, it creates a new
704/// phi of the wider type and redirects all users, either removing extends or
705/// inserting truncs whenever we stop propagating the type.
706///
707class WidenIV {
708  // Parameters
709  PHINode *OrigPhi;
710  Type *WideType;
711  bool IsSigned;
712
713  // Context
714  LoopInfo        *LI;
715  Loop            *L;
716  ScalarEvolution *SE;
717  DominatorTree   *DT;
718
719  // Result
720  PHINode *WidePhi;
721  Instruction *WideInc;
722  const SCEV *WideIncExpr;
723  SmallVectorImpl<WeakVH> &DeadInsts;
724
725  SmallPtrSet<Instruction*,16> Widened;
726  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
727
728public:
729  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
730          ScalarEvolution *SEv, DominatorTree *DTree,
731          SmallVectorImpl<WeakVH> &DI) :
732    OrigPhi(WI.NarrowIV),
733    WideType(WI.WidestNativeType),
734    IsSigned(WI.IsSigned),
735    LI(LInfo),
736    L(LI->getLoopFor(OrigPhi->getParent())),
737    SE(SEv),
738    DT(DTree),
739    WidePhi(0),
740    WideInc(0),
741    WideIncExpr(0),
742    DeadInsts(DI) {
743    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
744  }
745
746  PHINode *CreateWideIV(SCEVExpander &Rewriter);
747
748protected:
749  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
750                   Instruction *Use);
751
752  Instruction *CloneIVUser(NarrowIVDefUse DU);
753
754  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
755
756  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
757
758  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
759
760  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
761};
762} // anonymous namespace
763
764/// isLoopInvariant - Perform a quick domtree based check for loop invariance
765/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
766/// gratuitous for this purpose.
767static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
768  Instruction *Inst = dyn_cast<Instruction>(V);
769  if (!Inst)
770    return true;
771
772  return DT->properlyDominates(Inst->getParent(), L->getHeader());
773}
774
775Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
776                          Instruction *Use) {
777  // Set the debug location and conservative insertion point.
778  IRBuilder<> Builder(Use);
779  // Hoist the insertion point into loop preheaders as far as possible.
780  for (const Loop *L = LI->getLoopFor(Use->getParent());
781       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
782       L = L->getParentLoop())
783    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
784
785  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
786                    Builder.CreateZExt(NarrowOper, WideType);
787}
788
789/// CloneIVUser - Instantiate a wide operation to replace a narrow
790/// operation. This only needs to handle operations that can evaluation to
791/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
792Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
793  unsigned Opcode = DU.NarrowUse->getOpcode();
794  switch (Opcode) {
795  default:
796    return 0;
797  case Instruction::Add:
798  case Instruction::Mul:
799  case Instruction::UDiv:
800  case Instruction::Sub:
801  case Instruction::And:
802  case Instruction::Or:
803  case Instruction::Xor:
804  case Instruction::Shl:
805  case Instruction::LShr:
806  case Instruction::AShr:
807    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
808
809    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
810    // anything about the narrow operand yet so must insert a [sz]ext. It is
811    // probably loop invariant and will be folded or hoisted. If it actually
812    // comes from a widened IV, it should be removed during a future call to
813    // WidenIVUse.
814    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
815      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
816    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
817      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
818
819    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
820    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
821                                                    LHS, RHS,
822                                                    NarrowBO->getName());
823    IRBuilder<> Builder(DU.NarrowUse);
824    Builder.Insert(WideBO);
825    if (const OverflowingBinaryOperator *OBO =
826        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
827      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
828      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
829    }
830    return WideBO;
831  }
832}
833
834/// No-wrap operations can transfer sign extension of their result to their
835/// operands. Generate the SCEV value for the widened operation without
836/// actually modifying the IR yet. If the expression after extending the
837/// operands is an AddRec for this loop, return it.
838const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
839  // Handle the common case of add<nsw/nuw>
840  if (DU.NarrowUse->getOpcode() != Instruction::Add)
841    return 0;
842
843  // One operand (NarrowDef) has already been extended to WideDef. Now determine
844  // if extending the other will lead to a recurrence.
845  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
846  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
847
848  const SCEV *ExtendOperExpr = 0;
849  const OverflowingBinaryOperator *OBO =
850    cast<OverflowingBinaryOperator>(DU.NarrowUse);
851  if (IsSigned && OBO->hasNoSignedWrap())
852    ExtendOperExpr = SE->getSignExtendExpr(
853      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
854  else if(!IsSigned && OBO->hasNoUnsignedWrap())
855    ExtendOperExpr = SE->getZeroExtendExpr(
856      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
857  else
858    return 0;
859
860  // When creating this AddExpr, don't apply the current operations NSW or NUW
861  // flags. This instruction may be guarded by control flow that the no-wrap
862  // behavior depends on. Non-control-equivalent instructions can be mapped to
863  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
864  // semantics to those operations.
865  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
866    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
867
868  if (!AddRec || AddRec->getLoop() != L)
869    return 0;
870  return AddRec;
871}
872
873/// GetWideRecurrence - Is this instruction potentially interesting from
874/// IVUsers' perspective after widening it's type? In other words, can the
875/// extend be safely hoisted out of the loop with SCEV reducing the value to a
876/// recurrence on the same loop. If so, return the sign or zero extended
877/// recurrence. Otherwise return NULL.
878const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
879  if (!SE->isSCEVable(NarrowUse->getType()))
880    return 0;
881
882  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
883  if (SE->getTypeSizeInBits(NarrowExpr->getType())
884      >= SE->getTypeSizeInBits(WideType)) {
885    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
886    // index. So don't follow this use.
887    return 0;
888  }
889
890  const SCEV *WideExpr = IsSigned ?
891    SE->getSignExtendExpr(NarrowExpr, WideType) :
892    SE->getZeroExtendExpr(NarrowExpr, WideType);
893  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
894  if (!AddRec || AddRec->getLoop() != L)
895    return 0;
896  return AddRec;
897}
898
899/// This IV user cannot be widen. Replace this use of the original narrow IV
900/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
901static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
902  DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
903        << " for user " << *DU.NarrowUse << "\n");
904  IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
905  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
906  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
907}
908
909/// WidenIVUse - Determine whether an individual user of the narrow IV can be
910/// widened. If so, return the wide clone of the user.
911Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
912
913  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
914  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
915    if (LI->getLoopFor(UsePhi->getParent()) != L) {
916      // For LCSSA phis, sink the truncate outside the loop.
917      // After SimplifyCFG most loop exit targets have a single predecessor.
918      // Otherwise fall back to a truncate within the loop.
919      if (UsePhi->getNumOperands() != 1)
920        truncateIVUse(DU, DT);
921      else {
922        PHINode *WidePhi =
923          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
924                          UsePhi);
925        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
926        IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
927        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
928        UsePhi->replaceAllUsesWith(Trunc);
929        DeadInsts.push_back(UsePhi);
930        DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
931              << " to " << *WidePhi << "\n");
932      }
933      return 0;
934    }
935  }
936  // Our raison d'etre! Eliminate sign and zero extension.
937  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
938    Value *NewDef = DU.WideDef;
939    if (DU.NarrowUse->getType() != WideType) {
940      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
941      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
942      if (CastWidth < IVWidth) {
943        // The cast isn't as wide as the IV, so insert a Trunc.
944        IRBuilder<> Builder(DU.NarrowUse);
945        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
946      }
947      else {
948        // A wider extend was hidden behind a narrower one. This may induce
949        // another round of IV widening in which the intermediate IV becomes
950        // dead. It should be very rare.
951        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
952              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
953        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
954        NewDef = DU.NarrowUse;
955      }
956    }
957    if (NewDef != DU.NarrowUse) {
958      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
959            << " replaced by " << *DU.WideDef << "\n");
960      ++NumElimExt;
961      DU.NarrowUse->replaceAllUsesWith(NewDef);
962      DeadInsts.push_back(DU.NarrowUse);
963    }
964    // Now that the extend is gone, we want to expose it's uses for potential
965    // further simplification. We don't need to directly inform SimplifyIVUsers
966    // of the new users, because their parent IV will be processed later as a
967    // new loop phi. If we preserved IVUsers analysis, we would also want to
968    // push the uses of WideDef here.
969
970    // No further widening is needed. The deceased [sz]ext had done it for us.
971    return 0;
972  }
973
974  // Does this user itself evaluate to a recurrence after widening?
975  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
976  if (!WideAddRec) {
977      WideAddRec = GetExtendedOperandRecurrence(DU);
978  }
979  if (!WideAddRec) {
980    // This user does not evaluate to a recurence after widening, so don't
981    // follow it. Instead insert a Trunc to kill off the original use,
982    // eventually isolating the original narrow IV so it can be removed.
983    truncateIVUse(DU, DT);
984    return 0;
985  }
986  // Assume block terminators cannot evaluate to a recurrence. We can't to
987  // insert a Trunc after a terminator if there happens to be a critical edge.
988  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
989         "SCEV is not expected to evaluate a block terminator");
990
991  // Reuse the IV increment that SCEVExpander created as long as it dominates
992  // NarrowUse.
993  Instruction *WideUse = 0;
994  if (WideAddRec == WideIncExpr
995      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
996    WideUse = WideInc;
997  else {
998    WideUse = CloneIVUser(DU);
999    if (!WideUse)
1000      return 0;
1001  }
1002  // Evaluation of WideAddRec ensured that the narrow expression could be
1003  // extended outside the loop without overflow. This suggests that the wide use
1004  // evaluates to the same expression as the extended narrow use, but doesn't
1005  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1006  // where it fails, we simply throw away the newly created wide use.
1007  if (WideAddRec != SE->getSCEV(WideUse)) {
1008    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1009          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1010    DeadInsts.push_back(WideUse);
1011    return 0;
1012  }
1013
1014  // Returning WideUse pushes it on the worklist.
1015  return WideUse;
1016}
1017
1018/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1019///
1020void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1021  for (User *U : NarrowDef->users()) {
1022    Instruction *NarrowUser = cast<Instruction>(U);
1023
1024    // Handle data flow merges and bizarre phi cycles.
1025    if (!Widened.insert(NarrowUser))
1026      continue;
1027
1028    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
1029  }
1030}
1031
1032/// CreateWideIV - Process a single induction variable. First use the
1033/// SCEVExpander to create a wide induction variable that evaluates to the same
1034/// recurrence as the original narrow IV. Then use a worklist to forward
1035/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1036/// interesting IV users, the narrow IV will be isolated for removal by
1037/// DeleteDeadPHIs.
1038///
1039/// It would be simpler to delete uses as they are processed, but we must avoid
1040/// invalidating SCEV expressions.
1041///
1042PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1043  // Is this phi an induction variable?
1044  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1045  if (!AddRec)
1046    return NULL;
1047
1048  // Widen the induction variable expression.
1049  const SCEV *WideIVExpr = IsSigned ?
1050    SE->getSignExtendExpr(AddRec, WideType) :
1051    SE->getZeroExtendExpr(AddRec, WideType);
1052
1053  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1054         "Expect the new IV expression to preserve its type");
1055
1056  // Can the IV be extended outside the loop without overflow?
1057  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1058  if (!AddRec || AddRec->getLoop() != L)
1059    return NULL;
1060
1061  // An AddRec must have loop-invariant operands. Since this AddRec is
1062  // materialized by a loop header phi, the expression cannot have any post-loop
1063  // operands, so they must dominate the loop header.
1064  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1065         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1066         && "Loop header phi recurrence inputs do not dominate the loop");
1067
1068  // The rewriter provides a value for the desired IV expression. This may
1069  // either find an existing phi or materialize a new one. Either way, we
1070  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1071  // of the phi-SCC dominates the loop entry.
1072  Instruction *InsertPt = L->getHeader()->begin();
1073  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1074
1075  // Remembering the WideIV increment generated by SCEVExpander allows
1076  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1077  // employ a general reuse mechanism because the call above is the only call to
1078  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1079  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1080    WideInc =
1081      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1082    WideIncExpr = SE->getSCEV(WideInc);
1083  }
1084
1085  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1086  ++NumWidened;
1087
1088  // Traverse the def-use chain using a worklist starting at the original IV.
1089  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1090
1091  Widened.insert(OrigPhi);
1092  pushNarrowIVUsers(OrigPhi, WidePhi);
1093
1094  while (!NarrowIVUsers.empty()) {
1095    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1096
1097    // Process a def-use edge. This may replace the use, so don't hold a
1098    // use_iterator across it.
1099    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1100
1101    // Follow all def-use edges from the previous narrow use.
1102    if (WideUse)
1103      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1104
1105    // WidenIVUse may have removed the def-use edge.
1106    if (DU.NarrowDef->use_empty())
1107      DeadInsts.push_back(DU.NarrowDef);
1108  }
1109  return WidePhi;
1110}
1111
1112//===----------------------------------------------------------------------===//
1113//  Live IV Reduction - Minimize IVs live across the loop.
1114//===----------------------------------------------------------------------===//
1115
1116
1117//===----------------------------------------------------------------------===//
1118//  Simplification of IV users based on SCEV evaluation.
1119//===----------------------------------------------------------------------===//
1120
1121namespace {
1122  class IndVarSimplifyVisitor : public IVVisitor {
1123    ScalarEvolution *SE;
1124    const DataLayout *DL;
1125    PHINode *IVPhi;
1126
1127  public:
1128    WideIVInfo WI;
1129
1130    IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1131                          const DataLayout *DL, const DominatorTree *DTree):
1132      SE(SCEV), DL(DL), IVPhi(IV) {
1133      DT = DTree;
1134      WI.NarrowIV = IVPhi;
1135      if (ReduceLiveIVs)
1136        setSplitOverflowIntrinsics();
1137    }
1138
1139    // Implement the interface used by simplifyUsersOfIV.
1140    void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, DL); }
1141  };
1142}
1143
1144/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1145/// users. Each successive simplification may push more users which may
1146/// themselves be candidates for simplification.
1147///
1148/// Sign/Zero extend elimination is interleaved with IV simplification.
1149///
1150void IndVarSimplify::SimplifyAndExtend(Loop *L,
1151                                       SCEVExpander &Rewriter,
1152                                       LPPassManager &LPM) {
1153  SmallVector<WideIVInfo, 8> WideIVs;
1154
1155  SmallVector<PHINode*, 8> LoopPhis;
1156  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1157    LoopPhis.push_back(cast<PHINode>(I));
1158  }
1159  // Each round of simplification iterates through the SimplifyIVUsers worklist
1160  // for all current phis, then determines whether any IVs can be
1161  // widened. Widening adds new phis to LoopPhis, inducing another round of
1162  // simplification on the wide IVs.
1163  while (!LoopPhis.empty()) {
1164    // Evaluate as many IV expressions as possible before widening any IVs. This
1165    // forces SCEV to set no-wrap flags before evaluating sign/zero
1166    // extension. The first time SCEV attempts to normalize sign/zero extension,
1167    // the result becomes final. So for the most predictable results, we delay
1168    // evaluation of sign/zero extend evaluation until needed, and avoid running
1169    // other SCEV based analysis prior to SimplifyAndExtend.
1170    do {
1171      PHINode *CurrIV = LoopPhis.pop_back_val();
1172
1173      // Information about sign/zero extensions of CurrIV.
1174      IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT);
1175
1176      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
1177
1178      if (Visitor.WI.WidestNativeType) {
1179        WideIVs.push_back(Visitor.WI);
1180      }
1181    } while(!LoopPhis.empty());
1182
1183    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1184      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1185      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1186        Changed = true;
1187        LoopPhis.push_back(WidePhi);
1188      }
1189    }
1190  }
1191}
1192
1193//===----------------------------------------------------------------------===//
1194//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1195//===----------------------------------------------------------------------===//
1196
1197/// Check for expressions that ScalarEvolution generates to compute
1198/// BackedgeTakenInfo. If these expressions have not been reduced, then
1199/// expanding them may incur additional cost (albeit in the loop preheader).
1200static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1201                                SmallPtrSet<const SCEV*, 8> &Processed,
1202                                ScalarEvolution *SE) {
1203  if (!Processed.insert(S))
1204    return false;
1205
1206  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1207  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1208  // precise expression, rather than a UDiv from the user's code. If we can't
1209  // find a UDiv in the code with some simple searching, assume the former and
1210  // forego rewriting the loop.
1211  if (isa<SCEVUDivExpr>(S)) {
1212    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1213    if (!OrigCond) return true;
1214    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1215    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1216    if (R != S) {
1217      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1218      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1219      if (L != S)
1220        return true;
1221    }
1222  }
1223
1224  // Recurse past add expressions, which commonly occur in the
1225  // BackedgeTakenCount. They may already exist in program code, and if not,
1226  // they are not too expensive rematerialize.
1227  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1228    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1229         I != E; ++I) {
1230      if (isHighCostExpansion(*I, BI, Processed, SE))
1231        return true;
1232    }
1233    return false;
1234  }
1235
1236  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1237  // the exit condition.
1238  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1239    return true;
1240
1241  // If we haven't recognized an expensive SCEV pattern, assume it's an
1242  // expression produced by program code.
1243  return false;
1244}
1245
1246/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1247/// count expression can be safely and cheaply expanded into an instruction
1248/// sequence that can be used by LinearFunctionTestReplace.
1249///
1250/// TODO: This fails for pointer-type loop counters with greater than one byte
1251/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1252/// we could skip this check in the case that the LFTR loop counter (chosen by
1253/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1254/// the loop test to an inequality test by checking the target data's alignment
1255/// of element types (given that the initial pointer value originates from or is
1256/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1257/// However, we don't yet have a strong motivation for converting loop tests
1258/// into inequality tests.
1259static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1260  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1261  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1262      BackedgeTakenCount->isZero())
1263    return false;
1264
1265  if (!L->getExitingBlock())
1266    return false;
1267
1268  // Can't rewrite non-branch yet.
1269  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1270  if (!BI)
1271    return false;
1272
1273  SmallPtrSet<const SCEV*, 8> Processed;
1274  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1275    return false;
1276
1277  return true;
1278}
1279
1280/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1281/// invariant value to the phi.
1282static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1283  Instruction *IncI = dyn_cast<Instruction>(IncV);
1284  if (!IncI)
1285    return 0;
1286
1287  switch (IncI->getOpcode()) {
1288  case Instruction::Add:
1289  case Instruction::Sub:
1290    break;
1291  case Instruction::GetElementPtr:
1292    // An IV counter must preserve its type.
1293    if (IncI->getNumOperands() == 2)
1294      break;
1295  default:
1296    return 0;
1297  }
1298
1299  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1300  if (Phi && Phi->getParent() == L->getHeader()) {
1301    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1302      return Phi;
1303    return 0;
1304  }
1305  if (IncI->getOpcode() == Instruction::GetElementPtr)
1306    return 0;
1307
1308  // Allow add/sub to be commuted.
1309  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1310  if (Phi && Phi->getParent() == L->getHeader()) {
1311    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1312      return Phi;
1313  }
1314  return 0;
1315}
1316
1317/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1318static ICmpInst *getLoopTest(Loop *L) {
1319  assert(L->getExitingBlock() && "expected loop exit");
1320
1321  BasicBlock *LatchBlock = L->getLoopLatch();
1322  // Don't bother with LFTR if the loop is not properly simplified.
1323  if (!LatchBlock)
1324    return 0;
1325
1326  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1327  assert(BI && "expected exit branch");
1328
1329  return dyn_cast<ICmpInst>(BI->getCondition());
1330}
1331
1332/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1333/// that the current exit test is already sufficiently canonical.
1334static bool needsLFTR(Loop *L, DominatorTree *DT) {
1335  // Do LFTR to simplify the exit condition to an ICMP.
1336  ICmpInst *Cond = getLoopTest(L);
1337  if (!Cond)
1338    return true;
1339
1340  // Do LFTR to simplify the exit ICMP to EQ/NE
1341  ICmpInst::Predicate Pred = Cond->getPredicate();
1342  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1343    return true;
1344
1345  // Look for a loop invariant RHS
1346  Value *LHS = Cond->getOperand(0);
1347  Value *RHS = Cond->getOperand(1);
1348  if (!isLoopInvariant(RHS, L, DT)) {
1349    if (!isLoopInvariant(LHS, L, DT))
1350      return true;
1351    std::swap(LHS, RHS);
1352  }
1353  // Look for a simple IV counter LHS
1354  PHINode *Phi = dyn_cast<PHINode>(LHS);
1355  if (!Phi)
1356    Phi = getLoopPhiForCounter(LHS, L, DT);
1357
1358  if (!Phi)
1359    return true;
1360
1361  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1362  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1363  if (Idx < 0)
1364    return true;
1365
1366  // Do LFTR if the exit condition's IV is *not* a simple counter.
1367  Value *IncV = Phi->getIncomingValue(Idx);
1368  return Phi != getLoopPhiForCounter(IncV, L, DT);
1369}
1370
1371/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1372/// down to checking that all operands are constant and listing instructions
1373/// that may hide undef.
1374static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1375                               unsigned Depth) {
1376  if (isa<Constant>(V))
1377    return !isa<UndefValue>(V);
1378
1379  if (Depth >= 6)
1380    return false;
1381
1382  // Conservatively handle non-constant non-instructions. For example, Arguments
1383  // may be undef.
1384  Instruction *I = dyn_cast<Instruction>(V);
1385  if (!I)
1386    return false;
1387
1388  // Load and return values may be undef.
1389  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1390    return false;
1391
1392  // Optimistically handle other instructions.
1393  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1394    if (!Visited.insert(*OI))
1395      continue;
1396    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1397      return false;
1398  }
1399  return true;
1400}
1401
1402/// Return true if the given value is concrete. We must prove that undef can
1403/// never reach it.
1404///
1405/// TODO: If we decide that this is a good approach to checking for undef, we
1406/// may factor it into a common location.
1407static bool hasConcreteDef(Value *V) {
1408  SmallPtrSet<Value*, 8> Visited;
1409  Visited.insert(V);
1410  return hasConcreteDefImpl(V, Visited, 0);
1411}
1412
1413/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1414/// be rewritten) loop exit test.
1415static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1416  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1417  Value *IncV = Phi->getIncomingValue(LatchIdx);
1418
1419  for (User *U : Phi->users())
1420    if (U != Cond && U != IncV) return false;
1421
1422  for (User *U : IncV->users())
1423    if (U != Cond && U != Phi) return false;
1424  return true;
1425}
1426
1427/// FindLoopCounter - Find an affine IV in canonical form.
1428///
1429/// BECount may be an i8* pointer type. The pointer difference is already
1430/// valid count without scaling the address stride, so it remains a pointer
1431/// expression as far as SCEV is concerned.
1432///
1433/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1434///
1435/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1436///
1437/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1438/// This is difficult in general for SCEV because of potential overflow. But we
1439/// could at least handle constant BECounts.
1440static PHINode *
1441FindLoopCounter(Loop *L, const SCEV *BECount,
1442                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
1443  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1444
1445  Value *Cond =
1446    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1447
1448  // Loop over all of the PHI nodes, looking for a simple counter.
1449  PHINode *BestPhi = 0;
1450  const SCEV *BestInit = 0;
1451  BasicBlock *LatchBlock = L->getLoopLatch();
1452  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1453
1454  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1455    PHINode *Phi = cast<PHINode>(I);
1456    if (!SE->isSCEVable(Phi->getType()))
1457      continue;
1458
1459    // Avoid comparing an integer IV against a pointer Limit.
1460    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1461      continue;
1462
1463    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1464    if (!AR || AR->getLoop() != L || !AR->isAffine())
1465      continue;
1466
1467    // AR may be a pointer type, while BECount is an integer type.
1468    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1469    // AR may not be a narrower type, or we may never exit.
1470    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1471    if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
1472      continue;
1473
1474    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1475    if (!Step || !Step->isOne())
1476      continue;
1477
1478    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1479    Value *IncV = Phi->getIncomingValue(LatchIdx);
1480    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1481      continue;
1482
1483    // Avoid reusing a potentially undef value to compute other values that may
1484    // have originally had a concrete definition.
1485    if (!hasConcreteDef(Phi)) {
1486      // We explicitly allow unknown phis as long as they are already used by
1487      // the loop test. In this case we assume that performing LFTR could not
1488      // increase the number of undef users.
1489      if (ICmpInst *Cond = getLoopTest(L)) {
1490        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1491            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1492          continue;
1493        }
1494      }
1495    }
1496    const SCEV *Init = AR->getStart();
1497
1498    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1499      // Don't force a live loop counter if another IV can be used.
1500      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1501        continue;
1502
1503      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1504      // also prefers integer to pointer IVs.
1505      if (BestInit->isZero() != Init->isZero()) {
1506        if (BestInit->isZero())
1507          continue;
1508      }
1509      // If two IVs both count from zero or both count from nonzero then the
1510      // narrower is likely a dead phi that has been widened. Use the wider phi
1511      // to allow the other to be eliminated.
1512      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1513        continue;
1514    }
1515    BestPhi = Phi;
1516    BestInit = Init;
1517  }
1518  return BestPhi;
1519}
1520
1521/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1522/// holds the RHS of the new loop test.
1523static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1524                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1525  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1526  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1527  const SCEV *IVInit = AR->getStart();
1528
1529  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1530  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1531  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1532  // the existing GEPs whenever possible.
1533  if (IndVar->getType()->isPointerTy()
1534      && !IVCount->getType()->isPointerTy()) {
1535
1536    // IVOffset will be the new GEP offset that is interpreted by GEP as a
1537    // signed value. IVCount on the other hand represents the loop trip count,
1538    // which is an unsigned value. FindLoopCounter only allows induction
1539    // variables that have a positive unit stride of one. This means we don't
1540    // have to handle the case of negative offsets (yet) and just need to zero
1541    // extend IVCount.
1542    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1543    const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1544
1545    // Expand the code for the iteration count.
1546    assert(SE->isLoopInvariant(IVOffset, L) &&
1547           "Computed iteration count is not loop invariant!");
1548    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1549    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1550
1551    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1552    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1553    // We could handle pointer IVs other than i8*, but we need to compensate for
1554    // gep index scaling. See canExpandBackedgeTakenCount comments.
1555    assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1556             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1557           && "unit stride pointer IV must be i8*");
1558
1559    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1560    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1561  }
1562  else {
1563    // In any other case, convert both IVInit and IVCount to integers before
1564    // comparing. This may result in SCEV expension of pointers, but in practice
1565    // SCEV will fold the pointer arithmetic away as such:
1566    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1567    //
1568    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1569    // for simple memset-style loops.
1570    //
1571    // IVInit integer and IVCount pointer would only occur if a canonical IV
1572    // were generated on top of case #2, which is not expected.
1573
1574    const SCEV *IVLimit = 0;
1575    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1576    // For non-zero Start, compute IVCount here.
1577    if (AR->getStart()->isZero())
1578      IVLimit = IVCount;
1579    else {
1580      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1581      const SCEV *IVInit = AR->getStart();
1582
1583      // For integer IVs, truncate the IV before computing IVInit + BECount.
1584      if (SE->getTypeSizeInBits(IVInit->getType())
1585          > SE->getTypeSizeInBits(IVCount->getType()))
1586        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1587
1588      IVLimit = SE->getAddExpr(IVInit, IVCount);
1589    }
1590    // Expand the code for the iteration count.
1591    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1592    IRBuilder<> Builder(BI);
1593    assert(SE->isLoopInvariant(IVLimit, L) &&
1594           "Computed iteration count is not loop invariant!");
1595    // Ensure that we generate the same type as IndVar, or a smaller integer
1596    // type. In the presence of null pointer values, we have an integer type
1597    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1598    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1599      IndVar->getType() : IVCount->getType();
1600    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1601  }
1602}
1603
1604/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1605/// loop to be a canonical != comparison against the incremented loop induction
1606/// variable.  This pass is able to rewrite the exit tests of any loop where the
1607/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1608/// is actually a much broader range than just linear tests.
1609Value *IndVarSimplify::
1610LinearFunctionTestReplace(Loop *L,
1611                          const SCEV *BackedgeTakenCount,
1612                          PHINode *IndVar,
1613                          SCEVExpander &Rewriter) {
1614  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1615
1616  // Initialize CmpIndVar and IVCount to their preincremented values.
1617  Value *CmpIndVar = IndVar;
1618  const SCEV *IVCount = BackedgeTakenCount;
1619
1620  // If the exiting block is the same as the backedge block, we prefer to
1621  // compare against the post-incremented value, otherwise we must compare
1622  // against the preincremented value.
1623  if (L->getExitingBlock() == L->getLoopLatch()) {
1624    // Add one to the "backedge-taken" count to get the trip count.
1625    // This addition may overflow, which is valid as long as the comparison is
1626    // truncated to BackedgeTakenCount->getType().
1627    IVCount = SE->getAddExpr(BackedgeTakenCount,
1628                             SE->getConstant(BackedgeTakenCount->getType(), 1));
1629    // The BackedgeTaken expression contains the number of times that the
1630    // backedge branches to the loop header.  This is one less than the
1631    // number of times the loop executes, so use the incremented indvar.
1632    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1633  }
1634
1635  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1636  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1637         && "genLoopLimit missed a cast");
1638
1639  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1640  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1641  ICmpInst::Predicate P;
1642  if (L->contains(BI->getSuccessor(0)))
1643    P = ICmpInst::ICMP_NE;
1644  else
1645    P = ICmpInst::ICMP_EQ;
1646
1647  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1648               << "      LHS:" << *CmpIndVar << '\n'
1649               << "       op:\t"
1650               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1651               << "      RHS:\t" << *ExitCnt << "\n"
1652               << "  IVCount:\t" << *IVCount << "\n");
1653
1654  IRBuilder<> Builder(BI);
1655
1656  // LFTR can ignore IV overflow and truncate to the width of
1657  // BECount. This avoids materializing the add(zext(add)) expression.
1658  unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1659  unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1660  if (CmpIndVarSize > ExitCntSize) {
1661    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1662    const SCEV *ARStart = AR->getStart();
1663    const SCEV *ARStep = AR->getStepRecurrence(*SE);
1664    // For constant IVCount, avoid truncation.
1665    if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1666      const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1667      APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1668      // Note that the post-inc value of BackedgeTakenCount may have overflowed
1669      // above such that IVCount is now zero.
1670      if (IVCount != BackedgeTakenCount && Count == 0) {
1671        Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1672        ++Count;
1673      }
1674      else
1675        Count = Count.zext(CmpIndVarSize);
1676      APInt NewLimit;
1677      if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1678        NewLimit = Start - Count;
1679      else
1680        NewLimit = Start + Count;
1681      ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1682
1683      DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1684    } else {
1685      CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1686                                      "lftr.wideiv");
1687    }
1688  }
1689  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1690  Value *OrigCond = BI->getCondition();
1691  // It's tempting to use replaceAllUsesWith here to fully replace the old
1692  // comparison, but that's not immediately safe, since users of the old
1693  // comparison may not be dominated by the new comparison. Instead, just
1694  // update the branch to use the new comparison; in the common case this
1695  // will make old comparison dead.
1696  BI->setCondition(Cond);
1697  DeadInsts.push_back(OrigCond);
1698
1699  ++NumLFTR;
1700  Changed = true;
1701  return Cond;
1702}
1703
1704//===----------------------------------------------------------------------===//
1705//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1706//===----------------------------------------------------------------------===//
1707
1708/// If there's a single exit block, sink any loop-invariant values that
1709/// were defined in the preheader but not used inside the loop into the
1710/// exit block to reduce register pressure in the loop.
1711void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1712  BasicBlock *ExitBlock = L->getExitBlock();
1713  if (!ExitBlock) return;
1714
1715  BasicBlock *Preheader = L->getLoopPreheader();
1716  if (!Preheader) return;
1717
1718  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1719  BasicBlock::iterator I = Preheader->getTerminator();
1720  while (I != Preheader->begin()) {
1721    --I;
1722    // New instructions were inserted at the end of the preheader.
1723    if (isa<PHINode>(I))
1724      break;
1725
1726    // Don't move instructions which might have side effects, since the side
1727    // effects need to complete before instructions inside the loop.  Also don't
1728    // move instructions which might read memory, since the loop may modify
1729    // memory. Note that it's okay if the instruction might have undefined
1730    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1731    // block.
1732    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1733      continue;
1734
1735    // Skip debug info intrinsics.
1736    if (isa<DbgInfoIntrinsic>(I))
1737      continue;
1738
1739    // Skip landingpad instructions.
1740    if (isa<LandingPadInst>(I))
1741      continue;
1742
1743    // Don't sink alloca: we never want to sink static alloca's out of the
1744    // entry block, and correctly sinking dynamic alloca's requires
1745    // checks for stacksave/stackrestore intrinsics.
1746    // FIXME: Refactor this check somehow?
1747    if (isa<AllocaInst>(I))
1748      continue;
1749
1750    // Determine if there is a use in or before the loop (direct or
1751    // otherwise).
1752    bool UsedInLoop = false;
1753    for (Use &U : I->uses()) {
1754      Instruction *User = cast<Instruction>(U.getUser());
1755      BasicBlock *UseBB = User->getParent();
1756      if (PHINode *P = dyn_cast<PHINode>(User)) {
1757        unsigned i =
1758          PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1759        UseBB = P->getIncomingBlock(i);
1760      }
1761      if (UseBB == Preheader || L->contains(UseBB)) {
1762        UsedInLoop = true;
1763        break;
1764      }
1765    }
1766
1767    // If there is, the def must remain in the preheader.
1768    if (UsedInLoop)
1769      continue;
1770
1771    // Otherwise, sink it to the exit block.
1772    Instruction *ToMove = I;
1773    bool Done = false;
1774
1775    if (I != Preheader->begin()) {
1776      // Skip debug info intrinsics.
1777      do {
1778        --I;
1779      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1780
1781      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1782        Done = true;
1783    } else {
1784      Done = true;
1785    }
1786
1787    ToMove->moveBefore(InsertPt);
1788    if (Done) break;
1789    InsertPt = ToMove;
1790  }
1791}
1792
1793//===----------------------------------------------------------------------===//
1794//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1795//===----------------------------------------------------------------------===//
1796
1797bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1798  if (skipOptnoneFunction(L))
1799    return false;
1800
1801  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1802  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1803  //    canonicalization can be a pessimization without LSR to "clean up"
1804  //    afterwards.
1805  //  - We depend on having a preheader; in particular,
1806  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1807  //    and we're in trouble if we can't find the induction variable even when
1808  //    we've manually inserted one.
1809  if (!L->isLoopSimplifyForm())
1810    return false;
1811
1812  LI = &getAnalysis<LoopInfo>();
1813  SE = &getAnalysis<ScalarEvolution>();
1814  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1815  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1816  DL = DLP ? &DLP->getDataLayout() : 0;
1817  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1818
1819  DeadInsts.clear();
1820  Changed = false;
1821
1822  // If there are any floating-point recurrences, attempt to
1823  // transform them to use integer recurrences.
1824  RewriteNonIntegerIVs(L);
1825
1826  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1827
1828  // Create a rewriter object which we'll use to transform the code with.
1829  SCEVExpander Rewriter(*SE, "indvars");
1830#ifndef NDEBUG
1831  Rewriter.setDebugType(DEBUG_TYPE);
1832#endif
1833
1834  // Eliminate redundant IV users.
1835  //
1836  // Simplification works best when run before other consumers of SCEV. We
1837  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1838  // other expressions involving loop IVs have been evaluated. This helps SCEV
1839  // set no-wrap flags before normalizing sign/zero extension.
1840  Rewriter.disableCanonicalMode();
1841  SimplifyAndExtend(L, Rewriter, LPM);
1842
1843  // Check to see if this loop has a computable loop-invariant execution count.
1844  // If so, this means that we can compute the final value of any expressions
1845  // that are recurrent in the loop, and substitute the exit values from the
1846  // loop into any instructions outside of the loop that use the final values of
1847  // the current expressions.
1848  //
1849  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1850    RewriteLoopExitValues(L, Rewriter);
1851
1852  // Eliminate redundant IV cycles.
1853  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1854
1855  // If we have a trip count expression, rewrite the loop's exit condition
1856  // using it.  We can currently only handle loops with a single exit.
1857  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1858    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
1859    if (IndVar) {
1860      // Check preconditions for proper SCEVExpander operation. SCEV does not
1861      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1862      // pass that uses the SCEVExpander must do it. This does not work well for
1863      // loop passes because SCEVExpander makes assumptions about all loops,
1864      // while LoopPassManager only forces the current loop to be simplified.
1865      //
1866      // FIXME: SCEV expansion has no way to bail out, so the caller must
1867      // explicitly check any assumptions made by SCEV. Brittle.
1868      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1869      if (!AR || AR->getLoop()->getLoopPreheader())
1870        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1871                                        Rewriter);
1872    }
1873  }
1874  // Clear the rewriter cache, because values that are in the rewriter's cache
1875  // can be deleted in the loop below, causing the AssertingVH in the cache to
1876  // trigger.
1877  Rewriter.clear();
1878
1879  // Now that we're done iterating through lists, clean up any instructions
1880  // which are now dead.
1881  while (!DeadInsts.empty())
1882    if (Instruction *Inst =
1883          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1884      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1885
1886  // The Rewriter may not be used from this point on.
1887
1888  // Loop-invariant instructions in the preheader that aren't used in the
1889  // loop may be sunk below the loop to reduce register pressure.
1890  SinkUnusedInvariants(L);
1891
1892  // Clean up dead instructions.
1893  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1894  // Check a post-condition.
1895  assert(L->isLCSSAForm(*DT) &&
1896         "Indvars did not leave the loop in lcssa form!");
1897
1898  // Verify that LFTR, and any other change have not interfered with SCEV's
1899  // ability to compute trip count.
1900#ifndef NDEBUG
1901  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1902    SE->forgetLoop(L);
1903    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1904    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1905        SE->getTypeSizeInBits(NewBECount->getType()))
1906      NewBECount = SE->getTruncateOrNoop(NewBECount,
1907                                         BackedgeTakenCount->getType());
1908    else
1909      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1910                                                 NewBECount->getType());
1911    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1912  }
1913#endif
1914
1915  return Changed;
1916}
1917