IndVarSimplify.cpp revision 814f2b2d1927a5397c0e923588527277b9f67d6b
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Type.h"
48#include "llvm/Analysis/Dominators.h"
49#include "llvm/Analysis/IVUsers.h"
50#include "llvm/Analysis/ScalarEvolutionExpander.h"
51#include "llvm/Analysis/LoopInfo.h"
52#include "llvm/Analysis/LoopPass.h"
53#include "llvm/Support/CFG.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/raw_ostream.h"
57#include "llvm/Transforms/Utils/Local.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include "llvm/ADT/SmallVector.h"
60#include "llvm/ADT/Statistic.h"
61#include "llvm/ADT/STLExtras.h"
62using namespace llvm;
63
64STATISTIC(NumRemoved , "Number of aux indvars removed");
65STATISTIC(NumInserted, "Number of canonical indvars added");
66STATISTIC(NumReplaced, "Number of exit values replaced");
67STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
68
69namespace {
70  class IndVarSimplify : public LoopPass {
71    IVUsers         *IU;
72    LoopInfo        *LI;
73    ScalarEvolution *SE;
74    DominatorTree   *DT;
75    bool Changed;
76  public:
77
78    static char ID; // Pass identification, replacement for typeid
79    IndVarSimplify() : LoopPass(&ID) {}
80
81    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
82
83    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
84      AU.addRequired<DominatorTree>();
85      AU.addRequired<LoopInfo>();
86      AU.addRequired<ScalarEvolution>();
87      AU.addRequiredID(LoopSimplifyID);
88      AU.addRequiredID(LCSSAID);
89      AU.addRequired<IVUsers>();
90      AU.addPreserved<ScalarEvolution>();
91      AU.addPreservedID(LoopSimplifyID);
92      AU.addPreservedID(LCSSAID);
93      AU.addPreserved<IVUsers>();
94      AU.setPreservesCFG();
95    }
96
97  private:
98
99    void RewriteNonIntegerIVs(Loop *L);
100
101    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
102                                   Value *IndVar,
103                                   BasicBlock *ExitingBlock,
104                                   BranchInst *BI,
105                                   SCEVExpander &Rewriter);
106    void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount,
107                               SCEVExpander &Rewriter);
108
109    void RewriteIVExpressions(Loop *L, const Type *LargestType,
110                              SCEVExpander &Rewriter);
111
112    void SinkUnusedInvariants(Loop *L);
113
114    void HandleFloatingPointIV(Loop *L, PHINode *PH);
115  };
116}
117
118char IndVarSimplify::ID = 0;
119static RegisterPass<IndVarSimplify>
120X("indvars", "Canonicalize Induction Variables");
121
122Pass *llvm::createIndVarSimplifyPass() {
123  return new IndVarSimplify();
124}
125
126/// LinearFunctionTestReplace - This method rewrites the exit condition of the
127/// loop to be a canonical != comparison against the incremented loop induction
128/// variable.  This pass is able to rewrite the exit tests of any loop where the
129/// SCEV analysis can determine a loop-invariant trip count of the loop, which
130/// is actually a much broader range than just linear tests.
131ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
132                                   const SCEV *BackedgeTakenCount,
133                                   Value *IndVar,
134                                   BasicBlock *ExitingBlock,
135                                   BranchInst *BI,
136                                   SCEVExpander &Rewriter) {
137  // If the exiting block is not the same as the backedge block, we must compare
138  // against the preincremented value, otherwise we prefer to compare against
139  // the post-incremented value.
140  Value *CmpIndVar;
141  const SCEV *RHS = BackedgeTakenCount;
142  if (ExitingBlock == L->getLoopLatch()) {
143    // Add one to the "backedge-taken" count to get the trip count.
144    // If this addition may overflow, we have to be more pessimistic and
145    // cast the induction variable before doing the add.
146    const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
147    const SCEV *N =
148      SE->getAddExpr(BackedgeTakenCount,
149                     SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
150    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
151        SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
152      // No overflow. Cast the sum.
153      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
154    } else {
155      // Potential overflow. Cast before doing the add.
156      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
157                                        IndVar->getType());
158      RHS = SE->getAddExpr(RHS,
159                           SE->getIntegerSCEV(1, IndVar->getType()));
160    }
161
162    // The BackedgeTaken expression contains the number of times that the
163    // backedge branches to the loop header.  This is one less than the
164    // number of times the loop executes, so use the incremented indvar.
165    CmpIndVar = L->getCanonicalInductionVariableIncrement();
166  } else {
167    // We have to use the preincremented value...
168    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
169                                      IndVar->getType());
170    CmpIndVar = IndVar;
171  }
172
173  // Expand the code for the iteration count.
174  assert(RHS->isLoopInvariant(L) &&
175         "Computed iteration count is not loop invariant!");
176  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
177
178  // Insert a new icmp_ne or icmp_eq instruction before the branch.
179  ICmpInst::Predicate Opcode;
180  if (L->contains(BI->getSuccessor(0)))
181    Opcode = ICmpInst::ICMP_NE;
182  else
183    Opcode = ICmpInst::ICMP_EQ;
184
185  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
186               << "      LHS:" << *CmpIndVar << '\n'
187               << "       op:\t"
188               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
189               << "      RHS:\t" << *RHS << "\n");
190
191  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
192
193  Instruction *OrigCond = cast<Instruction>(BI->getCondition());
194  // It's tempting to use replaceAllUsesWith here to fully replace the old
195  // comparison, but that's not immediately safe, since users of the old
196  // comparison may not be dominated by the new comparison. Instead, just
197  // update the branch to use the new comparison; in the common case this
198  // will make old comparison dead.
199  BI->setCondition(Cond);
200  RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
201
202  ++NumLFTR;
203  Changed = true;
204  return Cond;
205}
206
207/// RewriteLoopExitValues - Check to see if this loop has a computable
208/// loop-invariant execution count.  If so, this means that we can compute the
209/// final value of any expressions that are recurrent in the loop, and
210/// substitute the exit values from the loop into any instructions outside of
211/// the loop that use the final values of the current expressions.
212///
213/// This is mostly redundant with the regular IndVarSimplify activities that
214/// happen later, except that it's more powerful in some cases, because it's
215/// able to brute-force evaluate arbitrary instructions as long as they have
216/// constant operands at the beginning of the loop.
217void IndVarSimplify::RewriteLoopExitValues(Loop *L,
218                                           const SCEV *BackedgeTakenCount,
219                                           SCEVExpander &Rewriter) {
220  // Verify the input to the pass in already in LCSSA form.
221  assert(L->isLCSSAForm());
222
223  SmallVector<BasicBlock*, 8> ExitBlocks;
224  L->getUniqueExitBlocks(ExitBlocks);
225
226  // Find all values that are computed inside the loop, but used outside of it.
227  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
228  // the exit blocks of the loop to find them.
229  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
230    BasicBlock *ExitBB = ExitBlocks[i];
231
232    // If there are no PHI nodes in this exit block, then no values defined
233    // inside the loop are used on this path, skip it.
234    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
235    if (!PN) continue;
236
237    unsigned NumPreds = PN->getNumIncomingValues();
238
239    // Iterate over all of the PHI nodes.
240    BasicBlock::iterator BBI = ExitBB->begin();
241    while ((PN = dyn_cast<PHINode>(BBI++))) {
242      if (PN->use_empty())
243        continue; // dead use, don't replace it
244
245      // SCEV only supports integer expressions for now.
246      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
247        continue;
248
249      // Iterate over all of the values in all the PHI nodes.
250      for (unsigned i = 0; i != NumPreds; ++i) {
251        // If the value being merged in is not integer or is not defined
252        // in the loop, skip it.
253        Value *InVal = PN->getIncomingValue(i);
254        if (!isa<Instruction>(InVal))
255          continue;
256
257        // If this pred is for a subloop, not L itself, skip it.
258        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
259          continue; // The Block is in a subloop, skip it.
260
261        // Check that InVal is defined in the loop.
262        Instruction *Inst = cast<Instruction>(InVal);
263        if (!L->contains(Inst))
264          continue;
265
266        // Okay, this instruction has a user outside of the current loop
267        // and varies predictably *inside* the loop.  Evaluate the value it
268        // contains when the loop exits, if possible.
269        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
270        if (!ExitValue->isLoopInvariant(L))
271          continue;
272
273        Changed = true;
274        ++NumReplaced;
275
276        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
277
278        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
279                     << "  LoopVal = " << *Inst << "\n");
280
281        PN->setIncomingValue(i, ExitVal);
282
283        // If this instruction is dead now, delete it.
284        RecursivelyDeleteTriviallyDeadInstructions(Inst);
285
286        if (NumPreds == 1) {
287          // Completely replace a single-pred PHI. This is safe, because the
288          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
289          // node anymore.
290          PN->replaceAllUsesWith(ExitVal);
291          RecursivelyDeleteTriviallyDeadInstructions(PN);
292        }
293      }
294      if (NumPreds != 1) {
295        // Clone the PHI and delete the original one. This lets IVUsers and
296        // any other maps purge the original user from their records.
297        PHINode *NewPN = cast<PHINode>(PN->clone());
298        NewPN->takeName(PN);
299        NewPN->insertBefore(PN);
300        PN->replaceAllUsesWith(NewPN);
301        PN->eraseFromParent();
302      }
303    }
304  }
305}
306
307void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
308  // First step.  Check to see if there are any floating-point recurrences.
309  // If there are, change them into integer recurrences, permitting analysis by
310  // the SCEV routines.
311  //
312  BasicBlock *Header    = L->getHeader();
313
314  SmallVector<WeakVH, 8> PHIs;
315  for (BasicBlock::iterator I = Header->begin();
316       PHINode *PN = dyn_cast<PHINode>(I); ++I)
317    PHIs.push_back(PN);
318
319  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
320    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
321      HandleFloatingPointIV(L, PN);
322
323  // If the loop previously had floating-point IV, ScalarEvolution
324  // may not have been able to compute a trip count. Now that we've done some
325  // re-writing, the trip count may be computable.
326  if (Changed)
327    SE->forgetLoop(L);
328}
329
330bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
331  IU = &getAnalysis<IVUsers>();
332  LI = &getAnalysis<LoopInfo>();
333  SE = &getAnalysis<ScalarEvolution>();
334  DT = &getAnalysis<DominatorTree>();
335  Changed = false;
336
337  // If there are any floating-point recurrences, attempt to
338  // transform them to use integer recurrences.
339  RewriteNonIntegerIVs(L);
340
341  BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
342  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
343
344  // Create a rewriter object which we'll use to transform the code with.
345  SCEVExpander Rewriter(*SE);
346
347  // Check to see if this loop has a computable loop-invariant execution count.
348  // If so, this means that we can compute the final value of any expressions
349  // that are recurrent in the loop, and substitute the exit values from the
350  // loop into any instructions outside of the loop that use the final values of
351  // the current expressions.
352  //
353  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
354    RewriteLoopExitValues(L, BackedgeTakenCount, Rewriter);
355
356  // Compute the type of the largest recurrence expression, and decide whether
357  // a canonical induction variable should be inserted.
358  const Type *LargestType = 0;
359  bool NeedCannIV = false;
360  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
361    LargestType = BackedgeTakenCount->getType();
362    LargestType = SE->getEffectiveSCEVType(LargestType);
363    // If we have a known trip count and a single exit block, we'll be
364    // rewriting the loop exit test condition below, which requires a
365    // canonical induction variable.
366    if (ExitingBlock)
367      NeedCannIV = true;
368  }
369  for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
370    const Type *Ty =
371      SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
372    if (!LargestType ||
373        SE->getTypeSizeInBits(Ty) >
374          SE->getTypeSizeInBits(LargestType))
375      LargestType = Ty;
376    NeedCannIV = true;
377  }
378
379  // Now that we know the largest of the induction variable expressions
380  // in this loop, insert a canonical induction variable of the largest size.
381  Value *IndVar = 0;
382  if (NeedCannIV) {
383    // Check to see if the loop already has a canonical-looking induction
384    // variable. If one is present and it's wider than the planned canonical
385    // induction variable, temporarily remove it, so that the Rewriter
386    // doesn't attempt to reuse it.
387    PHINode *OldCannIV = L->getCanonicalInductionVariable();
388    if (OldCannIV) {
389      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
390          SE->getTypeSizeInBits(LargestType))
391        OldCannIV->removeFromParent();
392      else
393        OldCannIV = 0;
394    }
395
396    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
397
398    ++NumInserted;
399    Changed = true;
400    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
401
402    // Now that the official induction variable is established, reinsert
403    // the old canonical-looking variable after it so that the IR remains
404    // consistent. It will be deleted as part of the dead-PHI deletion at
405    // the end of the pass.
406    if (OldCannIV)
407      OldCannIV->insertAfter(cast<Instruction>(IndVar));
408  }
409
410  // If we have a trip count expression, rewrite the loop's exit condition
411  // using it.  We can currently only handle loops with a single exit.
412  ICmpInst *NewICmp = 0;
413  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
414    assert(NeedCannIV &&
415           "LinearFunctionTestReplace requires a canonical induction variable");
416    // Can't rewrite non-branch yet.
417    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
418      NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
419                                          ExitingBlock, BI, Rewriter);
420  }
421
422  // Rewrite IV-derived expressions. Clears the rewriter cache.
423  RewriteIVExpressions(L, LargestType, Rewriter);
424
425  // The Rewriter may not be used from this point on.
426
427  // Loop-invariant instructions in the preheader that aren't used in the
428  // loop may be sunk below the loop to reduce register pressure.
429  SinkUnusedInvariants(L);
430
431  // For completeness, inform IVUsers of the IV use in the newly-created
432  // loop exit test instruction.
433  if (NewICmp)
434    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
435
436  // Clean up dead instructions.
437  Changed |= DeleteDeadPHIs(L->getHeader());
438  // Check a post-condition.
439  assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
440  return Changed;
441}
442
443void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
444                                          SCEVExpander &Rewriter) {
445  SmallVector<WeakVH, 16> DeadInsts;
446
447  // Rewrite all induction variable expressions in terms of the canonical
448  // induction variable.
449  //
450  // If there were induction variables of other sizes or offsets, manually
451  // add the offsets to the primary induction variable and cast, avoiding
452  // the need for the code evaluation methods to insert induction variables
453  // of different sizes.
454  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
455    const SCEV *Stride = UI->getStride();
456    Value *Op = UI->getOperandValToReplace();
457    const Type *UseTy = Op->getType();
458    Instruction *User = UI->getUser();
459
460    // Compute the final addrec to expand into code.
461    const SCEV *AR = IU->getReplacementExpr(*UI);
462
463    // Evaluate the expression out of the loop, if possible.
464    if (!L->contains(UI->getUser())) {
465      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
466      if (ExitVal->isLoopInvariant(L))
467        AR = ExitVal;
468    }
469
470    // FIXME: It is an extremely bad idea to indvar substitute anything more
471    // complex than affine induction variables.  Doing so will put expensive
472    // polynomial evaluations inside of the loop, and the str reduction pass
473    // currently can only reduce affine polynomials.  For now just disable
474    // indvar subst on anything more complex than an affine addrec, unless
475    // it can be expanded to a trivial value.
476    if (!AR->isLoopInvariant(L) && !Stride->isLoopInvariant(L))
477      continue;
478
479    // Determine the insertion point for this user. By default, insert
480    // immediately before the user. The SCEVExpander class will automatically
481    // hoist loop invariants out of the loop. For PHI nodes, there may be
482    // multiple uses, so compute the nearest common dominator for the
483    // incoming blocks.
484    Instruction *InsertPt = User;
485    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
486      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
487        if (PHI->getIncomingValue(i) == Op) {
488          if (InsertPt == User)
489            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
490          else
491            InsertPt =
492              DT->findNearestCommonDominator(InsertPt->getParent(),
493                                             PHI->getIncomingBlock(i))
494                    ->getTerminator();
495        }
496
497    // Now expand it into actual Instructions and patch it into place.
498    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
499
500    // Patch the new value into place.
501    if (Op->hasName())
502      NewVal->takeName(Op);
503    User->replaceUsesOfWith(Op, NewVal);
504    UI->setOperandValToReplace(NewVal);
505    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
506                 << "   into = " << *NewVal << "\n");
507    ++NumRemoved;
508    Changed = true;
509
510    // The old value may be dead now.
511    DeadInsts.push_back(Op);
512  }
513
514  // Clear the rewriter cache, because values that are in the rewriter's cache
515  // can be deleted in the loop below, causing the AssertingVH in the cache to
516  // trigger.
517  Rewriter.clear();
518  // Now that we're done iterating through lists, clean up any instructions
519  // which are now dead.
520  while (!DeadInsts.empty())
521    if (Instruction *Inst =
522          dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
523      RecursivelyDeleteTriviallyDeadInstructions(Inst);
524}
525
526/// If there's a single exit block, sink any loop-invariant values that
527/// were defined in the preheader but not used inside the loop into the
528/// exit block to reduce register pressure in the loop.
529void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
530  BasicBlock *ExitBlock = L->getExitBlock();
531  if (!ExitBlock) return;
532
533  BasicBlock *Preheader = L->getLoopPreheader();
534  if (!Preheader) return;
535
536  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
537  BasicBlock::iterator I = Preheader->getTerminator();
538  while (I != Preheader->begin()) {
539    --I;
540    // New instructions were inserted at the end of the preheader.
541    if (isa<PHINode>(I))
542      break;
543    // Don't move instructions which might have side effects, since the side
544    // effects need to complete before instructions inside the loop.  Also
545    // don't move instructions which might read memory, since the loop may
546    // modify memory. Note that it's okay if the instruction might have
547    // undefined behavior: LoopSimplify guarantees that the preheader
548    // dominates the exit block.
549    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
550      continue;
551    // Don't sink static AllocaInsts out of the entry block, which would
552    // turn them into dynamic allocas!
553    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
554      if (AI->isStaticAlloca())
555        continue;
556    // Determine if there is a use in or before the loop (direct or
557    // otherwise).
558    bool UsedInLoop = false;
559    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
560         UI != UE; ++UI) {
561      BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
562      if (PHINode *P = dyn_cast<PHINode>(UI)) {
563        unsigned i =
564          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
565        UseBB = P->getIncomingBlock(i);
566      }
567      if (UseBB == Preheader || L->contains(UseBB)) {
568        UsedInLoop = true;
569        break;
570      }
571    }
572    // If there is, the def must remain in the preheader.
573    if (UsedInLoop)
574      continue;
575    // Otherwise, sink it to the exit block.
576    Instruction *ToMove = I;
577    bool Done = false;
578    if (I != Preheader->begin())
579      --I;
580    else
581      Done = true;
582    ToMove->moveBefore(InsertPt);
583    if (Done)
584      break;
585    InsertPt = ToMove;
586  }
587}
588
589/// Return true if it is OK to use SIToFPInst for an inducation variable
590/// with given inital and exit values.
591static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
592                          uint64_t intIV, uint64_t intEV) {
593
594  if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
595    return true;
596
597  // If the iteration range can be handled by SIToFPInst then use it.
598  APInt Max = APInt::getSignedMaxValue(32);
599  if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
600    return true;
601
602  return false;
603}
604
605/// convertToInt - Convert APF to an integer, if possible.
606static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
607
608  bool isExact = false;
609  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
610    return false;
611  if (APF.convertToInteger(intVal, 32, APF.isNegative(),
612                           APFloat::rmTowardZero, &isExact)
613      != APFloat::opOK)
614    return false;
615  if (!isExact)
616    return false;
617  return true;
618
619}
620
621/// HandleFloatingPointIV - If the loop has floating induction variable
622/// then insert corresponding integer induction variable if possible.
623/// For example,
624/// for(double i = 0; i < 10000; ++i)
625///   bar(i)
626/// is converted into
627/// for(int i = 0; i < 10000; ++i)
628///   bar((double)i);
629///
630void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
631
632  unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
633  unsigned BackEdge     = IncomingEdge^1;
634
635  // Check incoming value.
636  ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
637  if (!InitValue) return;
638  uint64_t newInitValue =
639              Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
640  if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
641    return;
642
643  // Check IV increment. Reject this PH if increement operation is not
644  // an add or increment value can not be represented by an integer.
645  BinaryOperator *Incr =
646    dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
647  if (!Incr) return;
648  if (Incr->getOpcode() != Instruction::FAdd) return;
649  ConstantFP *IncrValue = NULL;
650  unsigned IncrVIndex = 1;
651  if (Incr->getOperand(1) == PH)
652    IncrVIndex = 0;
653  IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
654  if (!IncrValue) return;
655  uint64_t newIncrValue =
656              Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
657  if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
658    return;
659
660  // Check Incr uses. One user is PH and the other users is exit condition used
661  // by the conditional terminator.
662  Value::use_iterator IncrUse = Incr->use_begin();
663  Instruction *U1 = cast<Instruction>(IncrUse++);
664  if (IncrUse == Incr->use_end()) return;
665  Instruction *U2 = cast<Instruction>(IncrUse++);
666  if (IncrUse != Incr->use_end()) return;
667
668  // Find exit condition.
669  FCmpInst *EC = dyn_cast<FCmpInst>(U1);
670  if (!EC)
671    EC = dyn_cast<FCmpInst>(U2);
672  if (!EC) return;
673
674  if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
675    if (!BI->isConditional()) return;
676    if (BI->getCondition() != EC) return;
677  }
678
679  // Find exit value. If exit value can not be represented as an interger then
680  // do not handle this floating point PH.
681  ConstantFP *EV = NULL;
682  unsigned EVIndex = 1;
683  if (EC->getOperand(1) == Incr)
684    EVIndex = 0;
685  EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
686  if (!EV) return;
687  uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
688  if (!convertToInt(EV->getValueAPF(), &intEV))
689    return;
690
691  // Find new predicate for integer comparison.
692  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
693  switch (EC->getPredicate()) {
694  case CmpInst::FCMP_OEQ:
695  case CmpInst::FCMP_UEQ:
696    NewPred = CmpInst::ICMP_EQ;
697    break;
698  case CmpInst::FCMP_OGT:
699  case CmpInst::FCMP_UGT:
700    NewPred = CmpInst::ICMP_UGT;
701    break;
702  case CmpInst::FCMP_OGE:
703  case CmpInst::FCMP_UGE:
704    NewPred = CmpInst::ICMP_UGE;
705    break;
706  case CmpInst::FCMP_OLT:
707  case CmpInst::FCMP_ULT:
708    NewPred = CmpInst::ICMP_ULT;
709    break;
710  case CmpInst::FCMP_OLE:
711  case CmpInst::FCMP_ULE:
712    NewPred = CmpInst::ICMP_ULE;
713    break;
714  default:
715    break;
716  }
717  if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
718
719  // Insert new integer induction variable.
720  PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()),
721                                    PH->getName()+".int", PH);
722  NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()),
723                                       newInitValue),
724                      PH->getIncomingBlock(IncomingEdge));
725
726  Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
727                           ConstantInt::get(Type::getInt32Ty(PH->getContext()),
728                                                             newIncrValue),
729                                            Incr->getName()+".int", Incr);
730  NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
731
732  // The back edge is edge 1 of newPHI, whatever it may have been in the
733  // original PHI.
734  ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
735                                        intEV);
736  Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
737  Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
738  ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
739                                 NewPred, LHS, RHS, EC->getName());
740
741  // In the following deltions, PH may become dead and may be deleted.
742  // Use a WeakVH to observe whether this happens.
743  WeakVH WeakPH = PH;
744
745  // Delete old, floating point, exit comparision instruction.
746  NewEC->takeName(EC);
747  EC->replaceAllUsesWith(NewEC);
748  RecursivelyDeleteTriviallyDeadInstructions(EC);
749
750  // Delete old, floating point, increment instruction.
751  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
752  RecursivelyDeleteTriviallyDeadInstructions(Incr);
753
754  // Replace floating induction variable, if it isn't already deleted.
755  // Give SIToFPInst preference over UIToFPInst because it is faster on
756  // platforms that are widely used.
757  if (WeakPH && !PH->use_empty()) {
758    if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
759      SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
760                                        PH->getParent()->getFirstNonPHI());
761      PH->replaceAllUsesWith(Conv);
762    } else {
763      UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
764                                        PH->getParent()->getFirstNonPHI());
765      PH->replaceAllUsesWith(Conv);
766    }
767    RecursivelyDeleteTriviallyDeadInstructions(PH);
768  }
769
770  // Add a new IVUsers entry for the newly-created integer PHI.
771  IU->AddUsersIfInteresting(NewPHI);
772}
773