IndVarSimplify.cpp revision cda9ca5a4fed09ea3788b572dbddabf2a5a7a5d9
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation make the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24//   1. The exit condition for the loop is canonicalized to compare the
25//      induction value against the exit value.  This turns loops like:
26//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27//   2. Any use outside of the loop of an expression derived from the indvar
28//      is changed to compute the derived value outside of the loop, eliminating
29//      the dependence on the exit value of the induction variable.  If the only
30//      purpose of the loop is to compute the exit value of some derived
31//      expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed.  Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#include "llvm/Transforms/Scalar.h"
41#include "llvm/BasicBlock.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/Type.h"
45#include "llvm/Analysis/ScalarEvolutionExpander.h"
46#include "llvm/Analysis/LoopInfo.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54namespace {
55  Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
56  Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
57  Statistic<> NumInserted("indvars", "Number of canonical indvars added");
58  Statistic<> NumReplaced("indvars", "Number of exit values replaced");
59  Statistic<> NumLFTR    ("indvars", "Number of loop exit tests replaced");
60
61  class IndVarSimplify : public FunctionPass {
62    LoopInfo        *LI;
63    ScalarEvolution *SE;
64    bool Changed;
65  public:
66    virtual bool runOnFunction(Function &) {
67      LI = &getAnalysis<LoopInfo>();
68      SE = &getAnalysis<ScalarEvolution>();
69      Changed = false;
70
71      // Induction Variables live in the header nodes of loops
72      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
73        runOnLoop(*I);
74      return Changed;
75    }
76
77    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78      AU.addRequiredID(LoopSimplifyID);
79      AU.addRequired<ScalarEvolution>();
80      AU.addRequired<LoopInfo>();
81      AU.addPreservedID(LoopSimplifyID);
82      AU.setPreservesCFG();
83    }
84  private:
85    void runOnLoop(Loop *L);
86    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
87                                    std::set<Instruction*> &DeadInsts);
88    void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
89                                   SCEVExpander &RW);
90    void RewriteLoopExitValues(Loop *L);
91
92    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
93  };
94  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
95}
96
97FunctionPass *llvm::createIndVarSimplifyPass() {
98  return new IndVarSimplify();
99}
100
101/// DeleteTriviallyDeadInstructions - If any of the instructions is the
102/// specified set are trivially dead, delete them and see if this makes any of
103/// their operands subsequently dead.
104void IndVarSimplify::
105DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
106  while (!Insts.empty()) {
107    Instruction *I = *Insts.begin();
108    Insts.erase(Insts.begin());
109    if (isInstructionTriviallyDead(I)) {
110      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
111        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
112          Insts.insert(U);
113      SE->deleteInstructionFromRecords(I);
114      I->eraseFromParent();
115      Changed = true;
116    }
117  }
118}
119
120
121/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
122/// recurrence.  If so, change it into an integer recurrence, permitting
123/// analysis by the SCEV routines.
124void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
125                                                BasicBlock *Preheader,
126                                            std::set<Instruction*> &DeadInsts) {
127  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
128  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
129  unsigned BackedgeIdx = PreheaderIdx^1;
130  if (GetElementPtrInst *GEPI =
131          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
132    if (GEPI->getOperand(0) == PN) {
133      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
134
135      // Okay, we found a pointer recurrence.  Transform this pointer
136      // recurrence into an integer recurrence.  Compute the value that gets
137      // added to the pointer at every iteration.
138      Value *AddedVal = GEPI->getOperand(1);
139
140      // Insert a new integer PHI node into the top of the block.
141      PHINode *NewPhi = new PHINode(AddedVal->getType(),
142                                    PN->getName()+".rec", PN);
143      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
144
145      // Create the new add instruction.
146      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
147                                                GEPI->getName()+".rec", GEPI);
148      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
149
150      // Update the existing GEP to use the recurrence.
151      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
152
153      // Update the GEP to use the new recurrence we just inserted.
154      GEPI->setOperand(1, NewAdd);
155
156      // If the incoming value is a constant expr GEP, try peeling out the array
157      // 0 index if possible to make things simpler.
158      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
159        if (CE->getOpcode() == Instruction::GetElementPtr) {
160          unsigned NumOps = CE->getNumOperands();
161          assert(NumOps > 1 && "CE folding didn't work!");
162          if (CE->getOperand(NumOps-1)->isNullValue()) {
163            // Check to make sure the last index really is an array index.
164            gep_type_iterator GTI = gep_type_begin(GEPI);
165            for (unsigned i = 1, e = GEPI->getNumOperands()-1;
166                 i != e; ++i, ++GTI)
167              /*empty*/;
168            if (isa<SequentialType>(*GTI)) {
169              // Pull the last index out of the constant expr GEP.
170              std::vector<Value*> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
171              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
172                                                             CEIdxs);
173              GetElementPtrInst *NGEPI =
174                new GetElementPtrInst(NCE, Constant::getNullValue(Type::IntTy),
175                                      NewAdd, GEPI->getName(), GEPI);
176              GEPI->replaceAllUsesWith(NGEPI);
177              GEPI->eraseFromParent();
178              GEPI = NGEPI;
179            }
180          }
181        }
182
183
184      // Finally, if there are any other users of the PHI node, we must
185      // insert a new GEP instruction that uses the pre-incremented version
186      // of the induction amount.
187      if (!PN->use_empty()) {
188        BasicBlock::iterator InsertPos = PN; ++InsertPos;
189        while (isa<PHINode>(InsertPos)) ++InsertPos;
190        std::string Name = PN->getName(); PN->setName("");
191        Value *PreInc =
192          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
193                                std::vector<Value*>(1, NewPhi), Name,
194                                InsertPos);
195        PN->replaceAllUsesWith(PreInc);
196      }
197
198      // Delete the old PHI for sure, and the GEP if its otherwise unused.
199      DeadInsts.insert(PN);
200
201      ++NumPointer;
202      Changed = true;
203    }
204}
205
206/// LinearFunctionTestReplace - This method rewrites the exit condition of the
207/// loop to be a canonical != comparison against the incremented loop induction
208/// variable.  This pass is able to rewrite the exit tests of any loop where the
209/// SCEV analysis can determine a loop-invariant trip count of the loop, which
210/// is actually a much broader range than just linear tests.
211void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
212                                               SCEVExpander &RW) {
213  // Find the exit block for the loop.  We can currently only handle loops with
214  // a single exit.
215  std::vector<BasicBlock*> ExitBlocks;
216  L->getExitBlocks(ExitBlocks);
217  if (ExitBlocks.size() != 1) return;
218  BasicBlock *ExitBlock = ExitBlocks[0];
219
220  // Make sure there is only one predecessor block in the loop.
221  BasicBlock *ExitingBlock = 0;
222  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
223       PI != PE; ++PI)
224    if (L->contains(*PI)) {
225      if (ExitingBlock == 0)
226        ExitingBlock = *PI;
227      else
228        return;  // Multiple exits from loop to this block.
229    }
230  assert(ExitingBlock && "Loop info is broken");
231
232  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
233    return;  // Can't rewrite non-branch yet
234  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
235  assert(BI->isConditional() && "Must be conditional to be part of loop!");
236
237  std::set<Instruction*> InstructionsToDelete;
238  if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
239    InstructionsToDelete.insert(Cond);
240
241  // If the exiting block is not the same as the backedge block, we must compare
242  // against the preincremented value, otherwise we prefer to compare against
243  // the post-incremented value.
244  BasicBlock *Header = L->getHeader();
245  pred_iterator HPI = pred_begin(Header);
246  assert(HPI != pred_end(Header) && "Loop with zero preds???");
247  if (!L->contains(*HPI)) ++HPI;
248  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
249         "No backedge in loop?");
250
251  SCEVHandle TripCount = IterationCount;
252  Value *IndVar;
253  if (*HPI == ExitingBlock) {
254    // The IterationCount expression contains the number of times that the
255    // backedge actually branches to the loop header.  This is one less than the
256    // number of times the loop executes, so add one to it.
257    Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
258    TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
259    IndVar = L->getCanonicalInductionVariableIncrement();
260  } else {
261    // We have to use the preincremented value...
262    IndVar = L->getCanonicalInductionVariable();
263  }
264
265  // Expand the code for the iteration count into the preheader of the loop.
266  BasicBlock *Preheader = L->getLoopPreheader();
267  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
268                                    IndVar->getType());
269
270  // Insert a new setne or seteq instruction before the branch.
271  Instruction::BinaryOps Opcode;
272  if (L->contains(BI->getSuccessor(0)))
273    Opcode = Instruction::SetNE;
274  else
275    Opcode = Instruction::SetEQ;
276
277  Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
278  BI->setCondition(Cond);
279  ++NumLFTR;
280  Changed = true;
281
282  DeleteTriviallyDeadInstructions(InstructionsToDelete);
283}
284
285
286/// RewriteLoopExitValues - Check to see if this loop has a computable
287/// loop-invariant execution count.  If so, this means that we can compute the
288/// final value of any expressions that are recurrent in the loop, and
289/// substitute the exit values from the loop into any instructions outside of
290/// the loop that use the final values of the current expressions.
291void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
292  BasicBlock *Preheader = L->getLoopPreheader();
293
294  // Scan all of the instructions in the loop, looking at those that have
295  // extra-loop users and which are recurrences.
296  SCEVExpander Rewriter(*SE, *LI);
297
298  // We insert the code into the preheader of the loop if the loop contains
299  // multiple exit blocks, or in the exit block if there is exactly one.
300  BasicBlock *BlockToInsertInto;
301  std::vector<BasicBlock*> ExitBlocks;
302  L->getExitBlocks(ExitBlocks);
303  if (ExitBlocks.size() == 1)
304    BlockToInsertInto = ExitBlocks[0];
305  else
306    BlockToInsertInto = Preheader;
307  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
308  while (isa<PHINode>(InsertPt)) ++InsertPt;
309
310  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
311
312  std::set<Instruction*> InstructionsToDelete;
313
314  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
315    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
316      BasicBlock *BB = L->getBlocks()[i];
317      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
318        if (I->getType()->isInteger()) {      // Is an integer instruction
319          SCEVHandle SH = SE->getSCEV(I);
320          if (SH->hasComputableLoopEvolution(L) ||    // Varies predictably
321              HasConstantItCount) {
322            // Find out if this predictably varying value is actually used
323            // outside of the loop.  "extra" as opposed to "intra".
324            std::vector<User*> ExtraLoopUsers;
325            for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
326                 UI != E; ++UI)
327              if (!L->contains(cast<Instruction>(*UI)->getParent()))
328                ExtraLoopUsers.push_back(*UI);
329            if (!ExtraLoopUsers.empty()) {
330              // Okay, this instruction has a user outside of the current loop
331              // and varies predictably in this loop.  Evaluate the value it
332              // contains when the loop exits, and insert code for it.
333              SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
334              if (!isa<SCEVCouldNotCompute>(ExitValue)) {
335                Changed = true;
336                ++NumReplaced;
337                // Remember the next instruction.  The rewriter can move code
338                // around in some cases.
339                BasicBlock::iterator NextI = I; ++NextI;
340
341                Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
342                                                       I->getType());
343
344                // Rewrite any users of the computed value outside of the loop
345                // with the newly computed value.
346                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
347                  ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
348
349                // If this instruction is dead now, schedule it to be removed.
350                if (I->use_empty())
351                  InstructionsToDelete.insert(I);
352                I = NextI;
353                continue;  // Skip the ++I
354              }
355            }
356          }
357        }
358
359        // Next instruction.  Continue instruction skips this.
360        ++I;
361      }
362    }
363
364  DeleteTriviallyDeadInstructions(InstructionsToDelete);
365}
366
367
368void IndVarSimplify::runOnLoop(Loop *L) {
369  // First step.  Check to see if there are any trivial GEP pointer recurrences.
370  // If there are, change them into integer recurrences, permitting analysis by
371  // the SCEV routines.
372  //
373  BasicBlock *Header    = L->getHeader();
374  BasicBlock *Preheader = L->getLoopPreheader();
375
376  std::set<Instruction*> DeadInsts;
377  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
378    PHINode *PN = cast<PHINode>(I);
379    if (isa<PointerType>(PN->getType()))
380      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
381  }
382
383  if (!DeadInsts.empty())
384    DeleteTriviallyDeadInstructions(DeadInsts);
385
386
387  // Next, transform all loops nesting inside of this loop.
388  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
389    runOnLoop(*I);
390
391  // Check to see if this loop has a computable loop-invariant execution count.
392  // If so, this means that we can compute the final value of any expressions
393  // that are recurrent in the loop, and substitute the exit values from the
394  // loop into any instructions outside of the loop that use the final values of
395  // the current expressions.
396  //
397  SCEVHandle IterationCount = SE->getIterationCount(L);
398  if (!isa<SCEVCouldNotCompute>(IterationCount))
399    RewriteLoopExitValues(L);
400
401  // Next, analyze all of the induction variables in the loop, canonicalizing
402  // auxillary induction variables.
403  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
404
405  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
406    PHINode *PN = cast<PHINode>(I);
407    if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
408      SCEVHandle SCEV = SE->getSCEV(PN);
409      if (SCEV->hasComputableLoopEvolution(L))
410        // FIXME: It is an extremely bad idea to indvar substitute anything more
411        // complex than affine induction variables.  Doing so will put expensive
412        // polynomial evaluations inside of the loop, and the str reduction pass
413        // currently can only reduce affine polynomials.  For now just disable
414        // indvar subst on anything more complex than an affine addrec.
415        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
416          if (AR->isAffine())
417            IndVars.push_back(std::make_pair(PN, SCEV));
418    }
419  }
420
421  // If there are no induction variables in the loop, there is nothing more to
422  // do.
423  if (IndVars.empty()) {
424    // Actually, if we know how many times the loop iterates, lets insert a
425    // canonical induction variable to help subsequent passes.
426    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
427      SCEVExpander Rewriter(*SE, *LI);
428      Rewriter.getOrInsertCanonicalInductionVariable(L,
429                                                     IterationCount->getType());
430      LinearFunctionTestReplace(L, IterationCount, Rewriter);
431    }
432    return;
433  }
434
435  // Compute the type of the largest recurrence expression.
436  //
437  const Type *LargestType = IndVars[0].first->getType();
438  bool DifferingSizes = false;
439  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
440    const Type *Ty = IndVars[i].first->getType();
441    DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
442    if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
443      LargestType = Ty;
444  }
445
446  // Create a rewriter object which we'll use to transform the code with.
447  SCEVExpander Rewriter(*SE, *LI);
448
449  // Now that we know the largest of of the induction variables in this loop,
450  // insert a canonical induction variable of the largest size.
451  LargestType = LargestType->getUnsignedVersion();
452  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
453  ++NumInserted;
454  Changed = true;
455
456  if (!isa<SCEVCouldNotCompute>(IterationCount))
457    LinearFunctionTestReplace(L, IterationCount, Rewriter);
458
459  // Now that we have a canonical induction variable, we can rewrite any
460  // recurrences in terms of the induction variable.  Start with the auxillary
461  // induction variables, and recursively rewrite any of their uses.
462  BasicBlock::iterator InsertPt = Header->begin();
463  while (isa<PHINode>(InsertPt)) ++InsertPt;
464
465  // If there were induction variables of other sizes, cast the primary
466  // induction variable to the right size for them, avoiding the need for the
467  // code evaluation methods to insert induction variables of different sizes.
468  if (DifferingSizes) {
469    bool InsertedSizes[17] = { false };
470    InsertedSizes[LargestType->getPrimitiveSize()] = true;
471    for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
472      if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
473        PHINode *PN = IndVars[i].first;
474        InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
475        Instruction *New = new CastInst(IndVar,
476                                        PN->getType()->getUnsignedVersion(),
477                                        "indvar", InsertPt);
478        Rewriter.addInsertedValue(New, SE->getSCEV(New));
479      }
480  }
481
482  // If there were induction variables of other sizes, cast the primary
483  // induction variable to the right size for them, avoiding the need for the
484  // code evaluation methods to insert induction variables of different sizes.
485  std::map<unsigned, Value*> InsertedSizes;
486  while (!IndVars.empty()) {
487    PHINode *PN = IndVars.back().first;
488    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
489                                           PN->getType());
490    std::string Name = PN->getName();
491    PN->setName("");
492    NewVal->setName(Name);
493
494    // Replace the old PHI Node with the inserted computation.
495    PN->replaceAllUsesWith(NewVal);
496    DeadInsts.insert(PN);
497    IndVars.pop_back();
498    ++NumRemoved;
499    Changed = true;
500  }
501
502#if 0
503  // Now replace all derived expressions in the loop body with simpler
504  // expressions.
505  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
506    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
507      BasicBlock *BB = L->getBlocks()[i];
508      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
509        if (I->getType()->isInteger() &&      // Is an integer instruction
510            !I->use_empty() &&
511            !Rewriter.isInsertedInstruction(I)) {
512          SCEVHandle SH = SE->getSCEV(I);
513          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
514          if (V != I) {
515            if (isa<Instruction>(V)) {
516              std::string Name = I->getName();
517              I->setName("");
518              V->setName(Name);
519            }
520            I->replaceAllUsesWith(V);
521            DeadInsts.insert(I);
522            ++NumRemoved;
523            Changed = true;
524          }
525        }
526    }
527#endif
528
529  DeleteTriviallyDeadInstructions(DeadInsts);
530}
531