IndVarSimplify.cpp revision db125cfaf57cc83e7dd7453de2d509bc8efd0e5e
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Target/TargetData.h"
61#include "llvm/ADT/DenseMap.h"
62#include "llvm/ADT/SmallVector.h"
63#include "llvm/ADT/Statistic.h"
64#include "llvm/ADT/STLExtras.h"
65using namespace llvm;
66
67STATISTIC(NumRemoved     , "Number of aux indvars removed");
68STATISTIC(NumWidened     , "Number of indvars widened");
69STATISTIC(NumInserted    , "Number of canonical indvars added");
70STATISTIC(NumReplaced    , "Number of exit values replaced");
71STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
74STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
75STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
76STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
77
78static cl::opt<bool> DisableIVRewrite(
79  "disable-iv-rewrite", cl::Hidden,
80  cl::desc("Disable canonical induction variable rewriting"));
81
82namespace {
83  class IndVarSimplify : public LoopPass {
84    IVUsers         *IU;
85    LoopInfo        *LI;
86    ScalarEvolution *SE;
87    DominatorTree   *DT;
88    TargetData      *TD;
89
90    SmallVector<WeakVH, 16> DeadInsts;
91    bool Changed;
92  public:
93
94    static char ID; // Pass identification, replacement for typeid
95    IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
96                       Changed(false) {
97      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
98    }
99
100    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
101
102    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
103      AU.addRequired<DominatorTree>();
104      AU.addRequired<LoopInfo>();
105      AU.addRequired<ScalarEvolution>();
106      AU.addRequiredID(LoopSimplifyID);
107      AU.addRequiredID(LCSSAID);
108      if (!DisableIVRewrite)
109        AU.addRequired<IVUsers>();
110      AU.addPreserved<ScalarEvolution>();
111      AU.addPreservedID(LoopSimplifyID);
112      AU.addPreservedID(LCSSAID);
113      if (!DisableIVRewrite)
114        AU.addPreserved<IVUsers>();
115      AU.setPreservesCFG();
116    }
117
118  private:
119    virtual void releaseMemory() {
120      DeadInsts.clear();
121    }
122
123    bool isValidRewrite(Value *FromVal, Value *ToVal);
124
125    void HandleFloatingPointIV(Loop *L, PHINode *PH);
126    void RewriteNonIntegerIVs(Loop *L);
127
128    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
129
130    void SimplifyIVUsers(SCEVExpander &Rewriter);
131    void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
132
133    bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
134    void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
135    void EliminateIVRemainder(BinaryOperator *Rem,
136                              Value *IVOperand,
137                              bool IsSigned);
138
139    void SimplifyCongruentIVs(Loop *L);
140
141    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
142
143    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
144                                        PHINode *IndVar,
145                                        SCEVExpander &Rewriter);
146
147    void SinkUnusedInvariants(Loop *L);
148  };
149}
150
151char IndVarSimplify::ID = 0;
152INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
153                "Induction Variable Simplification", false, false)
154INITIALIZE_PASS_DEPENDENCY(DominatorTree)
155INITIALIZE_PASS_DEPENDENCY(LoopInfo)
156INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
157INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
158INITIALIZE_PASS_DEPENDENCY(LCSSA)
159INITIALIZE_PASS_DEPENDENCY(IVUsers)
160INITIALIZE_PASS_END(IndVarSimplify, "indvars",
161                "Induction Variable Simplification", false, false)
162
163Pass *llvm::createIndVarSimplifyPass() {
164  return new IndVarSimplify();
165}
166
167/// isValidRewrite - Return true if the SCEV expansion generated by the
168/// rewriter can replace the original value. SCEV guarantees that it
169/// produces the same value, but the way it is produced may be illegal IR.
170/// Ideally, this function will only be called for verification.
171bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
172  // If an SCEV expression subsumed multiple pointers, its expansion could
173  // reassociate the GEP changing the base pointer. This is illegal because the
174  // final address produced by a GEP chain must be inbounds relative to its
175  // underlying object. Otherwise basic alias analysis, among other things,
176  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
177  // producing an expression involving multiple pointers. Until then, we must
178  // bail out here.
179  //
180  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
181  // because it understands lcssa phis while SCEV does not.
182  Value *FromPtr = FromVal;
183  Value *ToPtr = ToVal;
184  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
185    FromPtr = GEP->getPointerOperand();
186  }
187  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
188    ToPtr = GEP->getPointerOperand();
189  }
190  if (FromPtr != FromVal || ToPtr != ToVal) {
191    // Quickly check the common case
192    if (FromPtr == ToPtr)
193      return true;
194
195    // SCEV may have rewritten an expression that produces the GEP's pointer
196    // operand. That's ok as long as the pointer operand has the same base
197    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
198    // base of a recurrence. This handles the case in which SCEV expansion
199    // converts a pointer type recurrence into a nonrecurrent pointer base
200    // indexed by an integer recurrence.
201    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
202    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
203    if (FromBase == ToBase)
204      return true;
205
206    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
207          << *FromBase << " != " << *ToBase << "\n");
208
209    return false;
210  }
211  return true;
212}
213
214//===----------------------------------------------------------------------===//
215// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
216//===----------------------------------------------------------------------===//
217
218/// ConvertToSInt - Convert APF to an integer, if possible.
219static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
220  bool isExact = false;
221  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
222    return false;
223  // See if we can convert this to an int64_t
224  uint64_t UIntVal;
225  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226                           &isExact) != APFloat::opOK || !isExact)
227    return false;
228  IntVal = UIntVal;
229  return true;
230}
231
232/// HandleFloatingPointIV - If the loop has floating induction variable
233/// then insert corresponding integer induction variable if possible.
234/// For example,
235/// for(double i = 0; i < 10000; ++i)
236///   bar(i)
237/// is converted into
238/// for(int i = 0; i < 10000; ++i)
239///   bar((double)i);
240///
241void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243  unsigned BackEdge     = IncomingEdge^1;
244
245  // Check incoming value.
246  ConstantFP *InitValueVal =
247    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
248
249  int64_t InitValue;
250  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251    return;
252
253  // Check IV increment. Reject this PN if increment operation is not
254  // an add or increment value can not be represented by an integer.
255  BinaryOperator *Incr =
256    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
258
259  // If this is not an add of the PHI with a constantfp, or if the constant fp
260  // is not an integer, bail out.
261  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262  int64_t IncValue;
263  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265    return;
266
267  // Check Incr uses. One user is PN and the other user is an exit condition
268  // used by the conditional terminator.
269  Value::use_iterator IncrUse = Incr->use_begin();
270  Instruction *U1 = cast<Instruction>(*IncrUse++);
271  if (IncrUse == Incr->use_end()) return;
272  Instruction *U2 = cast<Instruction>(*IncrUse++);
273  if (IncrUse != Incr->use_end()) return;
274
275  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
276  // only used by a branch, we can't transform it.
277  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
278  if (!Compare)
279    Compare = dyn_cast<FCmpInst>(U2);
280  if (Compare == 0 || !Compare->hasOneUse() ||
281      !isa<BranchInst>(Compare->use_back()))
282    return;
283
284  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285
286  // We need to verify that the branch actually controls the iteration count
287  // of the loop.  If not, the new IV can overflow and no one will notice.
288  // The branch block must be in the loop and one of the successors must be out
289  // of the loop.
290  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291  if (!L->contains(TheBr->getParent()) ||
292      (L->contains(TheBr->getSuccessor(0)) &&
293       L->contains(TheBr->getSuccessor(1))))
294    return;
295
296
297  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298  // transform it.
299  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300  int64_t ExitValue;
301  if (ExitValueVal == 0 ||
302      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303    return;
304
305  // Find new predicate for integer comparison.
306  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
307  switch (Compare->getPredicate()) {
308  default: return;  // Unknown comparison.
309  case CmpInst::FCMP_OEQ:
310  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311  case CmpInst::FCMP_ONE:
312  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313  case CmpInst::FCMP_OGT:
314  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315  case CmpInst::FCMP_OGE:
316  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317  case CmpInst::FCMP_OLT:
318  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319  case CmpInst::FCMP_OLE:
320  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
321  }
322
323  // We convert the floating point induction variable to a signed i32 value if
324  // we can.  This is only safe if the comparison will not overflow in a way
325  // that won't be trapped by the integer equivalent operations.  Check for this
326  // now.
327  // TODO: We could use i64 if it is native and the range requires it.
328
329  // The start/stride/exit values must all fit in signed i32.
330  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331    return;
332
333  // If not actually striding (add x, 0.0), avoid touching the code.
334  if (IncValue == 0)
335    return;
336
337  // Positive and negative strides have different safety conditions.
338  if (IncValue > 0) {
339    // If we have a positive stride, we require the init to be less than the
340    // exit value and an equality or less than comparison.
341    if (InitValue >= ExitValue ||
342        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
343      return;
344
345    uint32_t Range = uint32_t(ExitValue-InitValue);
346    if (NewPred == CmpInst::ICMP_SLE) {
347      // Normalize SLE -> SLT, check for infinite loop.
348      if (++Range == 0) return;  // Range overflows.
349    }
350
351    unsigned Leftover = Range % uint32_t(IncValue);
352
353    // If this is an equality comparison, we require that the strided value
354    // exactly land on the exit value, otherwise the IV condition will wrap
355    // around and do things the fp IV wouldn't.
356    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357        Leftover != 0)
358      return;
359
360    // If the stride would wrap around the i32 before exiting, we can't
361    // transform the IV.
362    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363      return;
364
365  } else {
366    // If we have a negative stride, we require the init to be greater than the
367    // exit value and an equality or greater than comparison.
368    if (InitValue >= ExitValue ||
369        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
370      return;
371
372    uint32_t Range = uint32_t(InitValue-ExitValue);
373    if (NewPred == CmpInst::ICMP_SGE) {
374      // Normalize SGE -> SGT, check for infinite loop.
375      if (++Range == 0) return;  // Range overflows.
376    }
377
378    unsigned Leftover = Range % uint32_t(-IncValue);
379
380    // If this is an equality comparison, we require that the strided value
381    // exactly land on the exit value, otherwise the IV condition will wrap
382    // around and do things the fp IV wouldn't.
383    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384        Leftover != 0)
385      return;
386
387    // If the stride would wrap around the i32 before exiting, we can't
388    // transform the IV.
389    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390      return;
391  }
392
393  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
394
395  // Insert new integer induction variable.
396  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398                      PN->getIncomingBlock(IncomingEdge));
399
400  Value *NewAdd =
401    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402                              Incr->getName()+".int", Incr);
403  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
404
405  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406                                      ConstantInt::get(Int32Ty, ExitValue),
407                                      Compare->getName());
408
409  // In the following deletions, PN may become dead and may be deleted.
410  // Use a WeakVH to observe whether this happens.
411  WeakVH WeakPH = PN;
412
413  // Delete the old floating point exit comparison.  The branch starts using the
414  // new comparison.
415  NewCompare->takeName(Compare);
416  Compare->replaceAllUsesWith(NewCompare);
417  RecursivelyDeleteTriviallyDeadInstructions(Compare);
418
419  // Delete the old floating point increment.
420  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
421  RecursivelyDeleteTriviallyDeadInstructions(Incr);
422
423  // If the FP induction variable still has uses, this is because something else
424  // in the loop uses its value.  In order to canonicalize the induction
425  // variable, we chose to eliminate the IV and rewrite it in terms of an
426  // int->fp cast.
427  //
428  // We give preference to sitofp over uitofp because it is faster on most
429  // platforms.
430  if (WeakPH) {
431    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
432                                 PN->getParent()->getFirstNonPHI());
433    PN->replaceAllUsesWith(Conv);
434    RecursivelyDeleteTriviallyDeadInstructions(PN);
435  }
436
437  // Add a new IVUsers entry for the newly-created integer PHI.
438  if (IU)
439    IU->AddUsersIfInteresting(NewPHI);
440}
441
442void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
443  // First step.  Check to see if there are any floating-point recurrences.
444  // If there are, change them into integer recurrences, permitting analysis by
445  // the SCEV routines.
446  //
447  BasicBlock *Header = L->getHeader();
448
449  SmallVector<WeakVH, 8> PHIs;
450  for (BasicBlock::iterator I = Header->begin();
451       PHINode *PN = dyn_cast<PHINode>(I); ++I)
452    PHIs.push_back(PN);
453
454  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
455    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
456      HandleFloatingPointIV(L, PN);
457
458  // If the loop previously had floating-point IV, ScalarEvolution
459  // may not have been able to compute a trip count. Now that we've done some
460  // re-writing, the trip count may be computable.
461  if (Changed)
462    SE->forgetLoop(L);
463}
464
465//===----------------------------------------------------------------------===//
466// RewriteLoopExitValues - Optimize IV users outside the loop.
467// As a side effect, reduces the amount of IV processing within the loop.
468//===----------------------------------------------------------------------===//
469
470/// RewriteLoopExitValues - Check to see if this loop has a computable
471/// loop-invariant execution count.  If so, this means that we can compute the
472/// final value of any expressions that are recurrent in the loop, and
473/// substitute the exit values from the loop into any instructions outside of
474/// the loop that use the final values of the current expressions.
475///
476/// This is mostly redundant with the regular IndVarSimplify activities that
477/// happen later, except that it's more powerful in some cases, because it's
478/// able to brute-force evaluate arbitrary instructions as long as they have
479/// constant operands at the beginning of the loop.
480void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
481  // Verify the input to the pass in already in LCSSA form.
482  assert(L->isLCSSAForm(*DT));
483
484  SmallVector<BasicBlock*, 8> ExitBlocks;
485  L->getUniqueExitBlocks(ExitBlocks);
486
487  // Find all values that are computed inside the loop, but used outside of it.
488  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
489  // the exit blocks of the loop to find them.
490  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
491    BasicBlock *ExitBB = ExitBlocks[i];
492
493    // If there are no PHI nodes in this exit block, then no values defined
494    // inside the loop are used on this path, skip it.
495    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
496    if (!PN) continue;
497
498    unsigned NumPreds = PN->getNumIncomingValues();
499
500    // Iterate over all of the PHI nodes.
501    BasicBlock::iterator BBI = ExitBB->begin();
502    while ((PN = dyn_cast<PHINode>(BBI++))) {
503      if (PN->use_empty())
504        continue; // dead use, don't replace it
505
506      // SCEV only supports integer expressions for now.
507      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
508        continue;
509
510      // It's necessary to tell ScalarEvolution about this explicitly so that
511      // it can walk the def-use list and forget all SCEVs, as it may not be
512      // watching the PHI itself. Once the new exit value is in place, there
513      // may not be a def-use connection between the loop and every instruction
514      // which got a SCEVAddRecExpr for that loop.
515      SE->forgetValue(PN);
516
517      // Iterate over all of the values in all the PHI nodes.
518      for (unsigned i = 0; i != NumPreds; ++i) {
519        // If the value being merged in is not integer or is not defined
520        // in the loop, skip it.
521        Value *InVal = PN->getIncomingValue(i);
522        if (!isa<Instruction>(InVal))
523          continue;
524
525        // If this pred is for a subloop, not L itself, skip it.
526        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
527          continue; // The Block is in a subloop, skip it.
528
529        // Check that InVal is defined in the loop.
530        Instruction *Inst = cast<Instruction>(InVal);
531        if (!L->contains(Inst))
532          continue;
533
534        // Okay, this instruction has a user outside of the current loop
535        // and varies predictably *inside* the loop.  Evaluate the value it
536        // contains when the loop exits, if possible.
537        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
538        if (!SE->isLoopInvariant(ExitValue, L))
539          continue;
540
541        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
542
543        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
544                     << "  LoopVal = " << *Inst << "\n");
545
546        if (!isValidRewrite(Inst, ExitVal)) {
547          DeadInsts.push_back(ExitVal);
548          continue;
549        }
550        Changed = true;
551        ++NumReplaced;
552
553        PN->setIncomingValue(i, ExitVal);
554
555        // If this instruction is dead now, delete it.
556        RecursivelyDeleteTriviallyDeadInstructions(Inst);
557
558        if (NumPreds == 1) {
559          // Completely replace a single-pred PHI. This is safe, because the
560          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
561          // node anymore.
562          PN->replaceAllUsesWith(ExitVal);
563          RecursivelyDeleteTriviallyDeadInstructions(PN);
564        }
565      }
566      if (NumPreds != 1) {
567        // Clone the PHI and delete the original one. This lets IVUsers and
568        // any other maps purge the original user from their records.
569        PHINode *NewPN = cast<PHINode>(PN->clone());
570        NewPN->takeName(PN);
571        NewPN->insertBefore(PN);
572        PN->replaceAllUsesWith(NewPN);
573        PN->eraseFromParent();
574      }
575    }
576  }
577
578  // The insertion point instruction may have been deleted; clear it out
579  // so that the rewriter doesn't trip over it later.
580  Rewriter.clearInsertPoint();
581}
582
583//===----------------------------------------------------------------------===//
584//  Rewrite IV users based on a canonical IV.
585//  To be replaced by -disable-iv-rewrite.
586//===----------------------------------------------------------------------===//
587
588/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
589/// loop. IVUsers is treated as a worklist. Each successive simplification may
590/// push more users which may themselves be candidates for simplification.
591///
592/// This is the old approach to IV simplification to be replaced by
593/// SimplifyIVUsersNoRewrite.
594///
595void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
596  // Each round of simplification involves a round of eliminating operations
597  // followed by a round of widening IVs. A single IVUsers worklist is used
598  // across all rounds. The inner loop advances the user. If widening exposes
599  // more uses, then another pass through the outer loop is triggered.
600  for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
601    Instruction *UseInst = I->getUser();
602    Value *IVOperand = I->getOperandValToReplace();
603
604    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
605      EliminateIVComparison(ICmp, IVOperand);
606      continue;
607    }
608    if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
609      bool IsSigned = Rem->getOpcode() == Instruction::SRem;
610      if (IsSigned || Rem->getOpcode() == Instruction::URem) {
611        EliminateIVRemainder(Rem, IVOperand, IsSigned);
612        continue;
613      }
614    }
615  }
616}
617
618// FIXME: It is an extremely bad idea to indvar substitute anything more
619// complex than affine induction variables.  Doing so will put expensive
620// polynomial evaluations inside of the loop, and the str reduction pass
621// currently can only reduce affine polynomials.  For now just disable
622// indvar subst on anything more complex than an affine addrec, unless
623// it can be expanded to a trivial value.
624static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
625  // Loop-invariant values are safe.
626  if (SE->isLoopInvariant(S, L)) return true;
627
628  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
629  // to transform them into efficient code.
630  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
631    return AR->isAffine();
632
633  // An add is safe it all its operands are safe.
634  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
635    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
636         E = Commutative->op_end(); I != E; ++I)
637      if (!isSafe(*I, L, SE)) return false;
638    return true;
639  }
640
641  // A cast is safe if its operand is.
642  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
643    return isSafe(C->getOperand(), L, SE);
644
645  // A udiv is safe if its operands are.
646  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
647    return isSafe(UD->getLHS(), L, SE) &&
648           isSafe(UD->getRHS(), L, SE);
649
650  // SCEVUnknown is always safe.
651  if (isa<SCEVUnknown>(S))
652    return true;
653
654  // Nothing else is safe.
655  return false;
656}
657
658void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
659  // Rewrite all induction variable expressions in terms of the canonical
660  // induction variable.
661  //
662  // If there were induction variables of other sizes or offsets, manually
663  // add the offsets to the primary induction variable and cast, avoiding
664  // the need for the code evaluation methods to insert induction variables
665  // of different sizes.
666  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
667    Value *Op = UI->getOperandValToReplace();
668    Type *UseTy = Op->getType();
669    Instruction *User = UI->getUser();
670
671    // Compute the final addrec to expand into code.
672    const SCEV *AR = IU->getReplacementExpr(*UI);
673
674    // Evaluate the expression out of the loop, if possible.
675    if (!L->contains(UI->getUser())) {
676      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
677      if (SE->isLoopInvariant(ExitVal, L))
678        AR = ExitVal;
679    }
680
681    // FIXME: It is an extremely bad idea to indvar substitute anything more
682    // complex than affine induction variables.  Doing so will put expensive
683    // polynomial evaluations inside of the loop, and the str reduction pass
684    // currently can only reduce affine polynomials.  For now just disable
685    // indvar subst on anything more complex than an affine addrec, unless
686    // it can be expanded to a trivial value.
687    if (!isSafe(AR, L, SE))
688      continue;
689
690    // Determine the insertion point for this user. By default, insert
691    // immediately before the user. The SCEVExpander class will automatically
692    // hoist loop invariants out of the loop. For PHI nodes, there may be
693    // multiple uses, so compute the nearest common dominator for the
694    // incoming blocks.
695    Instruction *InsertPt = User;
696    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
697      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
698        if (PHI->getIncomingValue(i) == Op) {
699          if (InsertPt == User)
700            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
701          else
702            InsertPt =
703              DT->findNearestCommonDominator(InsertPt->getParent(),
704                                             PHI->getIncomingBlock(i))
705                    ->getTerminator();
706        }
707
708    // Now expand it into actual Instructions and patch it into place.
709    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
710
711    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
712                 << "   into = " << *NewVal << "\n");
713
714    if (!isValidRewrite(Op, NewVal)) {
715      DeadInsts.push_back(NewVal);
716      continue;
717    }
718    // Inform ScalarEvolution that this value is changing. The change doesn't
719    // affect its value, but it does potentially affect which use lists the
720    // value will be on after the replacement, which affects ScalarEvolution's
721    // ability to walk use lists and drop dangling pointers when a value is
722    // deleted.
723    SE->forgetValue(User);
724
725    // Patch the new value into place.
726    if (Op->hasName())
727      NewVal->takeName(Op);
728    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
729      NewValI->setDebugLoc(User->getDebugLoc());
730    User->replaceUsesOfWith(Op, NewVal);
731    UI->setOperandValToReplace(NewVal);
732
733    ++NumRemoved;
734    Changed = true;
735
736    // The old value may be dead now.
737    DeadInsts.push_back(Op);
738  }
739}
740
741//===----------------------------------------------------------------------===//
742//  IV Widening - Extend the width of an IV to cover its widest uses.
743//===----------------------------------------------------------------------===//
744
745namespace {
746  // Collect information about induction variables that are used by sign/zero
747  // extend operations. This information is recorded by CollectExtend and
748  // provides the input to WidenIV.
749  struct WideIVInfo {
750    Type *WidestNativeType; // Widest integer type created [sz]ext
751    bool IsSigned;                // Was an sext user seen before a zext?
752
753    WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
754  };
755}
756
757/// CollectExtend - Update information about the induction variable that is
758/// extended by this sign or zero extend operation. This is used to determine
759/// the final width of the IV before actually widening it.
760static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
761                          ScalarEvolution *SE, const TargetData *TD) {
762  Type *Ty = Cast->getType();
763  uint64_t Width = SE->getTypeSizeInBits(Ty);
764  if (TD && !TD->isLegalInteger(Width))
765    return;
766
767  if (!WI.WidestNativeType) {
768    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
769    WI.IsSigned = IsSigned;
770    return;
771  }
772
773  // We extend the IV to satisfy the sign of its first user, arbitrarily.
774  if (WI.IsSigned != IsSigned)
775    return;
776
777  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
778    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
779}
780
781namespace {
782/// WidenIV - The goal of this transform is to remove sign and zero extends
783/// without creating any new induction variables. To do this, it creates a new
784/// phi of the wider type and redirects all users, either removing extends or
785/// inserting truncs whenever we stop propagating the type.
786///
787class WidenIV {
788  // Parameters
789  PHINode *OrigPhi;
790  Type *WideType;
791  bool IsSigned;
792
793  // Context
794  LoopInfo        *LI;
795  Loop            *L;
796  ScalarEvolution *SE;
797  DominatorTree   *DT;
798
799  // Result
800  PHINode *WidePhi;
801  Instruction *WideInc;
802  const SCEV *WideIncExpr;
803  SmallVectorImpl<WeakVH> &DeadInsts;
804
805  SmallPtrSet<Instruction*,16> Widened;
806  SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
807
808public:
809  WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
810          ScalarEvolution *SEv, DominatorTree *DTree,
811          SmallVectorImpl<WeakVH> &DI) :
812    OrigPhi(PN),
813    WideType(WI.WidestNativeType),
814    IsSigned(WI.IsSigned),
815    LI(LInfo),
816    L(LI->getLoopFor(OrigPhi->getParent())),
817    SE(SEv),
818    DT(DTree),
819    WidePhi(0),
820    WideInc(0),
821    WideIncExpr(0),
822    DeadInsts(DI) {
823    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
824  }
825
826  PHINode *CreateWideIV(SCEVExpander &Rewriter);
827
828protected:
829  Instruction *CloneIVUser(Instruction *NarrowUse,
830                           Instruction *NarrowDef,
831                           Instruction *WideDef);
832
833  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
834
835  Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
836                          Instruction *WideDef);
837
838  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
839};
840} // anonymous namespace
841
842static Value *getExtend( Value *NarrowOper, Type *WideType,
843                               bool IsSigned, IRBuilder<> &Builder) {
844  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
845                    Builder.CreateZExt(NarrowOper, WideType);
846}
847
848/// CloneIVUser - Instantiate a wide operation to replace a narrow
849/// operation. This only needs to handle operations that can evaluation to
850/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
851Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
852                                  Instruction *NarrowDef,
853                                  Instruction *WideDef) {
854  unsigned Opcode = NarrowUse->getOpcode();
855  switch (Opcode) {
856  default:
857    return 0;
858  case Instruction::Add:
859  case Instruction::Mul:
860  case Instruction::UDiv:
861  case Instruction::Sub:
862  case Instruction::And:
863  case Instruction::Or:
864  case Instruction::Xor:
865  case Instruction::Shl:
866  case Instruction::LShr:
867  case Instruction::AShr:
868    DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
869
870    IRBuilder<> Builder(NarrowUse);
871
872    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
873    // anything about the narrow operand yet so must insert a [sz]ext. It is
874    // probably loop invariant and will be folded or hoisted. If it actually
875    // comes from a widened IV, it should be removed during a future call to
876    // WidenIVUse.
877    Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
878      getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
879    Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
880      getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
881
882    BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
883    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
884                                                    LHS, RHS,
885                                                    NarrowBO->getName());
886    Builder.Insert(WideBO);
887    if (const OverflowingBinaryOperator *OBO =
888        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
889      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
890      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
891    }
892    return WideBO;
893  }
894  llvm_unreachable(0);
895}
896
897/// HoistStep - Attempt to hoist an IV increment above a potential use.
898///
899/// To successfully hoist, two criteria must be met:
900/// - IncV operands dominate InsertPos and
901/// - InsertPos dominates IncV
902///
903/// Meeting the second condition means that we don't need to check all of IncV's
904/// existing uses (it's moving up in the domtree).
905///
906/// This does not yet recursively hoist the operands, although that would
907/// not be difficult.
908static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
909                      const DominatorTree *DT)
910{
911  if (DT->dominates(IncV, InsertPos))
912    return true;
913
914  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
915    return false;
916
917  if (IncV->mayHaveSideEffects())
918    return false;
919
920  // Attempt to hoist IncV
921  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
922       OI != OE; ++OI) {
923    Instruction *OInst = dyn_cast<Instruction>(OI);
924    if (OInst && !DT->dominates(OInst, InsertPos))
925      return false;
926  }
927  IncV->moveBefore(InsertPos);
928  return true;
929}
930
931// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
932// perspective after widening it's type? In other words, can the extend be
933// safely hoisted out of the loop with SCEV reducing the value to a recurrence
934// on the same loop. If so, return the sign or zero extended
935// recurrence. Otherwise return NULL.
936const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
937  if (!SE->isSCEVable(NarrowUse->getType()))
938    return 0;
939
940  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
941  if (SE->getTypeSizeInBits(NarrowExpr->getType())
942      >= SE->getTypeSizeInBits(WideType)) {
943    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
944    // index. So don't follow this use.
945    return 0;
946  }
947
948  const SCEV *WideExpr = IsSigned ?
949    SE->getSignExtendExpr(NarrowExpr, WideType) :
950    SE->getZeroExtendExpr(NarrowExpr, WideType);
951  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
952  if (!AddRec || AddRec->getLoop() != L)
953    return 0;
954
955  return AddRec;
956}
957
958/// WidenIVUse - Determine whether an individual user of the narrow IV can be
959/// widened. If so, return the wide clone of the user.
960Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
961                                 Instruction *WideDef) {
962  Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
963
964  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
965  if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
966    return 0;
967
968  // Our raison d'etre! Eliminate sign and zero extension.
969  if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
970    Value *NewDef = WideDef;
971    if (NarrowUse->getType() != WideType) {
972      unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
973      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
974      if (CastWidth < IVWidth) {
975        // The cast isn't as wide as the IV, so insert a Trunc.
976        IRBuilder<> Builder(NarrowDefUse);
977        NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
978      }
979      else {
980        // A wider extend was hidden behind a narrower one. This may induce
981        // another round of IV widening in which the intermediate IV becomes
982        // dead. It should be very rare.
983        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
984              << " not wide enough to subsume " << *NarrowUse << "\n");
985        NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
986        NewDef = NarrowUse;
987      }
988    }
989    if (NewDef != NarrowUse) {
990      DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
991            << " replaced by " << *WideDef << "\n");
992      ++NumElimExt;
993      NarrowUse->replaceAllUsesWith(NewDef);
994      DeadInsts.push_back(NarrowUse);
995    }
996    // Now that the extend is gone, we want to expose it's uses for potential
997    // further simplification. We don't need to directly inform SimplifyIVUsers
998    // of the new users, because their parent IV will be processed later as a
999    // new loop phi. If we preserved IVUsers analysis, we would also want to
1000    // push the uses of WideDef here.
1001
1002    // No further widening is needed. The deceased [sz]ext had done it for us.
1003    return 0;
1004  }
1005
1006  // Does this user itself evaluate to a recurrence after widening?
1007  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
1008  if (!WideAddRec) {
1009    // This user does not evaluate to a recurence after widening, so don't
1010    // follow it. Instead insert a Trunc to kill off the original use,
1011    // eventually isolating the original narrow IV so it can be removed.
1012    IRBuilder<> Builder(NarrowDefUse);
1013    Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
1014    NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
1015    return 0;
1016  }
1017  // We assume that block terminators are not SCEVable. We wouldn't want to
1018  // insert a Trunc after a terminator if there happens to be a critical edge.
1019  assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
1020         "SCEV is not expected to evaluate a block terminator");
1021
1022  // Reuse the IV increment that SCEVExpander created as long as it dominates
1023  // NarrowUse.
1024  Instruction *WideUse = 0;
1025  if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
1026    WideUse = WideInc;
1027  }
1028  else {
1029    WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
1030    if (!WideUse)
1031      return 0;
1032  }
1033  // Evaluation of WideAddRec ensured that the narrow expression could be
1034  // extended outside the loop without overflow. This suggests that the wide use
1035  // evaluates to the same expression as the extended narrow use, but doesn't
1036  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1037  // where it fails, we simply throw away the newly created wide use.
1038  if (WideAddRec != SE->getSCEV(WideUse)) {
1039    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1040          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1041    DeadInsts.push_back(WideUse);
1042    return 0;
1043  }
1044
1045  // Returning WideUse pushes it on the worklist.
1046  return WideUse;
1047}
1048
1049/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1050///
1051void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1052  for (Value::use_iterator UI = NarrowDef->use_begin(),
1053         UE = NarrowDef->use_end(); UI != UE; ++UI) {
1054    Use &U = UI.getUse();
1055
1056    // Handle data flow merges and bizarre phi cycles.
1057    if (!Widened.insert(cast<Instruction>(U.getUser())))
1058      continue;
1059
1060    NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideDef));
1061  }
1062}
1063
1064/// CreateWideIV - Process a single induction variable. First use the
1065/// SCEVExpander to create a wide induction variable that evaluates to the same
1066/// recurrence as the original narrow IV. Then use a worklist to forward
1067/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1068/// interesting IV users, the narrow IV will be isolated for removal by
1069/// DeleteDeadPHIs.
1070///
1071/// It would be simpler to delete uses as they are processed, but we must avoid
1072/// invalidating SCEV expressions.
1073///
1074PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1075  // Is this phi an induction variable?
1076  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1077  if (!AddRec)
1078    return NULL;
1079
1080  // Widen the induction variable expression.
1081  const SCEV *WideIVExpr = IsSigned ?
1082    SE->getSignExtendExpr(AddRec, WideType) :
1083    SE->getZeroExtendExpr(AddRec, WideType);
1084
1085  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1086         "Expect the new IV expression to preserve its type");
1087
1088  // Can the IV be extended outside the loop without overflow?
1089  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1090  if (!AddRec || AddRec->getLoop() != L)
1091    return NULL;
1092
1093  // An AddRec must have loop-invariant operands. Since this AddRec is
1094  // materialized by a loop header phi, the expression cannot have any post-loop
1095  // operands, so they must dominate the loop header.
1096  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1097         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1098         && "Loop header phi recurrence inputs do not dominate the loop");
1099
1100  // The rewriter provides a value for the desired IV expression. This may
1101  // either find an existing phi or materialize a new one. Either way, we
1102  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1103  // of the phi-SCC dominates the loop entry.
1104  Instruction *InsertPt = L->getHeader()->begin();
1105  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1106
1107  // Remembering the WideIV increment generated by SCEVExpander allows
1108  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1109  // employ a general reuse mechanism because the call above is the only call to
1110  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1111  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1112    WideInc =
1113      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1114    WideIncExpr = SE->getSCEV(WideInc);
1115  }
1116
1117  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1118  ++NumWidened;
1119
1120  // Traverse the def-use chain using a worklist starting at the original IV.
1121  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1122
1123  Widened.insert(OrigPhi);
1124  pushNarrowIVUsers(OrigPhi, WidePhi);
1125
1126  while (!NarrowIVUsers.empty()) {
1127    Use *UsePtr;
1128    Instruction *WideDef;
1129    tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
1130    Use &NarrowDefUse = *UsePtr;
1131
1132    // Process a def-use edge. This may replace the use, so don't hold a
1133    // use_iterator across it.
1134    Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
1135    Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
1136
1137    // Follow all def-use edges from the previous narrow use.
1138    if (WideUse)
1139      pushNarrowIVUsers(cast<Instruction>(NarrowDefUse.getUser()), WideUse);
1140
1141    // WidenIVUse may have removed the def-use edge.
1142    if (NarrowDef->use_empty())
1143      DeadInsts.push_back(NarrowDef);
1144  }
1145  return WidePhi;
1146}
1147
1148//===----------------------------------------------------------------------===//
1149//  Simplification of IV users based on SCEV evaluation.
1150//===----------------------------------------------------------------------===//
1151
1152void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
1153  unsigned IVOperIdx = 0;
1154  ICmpInst::Predicate Pred = ICmp->getPredicate();
1155  if (IVOperand != ICmp->getOperand(0)) {
1156    // Swapped
1157    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
1158    IVOperIdx = 1;
1159    Pred = ICmpInst::getSwappedPredicate(Pred);
1160  }
1161
1162  // Get the SCEVs for the ICmp operands.
1163  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
1164  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
1165
1166  // Simplify unnecessary loops away.
1167  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
1168  S = SE->getSCEVAtScope(S, ICmpLoop);
1169  X = SE->getSCEVAtScope(X, ICmpLoop);
1170
1171  // If the condition is always true or always false, replace it with
1172  // a constant value.
1173  if (SE->isKnownPredicate(Pred, S, X))
1174    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
1175  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
1176    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
1177  else
1178    return;
1179
1180  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
1181  ++NumElimCmp;
1182  Changed = true;
1183  DeadInsts.push_back(ICmp);
1184}
1185
1186void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
1187                                          Value *IVOperand,
1188                                          bool IsSigned) {
1189  // We're only interested in the case where we know something about
1190  // the numerator.
1191  if (IVOperand != Rem->getOperand(0))
1192    return;
1193
1194  // Get the SCEVs for the ICmp operands.
1195  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
1196  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
1197
1198  // Simplify unnecessary loops away.
1199  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
1200  S = SE->getSCEVAtScope(S, ICmpLoop);
1201  X = SE->getSCEVAtScope(X, ICmpLoop);
1202
1203  // i % n  -->  i  if i is in [0,n).
1204  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
1205      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1206                           S, X))
1207    Rem->replaceAllUsesWith(Rem->getOperand(0));
1208  else {
1209    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
1210    const SCEV *LessOne =
1211      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
1212    if (IsSigned && !SE->isKnownNonNegative(LessOne))
1213      return;
1214
1215    if (!SE->isKnownPredicate(IsSigned ?
1216                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1217                              LessOne, X))
1218      return;
1219
1220    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1221                                  Rem->getOperand(0), Rem->getOperand(1),
1222                                  "tmp");
1223    SelectInst *Sel =
1224      SelectInst::Create(ICmp,
1225                         ConstantInt::get(Rem->getType(), 0),
1226                         Rem->getOperand(0), "tmp", Rem);
1227    Rem->replaceAllUsesWith(Sel);
1228  }
1229
1230  // Inform IVUsers about the new users.
1231  if (IU) {
1232    if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
1233      IU->AddUsersIfInteresting(I);
1234  }
1235  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
1236  ++NumElimRem;
1237  Changed = true;
1238  DeadInsts.push_back(Rem);
1239}
1240
1241/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1242/// no observable side-effect given the range of IV values.
1243bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1244                                     Instruction *IVOperand) {
1245  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1246    EliminateIVComparison(ICmp, IVOperand);
1247    return true;
1248  }
1249  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1250    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1251    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1252      EliminateIVRemainder(Rem, IVOperand, IsSigned);
1253      return true;
1254    }
1255  }
1256
1257  // Eliminate any operation that SCEV can prove is an identity function.
1258  if (!SE->isSCEVable(UseInst->getType()) ||
1259      (UseInst->getType() != IVOperand->getType()) ||
1260      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1261    return false;
1262
1263  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1264
1265  UseInst->replaceAllUsesWith(IVOperand);
1266  ++NumElimIdentity;
1267  Changed = true;
1268  DeadInsts.push_back(UseInst);
1269  return true;
1270}
1271
1272/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1273///
1274static void pushIVUsers(
1275  Instruction *Def,
1276  SmallPtrSet<Instruction*,16> &Simplified,
1277  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1278
1279  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1280       UI != E; ++UI) {
1281    Instruction *User = cast<Instruction>(*UI);
1282
1283    // Avoid infinite or exponential worklist processing.
1284    // Also ensure unique worklist users.
1285    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1286    // self edges first.
1287    if (User != Def && Simplified.insert(User))
1288      SimpleIVUsers.push_back(std::make_pair(User, Def));
1289  }
1290}
1291
1292/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1293/// expression in terms of that IV.
1294///
1295/// This is similar to IVUsers' isInsteresting() but processes each instruction
1296/// non-recursively when the operand is already known to be a simpleIVUser.
1297///
1298static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
1299  if (!SE->isSCEVable(I->getType()))
1300    return false;
1301
1302  // Get the symbolic expression for this instruction.
1303  const SCEV *S = SE->getSCEV(I);
1304
1305  // We assume that terminators are not SCEVable.
1306  assert((!S || I != I->getParent()->getTerminator()) &&
1307         "can't fold terminators");
1308
1309  // Only consider affine recurrences.
1310  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1311  if (AR && AR->getLoop() == L)
1312    return true;
1313
1314  return false;
1315}
1316
1317/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1318/// of IV users. Each successive simplification may push more users which may
1319/// themselves be candidates for simplification.
1320///
1321/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1322/// simplifies instructions in-place during analysis. Rather than rewriting
1323/// induction variables bottom-up from their users, it transforms a chain of
1324/// IVUsers top-down, updating the IR only when it encouters a clear
1325/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1326/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1327/// extend elimination.
1328///
1329/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1330///
1331void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1332  std::map<PHINode *, WideIVInfo> WideIVMap;
1333
1334  SmallVector<PHINode*, 8> LoopPhis;
1335  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1336    LoopPhis.push_back(cast<PHINode>(I));
1337  }
1338  // Each round of simplification iterates through the SimplifyIVUsers worklist
1339  // for all current phis, then determines whether any IVs can be
1340  // widened. Widening adds new phis to LoopPhis, inducing another round of
1341  // simplification on the wide IVs.
1342  while (!LoopPhis.empty()) {
1343    // Evaluate as many IV expressions as possible before widening any IVs. This
1344    // forces SCEV to set no-wrap flags before evaluating sign/zero
1345    // extension. The first time SCEV attempts to normalize sign/zero extension,
1346    // the result becomes final. So for the most predictable results, we delay
1347    // evaluation of sign/zero extend evaluation until needed, and avoid running
1348    // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1349    do {
1350      PHINode *CurrIV = LoopPhis.pop_back_val();
1351
1352      // Information about sign/zero extensions of CurrIV.
1353      WideIVInfo WI;
1354
1355      // Instructions processed by SimplifyIVUsers for CurrIV.
1356      SmallPtrSet<Instruction*,16> Simplified;
1357
1358      // Use-def pairs if IV users waiting to be processed for CurrIV.
1359      SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1360
1361      // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1362      // called multiple times for the same LoopPhi. This is the proper thing to
1363      // do for loop header phis that use each other.
1364      pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1365
1366      while (!SimpleIVUsers.empty()) {
1367        Instruction *UseInst, *Operand;
1368        tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1369        // Bypass back edges to avoid extra work.
1370        if (UseInst == CurrIV) continue;
1371
1372        if (EliminateIVUser(UseInst, Operand)) {
1373          pushIVUsers(Operand, Simplified, SimpleIVUsers);
1374          continue;
1375        }
1376        if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1377          bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1378          if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1379            CollectExtend(Cast, IsSigned, WI, SE, TD);
1380          }
1381          continue;
1382        }
1383        if (isSimpleIVUser(UseInst, L, SE)) {
1384          pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1385        }
1386      }
1387      if (WI.WidestNativeType) {
1388        WideIVMap[CurrIV] = WI;
1389      }
1390    } while(!LoopPhis.empty());
1391
1392    for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1393           E = WideIVMap.end(); I != E; ++I) {
1394      WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1395      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1396        Changed = true;
1397        LoopPhis.push_back(WidePhi);
1398      }
1399    }
1400    WideIVMap.clear();
1401  }
1402}
1403
1404/// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1405/// populate ExprToIVMap for use later.
1406///
1407void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1408  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1409  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1410    PHINode *Phi = cast<PHINode>(I);
1411    if (!SE->isSCEVable(Phi->getType()))
1412      continue;
1413
1414    const SCEV *S = SE->getSCEV(Phi);
1415    DenseMap<const SCEV *, PHINode *>::const_iterator Pos;
1416    bool Inserted;
1417    tie(Pos, Inserted) = ExprToIVMap.insert(std::make_pair(S, Phi));
1418    if (Inserted)
1419      continue;
1420    PHINode *OrigPhi = Pos->second;
1421    // Replacing the congruent phi is sufficient because acyclic redundancy
1422    // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1423    // that a phi is congruent, it's almost certain to be the head of an IV
1424    // user cycle that is isomorphic with the original phi. So it's worth
1425    // eagerly cleaning up the common case of a single IV increment.
1426    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1427      Instruction *OrigInc =
1428        cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1429      Instruction *IsomorphicInc =
1430        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1431      if (OrigInc != IsomorphicInc &&
1432          SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1433          HoistStep(OrigInc, IsomorphicInc, DT)) {
1434        DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1435              << *IsomorphicInc << '\n');
1436        IsomorphicInc->replaceAllUsesWith(OrigInc);
1437        DeadInsts.push_back(IsomorphicInc);
1438      }
1439    }
1440    DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1441    ++NumElimIV;
1442    Phi->replaceAllUsesWith(OrigPhi);
1443    DeadInsts.push_back(Phi);
1444  }
1445}
1446
1447//===----------------------------------------------------------------------===//
1448//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1449//===----------------------------------------------------------------------===//
1450
1451/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1452/// count expression can be safely and cheaply expanded into an instruction
1453/// sequence that can be used by LinearFunctionTestReplace.
1454static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1455  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1456  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1457      BackedgeTakenCount->isZero())
1458    return false;
1459
1460  if (!L->getExitingBlock())
1461    return false;
1462
1463  // Can't rewrite non-branch yet.
1464  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1465  if (!BI)
1466    return false;
1467
1468  // Special case: If the backedge-taken count is a UDiv, it's very likely a
1469  // UDiv that ScalarEvolution produced in order to compute a precise
1470  // expression, rather than a UDiv from the user's code. If we can't find a
1471  // UDiv in the code with some simple searching, assume the former and forego
1472  // rewriting the loop.
1473  if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
1474    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1475    if (!OrigCond) return false;
1476    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1477    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1478    if (R != BackedgeTakenCount) {
1479      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1480      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1481      if (L != BackedgeTakenCount)
1482        return false;
1483    }
1484  }
1485  return true;
1486}
1487
1488/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1489/// through Truncs.
1490///
1491/// TODO: Unnecessary if LFTR does not force a canonical IV.
1492static Type *getBackedgeIVType(Loop *L) {
1493  if (!L->getExitingBlock())
1494    return 0;
1495
1496  // Can't rewrite non-branch yet.
1497  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1498  if (!BI)
1499    return 0;
1500
1501  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1502  if (!Cond)
1503    return 0;
1504
1505  Type *Ty = 0;
1506  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1507      OI != OE; ++OI) {
1508    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1509    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1510    if (!Trunc)
1511      continue;
1512
1513    return Trunc->getSrcTy();
1514  }
1515  return Ty;
1516}
1517
1518/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1519/// loop to be a canonical != comparison against the incremented loop induction
1520/// variable.  This pass is able to rewrite the exit tests of any loop where the
1521/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1522/// is actually a much broader range than just linear tests.
1523ICmpInst *IndVarSimplify::
1524LinearFunctionTestReplace(Loop *L,
1525                          const SCEV *BackedgeTakenCount,
1526                          PHINode *IndVar,
1527                          SCEVExpander &Rewriter) {
1528  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1529  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1530
1531  // If the exiting block is not the same as the backedge block, we must compare
1532  // against the preincremented value, otherwise we prefer to compare against
1533  // the post-incremented value.
1534  Value *CmpIndVar;
1535  const SCEV *RHS = BackedgeTakenCount;
1536  if (L->getExitingBlock() == L->getLoopLatch()) {
1537    // Add one to the "backedge-taken" count to get the trip count.
1538    // If this addition may overflow, we have to be more pessimistic and
1539    // cast the induction variable before doing the add.
1540    const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
1541    const SCEV *N =
1542      SE->getAddExpr(BackedgeTakenCount,
1543                     SE->getConstant(BackedgeTakenCount->getType(), 1));
1544    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1545        SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1546      // No overflow. Cast the sum.
1547      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
1548    } else {
1549      // Potential overflow. Cast before doing the add.
1550      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
1551                                        IndVar->getType());
1552      RHS = SE->getAddExpr(RHS,
1553                           SE->getConstant(IndVar->getType(), 1));
1554    }
1555
1556    // The BackedgeTaken expression contains the number of times that the
1557    // backedge branches to the loop header.  This is one less than the
1558    // number of times the loop executes, so use the incremented indvar.
1559    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1560  } else {
1561    // We have to use the preincremented value...
1562    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
1563                                      IndVar->getType());
1564    CmpIndVar = IndVar;
1565  }
1566
1567  // Expand the code for the iteration count.
1568  assert(SE->isLoopInvariant(RHS, L) &&
1569         "Computed iteration count is not loop invariant!");
1570  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
1571
1572  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1573  ICmpInst::Predicate Opcode;
1574  if (L->contains(BI->getSuccessor(0)))
1575    Opcode = ICmpInst::ICMP_NE;
1576  else
1577    Opcode = ICmpInst::ICMP_EQ;
1578
1579  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1580               << "      LHS:" << *CmpIndVar << '\n'
1581               << "       op:\t"
1582               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1583               << "      RHS:\t" << *RHS << "\n");
1584
1585  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
1586  Cond->setDebugLoc(BI->getDebugLoc());
1587  Value *OrigCond = BI->getCondition();
1588  // It's tempting to use replaceAllUsesWith here to fully replace the old
1589  // comparison, but that's not immediately safe, since users of the old
1590  // comparison may not be dominated by the new comparison. Instead, just
1591  // update the branch to use the new comparison; in the common case this
1592  // will make old comparison dead.
1593  BI->setCondition(Cond);
1594  DeadInsts.push_back(OrigCond);
1595
1596  ++NumLFTR;
1597  Changed = true;
1598  return Cond;
1599}
1600
1601//===----------------------------------------------------------------------===//
1602//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1603//===----------------------------------------------------------------------===//
1604
1605/// If there's a single exit block, sink any loop-invariant values that
1606/// were defined in the preheader but not used inside the loop into the
1607/// exit block to reduce register pressure in the loop.
1608void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1609  BasicBlock *ExitBlock = L->getExitBlock();
1610  if (!ExitBlock) return;
1611
1612  BasicBlock *Preheader = L->getLoopPreheader();
1613  if (!Preheader) return;
1614
1615  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1616  BasicBlock::iterator I = Preheader->getTerminator();
1617  while (I != Preheader->begin()) {
1618    --I;
1619    // New instructions were inserted at the end of the preheader.
1620    if (isa<PHINode>(I))
1621      break;
1622
1623    // Don't move instructions which might have side effects, since the side
1624    // effects need to complete before instructions inside the loop.  Also don't
1625    // move instructions which might read memory, since the loop may modify
1626    // memory. Note that it's okay if the instruction might have undefined
1627    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1628    // block.
1629    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1630      continue;
1631
1632    // Skip debug info intrinsics.
1633    if (isa<DbgInfoIntrinsic>(I))
1634      continue;
1635
1636    // Don't sink static AllocaInsts out of the entry block, which would
1637    // turn them into dynamic allocas!
1638    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1639      if (AI->isStaticAlloca())
1640        continue;
1641
1642    // Determine if there is a use in or before the loop (direct or
1643    // otherwise).
1644    bool UsedInLoop = false;
1645    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1646         UI != UE; ++UI) {
1647      User *U = *UI;
1648      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1649      if (PHINode *P = dyn_cast<PHINode>(U)) {
1650        unsigned i =
1651          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1652        UseBB = P->getIncomingBlock(i);
1653      }
1654      if (UseBB == Preheader || L->contains(UseBB)) {
1655        UsedInLoop = true;
1656        break;
1657      }
1658    }
1659
1660    // If there is, the def must remain in the preheader.
1661    if (UsedInLoop)
1662      continue;
1663
1664    // Otherwise, sink it to the exit block.
1665    Instruction *ToMove = I;
1666    bool Done = false;
1667
1668    if (I != Preheader->begin()) {
1669      // Skip debug info intrinsics.
1670      do {
1671        --I;
1672      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1673
1674      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1675        Done = true;
1676    } else {
1677      Done = true;
1678    }
1679
1680    ToMove->moveBefore(InsertPt);
1681    if (Done) break;
1682    InsertPt = ToMove;
1683  }
1684}
1685
1686//===----------------------------------------------------------------------===//
1687//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1688//===----------------------------------------------------------------------===//
1689
1690bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1691  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1692  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1693  //    canonicalization can be a pessimization without LSR to "clean up"
1694  //    afterwards.
1695  //  - We depend on having a preheader; in particular,
1696  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1697  //    and we're in trouble if we can't find the induction variable even when
1698  //    we've manually inserted one.
1699  if (!L->isLoopSimplifyForm())
1700    return false;
1701
1702  if (!DisableIVRewrite)
1703    IU = &getAnalysis<IVUsers>();
1704  LI = &getAnalysis<LoopInfo>();
1705  SE = &getAnalysis<ScalarEvolution>();
1706  DT = &getAnalysis<DominatorTree>();
1707  TD = getAnalysisIfAvailable<TargetData>();
1708
1709  DeadInsts.clear();
1710  Changed = false;
1711
1712  // If there are any floating-point recurrences, attempt to
1713  // transform them to use integer recurrences.
1714  RewriteNonIntegerIVs(L);
1715
1716  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1717
1718  // Create a rewriter object which we'll use to transform the code with.
1719  SCEVExpander Rewriter(*SE, "indvars");
1720
1721  // Eliminate redundant IV users.
1722  //
1723  // Simplification works best when run before other consumers of SCEV. We
1724  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1725  // other expressions involving loop IVs have been evaluated. This helps SCEV
1726  // set no-wrap flags before normalizing sign/zero extension.
1727  if (DisableIVRewrite) {
1728    Rewriter.disableCanonicalMode();
1729    SimplifyIVUsersNoRewrite(L, Rewriter);
1730  }
1731
1732  // Check to see if this loop has a computable loop-invariant execution count.
1733  // If so, this means that we can compute the final value of any expressions
1734  // that are recurrent in the loop, and substitute the exit values from the
1735  // loop into any instructions outside of the loop that use the final values of
1736  // the current expressions.
1737  //
1738  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1739    RewriteLoopExitValues(L, Rewriter);
1740
1741  // Eliminate redundant IV users.
1742  if (!DisableIVRewrite)
1743    SimplifyIVUsers(Rewriter);
1744
1745  // Eliminate redundant IV cycles.
1746  if (DisableIVRewrite)
1747    SimplifyCongruentIVs(L);
1748
1749  // Compute the type of the largest recurrence expression, and decide whether
1750  // a canonical induction variable should be inserted.
1751  Type *LargestType = 0;
1752  bool NeedCannIV = false;
1753  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1754  if (ExpandBECount) {
1755    // If we have a known trip count and a single exit block, we'll be
1756    // rewriting the loop exit test condition below, which requires a
1757    // canonical induction variable.
1758    NeedCannIV = true;
1759    Type *Ty = BackedgeTakenCount->getType();
1760    if (DisableIVRewrite) {
1761      // In this mode, SimplifyIVUsers may have already widened the IV used by
1762      // the backedge test and inserted a Trunc on the compare's operand. Get
1763      // the wider type to avoid creating a redundant narrow IV only used by the
1764      // loop test.
1765      LargestType = getBackedgeIVType(L);
1766    }
1767    if (!LargestType ||
1768        SE->getTypeSizeInBits(Ty) >
1769        SE->getTypeSizeInBits(LargestType))
1770      LargestType = SE->getEffectiveSCEVType(Ty);
1771  }
1772  if (!DisableIVRewrite) {
1773    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1774      NeedCannIV = true;
1775      Type *Ty =
1776        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1777      if (!LargestType ||
1778          SE->getTypeSizeInBits(Ty) >
1779          SE->getTypeSizeInBits(LargestType))
1780        LargestType = Ty;
1781    }
1782  }
1783
1784  // Now that we know the largest of the induction variable expressions
1785  // in this loop, insert a canonical induction variable of the largest size.
1786  PHINode *IndVar = 0;
1787  if (NeedCannIV) {
1788    // Check to see if the loop already has any canonical-looking induction
1789    // variables. If any are present and wider than the planned canonical
1790    // induction variable, temporarily remove them, so that the Rewriter
1791    // doesn't attempt to reuse them.
1792    SmallVector<PHINode *, 2> OldCannIVs;
1793    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1794      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1795          SE->getTypeSizeInBits(LargestType))
1796        OldCannIV->removeFromParent();
1797      else
1798        break;
1799      OldCannIVs.push_back(OldCannIV);
1800    }
1801
1802    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1803
1804    ++NumInserted;
1805    Changed = true;
1806    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1807
1808    // Now that the official induction variable is established, reinsert
1809    // any old canonical-looking variables after it so that the IR remains
1810    // consistent. They will be deleted as part of the dead-PHI deletion at
1811    // the end of the pass.
1812    while (!OldCannIVs.empty()) {
1813      PHINode *OldCannIV = OldCannIVs.pop_back_val();
1814      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1815    }
1816  }
1817
1818  // If we have a trip count expression, rewrite the loop's exit condition
1819  // using it.  We can currently only handle loops with a single exit.
1820  ICmpInst *NewICmp = 0;
1821  if (ExpandBECount) {
1822    assert(canExpandBackedgeTakenCount(L, SE) &&
1823           "canonical IV disrupted BackedgeTaken expansion");
1824    assert(NeedCannIV &&
1825           "LinearFunctionTestReplace requires a canonical induction variable");
1826    // Check preconditions for proper SCEVExpander operation. SCEV does not
1827    // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1828    // pass that uses the SCEVExpander must do it. This does not work well for
1829    // loop passes because SCEVExpander makes assumptions about all loops, while
1830    // LoopPassManager only forces the current loop to be simplified.
1831    //
1832    // FIXME: SCEV expansion has no way to bail out, so the caller must
1833    // explicitly check any assumptions made by SCEV. Brittle.
1834    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1835    if (!AR || AR->getLoop()->getLoopPreheader())
1836      NewICmp =
1837        LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1838  }
1839  // Rewrite IV-derived expressions.
1840  if (!DisableIVRewrite)
1841    RewriteIVExpressions(L, Rewriter);
1842
1843  // Clear the rewriter cache, because values that are in the rewriter's cache
1844  // can be deleted in the loop below, causing the AssertingVH in the cache to
1845  // trigger.
1846  Rewriter.clear();
1847
1848  // Now that we're done iterating through lists, clean up any instructions
1849  // which are now dead.
1850  while (!DeadInsts.empty())
1851    if (Instruction *Inst =
1852          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1853      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1854
1855  // The Rewriter may not be used from this point on.
1856
1857  // Loop-invariant instructions in the preheader that aren't used in the
1858  // loop may be sunk below the loop to reduce register pressure.
1859  SinkUnusedInvariants(L);
1860
1861  // For completeness, inform IVUsers of the IV use in the newly-created
1862  // loop exit test instruction.
1863  if (NewICmp && IU)
1864    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1865
1866  // Clean up dead instructions.
1867  Changed |= DeleteDeadPHIs(L->getHeader());
1868  // Check a post-condition.
1869  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1870  return Changed;
1871}
1872