IndVarSimplify.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/LoopPass.h"
33#include "llvm/Analysis/ScalarEvolutionExpander.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/CFG.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Type.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetLibraryInfo.h"
47#include "llvm/Transforms/Utils/BasicBlockUtils.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include "llvm/Transforms/Utils/SimplifyIndVar.h"
50using namespace llvm;
51
52#define DEBUG_TYPE "indvars"
53
54STATISTIC(NumWidened     , "Number of indvars widened");
55STATISTIC(NumReplaced    , "Number of exit values replaced");
56STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
57STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
58STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
59
60// Trip count verification can be enabled by default under NDEBUG if we
61// implement a strong expression equivalence checker in SCEV. Until then, we
62// use the verify-indvars flag, which may assert in some cases.
63static cl::opt<bool> VerifyIndvars(
64  "verify-indvars", cl::Hidden,
65  cl::desc("Verify the ScalarEvolution result after running indvars"));
66
67static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
68  cl::desc("Reduce live induction variables."));
69
70namespace {
71  class IndVarSimplify : public LoopPass {
72    LoopInfo        *LI;
73    ScalarEvolution *SE;
74    DominatorTree   *DT;
75    const DataLayout *DL;
76    TargetLibraryInfo *TLI;
77
78    SmallVector<WeakVH, 16> DeadInsts;
79    bool Changed;
80  public:
81
82    static char ID; // Pass identification, replacement for typeid
83    IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr),
84                       DL(nullptr), Changed(false) {
85      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
86    }
87
88    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
89
90    void getAnalysisUsage(AnalysisUsage &AU) const override {
91      AU.addRequired<DominatorTreeWrapperPass>();
92      AU.addRequired<LoopInfo>();
93      AU.addRequired<ScalarEvolution>();
94      AU.addRequiredID(LoopSimplifyID);
95      AU.addRequiredID(LCSSAID);
96      AU.addPreserved<ScalarEvolution>();
97      AU.addPreservedID(LoopSimplifyID);
98      AU.addPreservedID(LCSSAID);
99      AU.setPreservesCFG();
100    }
101
102  private:
103    void releaseMemory() override {
104      DeadInsts.clear();
105    }
106
107    bool isValidRewrite(Value *FromVal, Value *ToVal);
108
109    void HandleFloatingPointIV(Loop *L, PHINode *PH);
110    void RewriteNonIntegerIVs(Loop *L);
111
112    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
113
114    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
115
116    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
117                                     PHINode *IndVar, SCEVExpander &Rewriter);
118
119    void SinkUnusedInvariants(Loop *L);
120  };
121}
122
123char IndVarSimplify::ID = 0;
124INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
125                "Induction Variable Simplification", false, false)
126INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
127INITIALIZE_PASS_DEPENDENCY(LoopInfo)
128INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
129INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
130INITIALIZE_PASS_DEPENDENCY(LCSSA)
131INITIALIZE_PASS_END(IndVarSimplify, "indvars",
132                "Induction Variable Simplification", false, false)
133
134Pass *llvm::createIndVarSimplifyPass() {
135  return new IndVarSimplify();
136}
137
138/// isValidRewrite - Return true if the SCEV expansion generated by the
139/// rewriter can replace the original value. SCEV guarantees that it
140/// produces the same value, but the way it is produced may be illegal IR.
141/// Ideally, this function will only be called for verification.
142bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
143  // If an SCEV expression subsumed multiple pointers, its expansion could
144  // reassociate the GEP changing the base pointer. This is illegal because the
145  // final address produced by a GEP chain must be inbounds relative to its
146  // underlying object. Otherwise basic alias analysis, among other things,
147  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
148  // producing an expression involving multiple pointers. Until then, we must
149  // bail out here.
150  //
151  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
152  // because it understands lcssa phis while SCEV does not.
153  Value *FromPtr = FromVal;
154  Value *ToPtr = ToVal;
155  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
156    FromPtr = GEP->getPointerOperand();
157  }
158  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
159    ToPtr = GEP->getPointerOperand();
160  }
161  if (FromPtr != FromVal || ToPtr != ToVal) {
162    // Quickly check the common case
163    if (FromPtr == ToPtr)
164      return true;
165
166    // SCEV may have rewritten an expression that produces the GEP's pointer
167    // operand. That's ok as long as the pointer operand has the same base
168    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
169    // base of a recurrence. This handles the case in which SCEV expansion
170    // converts a pointer type recurrence into a nonrecurrent pointer base
171    // indexed by an integer recurrence.
172
173    // If the GEP base pointer is a vector of pointers, abort.
174    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
175      return false;
176
177    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
178    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
179    if (FromBase == ToBase)
180      return true;
181
182    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
183          << *FromBase << " != " << *ToBase << "\n");
184
185    return false;
186  }
187  return true;
188}
189
190/// Determine the insertion point for this user. By default, insert immediately
191/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
192/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
193/// common dominator for the incoming blocks.
194static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
195                                          DominatorTree *DT) {
196  PHINode *PHI = dyn_cast<PHINode>(User);
197  if (!PHI)
198    return User;
199
200  Instruction *InsertPt = nullptr;
201  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
202    if (PHI->getIncomingValue(i) != Def)
203      continue;
204
205    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
206    if (!InsertPt) {
207      InsertPt = InsertBB->getTerminator();
208      continue;
209    }
210    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
211    InsertPt = InsertBB->getTerminator();
212  }
213  assert(InsertPt && "Missing phi operand");
214  assert((!isa<Instruction>(Def) ||
215          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
216         "def does not dominate all uses");
217  return InsertPt;
218}
219
220//===----------------------------------------------------------------------===//
221// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
222//===----------------------------------------------------------------------===//
223
224/// ConvertToSInt - Convert APF to an integer, if possible.
225static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
226  bool isExact = false;
227  // See if we can convert this to an int64_t
228  uint64_t UIntVal;
229  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
230                           &isExact) != APFloat::opOK || !isExact)
231    return false;
232  IntVal = UIntVal;
233  return true;
234}
235
236/// HandleFloatingPointIV - If the loop has floating induction variable
237/// then insert corresponding integer induction variable if possible.
238/// For example,
239/// for(double i = 0; i < 10000; ++i)
240///   bar(i)
241/// is converted into
242/// for(int i = 0; i < 10000; ++i)
243///   bar((double)i);
244///
245void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
246  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
247  unsigned BackEdge     = IncomingEdge^1;
248
249  // Check incoming value.
250  ConstantFP *InitValueVal =
251    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
252
253  int64_t InitValue;
254  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
255    return;
256
257  // Check IV increment. Reject this PN if increment operation is not
258  // an add or increment value can not be represented by an integer.
259  BinaryOperator *Incr =
260    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
261  if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
262
263  // If this is not an add of the PHI with a constantfp, or if the constant fp
264  // is not an integer, bail out.
265  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
266  int64_t IncValue;
267  if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
268      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
269    return;
270
271  // Check Incr uses. One user is PN and the other user is an exit condition
272  // used by the conditional terminator.
273  Value::user_iterator IncrUse = Incr->user_begin();
274  Instruction *U1 = cast<Instruction>(*IncrUse++);
275  if (IncrUse == Incr->user_end()) return;
276  Instruction *U2 = cast<Instruction>(*IncrUse++);
277  if (IncrUse != Incr->user_end()) return;
278
279  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
280  // only used by a branch, we can't transform it.
281  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
282  if (!Compare)
283    Compare = dyn_cast<FCmpInst>(U2);
284  if (!Compare || !Compare->hasOneUse() ||
285      !isa<BranchInst>(Compare->user_back()))
286    return;
287
288  BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
289
290  // We need to verify that the branch actually controls the iteration count
291  // of the loop.  If not, the new IV can overflow and no one will notice.
292  // The branch block must be in the loop and one of the successors must be out
293  // of the loop.
294  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
295  if (!L->contains(TheBr->getParent()) ||
296      (L->contains(TheBr->getSuccessor(0)) &&
297       L->contains(TheBr->getSuccessor(1))))
298    return;
299
300
301  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
302  // transform it.
303  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
304  int64_t ExitValue;
305  if (ExitValueVal == nullptr ||
306      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
307    return;
308
309  // Find new predicate for integer comparison.
310  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
311  switch (Compare->getPredicate()) {
312  default: return;  // Unknown comparison.
313  case CmpInst::FCMP_OEQ:
314  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
315  case CmpInst::FCMP_ONE:
316  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
317  case CmpInst::FCMP_OGT:
318  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
319  case CmpInst::FCMP_OGE:
320  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
321  case CmpInst::FCMP_OLT:
322  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
323  case CmpInst::FCMP_OLE:
324  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
325  }
326
327  // We convert the floating point induction variable to a signed i32 value if
328  // we can.  This is only safe if the comparison will not overflow in a way
329  // that won't be trapped by the integer equivalent operations.  Check for this
330  // now.
331  // TODO: We could use i64 if it is native and the range requires it.
332
333  // The start/stride/exit values must all fit in signed i32.
334  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
335    return;
336
337  // If not actually striding (add x, 0.0), avoid touching the code.
338  if (IncValue == 0)
339    return;
340
341  // Positive and negative strides have different safety conditions.
342  if (IncValue > 0) {
343    // If we have a positive stride, we require the init to be less than the
344    // exit value.
345    if (InitValue >= ExitValue)
346      return;
347
348    uint32_t Range = uint32_t(ExitValue-InitValue);
349    // Check for infinite loop, either:
350    // while (i <= Exit) or until (i > Exit)
351    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
352      if (++Range == 0) return;  // Range overflows.
353    }
354
355    unsigned Leftover = Range % uint32_t(IncValue);
356
357    // If this is an equality comparison, we require that the strided value
358    // exactly land on the exit value, otherwise the IV condition will wrap
359    // around and do things the fp IV wouldn't.
360    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
361        Leftover != 0)
362      return;
363
364    // If the stride would wrap around the i32 before exiting, we can't
365    // transform the IV.
366    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
367      return;
368
369  } else {
370    // If we have a negative stride, we require the init to be greater than the
371    // exit value.
372    if (InitValue <= ExitValue)
373      return;
374
375    uint32_t Range = uint32_t(InitValue-ExitValue);
376    // Check for infinite loop, either:
377    // while (i >= Exit) or until (i < Exit)
378    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
379      if (++Range == 0) return;  // Range overflows.
380    }
381
382    unsigned Leftover = Range % uint32_t(-IncValue);
383
384    // If this is an equality comparison, we require that the strided value
385    // exactly land on the exit value, otherwise the IV condition will wrap
386    // around and do things the fp IV wouldn't.
387    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
388        Leftover != 0)
389      return;
390
391    // If the stride would wrap around the i32 before exiting, we can't
392    // transform the IV.
393    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
394      return;
395  }
396
397  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
398
399  // Insert new integer induction variable.
400  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
401  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
402                      PN->getIncomingBlock(IncomingEdge));
403
404  Value *NewAdd =
405    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
406                              Incr->getName()+".int", Incr);
407  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
408
409  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
410                                      ConstantInt::get(Int32Ty, ExitValue),
411                                      Compare->getName());
412
413  // In the following deletions, PN may become dead and may be deleted.
414  // Use a WeakVH to observe whether this happens.
415  WeakVH WeakPH = PN;
416
417  // Delete the old floating point exit comparison.  The branch starts using the
418  // new comparison.
419  NewCompare->takeName(Compare);
420  Compare->replaceAllUsesWith(NewCompare);
421  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
422
423  // Delete the old floating point increment.
424  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
425  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
426
427  // If the FP induction variable still has uses, this is because something else
428  // in the loop uses its value.  In order to canonicalize the induction
429  // variable, we chose to eliminate the IV and rewrite it in terms of an
430  // int->fp cast.
431  //
432  // We give preference to sitofp over uitofp because it is faster on most
433  // platforms.
434  if (WeakPH) {
435    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
436                                 PN->getParent()->getFirstInsertionPt());
437    PN->replaceAllUsesWith(Conv);
438    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
439  }
440  Changed = true;
441}
442
443void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
444  // First step.  Check to see if there are any floating-point recurrences.
445  // If there are, change them into integer recurrences, permitting analysis by
446  // the SCEV routines.
447  //
448  BasicBlock *Header = L->getHeader();
449
450  SmallVector<WeakVH, 8> PHIs;
451  for (BasicBlock::iterator I = Header->begin();
452       PHINode *PN = dyn_cast<PHINode>(I); ++I)
453    PHIs.push_back(PN);
454
455  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
456    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
457      HandleFloatingPointIV(L, PN);
458
459  // If the loop previously had floating-point IV, ScalarEvolution
460  // may not have been able to compute a trip count. Now that we've done some
461  // re-writing, the trip count may be computable.
462  if (Changed)
463    SE->forgetLoop(L);
464}
465
466//===----------------------------------------------------------------------===//
467// RewriteLoopExitValues - Optimize IV users outside the loop.
468// As a side effect, reduces the amount of IV processing within the loop.
469//===----------------------------------------------------------------------===//
470
471/// RewriteLoopExitValues - Check to see if this loop has a computable
472/// loop-invariant execution count.  If so, this means that we can compute the
473/// final value of any expressions that are recurrent in the loop, and
474/// substitute the exit values from the loop into any instructions outside of
475/// the loop that use the final values of the current expressions.
476///
477/// This is mostly redundant with the regular IndVarSimplify activities that
478/// happen later, except that it's more powerful in some cases, because it's
479/// able to brute-force evaluate arbitrary instructions as long as they have
480/// constant operands at the beginning of the loop.
481void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
482  // Verify the input to the pass in already in LCSSA form.
483  assert(L->isLCSSAForm(*DT));
484
485  SmallVector<BasicBlock*, 8> ExitBlocks;
486  L->getUniqueExitBlocks(ExitBlocks);
487
488  // Find all values that are computed inside the loop, but used outside of it.
489  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
490  // the exit blocks of the loop to find them.
491  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
492    BasicBlock *ExitBB = ExitBlocks[i];
493
494    // If there are no PHI nodes in this exit block, then no values defined
495    // inside the loop are used on this path, skip it.
496    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
497    if (!PN) continue;
498
499    unsigned NumPreds = PN->getNumIncomingValues();
500
501    // We would like to be able to RAUW single-incoming value PHI nodes. We
502    // have to be certain this is safe even when this is an LCSSA PHI node.
503    // While the computed exit value is no longer varying in *this* loop, the
504    // exit block may be an exit block for an outer containing loop as well,
505    // the exit value may be varying in the outer loop, and thus it may still
506    // require an LCSSA PHI node. The safe case is when this is
507    // single-predecessor PHI node (LCSSA) and the exit block containing it is
508    // part of the enclosing loop, or this is the outer most loop of the nest.
509    // In either case the exit value could (at most) be varying in the same
510    // loop body as the phi node itself. Thus if it is in turn used outside of
511    // an enclosing loop it will only be via a separate LCSSA node.
512    bool LCSSASafePhiForRAUW =
513        NumPreds == 1 &&
514        (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
515
516    // Iterate over all of the PHI nodes.
517    BasicBlock::iterator BBI = ExitBB->begin();
518    while ((PN = dyn_cast<PHINode>(BBI++))) {
519      if (PN->use_empty())
520        continue; // dead use, don't replace it
521
522      // SCEV only supports integer expressions for now.
523      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
524        continue;
525
526      // It's necessary to tell ScalarEvolution about this explicitly so that
527      // it can walk the def-use list and forget all SCEVs, as it may not be
528      // watching the PHI itself. Once the new exit value is in place, there
529      // may not be a def-use connection between the loop and every instruction
530      // which got a SCEVAddRecExpr for that loop.
531      SE->forgetValue(PN);
532
533      // Iterate over all of the values in all the PHI nodes.
534      for (unsigned i = 0; i != NumPreds; ++i) {
535        // If the value being merged in is not integer or is not defined
536        // in the loop, skip it.
537        Value *InVal = PN->getIncomingValue(i);
538        if (!isa<Instruction>(InVal))
539          continue;
540
541        // If this pred is for a subloop, not L itself, skip it.
542        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
543          continue; // The Block is in a subloop, skip it.
544
545        // Check that InVal is defined in the loop.
546        Instruction *Inst = cast<Instruction>(InVal);
547        if (!L->contains(Inst))
548          continue;
549
550        // Okay, this instruction has a user outside of the current loop
551        // and varies predictably *inside* the loop.  Evaluate the value it
552        // contains when the loop exits, if possible.
553        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
554        if (!SE->isLoopInvariant(ExitValue, L) ||
555            !isSafeToExpand(ExitValue, *SE))
556          continue;
557
558        // Computing the value outside of the loop brings no benefit if :
559        //  - it is definitely used inside the loop in a way which can not be
560        //    optimized away.
561        //  - no use outside of the loop can take advantage of hoisting the
562        //    computation out of the loop
563        if (ExitValue->getSCEVType()>=scMulExpr) {
564          unsigned NumHardInternalUses = 0;
565          unsigned NumSoftExternalUses = 0;
566          unsigned NumUses = 0;
567          for (auto IB = Inst->user_begin(), IE = Inst->user_end();
568               IB != IE && NumUses <= 6; ++IB) {
569            Instruction *UseInstr = cast<Instruction>(*IB);
570            unsigned Opc = UseInstr->getOpcode();
571            NumUses++;
572            if (L->contains(UseInstr)) {
573              if (Opc == Instruction::Call || Opc == Instruction::Ret)
574                NumHardInternalUses++;
575            } else {
576              if (Opc == Instruction::PHI) {
577                // Do not count the Phi as a use. LCSSA may have inserted
578                // plenty of trivial ones.
579                NumUses--;
580                for (auto PB = UseInstr->user_begin(),
581                          PE = UseInstr->user_end();
582                     PB != PE && NumUses <= 6; ++PB, ++NumUses) {
583                  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
584                  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
585                    NumSoftExternalUses++;
586                }
587                continue;
588              }
589              if (Opc != Instruction::Call && Opc != Instruction::Ret)
590                NumSoftExternalUses++;
591            }
592          }
593          if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
594            continue;
595        }
596
597        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
598
599        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
600                     << "  LoopVal = " << *Inst << "\n");
601
602        if (!isValidRewrite(Inst, ExitVal)) {
603          DeadInsts.push_back(ExitVal);
604          continue;
605        }
606        Changed = true;
607        ++NumReplaced;
608
609        PN->setIncomingValue(i, ExitVal);
610
611        // If this instruction is dead now, delete it. Don't do it now to avoid
612        // invalidating iterators.
613        if (isInstructionTriviallyDead(Inst, TLI))
614          DeadInsts.push_back(Inst);
615
616        // If we determined that this PHI is safe to replace even if an LCSSA
617        // PHI, do so.
618        if (LCSSASafePhiForRAUW) {
619          PN->replaceAllUsesWith(ExitVal);
620          PN->eraseFromParent();
621        }
622      }
623
624      // If we were unable to completely replace the PHI node, clone the PHI
625      // and delete the original one. This lets IVUsers and any other maps
626      // purge the original user from their records.
627      if (!LCSSASafePhiForRAUW) {
628        PHINode *NewPN = cast<PHINode>(PN->clone());
629        NewPN->takeName(PN);
630        NewPN->insertBefore(PN);
631        PN->replaceAllUsesWith(NewPN);
632        PN->eraseFromParent();
633      }
634    }
635  }
636
637  // The insertion point instruction may have been deleted; clear it out
638  // so that the rewriter doesn't trip over it later.
639  Rewriter.clearInsertPoint();
640}
641
642//===----------------------------------------------------------------------===//
643//  IV Widening - Extend the width of an IV to cover its widest uses.
644//===----------------------------------------------------------------------===//
645
646namespace {
647  // Collect information about induction variables that are used by sign/zero
648  // extend operations. This information is recorded by CollectExtend and
649  // provides the input to WidenIV.
650  struct WideIVInfo {
651    PHINode *NarrowIV;
652    Type *WidestNativeType; // Widest integer type created [sz]ext
653    bool IsSigned;          // Was an sext user seen before a zext?
654
655    WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
656                   IsSigned(false) {}
657  };
658}
659
660/// visitCast - Update information about the induction variable that is
661/// extended by this sign or zero extend operation. This is used to determine
662/// the final width of the IV before actually widening it.
663static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
664                        const DataLayout *DL) {
665  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
666  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
667    return;
668
669  Type *Ty = Cast->getType();
670  uint64_t Width = SE->getTypeSizeInBits(Ty);
671  if (DL && !DL->isLegalInteger(Width))
672    return;
673
674  if (!WI.WidestNativeType) {
675    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
676    WI.IsSigned = IsSigned;
677    return;
678  }
679
680  // We extend the IV to satisfy the sign of its first user, arbitrarily.
681  if (WI.IsSigned != IsSigned)
682    return;
683
684  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
685    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
686}
687
688namespace {
689
690/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
691/// WideIV that computes the same value as the Narrow IV def.  This avoids
692/// caching Use* pointers.
693struct NarrowIVDefUse {
694  Instruction *NarrowDef;
695  Instruction *NarrowUse;
696  Instruction *WideDef;
697
698  NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
699
700  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
701    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
702};
703
704/// WidenIV - The goal of this transform is to remove sign and zero extends
705/// without creating any new induction variables. To do this, it creates a new
706/// phi of the wider type and redirects all users, either removing extends or
707/// inserting truncs whenever we stop propagating the type.
708///
709class WidenIV {
710  // Parameters
711  PHINode *OrigPhi;
712  Type *WideType;
713  bool IsSigned;
714
715  // Context
716  LoopInfo        *LI;
717  Loop            *L;
718  ScalarEvolution *SE;
719  DominatorTree   *DT;
720
721  // Result
722  PHINode *WidePhi;
723  Instruction *WideInc;
724  const SCEV *WideIncExpr;
725  SmallVectorImpl<WeakVH> &DeadInsts;
726
727  SmallPtrSet<Instruction*,16> Widened;
728  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
729
730public:
731  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
732          ScalarEvolution *SEv, DominatorTree *DTree,
733          SmallVectorImpl<WeakVH> &DI) :
734    OrigPhi(WI.NarrowIV),
735    WideType(WI.WidestNativeType),
736    IsSigned(WI.IsSigned),
737    LI(LInfo),
738    L(LI->getLoopFor(OrigPhi->getParent())),
739    SE(SEv),
740    DT(DTree),
741    WidePhi(nullptr),
742    WideInc(nullptr),
743    WideIncExpr(nullptr),
744    DeadInsts(DI) {
745    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
746  }
747
748  PHINode *CreateWideIV(SCEVExpander &Rewriter);
749
750protected:
751  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
752                   Instruction *Use);
753
754  Instruction *CloneIVUser(NarrowIVDefUse DU);
755
756  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
757
758  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
759
760  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
761
762  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
763};
764} // anonymous namespace
765
766/// isLoopInvariant - Perform a quick domtree based check for loop invariance
767/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
768/// gratuitous for this purpose.
769static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
770  Instruction *Inst = dyn_cast<Instruction>(V);
771  if (!Inst)
772    return true;
773
774  return DT->properlyDominates(Inst->getParent(), L->getHeader());
775}
776
777Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
778                          Instruction *Use) {
779  // Set the debug location and conservative insertion point.
780  IRBuilder<> Builder(Use);
781  // Hoist the insertion point into loop preheaders as far as possible.
782  for (const Loop *L = LI->getLoopFor(Use->getParent());
783       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
784       L = L->getParentLoop())
785    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
786
787  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
788                    Builder.CreateZExt(NarrowOper, WideType);
789}
790
791/// CloneIVUser - Instantiate a wide operation to replace a narrow
792/// operation. This only needs to handle operations that can evaluation to
793/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
794Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
795  unsigned Opcode = DU.NarrowUse->getOpcode();
796  switch (Opcode) {
797  default:
798    return nullptr;
799  case Instruction::Add:
800  case Instruction::Mul:
801  case Instruction::UDiv:
802  case Instruction::Sub:
803  case Instruction::And:
804  case Instruction::Or:
805  case Instruction::Xor:
806  case Instruction::Shl:
807  case Instruction::LShr:
808  case Instruction::AShr:
809    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
810
811    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
812    // anything about the narrow operand yet so must insert a [sz]ext. It is
813    // probably loop invariant and will be folded or hoisted. If it actually
814    // comes from a widened IV, it should be removed during a future call to
815    // WidenIVUse.
816    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
817      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
818    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
819      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
820
821    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
822    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
823                                                    LHS, RHS,
824                                                    NarrowBO->getName());
825    IRBuilder<> Builder(DU.NarrowUse);
826    Builder.Insert(WideBO);
827    if (const OverflowingBinaryOperator *OBO =
828        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
829      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
830      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
831    }
832    return WideBO;
833  }
834}
835
836/// No-wrap operations can transfer sign extension of their result to their
837/// operands. Generate the SCEV value for the widened operation without
838/// actually modifying the IR yet. If the expression after extending the
839/// operands is an AddRec for this loop, return it.
840const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
841  // Handle the common case of add<nsw/nuw>
842  if (DU.NarrowUse->getOpcode() != Instruction::Add)
843    return nullptr;
844
845  // One operand (NarrowDef) has already been extended to WideDef. Now determine
846  // if extending the other will lead to a recurrence.
847  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
848  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
849
850  const SCEV *ExtendOperExpr = nullptr;
851  const OverflowingBinaryOperator *OBO =
852    cast<OverflowingBinaryOperator>(DU.NarrowUse);
853  if (IsSigned && OBO->hasNoSignedWrap())
854    ExtendOperExpr = SE->getSignExtendExpr(
855      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
856  else if(!IsSigned && OBO->hasNoUnsignedWrap())
857    ExtendOperExpr = SE->getZeroExtendExpr(
858      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
859  else
860    return nullptr;
861
862  // When creating this AddExpr, don't apply the current operations NSW or NUW
863  // flags. This instruction may be guarded by control flow that the no-wrap
864  // behavior depends on. Non-control-equivalent instructions can be mapped to
865  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
866  // semantics to those operations.
867  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
868    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
869
870  if (!AddRec || AddRec->getLoop() != L)
871    return nullptr;
872  return AddRec;
873}
874
875/// GetWideRecurrence - Is this instruction potentially interesting from
876/// IVUsers' perspective after widening it's type? In other words, can the
877/// extend be safely hoisted out of the loop with SCEV reducing the value to a
878/// recurrence on the same loop. If so, return the sign or zero extended
879/// recurrence. Otherwise return NULL.
880const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
881  if (!SE->isSCEVable(NarrowUse->getType()))
882    return nullptr;
883
884  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
885  if (SE->getTypeSizeInBits(NarrowExpr->getType())
886      >= SE->getTypeSizeInBits(WideType)) {
887    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
888    // index. So don't follow this use.
889    return nullptr;
890  }
891
892  const SCEV *WideExpr = IsSigned ?
893    SE->getSignExtendExpr(NarrowExpr, WideType) :
894    SE->getZeroExtendExpr(NarrowExpr, WideType);
895  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
896  if (!AddRec || AddRec->getLoop() != L)
897    return nullptr;
898  return AddRec;
899}
900
901/// This IV user cannot be widen. Replace this use of the original narrow IV
902/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
903static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
904  DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
905        << " for user " << *DU.NarrowUse << "\n");
906  IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
907  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
908  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
909}
910
911/// WidenIVUse - Determine whether an individual user of the narrow IV can be
912/// widened. If so, return the wide clone of the user.
913Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
914
915  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
916  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
917    if (LI->getLoopFor(UsePhi->getParent()) != L) {
918      // For LCSSA phis, sink the truncate outside the loop.
919      // After SimplifyCFG most loop exit targets have a single predecessor.
920      // Otherwise fall back to a truncate within the loop.
921      if (UsePhi->getNumOperands() != 1)
922        truncateIVUse(DU, DT);
923      else {
924        PHINode *WidePhi =
925          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
926                          UsePhi);
927        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
928        IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
929        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
930        UsePhi->replaceAllUsesWith(Trunc);
931        DeadInsts.push_back(UsePhi);
932        DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
933              << " to " << *WidePhi << "\n");
934      }
935      return nullptr;
936    }
937  }
938  // Our raison d'etre! Eliminate sign and zero extension.
939  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
940    Value *NewDef = DU.WideDef;
941    if (DU.NarrowUse->getType() != WideType) {
942      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
943      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
944      if (CastWidth < IVWidth) {
945        // The cast isn't as wide as the IV, so insert a Trunc.
946        IRBuilder<> Builder(DU.NarrowUse);
947        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
948      }
949      else {
950        // A wider extend was hidden behind a narrower one. This may induce
951        // another round of IV widening in which the intermediate IV becomes
952        // dead. It should be very rare.
953        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
954              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
955        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
956        NewDef = DU.NarrowUse;
957      }
958    }
959    if (NewDef != DU.NarrowUse) {
960      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
961            << " replaced by " << *DU.WideDef << "\n");
962      ++NumElimExt;
963      DU.NarrowUse->replaceAllUsesWith(NewDef);
964      DeadInsts.push_back(DU.NarrowUse);
965    }
966    // Now that the extend is gone, we want to expose it's uses for potential
967    // further simplification. We don't need to directly inform SimplifyIVUsers
968    // of the new users, because their parent IV will be processed later as a
969    // new loop phi. If we preserved IVUsers analysis, we would also want to
970    // push the uses of WideDef here.
971
972    // No further widening is needed. The deceased [sz]ext had done it for us.
973    return nullptr;
974  }
975
976  // Does this user itself evaluate to a recurrence after widening?
977  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
978  if (!WideAddRec) {
979      WideAddRec = GetExtendedOperandRecurrence(DU);
980  }
981  if (!WideAddRec) {
982    // This user does not evaluate to a recurence after widening, so don't
983    // follow it. Instead insert a Trunc to kill off the original use,
984    // eventually isolating the original narrow IV so it can be removed.
985    truncateIVUse(DU, DT);
986    return nullptr;
987  }
988  // Assume block terminators cannot evaluate to a recurrence. We can't to
989  // insert a Trunc after a terminator if there happens to be a critical edge.
990  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
991         "SCEV is not expected to evaluate a block terminator");
992
993  // Reuse the IV increment that SCEVExpander created as long as it dominates
994  // NarrowUse.
995  Instruction *WideUse = nullptr;
996  if (WideAddRec == WideIncExpr
997      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
998    WideUse = WideInc;
999  else {
1000    WideUse = CloneIVUser(DU);
1001    if (!WideUse)
1002      return nullptr;
1003  }
1004  // Evaluation of WideAddRec ensured that the narrow expression could be
1005  // extended outside the loop without overflow. This suggests that the wide use
1006  // evaluates to the same expression as the extended narrow use, but doesn't
1007  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1008  // where it fails, we simply throw away the newly created wide use.
1009  if (WideAddRec != SE->getSCEV(WideUse)) {
1010    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1011          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1012    DeadInsts.push_back(WideUse);
1013    return nullptr;
1014  }
1015
1016  // Returning WideUse pushes it on the worklist.
1017  return WideUse;
1018}
1019
1020/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1021///
1022void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1023  for (User *U : NarrowDef->users()) {
1024    Instruction *NarrowUser = cast<Instruction>(U);
1025
1026    // Handle data flow merges and bizarre phi cycles.
1027    if (!Widened.insert(NarrowUser))
1028      continue;
1029
1030    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
1031  }
1032}
1033
1034/// CreateWideIV - Process a single induction variable. First use the
1035/// SCEVExpander to create a wide induction variable that evaluates to the same
1036/// recurrence as the original narrow IV. Then use a worklist to forward
1037/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1038/// interesting IV users, the narrow IV will be isolated for removal by
1039/// DeleteDeadPHIs.
1040///
1041/// It would be simpler to delete uses as they are processed, but we must avoid
1042/// invalidating SCEV expressions.
1043///
1044PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1045  // Is this phi an induction variable?
1046  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1047  if (!AddRec)
1048    return nullptr;
1049
1050  // Widen the induction variable expression.
1051  const SCEV *WideIVExpr = IsSigned ?
1052    SE->getSignExtendExpr(AddRec, WideType) :
1053    SE->getZeroExtendExpr(AddRec, WideType);
1054
1055  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1056         "Expect the new IV expression to preserve its type");
1057
1058  // Can the IV be extended outside the loop without overflow?
1059  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1060  if (!AddRec || AddRec->getLoop() != L)
1061    return nullptr;
1062
1063  // An AddRec must have loop-invariant operands. Since this AddRec is
1064  // materialized by a loop header phi, the expression cannot have any post-loop
1065  // operands, so they must dominate the loop header.
1066  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1067         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1068         && "Loop header phi recurrence inputs do not dominate the loop");
1069
1070  // The rewriter provides a value for the desired IV expression. This may
1071  // either find an existing phi or materialize a new one. Either way, we
1072  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1073  // of the phi-SCC dominates the loop entry.
1074  Instruction *InsertPt = L->getHeader()->begin();
1075  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1076
1077  // Remembering the WideIV increment generated by SCEVExpander allows
1078  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1079  // employ a general reuse mechanism because the call above is the only call to
1080  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1081  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1082    WideInc =
1083      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1084    WideIncExpr = SE->getSCEV(WideInc);
1085  }
1086
1087  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1088  ++NumWidened;
1089
1090  // Traverse the def-use chain using a worklist starting at the original IV.
1091  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1092
1093  Widened.insert(OrigPhi);
1094  pushNarrowIVUsers(OrigPhi, WidePhi);
1095
1096  while (!NarrowIVUsers.empty()) {
1097    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1098
1099    // Process a def-use edge. This may replace the use, so don't hold a
1100    // use_iterator across it.
1101    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1102
1103    // Follow all def-use edges from the previous narrow use.
1104    if (WideUse)
1105      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1106
1107    // WidenIVUse may have removed the def-use edge.
1108    if (DU.NarrowDef->use_empty())
1109      DeadInsts.push_back(DU.NarrowDef);
1110  }
1111  return WidePhi;
1112}
1113
1114//===----------------------------------------------------------------------===//
1115//  Live IV Reduction - Minimize IVs live across the loop.
1116//===----------------------------------------------------------------------===//
1117
1118
1119//===----------------------------------------------------------------------===//
1120//  Simplification of IV users based on SCEV evaluation.
1121//===----------------------------------------------------------------------===//
1122
1123namespace {
1124  class IndVarSimplifyVisitor : public IVVisitor {
1125    ScalarEvolution *SE;
1126    const DataLayout *DL;
1127    PHINode *IVPhi;
1128
1129  public:
1130    WideIVInfo WI;
1131
1132    IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1133                          const DataLayout *DL, const DominatorTree *DTree):
1134      SE(SCEV), DL(DL), IVPhi(IV) {
1135      DT = DTree;
1136      WI.NarrowIV = IVPhi;
1137      if (ReduceLiveIVs)
1138        setSplitOverflowIntrinsics();
1139    }
1140
1141    // Implement the interface used by simplifyUsersOfIV.
1142    void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, DL); }
1143  };
1144}
1145
1146/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1147/// users. Each successive simplification may push more users which may
1148/// themselves be candidates for simplification.
1149///
1150/// Sign/Zero extend elimination is interleaved with IV simplification.
1151///
1152void IndVarSimplify::SimplifyAndExtend(Loop *L,
1153                                       SCEVExpander &Rewriter,
1154                                       LPPassManager &LPM) {
1155  SmallVector<WideIVInfo, 8> WideIVs;
1156
1157  SmallVector<PHINode*, 8> LoopPhis;
1158  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1159    LoopPhis.push_back(cast<PHINode>(I));
1160  }
1161  // Each round of simplification iterates through the SimplifyIVUsers worklist
1162  // for all current phis, then determines whether any IVs can be
1163  // widened. Widening adds new phis to LoopPhis, inducing another round of
1164  // simplification on the wide IVs.
1165  while (!LoopPhis.empty()) {
1166    // Evaluate as many IV expressions as possible before widening any IVs. This
1167    // forces SCEV to set no-wrap flags before evaluating sign/zero
1168    // extension. The first time SCEV attempts to normalize sign/zero extension,
1169    // the result becomes final. So for the most predictable results, we delay
1170    // evaluation of sign/zero extend evaluation until needed, and avoid running
1171    // other SCEV based analysis prior to SimplifyAndExtend.
1172    do {
1173      PHINode *CurrIV = LoopPhis.pop_back_val();
1174
1175      // Information about sign/zero extensions of CurrIV.
1176      IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT);
1177
1178      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
1179
1180      if (Visitor.WI.WidestNativeType) {
1181        WideIVs.push_back(Visitor.WI);
1182      }
1183    } while(!LoopPhis.empty());
1184
1185    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1186      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1187      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1188        Changed = true;
1189        LoopPhis.push_back(WidePhi);
1190      }
1191    }
1192  }
1193}
1194
1195//===----------------------------------------------------------------------===//
1196//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1197//===----------------------------------------------------------------------===//
1198
1199/// Check for expressions that ScalarEvolution generates to compute
1200/// BackedgeTakenInfo. If these expressions have not been reduced, then
1201/// expanding them may incur additional cost (albeit in the loop preheader).
1202static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1203                                SmallPtrSet<const SCEV*, 8> &Processed,
1204                                ScalarEvolution *SE) {
1205  if (!Processed.insert(S))
1206    return false;
1207
1208  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1209  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1210  // precise expression, rather than a UDiv from the user's code. If we can't
1211  // find a UDiv in the code with some simple searching, assume the former and
1212  // forego rewriting the loop.
1213  if (isa<SCEVUDivExpr>(S)) {
1214    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1215    if (!OrigCond) return true;
1216    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1217    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1218    if (R != S) {
1219      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1220      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1221      if (L != S)
1222        return true;
1223    }
1224  }
1225
1226  // Recurse past add expressions, which commonly occur in the
1227  // BackedgeTakenCount. They may already exist in program code, and if not,
1228  // they are not too expensive rematerialize.
1229  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1230    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1231         I != E; ++I) {
1232      if (isHighCostExpansion(*I, BI, Processed, SE))
1233        return true;
1234    }
1235    return false;
1236  }
1237
1238  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1239  // the exit condition.
1240  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1241    return true;
1242
1243  // If we haven't recognized an expensive SCEV pattern, assume it's an
1244  // expression produced by program code.
1245  return false;
1246}
1247
1248/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1249/// count expression can be safely and cheaply expanded into an instruction
1250/// sequence that can be used by LinearFunctionTestReplace.
1251///
1252/// TODO: This fails for pointer-type loop counters with greater than one byte
1253/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1254/// we could skip this check in the case that the LFTR loop counter (chosen by
1255/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1256/// the loop test to an inequality test by checking the target data's alignment
1257/// of element types (given that the initial pointer value originates from or is
1258/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1259/// However, we don't yet have a strong motivation for converting loop tests
1260/// into inequality tests.
1261static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1262  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1263  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1264      BackedgeTakenCount->isZero())
1265    return false;
1266
1267  if (!L->getExitingBlock())
1268    return false;
1269
1270  // Can't rewrite non-branch yet.
1271  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1272  if (!BI)
1273    return false;
1274
1275  SmallPtrSet<const SCEV*, 8> Processed;
1276  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1277    return false;
1278
1279  return true;
1280}
1281
1282/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1283/// invariant value to the phi.
1284static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1285  Instruction *IncI = dyn_cast<Instruction>(IncV);
1286  if (!IncI)
1287    return nullptr;
1288
1289  switch (IncI->getOpcode()) {
1290  case Instruction::Add:
1291  case Instruction::Sub:
1292    break;
1293  case Instruction::GetElementPtr:
1294    // An IV counter must preserve its type.
1295    if (IncI->getNumOperands() == 2)
1296      break;
1297  default:
1298    return nullptr;
1299  }
1300
1301  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1302  if (Phi && Phi->getParent() == L->getHeader()) {
1303    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1304      return Phi;
1305    return nullptr;
1306  }
1307  if (IncI->getOpcode() == Instruction::GetElementPtr)
1308    return nullptr;
1309
1310  // Allow add/sub to be commuted.
1311  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1312  if (Phi && Phi->getParent() == L->getHeader()) {
1313    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1314      return Phi;
1315  }
1316  return nullptr;
1317}
1318
1319/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1320static ICmpInst *getLoopTest(Loop *L) {
1321  assert(L->getExitingBlock() && "expected loop exit");
1322
1323  BasicBlock *LatchBlock = L->getLoopLatch();
1324  // Don't bother with LFTR if the loop is not properly simplified.
1325  if (!LatchBlock)
1326    return nullptr;
1327
1328  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1329  assert(BI && "expected exit branch");
1330
1331  return dyn_cast<ICmpInst>(BI->getCondition());
1332}
1333
1334/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1335/// that the current exit test is already sufficiently canonical.
1336static bool needsLFTR(Loop *L, DominatorTree *DT) {
1337  // Do LFTR to simplify the exit condition to an ICMP.
1338  ICmpInst *Cond = getLoopTest(L);
1339  if (!Cond)
1340    return true;
1341
1342  // Do LFTR to simplify the exit ICMP to EQ/NE
1343  ICmpInst::Predicate Pred = Cond->getPredicate();
1344  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1345    return true;
1346
1347  // Look for a loop invariant RHS
1348  Value *LHS = Cond->getOperand(0);
1349  Value *RHS = Cond->getOperand(1);
1350  if (!isLoopInvariant(RHS, L, DT)) {
1351    if (!isLoopInvariant(LHS, L, DT))
1352      return true;
1353    std::swap(LHS, RHS);
1354  }
1355  // Look for a simple IV counter LHS
1356  PHINode *Phi = dyn_cast<PHINode>(LHS);
1357  if (!Phi)
1358    Phi = getLoopPhiForCounter(LHS, L, DT);
1359
1360  if (!Phi)
1361    return true;
1362
1363  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1364  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1365  if (Idx < 0)
1366    return true;
1367
1368  // Do LFTR if the exit condition's IV is *not* a simple counter.
1369  Value *IncV = Phi->getIncomingValue(Idx);
1370  return Phi != getLoopPhiForCounter(IncV, L, DT);
1371}
1372
1373/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1374/// down to checking that all operands are constant and listing instructions
1375/// that may hide undef.
1376static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1377                               unsigned Depth) {
1378  if (isa<Constant>(V))
1379    return !isa<UndefValue>(V);
1380
1381  if (Depth >= 6)
1382    return false;
1383
1384  // Conservatively handle non-constant non-instructions. For example, Arguments
1385  // may be undef.
1386  Instruction *I = dyn_cast<Instruction>(V);
1387  if (!I)
1388    return false;
1389
1390  // Load and return values may be undef.
1391  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1392    return false;
1393
1394  // Optimistically handle other instructions.
1395  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1396    if (!Visited.insert(*OI))
1397      continue;
1398    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1399      return false;
1400  }
1401  return true;
1402}
1403
1404/// Return true if the given value is concrete. We must prove that undef can
1405/// never reach it.
1406///
1407/// TODO: If we decide that this is a good approach to checking for undef, we
1408/// may factor it into a common location.
1409static bool hasConcreteDef(Value *V) {
1410  SmallPtrSet<Value*, 8> Visited;
1411  Visited.insert(V);
1412  return hasConcreteDefImpl(V, Visited, 0);
1413}
1414
1415/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1416/// be rewritten) loop exit test.
1417static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1418  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1419  Value *IncV = Phi->getIncomingValue(LatchIdx);
1420
1421  for (User *U : Phi->users())
1422    if (U != Cond && U != IncV) return false;
1423
1424  for (User *U : IncV->users())
1425    if (U != Cond && U != Phi) return false;
1426  return true;
1427}
1428
1429/// FindLoopCounter - Find an affine IV in canonical form.
1430///
1431/// BECount may be an i8* pointer type. The pointer difference is already
1432/// valid count without scaling the address stride, so it remains a pointer
1433/// expression as far as SCEV is concerned.
1434///
1435/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1436///
1437/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1438///
1439/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1440/// This is difficult in general for SCEV because of potential overflow. But we
1441/// could at least handle constant BECounts.
1442static PHINode *
1443FindLoopCounter(Loop *L, const SCEV *BECount,
1444                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
1445  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1446
1447  Value *Cond =
1448    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1449
1450  // Loop over all of the PHI nodes, looking for a simple counter.
1451  PHINode *BestPhi = nullptr;
1452  const SCEV *BestInit = nullptr;
1453  BasicBlock *LatchBlock = L->getLoopLatch();
1454  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1455
1456  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1457    PHINode *Phi = cast<PHINode>(I);
1458    if (!SE->isSCEVable(Phi->getType()))
1459      continue;
1460
1461    // Avoid comparing an integer IV against a pointer Limit.
1462    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1463      continue;
1464
1465    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1466    if (!AR || AR->getLoop() != L || !AR->isAffine())
1467      continue;
1468
1469    // AR may be a pointer type, while BECount is an integer type.
1470    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1471    // AR may not be a narrower type, or we may never exit.
1472    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1473    if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
1474      continue;
1475
1476    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1477    if (!Step || !Step->isOne())
1478      continue;
1479
1480    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1481    Value *IncV = Phi->getIncomingValue(LatchIdx);
1482    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1483      continue;
1484
1485    // Avoid reusing a potentially undef value to compute other values that may
1486    // have originally had a concrete definition.
1487    if (!hasConcreteDef(Phi)) {
1488      // We explicitly allow unknown phis as long as they are already used by
1489      // the loop test. In this case we assume that performing LFTR could not
1490      // increase the number of undef users.
1491      if (ICmpInst *Cond = getLoopTest(L)) {
1492        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1493            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1494          continue;
1495        }
1496      }
1497    }
1498    const SCEV *Init = AR->getStart();
1499
1500    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1501      // Don't force a live loop counter if another IV can be used.
1502      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1503        continue;
1504
1505      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1506      // also prefers integer to pointer IVs.
1507      if (BestInit->isZero() != Init->isZero()) {
1508        if (BestInit->isZero())
1509          continue;
1510      }
1511      // If two IVs both count from zero or both count from nonzero then the
1512      // narrower is likely a dead phi that has been widened. Use the wider phi
1513      // to allow the other to be eliminated.
1514      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1515        continue;
1516    }
1517    BestPhi = Phi;
1518    BestInit = Init;
1519  }
1520  return BestPhi;
1521}
1522
1523/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1524/// holds the RHS of the new loop test.
1525static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1526                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1527  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1528  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1529  const SCEV *IVInit = AR->getStart();
1530
1531  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1532  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1533  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1534  // the existing GEPs whenever possible.
1535  if (IndVar->getType()->isPointerTy()
1536      && !IVCount->getType()->isPointerTy()) {
1537
1538    // IVOffset will be the new GEP offset that is interpreted by GEP as a
1539    // signed value. IVCount on the other hand represents the loop trip count,
1540    // which is an unsigned value. FindLoopCounter only allows induction
1541    // variables that have a positive unit stride of one. This means we don't
1542    // have to handle the case of negative offsets (yet) and just need to zero
1543    // extend IVCount.
1544    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1545    const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1546
1547    // Expand the code for the iteration count.
1548    assert(SE->isLoopInvariant(IVOffset, L) &&
1549           "Computed iteration count is not loop invariant!");
1550    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1551    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1552
1553    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1554    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1555    // We could handle pointer IVs other than i8*, but we need to compensate for
1556    // gep index scaling. See canExpandBackedgeTakenCount comments.
1557    assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1558             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1559           && "unit stride pointer IV must be i8*");
1560
1561    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1562    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1563  }
1564  else {
1565    // In any other case, convert both IVInit and IVCount to integers before
1566    // comparing. This may result in SCEV expension of pointers, but in practice
1567    // SCEV will fold the pointer arithmetic away as such:
1568    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1569    //
1570    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1571    // for simple memset-style loops.
1572    //
1573    // IVInit integer and IVCount pointer would only occur if a canonical IV
1574    // were generated on top of case #2, which is not expected.
1575
1576    const SCEV *IVLimit = nullptr;
1577    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1578    // For non-zero Start, compute IVCount here.
1579    if (AR->getStart()->isZero())
1580      IVLimit = IVCount;
1581    else {
1582      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1583      const SCEV *IVInit = AR->getStart();
1584
1585      // For integer IVs, truncate the IV before computing IVInit + BECount.
1586      if (SE->getTypeSizeInBits(IVInit->getType())
1587          > SE->getTypeSizeInBits(IVCount->getType()))
1588        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1589
1590      IVLimit = SE->getAddExpr(IVInit, IVCount);
1591    }
1592    // Expand the code for the iteration count.
1593    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1594    IRBuilder<> Builder(BI);
1595    assert(SE->isLoopInvariant(IVLimit, L) &&
1596           "Computed iteration count is not loop invariant!");
1597    // Ensure that we generate the same type as IndVar, or a smaller integer
1598    // type. In the presence of null pointer values, we have an integer type
1599    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1600    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1601      IndVar->getType() : IVCount->getType();
1602    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1603  }
1604}
1605
1606/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1607/// loop to be a canonical != comparison against the incremented loop induction
1608/// variable.  This pass is able to rewrite the exit tests of any loop where the
1609/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1610/// is actually a much broader range than just linear tests.
1611Value *IndVarSimplify::
1612LinearFunctionTestReplace(Loop *L,
1613                          const SCEV *BackedgeTakenCount,
1614                          PHINode *IndVar,
1615                          SCEVExpander &Rewriter) {
1616  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1617
1618  // Initialize CmpIndVar and IVCount to their preincremented values.
1619  Value *CmpIndVar = IndVar;
1620  const SCEV *IVCount = BackedgeTakenCount;
1621
1622  // If the exiting block is the same as the backedge block, we prefer to
1623  // compare against the post-incremented value, otherwise we must compare
1624  // against the preincremented value.
1625  if (L->getExitingBlock() == L->getLoopLatch()) {
1626    // Add one to the "backedge-taken" count to get the trip count.
1627    // This addition may overflow, which is valid as long as the comparison is
1628    // truncated to BackedgeTakenCount->getType().
1629    IVCount = SE->getAddExpr(BackedgeTakenCount,
1630                             SE->getConstant(BackedgeTakenCount->getType(), 1));
1631    // The BackedgeTaken expression contains the number of times that the
1632    // backedge branches to the loop header.  This is one less than the
1633    // number of times the loop executes, so use the incremented indvar.
1634    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1635  }
1636
1637  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1638  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1639         && "genLoopLimit missed a cast");
1640
1641  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1642  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1643  ICmpInst::Predicate P;
1644  if (L->contains(BI->getSuccessor(0)))
1645    P = ICmpInst::ICMP_NE;
1646  else
1647    P = ICmpInst::ICMP_EQ;
1648
1649  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1650               << "      LHS:" << *CmpIndVar << '\n'
1651               << "       op:\t"
1652               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1653               << "      RHS:\t" << *ExitCnt << "\n"
1654               << "  IVCount:\t" << *IVCount << "\n");
1655
1656  IRBuilder<> Builder(BI);
1657
1658  // LFTR can ignore IV overflow and truncate to the width of
1659  // BECount. This avoids materializing the add(zext(add)) expression.
1660  unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1661  unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1662  if (CmpIndVarSize > ExitCntSize) {
1663    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1664    const SCEV *ARStart = AR->getStart();
1665    const SCEV *ARStep = AR->getStepRecurrence(*SE);
1666    // For constant IVCount, avoid truncation.
1667    if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1668      const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1669      APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1670      // Note that the post-inc value of BackedgeTakenCount may have overflowed
1671      // above such that IVCount is now zero.
1672      if (IVCount != BackedgeTakenCount && Count == 0) {
1673        Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1674        ++Count;
1675      }
1676      else
1677        Count = Count.zext(CmpIndVarSize);
1678      APInt NewLimit;
1679      if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1680        NewLimit = Start - Count;
1681      else
1682        NewLimit = Start + Count;
1683      ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1684
1685      DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1686    } else {
1687      CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1688                                      "lftr.wideiv");
1689    }
1690  }
1691  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1692  Value *OrigCond = BI->getCondition();
1693  // It's tempting to use replaceAllUsesWith here to fully replace the old
1694  // comparison, but that's not immediately safe, since users of the old
1695  // comparison may not be dominated by the new comparison. Instead, just
1696  // update the branch to use the new comparison; in the common case this
1697  // will make old comparison dead.
1698  BI->setCondition(Cond);
1699  DeadInsts.push_back(OrigCond);
1700
1701  ++NumLFTR;
1702  Changed = true;
1703  return Cond;
1704}
1705
1706//===----------------------------------------------------------------------===//
1707//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1708//===----------------------------------------------------------------------===//
1709
1710/// If there's a single exit block, sink any loop-invariant values that
1711/// were defined in the preheader but not used inside the loop into the
1712/// exit block to reduce register pressure in the loop.
1713void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1714  BasicBlock *ExitBlock = L->getExitBlock();
1715  if (!ExitBlock) return;
1716
1717  BasicBlock *Preheader = L->getLoopPreheader();
1718  if (!Preheader) return;
1719
1720  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1721  BasicBlock::iterator I = Preheader->getTerminator();
1722  while (I != Preheader->begin()) {
1723    --I;
1724    // New instructions were inserted at the end of the preheader.
1725    if (isa<PHINode>(I))
1726      break;
1727
1728    // Don't move instructions which might have side effects, since the side
1729    // effects need to complete before instructions inside the loop.  Also don't
1730    // move instructions which might read memory, since the loop may modify
1731    // memory. Note that it's okay if the instruction might have undefined
1732    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1733    // block.
1734    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1735      continue;
1736
1737    // Skip debug info intrinsics.
1738    if (isa<DbgInfoIntrinsic>(I))
1739      continue;
1740
1741    // Skip landingpad instructions.
1742    if (isa<LandingPadInst>(I))
1743      continue;
1744
1745    // Don't sink alloca: we never want to sink static alloca's out of the
1746    // entry block, and correctly sinking dynamic alloca's requires
1747    // checks for stacksave/stackrestore intrinsics.
1748    // FIXME: Refactor this check somehow?
1749    if (isa<AllocaInst>(I))
1750      continue;
1751
1752    // Determine if there is a use in or before the loop (direct or
1753    // otherwise).
1754    bool UsedInLoop = false;
1755    for (Use &U : I->uses()) {
1756      Instruction *User = cast<Instruction>(U.getUser());
1757      BasicBlock *UseBB = User->getParent();
1758      if (PHINode *P = dyn_cast<PHINode>(User)) {
1759        unsigned i =
1760          PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1761        UseBB = P->getIncomingBlock(i);
1762      }
1763      if (UseBB == Preheader || L->contains(UseBB)) {
1764        UsedInLoop = true;
1765        break;
1766      }
1767    }
1768
1769    // If there is, the def must remain in the preheader.
1770    if (UsedInLoop)
1771      continue;
1772
1773    // Otherwise, sink it to the exit block.
1774    Instruction *ToMove = I;
1775    bool Done = false;
1776
1777    if (I != Preheader->begin()) {
1778      // Skip debug info intrinsics.
1779      do {
1780        --I;
1781      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1782
1783      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1784        Done = true;
1785    } else {
1786      Done = true;
1787    }
1788
1789    ToMove->moveBefore(InsertPt);
1790    if (Done) break;
1791    InsertPt = ToMove;
1792  }
1793}
1794
1795//===----------------------------------------------------------------------===//
1796//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1797//===----------------------------------------------------------------------===//
1798
1799bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1800  if (skipOptnoneFunction(L))
1801    return false;
1802
1803  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1804  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1805  //    canonicalization can be a pessimization without LSR to "clean up"
1806  //    afterwards.
1807  //  - We depend on having a preheader; in particular,
1808  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1809  //    and we're in trouble if we can't find the induction variable even when
1810  //    we've manually inserted one.
1811  if (!L->isLoopSimplifyForm())
1812    return false;
1813
1814  LI = &getAnalysis<LoopInfo>();
1815  SE = &getAnalysis<ScalarEvolution>();
1816  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1817  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1818  DL = DLP ? &DLP->getDataLayout() : nullptr;
1819  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1820
1821  DeadInsts.clear();
1822  Changed = false;
1823
1824  // If there are any floating-point recurrences, attempt to
1825  // transform them to use integer recurrences.
1826  RewriteNonIntegerIVs(L);
1827
1828  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1829
1830  // Create a rewriter object which we'll use to transform the code with.
1831  SCEVExpander Rewriter(*SE, "indvars");
1832#ifndef NDEBUG
1833  Rewriter.setDebugType(DEBUG_TYPE);
1834#endif
1835
1836  // Eliminate redundant IV users.
1837  //
1838  // Simplification works best when run before other consumers of SCEV. We
1839  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1840  // other expressions involving loop IVs have been evaluated. This helps SCEV
1841  // set no-wrap flags before normalizing sign/zero extension.
1842  Rewriter.disableCanonicalMode();
1843  SimplifyAndExtend(L, Rewriter, LPM);
1844
1845  // Check to see if this loop has a computable loop-invariant execution count.
1846  // If so, this means that we can compute the final value of any expressions
1847  // that are recurrent in the loop, and substitute the exit values from the
1848  // loop into any instructions outside of the loop that use the final values of
1849  // the current expressions.
1850  //
1851  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1852    RewriteLoopExitValues(L, Rewriter);
1853
1854  // Eliminate redundant IV cycles.
1855  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1856
1857  // If we have a trip count expression, rewrite the loop's exit condition
1858  // using it.  We can currently only handle loops with a single exit.
1859  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1860    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
1861    if (IndVar) {
1862      // Check preconditions for proper SCEVExpander operation. SCEV does not
1863      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1864      // pass that uses the SCEVExpander must do it. This does not work well for
1865      // loop passes because SCEVExpander makes assumptions about all loops,
1866      // while LoopPassManager only forces the current loop to be simplified.
1867      //
1868      // FIXME: SCEV expansion has no way to bail out, so the caller must
1869      // explicitly check any assumptions made by SCEV. Brittle.
1870      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1871      if (!AR || AR->getLoop()->getLoopPreheader())
1872        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1873                                        Rewriter);
1874    }
1875  }
1876  // Clear the rewriter cache, because values that are in the rewriter's cache
1877  // can be deleted in the loop below, causing the AssertingVH in the cache to
1878  // trigger.
1879  Rewriter.clear();
1880
1881  // Now that we're done iterating through lists, clean up any instructions
1882  // which are now dead.
1883  while (!DeadInsts.empty())
1884    if (Instruction *Inst =
1885          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1886      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1887
1888  // The Rewriter may not be used from this point on.
1889
1890  // Loop-invariant instructions in the preheader that aren't used in the
1891  // loop may be sunk below the loop to reduce register pressure.
1892  SinkUnusedInvariants(L);
1893
1894  // Clean up dead instructions.
1895  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1896  // Check a post-condition.
1897  assert(L->isLCSSAForm(*DT) &&
1898         "Indvars did not leave the loop in lcssa form!");
1899
1900  // Verify that LFTR, and any other change have not interfered with SCEV's
1901  // ability to compute trip count.
1902#ifndef NDEBUG
1903  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1904    SE->forgetLoop(L);
1905    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1906    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1907        SE->getTypeSizeInBits(NewBECount->getType()))
1908      NewBECount = SE->getTruncateOrNoop(NewBECount,
1909                                         BackedgeTakenCount->getType());
1910    else
1911      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1912                                                 NewBECount->getType());
1913    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1914  }
1915#endif
1916
1917  return Changed;
1918}
1919