IndVarSimplify.cpp revision fd93908ae8b9684fe71c239e3c6cfe13ff6a2663
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation make the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24//   1. The exit condition for the loop is canonicalized to compare the
25//      induction value against the exit value.  This turns loops like:
26//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27//   2. Any use outside of the loop of an expression derived from the indvar
28//      is changed to compute the derived value outside of the loop, eliminating
29//      the dependence on the exit value of the induction variable.  If the only
30//      purpose of the loop is to compute the exit value of some derived
31//      expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed.  Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#include "llvm/Transforms/Scalar.h"
41#include "llvm/BasicBlock.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/Type.h"
45#include "llvm/Analysis/ScalarEvolutionExpressions.h"
46#include "llvm/Analysis/LoopInfo.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54namespace {
55  /// SCEVExpander - This class uses information about analyze scalars to
56  /// rewrite expressions in canonical form.
57  ///
58  /// Clients should create an instance of this class when rewriting is needed,
59  /// and destroying it when finished to allow the release of the associated
60  /// memory.
61  struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
62    ScalarEvolution &SE;
63    LoopInfo &LI;
64    std::map<SCEVHandle, Value*> InsertedExpressions;
65    std::set<Instruction*> InsertedInstructions;
66
67    Instruction *InsertPt;
68
69    friend struct SCEVVisitor<SCEVExpander, Value*>;
70  public:
71    SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
72
73    /// isInsertedInstruction - Return true if the specified instruction was
74    /// inserted by the code rewriter.  If so, the client should not modify the
75    /// instruction.
76    bool isInsertedInstruction(Instruction *I) const {
77      return InsertedInstructions.count(I);
78    }
79
80    /// getOrInsertCanonicalInductionVariable - This method returns the
81    /// canonical induction variable of the specified type for the specified
82    /// loop (inserting one if there is none).  A canonical induction variable
83    /// starts at zero and steps by one on each iteration.
84    Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
85      assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
86             "Can only insert integer or floating point induction variables!");
87      SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
88                                         SCEVUnknown::getIntegerSCEV(1, Ty), L);
89      return expand(H);
90    }
91
92    /// addInsertedValue - Remember the specified instruction as being the
93    /// canonical form for the specified SCEV.
94    void addInsertedValue(Instruction *I, SCEV *S) {
95      InsertedExpressions[S] = (Value*)I;
96      InsertedInstructions.insert(I);
97    }
98
99    /// expandCodeFor - Insert code to directly compute the specified SCEV
100    /// expression into the program.  The inserted code is inserted into the
101    /// specified block.
102    ///
103    /// If a particular value sign is required, a type may be specified for the
104    /// result.
105    Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
106      // Expand the code for this SCEV.
107      this->InsertPt = IP;
108      return expandInTy(SH, Ty);
109    }
110
111  protected:
112    Value *expand(SCEV *S) {
113      // Check to see if we already expanded this.
114      std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
115      if (I != InsertedExpressions.end())
116        return I->second;
117
118      Value *V = visit(S);
119      InsertedExpressions[S] = V;
120      return V;
121    }
122
123    Value *expandInTy(SCEV *S, const Type *Ty) {
124      Value *V = expand(S);
125      if (Ty && V->getType() != Ty) {
126        // FIXME: keep track of the cast instruction.
127        if (Constant *C = dyn_cast<Constant>(V))
128          return ConstantExpr::getCast(C, Ty);
129        else if (Instruction *I = dyn_cast<Instruction>(V)) {
130          // Check to see if there is already a cast.  If there is, use it.
131          for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
132               UI != E; ++UI) {
133            if ((*UI)->getType() == Ty)
134              if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
135                BasicBlock::iterator It = I; ++It;
136                if (isa<InvokeInst>(I))
137                  It = cast<InvokeInst>(I)->getNormalDest()->begin();
138                while (isa<PHINode>(It)) ++It;
139                if (It != BasicBlock::iterator(CI)) {
140                  // Splice the cast immediately after the operand in question.
141                  BasicBlock::InstListType &InstList =
142                    It->getParent()->getInstList();
143                  InstList.splice(It, CI->getParent()->getInstList(), CI);
144                }
145                return CI;
146              }
147          }
148          BasicBlock::iterator IP = I; ++IP;
149          if (InvokeInst *II = dyn_cast<InvokeInst>(I))
150            IP = II->getNormalDest()->begin();
151          while (isa<PHINode>(IP)) ++IP;
152          return new CastInst(V, Ty, V->getName(), IP);
153        } else {
154          // FIXME: check to see if there is already a cast!
155          return new CastInst(V, Ty, V->getName(), InsertPt);
156        }
157      }
158      return V;
159    }
160
161    Value *visitConstant(SCEVConstant *S) {
162      return S->getValue();
163    }
164
165    Value *visitTruncateExpr(SCEVTruncateExpr *S) {
166      Value *V = expand(S->getOperand());
167      return new CastInst(V, S->getType(), "tmp.", InsertPt);
168    }
169
170    Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
171      Value *V = expandInTy(S->getOperand(),S->getType()->getUnsignedVersion());
172      return new CastInst(V, S->getType(), "tmp.", InsertPt);
173    }
174
175    Value *visitAddExpr(SCEVAddExpr *S) {
176      const Type *Ty = S->getType();
177      Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
178
179      // Emit a bunch of add instructions
180      for (int i = S->getNumOperands()-2; i >= 0; --i)
181        V = BinaryOperator::createAdd(V, expandInTy(S->getOperand(i), Ty),
182                                      "tmp.", InsertPt);
183      return V;
184    }
185
186    Value *visitMulExpr(SCEVMulExpr *S);
187
188    Value *visitUDivExpr(SCEVUDivExpr *S) {
189      const Type *Ty = S->getType();
190      Value *LHS = expandInTy(S->getLHS(), Ty);
191      Value *RHS = expandInTy(S->getRHS(), Ty);
192      return BinaryOperator::createDiv(LHS, RHS, "tmp.", InsertPt);
193    }
194
195    Value *visitAddRecExpr(SCEVAddRecExpr *S);
196
197    Value *visitUnknown(SCEVUnknown *S) {
198      return S->getValue();
199    }
200  };
201}
202
203Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
204  const Type *Ty = S->getType();
205  int FirstOp = 0;  // Set if we should emit a subtract.
206  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
207    if (SC->getValue()->isAllOnesValue())
208      FirstOp = 1;
209
210  int i = S->getNumOperands()-2;
211  Value *V = expandInTy(S->getOperand(i+1), Ty);
212
213  // Emit a bunch of multiply instructions
214  for (; i >= FirstOp; --i)
215    V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
216                                  "tmp.", InsertPt);
217  // -1 * ...  --->  0 - ...
218  if (FirstOp == 1)
219    V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
220  return V;
221}
222
223Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
224  const Type *Ty = S->getType();
225  const Loop *L = S->getLoop();
226  // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
227  assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
228
229  // {X,+,F} --> X + {0,+,F}
230  if (!isa<SCEVConstant>(S->getStart()) ||
231      !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
232    Value *Start = expandInTy(S->getStart(), Ty);
233    std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
234    NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
235    Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
236
237    // FIXME: look for an existing add to use.
238    return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
239  }
240
241  // {0,+,1} --> Insert a canonical induction variable into the loop!
242  if (S->getNumOperands() == 2 &&
243      S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
244    // Create and insert the PHI node for the induction variable in the
245    // specified loop.
246    BasicBlock *Header = L->getHeader();
247    PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
248    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
249
250    pred_iterator HPI = pred_begin(Header);
251    assert(HPI != pred_end(Header) && "Loop with zero preds???");
252    if (!L->contains(*HPI)) ++HPI;
253    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
254           "No backedge in loop?");
255
256    // Insert a unit add instruction right before the terminator corresponding
257    // to the back-edge.
258    Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
259                                          : ConstantInt::get(Ty, 1);
260    Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
261                                                 (*HPI)->getTerminator());
262
263    pred_iterator PI = pred_begin(Header);
264    if (*PI == L->getLoopPreheader())
265      ++PI;
266    PN->addIncoming(Add, *PI);
267    return PN;
268  }
269
270  // Get the canonical induction variable I for this loop.
271  Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
272
273  if (S->getNumOperands() == 2) {   // {0,+,F} --> i*F
274    Value *F = expandInTy(S->getOperand(1), Ty);
275    return BinaryOperator::createMul(I, F, "tmp.", InsertPt);
276  }
277
278  // If this is a chain of recurrences, turn it into a closed form, using the
279  // folders, then expandCodeFor the closed form.  This allows the folders to
280  // simplify the expression without having to build a bunch of special code
281  // into this folder.
282  SCEVHandle IH = SCEVUnknown::get(I);   // Get I as a "symbolic" SCEV.
283
284  SCEVHandle V = S->evaluateAtIteration(IH);
285  //std::cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
286
287  return expandInTy(V, Ty);
288}
289
290
291namespace {
292  Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
293  Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
294  Statistic<> NumInserted("indvars", "Number of canonical indvars added");
295  Statistic<> NumReplaced("indvars", "Number of exit values replaced");
296  Statistic<> NumLFTR    ("indvars", "Number of loop exit tests replaced");
297
298  class IndVarSimplify : public FunctionPass {
299    LoopInfo        *LI;
300    ScalarEvolution *SE;
301    bool Changed;
302  public:
303    virtual bool runOnFunction(Function &) {
304      LI = &getAnalysis<LoopInfo>();
305      SE = &getAnalysis<ScalarEvolution>();
306      Changed = false;
307
308      // Induction Variables live in the header nodes of loops
309      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
310        runOnLoop(*I);
311      return Changed;
312    }
313
314    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
315      AU.addRequiredID(LoopSimplifyID);
316      AU.addRequired<ScalarEvolution>();
317      AU.addRequired<LoopInfo>();
318      AU.addPreservedID(LoopSimplifyID);
319      AU.setPreservesCFG();
320    }
321  private:
322    void runOnLoop(Loop *L);
323    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
324                                    std::set<Instruction*> &DeadInsts);
325    void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
326                                   SCEVExpander &RW);
327    void RewriteLoopExitValues(Loop *L);
328
329    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
330  };
331  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
332}
333
334FunctionPass *llvm::createIndVarSimplifyPass() {
335  return new IndVarSimplify();
336}
337
338/// DeleteTriviallyDeadInstructions - If any of the instructions is the
339/// specified set are trivially dead, delete them and see if this makes any of
340/// their operands subsequently dead.
341void IndVarSimplify::
342DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
343  while (!Insts.empty()) {
344    Instruction *I = *Insts.begin();
345    Insts.erase(Insts.begin());
346    if (isInstructionTriviallyDead(I)) {
347      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
348        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
349          Insts.insert(U);
350      SE->deleteInstructionFromRecords(I);
351      I->eraseFromParent();
352      Changed = true;
353    }
354  }
355}
356
357
358/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
359/// recurrence.  If so, change it into an integer recurrence, permitting
360/// analysis by the SCEV routines.
361void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
362                                                BasicBlock *Preheader,
363                                            std::set<Instruction*> &DeadInsts) {
364  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
365  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
366  unsigned BackedgeIdx = PreheaderIdx^1;
367  if (GetElementPtrInst *GEPI =
368      dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
369    if (GEPI->getOperand(0) == PN) {
370      assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
371
372      // Okay, we found a pointer recurrence.  Transform this pointer
373      // recurrence into an integer recurrence.  Compute the value that gets
374      // added to the pointer at every iteration.
375      Value *AddedVal = GEPI->getOperand(1);
376
377      // Insert a new integer PHI node into the top of the block.
378      PHINode *NewPhi = new PHINode(AddedVal->getType(),
379                                    PN->getName()+".rec", PN);
380      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
381
382      // Create the new add instruction.
383      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
384                                                GEPI->getName()+".rec", GEPI);
385      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
386
387      // Update the existing GEP to use the recurrence.
388      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
389
390      // Update the GEP to use the new recurrence we just inserted.
391      GEPI->setOperand(1, NewAdd);
392
393      // If the incoming value is a constant expr GEP, try peeling out the array
394      // 0 index if possible to make things simpler.
395      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
396        if (CE->getOpcode() == Instruction::GetElementPtr) {
397          unsigned NumOps = CE->getNumOperands();
398          assert(NumOps > 1 && "CE folding didn't work!");
399          if (CE->getOperand(NumOps-1)->isNullValue()) {
400            // Check to make sure the last index really is an array index.
401            gep_type_iterator GTI = gep_type_begin(GEPI);
402            for (unsigned i = 1, e = GEPI->getNumOperands()-1;
403                 i != e; ++i, ++GTI)
404              /*empty*/;
405            if (isa<SequentialType>(*GTI)) {
406              // Pull the last index out of the constant expr GEP.
407              std::vector<Value*> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
408              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
409                                                             CEIdxs);
410              GetElementPtrInst *NGEPI =
411                new GetElementPtrInst(NCE, Constant::getNullValue(Type::IntTy),
412                                      NewAdd, GEPI->getName(), GEPI);
413              GEPI->replaceAllUsesWith(NGEPI);
414              GEPI->eraseFromParent();
415              GEPI = NGEPI;
416            }
417          }
418        }
419
420
421      // Finally, if there are any other users of the PHI node, we must
422      // insert a new GEP instruction that uses the pre-incremented version
423      // of the induction amount.
424      if (!PN->use_empty()) {
425        BasicBlock::iterator InsertPos = PN; ++InsertPos;
426        while (isa<PHINode>(InsertPos)) ++InsertPos;
427        std::string Name = PN->getName(); PN->setName("");
428        Value *PreInc =
429          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
430                                std::vector<Value*>(1, NewPhi), Name,
431                                InsertPos);
432        PN->replaceAllUsesWith(PreInc);
433      }
434
435      // Delete the old PHI for sure, and the GEP if its otherwise unused.
436      DeadInsts.insert(PN);
437
438      ++NumPointer;
439      Changed = true;
440    }
441}
442
443/// LinearFunctionTestReplace - This method rewrites the exit condition of the
444/// loop to be a canonical != comparison against the incremented loop induction
445/// variable.  This pass is able to rewrite the exit tests of any loop where the
446/// SCEV analysis can determine a loop-invariant trip count of the loop, which
447/// is actually a much broader range than just linear tests.
448void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
449                                               SCEVExpander &RW) {
450  // Find the exit block for the loop.  We can currently only handle loops with
451  // a single exit.
452  std::vector<BasicBlock*> ExitBlocks;
453  L->getExitBlocks(ExitBlocks);
454  if (ExitBlocks.size() != 1) return;
455  BasicBlock *ExitBlock = ExitBlocks[0];
456
457  // Make sure there is only one predecessor block in the loop.
458  BasicBlock *ExitingBlock = 0;
459  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
460       PI != PE; ++PI)
461    if (L->contains(*PI)) {
462      if (ExitingBlock == 0)
463        ExitingBlock = *PI;
464      else
465        return;  // Multiple exits from loop to this block.
466    }
467  assert(ExitingBlock && "Loop info is broken");
468
469  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
470    return;  // Can't rewrite non-branch yet
471  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
472  assert(BI->isConditional() && "Must be conditional to be part of loop!");
473
474  std::set<Instruction*> InstructionsToDelete;
475  if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
476    InstructionsToDelete.insert(Cond);
477
478  // If the exiting block is not the same as the backedge block, we must compare
479  // against the preincremented value, otherwise we prefer to compare against
480  // the post-incremented value.
481  BasicBlock *Header = L->getHeader();
482  pred_iterator HPI = pred_begin(Header);
483  assert(HPI != pred_end(Header) && "Loop with zero preds???");
484  if (!L->contains(*HPI)) ++HPI;
485  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
486         "No backedge in loop?");
487
488  SCEVHandle TripCount = IterationCount;
489  Value *IndVar;
490  if (*HPI == ExitingBlock) {
491    // The IterationCount expression contains the number of times that the
492    // backedge actually branches to the loop header.  This is one less than the
493    // number of times the loop executes, so add one to it.
494    Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
495    TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
496    IndVar = L->getCanonicalInductionVariableIncrement();
497  } else {
498    // We have to use the preincremented value...
499    IndVar = L->getCanonicalInductionVariable();
500  }
501
502  // Expand the code for the iteration count into the preheader of the loop.
503  BasicBlock *Preheader = L->getLoopPreheader();
504  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
505                                    IndVar->getType());
506
507  // Insert a new setne or seteq instruction before the branch.
508  Instruction::BinaryOps Opcode;
509  if (L->contains(BI->getSuccessor(0)))
510    Opcode = Instruction::SetNE;
511  else
512    Opcode = Instruction::SetEQ;
513
514  Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
515  BI->setCondition(Cond);
516  ++NumLFTR;
517  Changed = true;
518
519  DeleteTriviallyDeadInstructions(InstructionsToDelete);
520}
521
522
523/// RewriteLoopExitValues - Check to see if this loop has a computable
524/// loop-invariant execution count.  If so, this means that we can compute the
525/// final value of any expressions that are recurrent in the loop, and
526/// substitute the exit values from the loop into any instructions outside of
527/// the loop that use the final values of the current expressions.
528void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
529  BasicBlock *Preheader = L->getLoopPreheader();
530
531  // Scan all of the instructions in the loop, looking at those that have
532  // extra-loop users and which are recurrences.
533  SCEVExpander Rewriter(*SE, *LI);
534
535  // We insert the code into the preheader of the loop if the loop contains
536  // multiple exit blocks, or in the exit block if there is exactly one.
537  BasicBlock *BlockToInsertInto;
538  std::vector<BasicBlock*> ExitBlocks;
539  L->getExitBlocks(ExitBlocks);
540  if (ExitBlocks.size() == 1)
541    BlockToInsertInto = ExitBlocks[0];
542  else
543    BlockToInsertInto = Preheader;
544  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
545  while (isa<PHINode>(InsertPt)) ++InsertPt;
546
547  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
548
549  std::set<Instruction*> InstructionsToDelete;
550
551  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
552    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
553      BasicBlock *BB = L->getBlocks()[i];
554      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
555        if (I->getType()->isInteger()) {      // Is an integer instruction
556          SCEVHandle SH = SE->getSCEV(I);
557          if (SH->hasComputableLoopEvolution(L) ||    // Varies predictably
558              HasConstantItCount) {
559            // Find out if this predictably varying value is actually used
560            // outside of the loop.  "extra" as opposed to "intra".
561            std::vector<User*> ExtraLoopUsers;
562            for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
563                 UI != E; ++UI)
564              if (!L->contains(cast<Instruction>(*UI)->getParent()))
565                ExtraLoopUsers.push_back(*UI);
566            if (!ExtraLoopUsers.empty()) {
567              // Okay, this instruction has a user outside of the current loop
568              // and varies predictably in this loop.  Evaluate the value it
569              // contains when the loop exits, and insert code for it.
570              SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
571              if (!isa<SCEVCouldNotCompute>(ExitValue)) {
572                Changed = true;
573                ++NumReplaced;
574                Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
575                                                       I->getType());
576
577                // Rewrite any users of the computed value outside of the loop
578                // with the newly computed value.
579                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
580                  ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
581
582                // If this instruction is dead now, schedule it to be removed.
583                if (I->use_empty())
584                  InstructionsToDelete.insert(I);
585              }
586            }
587          }
588        }
589    }
590
591  DeleteTriviallyDeadInstructions(InstructionsToDelete);
592}
593
594
595void IndVarSimplify::runOnLoop(Loop *L) {
596  // First step.  Check to see if there are any trivial GEP pointer recurrences.
597  // If there are, change them into integer recurrences, permitting analysis by
598  // the SCEV routines.
599  //
600  BasicBlock *Header    = L->getHeader();
601  BasicBlock *Preheader = L->getLoopPreheader();
602
603  std::set<Instruction*> DeadInsts;
604  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
605    PHINode *PN = cast<PHINode>(I);
606    if (isa<PointerType>(PN->getType()))
607      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
608  }
609
610  if (!DeadInsts.empty())
611    DeleteTriviallyDeadInstructions(DeadInsts);
612
613
614  // Next, transform all loops nesting inside of this loop.
615  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
616    runOnLoop(*I);
617
618  // Check to see if this loop has a computable loop-invariant execution count.
619  // If so, this means that we can compute the final value of any expressions
620  // that are recurrent in the loop, and substitute the exit values from the
621  // loop into any instructions outside of the loop that use the final values of
622  // the current expressions.
623  //
624  SCEVHandle IterationCount = SE->getIterationCount(L);
625  if (!isa<SCEVCouldNotCompute>(IterationCount))
626    RewriteLoopExitValues(L);
627
628  // Next, analyze all of the induction variables in the loop, canonicalizing
629  // auxillary induction variables.
630  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
631
632  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
633    PHINode *PN = cast<PHINode>(I);
634    if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
635      SCEVHandle SCEV = SE->getSCEV(PN);
636      if (SCEV->hasComputableLoopEvolution(L))
637        // FIXME: Without a strength reduction pass, it is an extremely bad idea
638        // to indvar substitute anything more complex than a linear induction
639        // variable.  Doing so will put expensive multiply instructions inside
640        // of the loop.  For now just disable indvar subst on anything more
641        // complex than a linear addrec.
642        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
643          if (AR->getNumOperands() == 2 && isa<SCEVConstant>(AR->getOperand(1)))
644            IndVars.push_back(std::make_pair(PN, SCEV));
645    }
646  }
647
648  // If there are no induction variables in the loop, there is nothing more to
649  // do.
650  if (IndVars.empty()) {
651    // Actually, if we know how many times the loop iterates, lets insert a
652    // canonical induction variable to help subsequent passes.
653    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
654      SCEVExpander Rewriter(*SE, *LI);
655      Rewriter.getOrInsertCanonicalInductionVariable(L,
656                                                     IterationCount->getType());
657      LinearFunctionTestReplace(L, IterationCount, Rewriter);
658    }
659    return;
660  }
661
662  // Compute the type of the largest recurrence expression.
663  //
664  const Type *LargestType = IndVars[0].first->getType();
665  bool DifferingSizes = false;
666  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
667    const Type *Ty = IndVars[i].first->getType();
668    DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
669    if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
670      LargestType = Ty;
671  }
672
673  // Create a rewriter object which we'll use to transform the code with.
674  SCEVExpander Rewriter(*SE, *LI);
675
676  // Now that we know the largest of of the induction variables in this loop,
677  // insert a canonical induction variable of the largest size.
678  LargestType = LargestType->getUnsignedVersion();
679  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
680  ++NumInserted;
681  Changed = true;
682
683  if (!isa<SCEVCouldNotCompute>(IterationCount))
684    LinearFunctionTestReplace(L, IterationCount, Rewriter);
685
686  // Now that we have a canonical induction variable, we can rewrite any
687  // recurrences in terms of the induction variable.  Start with the auxillary
688  // induction variables, and recursively rewrite any of their uses.
689  BasicBlock::iterator InsertPt = Header->begin();
690  while (isa<PHINode>(InsertPt)) ++InsertPt;
691
692  // If there were induction variables of other sizes, cast the primary
693  // induction variable to the right size for them, avoiding the need for the
694  // code evaluation methods to insert induction variables of different sizes.
695  if (DifferingSizes) {
696    bool InsertedSizes[17] = { false };
697    InsertedSizes[LargestType->getPrimitiveSize()] = true;
698    for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
699      if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
700        PHINode *PN = IndVars[i].first;
701        InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
702        Instruction *New = new CastInst(IndVar,
703                                        PN->getType()->getUnsignedVersion(),
704                                        "indvar", InsertPt);
705        Rewriter.addInsertedValue(New, SE->getSCEV(New));
706      }
707  }
708
709  // If there were induction variables of other sizes, cast the primary
710  // induction variable to the right size for them, avoiding the need for the
711  // code evaluation methods to insert induction variables of different sizes.
712  std::map<unsigned, Value*> InsertedSizes;
713  while (!IndVars.empty()) {
714    PHINode *PN = IndVars.back().first;
715    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
716                                           PN->getType());
717    std::string Name = PN->getName();
718    PN->setName("");
719    NewVal->setName(Name);
720
721    // Replace the old PHI Node with the inserted computation.
722    PN->replaceAllUsesWith(NewVal);
723    DeadInsts.insert(PN);
724    IndVars.pop_back();
725    ++NumRemoved;
726    Changed = true;
727  }
728
729#if 0
730  // Now replace all derived expressions in the loop body with simpler
731  // expressions.
732  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
733    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
734      BasicBlock *BB = L->getBlocks()[i];
735      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
736        if (I->getType()->isInteger() &&      // Is an integer instruction
737            !I->use_empty() &&
738            !Rewriter.isInsertedInstruction(I)) {
739          SCEVHandle SH = SE->getSCEV(I);
740          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
741          if (V != I) {
742            if (isa<Instruction>(V)) {
743              std::string Name = I->getName();
744              I->setName("");
745              V->setName(Name);
746            }
747            I->replaceAllUsesWith(V);
748            DeadInsts.insert(I);
749            ++NumRemoved;
750            Changed = true;
751          }
752        }
753    }
754#endif
755
756  DeleteTriviallyDeadInstructions(DeadInsts);
757}
758