JumpThreading.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/LazyValueInfo.h"
26#include "llvm/Analysis/Loads.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/ValueHandle.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLibraryInfo.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Transforms/Utils/SSAUpdater.h"
39using namespace llvm;
40
41STATISTIC(NumThreads, "Number of jumps threaded");
42STATISTIC(NumFolds,   "Number of terminators folded");
43STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
44
45static cl::opt<unsigned>
46Threshold("jump-threading-threshold",
47          cl::desc("Max block size to duplicate for jump threading"),
48          cl::init(6), cl::Hidden);
49
50namespace {
51  // These are at global scope so static functions can use them too.
52  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
53  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
54
55  // This is used to keep track of what kind of constant we're currently hoping
56  // to find.
57  enum ConstantPreference {
58    WantInteger,
59    WantBlockAddress
60  };
61
62  /// This pass performs 'jump threading', which looks at blocks that have
63  /// multiple predecessors and multiple successors.  If one or more of the
64  /// predecessors of the block can be proven to always jump to one of the
65  /// successors, we forward the edge from the predecessor to the successor by
66  /// duplicating the contents of this block.
67  ///
68  /// An example of when this can occur is code like this:
69  ///
70  ///   if () { ...
71  ///     X = 4;
72  ///   }
73  ///   if (X < 3) {
74  ///
75  /// In this case, the unconditional branch at the end of the first if can be
76  /// revectored to the false side of the second if.
77  ///
78  class JumpThreading : public FunctionPass {
79    const DataLayout *DL;
80    TargetLibraryInfo *TLI;
81    LazyValueInfo *LVI;
82#ifdef NDEBUG
83    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
84#else
85    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
86#endif
87    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
88
89    // RAII helper for updating the recursion stack.
90    struct RecursionSetRemover {
91      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
92      std::pair<Value*, BasicBlock*> ThePair;
93
94      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
95                          std::pair<Value*, BasicBlock*> P)
96        : TheSet(S), ThePair(P) { }
97
98      ~RecursionSetRemover() {
99        TheSet.erase(ThePair);
100      }
101    };
102  public:
103    static char ID; // Pass identification
104    JumpThreading() : FunctionPass(ID) {
105      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
106    }
107
108    bool runOnFunction(Function &F) override;
109
110    void getAnalysisUsage(AnalysisUsage &AU) const override {
111      AU.addRequired<LazyValueInfo>();
112      AU.addPreserved<LazyValueInfo>();
113      AU.addRequired<TargetLibraryInfo>();
114    }
115
116    void FindLoopHeaders(Function &F);
117    bool ProcessBlock(BasicBlock *BB);
118    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
119                    BasicBlock *SuccBB);
120    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
121                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
122
123    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
124                                         PredValueInfo &Result,
125                                         ConstantPreference Preference);
126    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
127                                ConstantPreference Preference);
128
129    bool ProcessBranchOnPHI(PHINode *PN);
130    bool ProcessBranchOnXOR(BinaryOperator *BO);
131
132    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
133    bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
134  };
135}
136
137char JumpThreading::ID = 0;
138INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
139                "Jump Threading", false, false)
140INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
141INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
142INITIALIZE_PASS_END(JumpThreading, "jump-threading",
143                "Jump Threading", false, false)
144
145// Public interface to the Jump Threading pass
146FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
147
148/// runOnFunction - Top level algorithm.
149///
150bool JumpThreading::runOnFunction(Function &F) {
151  if (skipOptnoneFunction(F))
152    return false;
153
154  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
155  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
156  DL = DLP ? &DLP->getDataLayout() : 0;
157  TLI = &getAnalysis<TargetLibraryInfo>();
158  LVI = &getAnalysis<LazyValueInfo>();
159
160  FindLoopHeaders(F);
161
162  bool Changed, EverChanged = false;
163  do {
164    Changed = false;
165    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
166      BasicBlock *BB = I;
167      // Thread all of the branches we can over this block.
168      while (ProcessBlock(BB))
169        Changed = true;
170
171      ++I;
172
173      // If the block is trivially dead, zap it.  This eliminates the successor
174      // edges which simplifies the CFG.
175      if (pred_begin(BB) == pred_end(BB) &&
176          BB != &BB->getParent()->getEntryBlock()) {
177        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
178              << "' with terminator: " << *BB->getTerminator() << '\n');
179        LoopHeaders.erase(BB);
180        LVI->eraseBlock(BB);
181        DeleteDeadBlock(BB);
182        Changed = true;
183        continue;
184      }
185
186      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
187
188      // Can't thread an unconditional jump, but if the block is "almost
189      // empty", we can replace uses of it with uses of the successor and make
190      // this dead.
191      if (BI && BI->isUnconditional() &&
192          BB != &BB->getParent()->getEntryBlock() &&
193          // If the terminator is the only non-phi instruction, try to nuke it.
194          BB->getFirstNonPHIOrDbg()->isTerminator()) {
195        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
196        // block, we have to make sure it isn't in the LoopHeaders set.  We
197        // reinsert afterward if needed.
198        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
199        BasicBlock *Succ = BI->getSuccessor(0);
200
201        // FIXME: It is always conservatively correct to drop the info
202        // for a block even if it doesn't get erased.  This isn't totally
203        // awesome, but it allows us to use AssertingVH to prevent nasty
204        // dangling pointer issues within LazyValueInfo.
205        LVI->eraseBlock(BB);
206        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
207          Changed = true;
208          // If we deleted BB and BB was the header of a loop, then the
209          // successor is now the header of the loop.
210          BB = Succ;
211        }
212
213        if (ErasedFromLoopHeaders)
214          LoopHeaders.insert(BB);
215      }
216    }
217    EverChanged |= Changed;
218  } while (Changed);
219
220  LoopHeaders.clear();
221  return EverChanged;
222}
223
224/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
225/// thread across it. Stop scanning the block when passing the threshold.
226static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
227                                             unsigned Threshold) {
228  /// Ignore PHI nodes, these will be flattened when duplication happens.
229  BasicBlock::const_iterator I = BB->getFirstNonPHI();
230
231  // FIXME: THREADING will delete values that are just used to compute the
232  // branch, so they shouldn't count against the duplication cost.
233
234  // Sum up the cost of each instruction until we get to the terminator.  Don't
235  // include the terminator because the copy won't include it.
236  unsigned Size = 0;
237  for (; !isa<TerminatorInst>(I); ++I) {
238
239    // Stop scanning the block if we've reached the threshold.
240    if (Size > Threshold)
241      return Size;
242
243    // Debugger intrinsics don't incur code size.
244    if (isa<DbgInfoIntrinsic>(I)) continue;
245
246    // If this is a pointer->pointer bitcast, it is free.
247    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
248      continue;
249
250    // All other instructions count for at least one unit.
251    ++Size;
252
253    // Calls are more expensive.  If they are non-intrinsic calls, we model them
254    // as having cost of 4.  If they are a non-vector intrinsic, we model them
255    // as having cost of 2 total, and if they are a vector intrinsic, we model
256    // them as having cost 1.
257    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
258      if (CI->cannotDuplicate())
259        // Blocks with NoDuplicate are modelled as having infinite cost, so they
260        // are never duplicated.
261        return ~0U;
262      else if (!isa<IntrinsicInst>(CI))
263        Size += 3;
264      else if (!CI->getType()->isVectorTy())
265        Size += 1;
266    }
267  }
268
269  // Threading through a switch statement is particularly profitable.  If this
270  // block ends in a switch, decrease its cost to make it more likely to happen.
271  if (isa<SwitchInst>(I))
272    Size = Size > 6 ? Size-6 : 0;
273
274  // The same holds for indirect branches, but slightly more so.
275  if (isa<IndirectBrInst>(I))
276    Size = Size > 8 ? Size-8 : 0;
277
278  return Size;
279}
280
281/// FindLoopHeaders - We do not want jump threading to turn proper loop
282/// structures into irreducible loops.  Doing this breaks up the loop nesting
283/// hierarchy and pessimizes later transformations.  To prevent this from
284/// happening, we first have to find the loop headers.  Here we approximate this
285/// by finding targets of backedges in the CFG.
286///
287/// Note that there definitely are cases when we want to allow threading of
288/// edges across a loop header.  For example, threading a jump from outside the
289/// loop (the preheader) to an exit block of the loop is definitely profitable.
290/// It is also almost always profitable to thread backedges from within the loop
291/// to exit blocks, and is often profitable to thread backedges to other blocks
292/// within the loop (forming a nested loop).  This simple analysis is not rich
293/// enough to track all of these properties and keep it up-to-date as the CFG
294/// mutates, so we don't allow any of these transformations.
295///
296void JumpThreading::FindLoopHeaders(Function &F) {
297  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
298  FindFunctionBackedges(F, Edges);
299
300  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
301    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
302}
303
304/// getKnownConstant - Helper method to determine if we can thread over a
305/// terminator with the given value as its condition, and if so what value to
306/// use for that. What kind of value this is depends on whether we want an
307/// integer or a block address, but an undef is always accepted.
308/// Returns null if Val is null or not an appropriate constant.
309static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
310  if (!Val)
311    return 0;
312
313  // Undef is "known" enough.
314  if (UndefValue *U = dyn_cast<UndefValue>(Val))
315    return U;
316
317  if (Preference == WantBlockAddress)
318    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
319
320  return dyn_cast<ConstantInt>(Val);
321}
322
323/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
324/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
325/// in any of our predecessors.  If so, return the known list of value and pred
326/// BB in the result vector.
327///
328/// This returns true if there were any known values.
329///
330bool JumpThreading::
331ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
332                                ConstantPreference Preference) {
333  // This method walks up use-def chains recursively.  Because of this, we could
334  // get into an infinite loop going around loops in the use-def chain.  To
335  // prevent this, keep track of what (value, block) pairs we've already visited
336  // and terminate the search if we loop back to them
337  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
338    return false;
339
340  // An RAII help to remove this pair from the recursion set once the recursion
341  // stack pops back out again.
342  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
343
344  // If V is a constant, then it is known in all predecessors.
345  if (Constant *KC = getKnownConstant(V, Preference)) {
346    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
347      Result.push_back(std::make_pair(KC, *PI));
348
349    return true;
350  }
351
352  // If V is a non-instruction value, or an instruction in a different block,
353  // then it can't be derived from a PHI.
354  Instruction *I = dyn_cast<Instruction>(V);
355  if (I == 0 || I->getParent() != BB) {
356
357    // Okay, if this is a live-in value, see if it has a known value at the end
358    // of any of our predecessors.
359    //
360    // FIXME: This should be an edge property, not a block end property.
361    /// TODO: Per PR2563, we could infer value range information about a
362    /// predecessor based on its terminator.
363    //
364    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
365    // "I" is a non-local compare-with-a-constant instruction.  This would be
366    // able to handle value inequalities better, for example if the compare is
367    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
368    // Perhaps getConstantOnEdge should be smart enough to do this?
369
370    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
371      BasicBlock *P = *PI;
372      // If the value is known by LazyValueInfo to be a constant in a
373      // predecessor, use that information to try to thread this block.
374      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
375      if (Constant *KC = getKnownConstant(PredCst, Preference))
376        Result.push_back(std::make_pair(KC, P));
377    }
378
379    return !Result.empty();
380  }
381
382  /// If I is a PHI node, then we know the incoming values for any constants.
383  if (PHINode *PN = dyn_cast<PHINode>(I)) {
384    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
385      Value *InVal = PN->getIncomingValue(i);
386      if (Constant *KC = getKnownConstant(InVal, Preference)) {
387        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
388      } else {
389        Constant *CI = LVI->getConstantOnEdge(InVal,
390                                              PN->getIncomingBlock(i), BB);
391        if (Constant *KC = getKnownConstant(CI, Preference))
392          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
393      }
394    }
395
396    return !Result.empty();
397  }
398
399  PredValueInfoTy LHSVals, RHSVals;
400
401  // Handle some boolean conditions.
402  if (I->getType()->getPrimitiveSizeInBits() == 1) {
403    assert(Preference == WantInteger && "One-bit non-integer type?");
404    // X | true -> true
405    // X & false -> false
406    if (I->getOpcode() == Instruction::Or ||
407        I->getOpcode() == Instruction::And) {
408      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
409                                      WantInteger);
410      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
411                                      WantInteger);
412
413      if (LHSVals.empty() && RHSVals.empty())
414        return false;
415
416      ConstantInt *InterestingVal;
417      if (I->getOpcode() == Instruction::Or)
418        InterestingVal = ConstantInt::getTrue(I->getContext());
419      else
420        InterestingVal = ConstantInt::getFalse(I->getContext());
421
422      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
423
424      // Scan for the sentinel.  If we find an undef, force it to the
425      // interesting value: x|undef -> true and x&undef -> false.
426      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
427        if (LHSVals[i].first == InterestingVal ||
428            isa<UndefValue>(LHSVals[i].first)) {
429          Result.push_back(LHSVals[i]);
430          Result.back().first = InterestingVal;
431          LHSKnownBBs.insert(LHSVals[i].second);
432        }
433      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
434        if (RHSVals[i].first == InterestingVal ||
435            isa<UndefValue>(RHSVals[i].first)) {
436          // If we already inferred a value for this block on the LHS, don't
437          // re-add it.
438          if (!LHSKnownBBs.count(RHSVals[i].second)) {
439            Result.push_back(RHSVals[i]);
440            Result.back().first = InterestingVal;
441          }
442        }
443
444      return !Result.empty();
445    }
446
447    // Handle the NOT form of XOR.
448    if (I->getOpcode() == Instruction::Xor &&
449        isa<ConstantInt>(I->getOperand(1)) &&
450        cast<ConstantInt>(I->getOperand(1))->isOne()) {
451      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
452                                      WantInteger);
453      if (Result.empty())
454        return false;
455
456      // Invert the known values.
457      for (unsigned i = 0, e = Result.size(); i != e; ++i)
458        Result[i].first = ConstantExpr::getNot(Result[i].first);
459
460      return true;
461    }
462
463  // Try to simplify some other binary operator values.
464  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
465    assert(Preference != WantBlockAddress
466            && "A binary operator creating a block address?");
467    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
468      PredValueInfoTy LHSVals;
469      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
470                                      WantInteger);
471
472      // Try to use constant folding to simplify the binary operator.
473      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
474        Constant *V = LHSVals[i].first;
475        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
476
477        if (Constant *KC = getKnownConstant(Folded, WantInteger))
478          Result.push_back(std::make_pair(KC, LHSVals[i].second));
479      }
480    }
481
482    return !Result.empty();
483  }
484
485  // Handle compare with phi operand, where the PHI is defined in this block.
486  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
487    assert(Preference == WantInteger && "Compares only produce integers");
488    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
489    if (PN && PN->getParent() == BB) {
490      // We can do this simplification if any comparisons fold to true or false.
491      // See if any do.
492      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
493        BasicBlock *PredBB = PN->getIncomingBlock(i);
494        Value *LHS = PN->getIncomingValue(i);
495        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
496
497        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
498        if (Res == 0) {
499          if (!isa<Constant>(RHS))
500            continue;
501
502          LazyValueInfo::Tristate
503            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
504                                           cast<Constant>(RHS), PredBB, BB);
505          if (ResT == LazyValueInfo::Unknown)
506            continue;
507          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
508        }
509
510        if (Constant *KC = getKnownConstant(Res, WantInteger))
511          Result.push_back(std::make_pair(KC, PredBB));
512      }
513
514      return !Result.empty();
515    }
516
517
518    // If comparing a live-in value against a constant, see if we know the
519    // live-in value on any predecessors.
520    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
521      if (!isa<Instruction>(Cmp->getOperand(0)) ||
522          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
523        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
524
525        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
526          BasicBlock *P = *PI;
527          // If the value is known by LazyValueInfo to be a constant in a
528          // predecessor, use that information to try to thread this block.
529          LazyValueInfo::Tristate Res =
530            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
531                                    RHSCst, P, BB);
532          if (Res == LazyValueInfo::Unknown)
533            continue;
534
535          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
536          Result.push_back(std::make_pair(ResC, P));
537        }
538
539        return !Result.empty();
540      }
541
542      // Try to find a constant value for the LHS of a comparison,
543      // and evaluate it statically if we can.
544      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
545        PredValueInfoTy LHSVals;
546        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
547                                        WantInteger);
548
549        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
550          Constant *V = LHSVals[i].first;
551          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
552                                                      V, CmpConst);
553          if (Constant *KC = getKnownConstant(Folded, WantInteger))
554            Result.push_back(std::make_pair(KC, LHSVals[i].second));
555        }
556
557        return !Result.empty();
558      }
559    }
560  }
561
562  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
563    // Handle select instructions where at least one operand is a known constant
564    // and we can figure out the condition value for any predecessor block.
565    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
566    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
567    PredValueInfoTy Conds;
568    if ((TrueVal || FalseVal) &&
569        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
570                                        WantInteger)) {
571      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
572        Constant *Cond = Conds[i].first;
573
574        // Figure out what value to use for the condition.
575        bool KnownCond;
576        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
577          // A known boolean.
578          KnownCond = CI->isOne();
579        } else {
580          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
581          // Either operand will do, so be sure to pick the one that's a known
582          // constant.
583          // FIXME: Do this more cleverly if both values are known constants?
584          KnownCond = (TrueVal != 0);
585        }
586
587        // See if the select has a known constant value for this predecessor.
588        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
589          Result.push_back(std::make_pair(Val, Conds[i].second));
590      }
591
592      return !Result.empty();
593    }
594  }
595
596  // If all else fails, see if LVI can figure out a constant value for us.
597  Constant *CI = LVI->getConstant(V, BB);
598  if (Constant *KC = getKnownConstant(CI, Preference)) {
599    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
600      Result.push_back(std::make_pair(KC, *PI));
601  }
602
603  return !Result.empty();
604}
605
606
607
608/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
609/// in an undefined jump, decide which block is best to revector to.
610///
611/// Since we can pick an arbitrary destination, we pick the successor with the
612/// fewest predecessors.  This should reduce the in-degree of the others.
613///
614static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
615  TerminatorInst *BBTerm = BB->getTerminator();
616  unsigned MinSucc = 0;
617  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
618  // Compute the successor with the minimum number of predecessors.
619  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
620  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
621    TestBB = BBTerm->getSuccessor(i);
622    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
623    if (NumPreds < MinNumPreds) {
624      MinSucc = i;
625      MinNumPreds = NumPreds;
626    }
627  }
628
629  return MinSucc;
630}
631
632static bool hasAddressTakenAndUsed(BasicBlock *BB) {
633  if (!BB->hasAddressTaken()) return false;
634
635  // If the block has its address taken, it may be a tree of dead constants
636  // hanging off of it.  These shouldn't keep the block alive.
637  BlockAddress *BA = BlockAddress::get(BB);
638  BA->removeDeadConstantUsers();
639  return !BA->use_empty();
640}
641
642/// ProcessBlock - If there are any predecessors whose control can be threaded
643/// through to a successor, transform them now.
644bool JumpThreading::ProcessBlock(BasicBlock *BB) {
645  // If the block is trivially dead, just return and let the caller nuke it.
646  // This simplifies other transformations.
647  if (pred_begin(BB) == pred_end(BB) &&
648      BB != &BB->getParent()->getEntryBlock())
649    return false;
650
651  // If this block has a single predecessor, and if that pred has a single
652  // successor, merge the blocks.  This encourages recursive jump threading
653  // because now the condition in this block can be threaded through
654  // predecessors of our predecessor block.
655  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
656    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
657        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
658      // If SinglePred was a loop header, BB becomes one.
659      if (LoopHeaders.erase(SinglePred))
660        LoopHeaders.insert(BB);
661
662      // Remember if SinglePred was the entry block of the function.  If so, we
663      // will need to move BB back to the entry position.
664      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
665      LVI->eraseBlock(SinglePred);
666      MergeBasicBlockIntoOnlyPred(BB);
667
668      if (isEntry && BB != &BB->getParent()->getEntryBlock())
669        BB->moveBefore(&BB->getParent()->getEntryBlock());
670      return true;
671    }
672  }
673
674  // What kind of constant we're looking for.
675  ConstantPreference Preference = WantInteger;
676
677  // Look to see if the terminator is a conditional branch, switch or indirect
678  // branch, if not we can't thread it.
679  Value *Condition;
680  Instruction *Terminator = BB->getTerminator();
681  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
682    // Can't thread an unconditional jump.
683    if (BI->isUnconditional()) return false;
684    Condition = BI->getCondition();
685  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
686    Condition = SI->getCondition();
687  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
688    // Can't thread indirect branch with no successors.
689    if (IB->getNumSuccessors() == 0) return false;
690    Condition = IB->getAddress()->stripPointerCasts();
691    Preference = WantBlockAddress;
692  } else {
693    return false; // Must be an invoke.
694  }
695
696  // Run constant folding to see if we can reduce the condition to a simple
697  // constant.
698  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
699    Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
700    if (SimpleVal) {
701      I->replaceAllUsesWith(SimpleVal);
702      I->eraseFromParent();
703      Condition = SimpleVal;
704    }
705  }
706
707  // If the terminator is branching on an undef, we can pick any of the
708  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
709  if (isa<UndefValue>(Condition)) {
710    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
711
712    // Fold the branch/switch.
713    TerminatorInst *BBTerm = BB->getTerminator();
714    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
715      if (i == BestSucc) continue;
716      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
717    }
718
719    DEBUG(dbgs() << "  In block '" << BB->getName()
720          << "' folding undef terminator: " << *BBTerm << '\n');
721    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
722    BBTerm->eraseFromParent();
723    return true;
724  }
725
726  // If the terminator of this block is branching on a constant, simplify the
727  // terminator to an unconditional branch.  This can occur due to threading in
728  // other blocks.
729  if (getKnownConstant(Condition, Preference)) {
730    DEBUG(dbgs() << "  In block '" << BB->getName()
731          << "' folding terminator: " << *BB->getTerminator() << '\n');
732    ++NumFolds;
733    ConstantFoldTerminator(BB, true);
734    return true;
735  }
736
737  Instruction *CondInst = dyn_cast<Instruction>(Condition);
738
739  // All the rest of our checks depend on the condition being an instruction.
740  if (CondInst == 0) {
741    // FIXME: Unify this with code below.
742    if (ProcessThreadableEdges(Condition, BB, Preference))
743      return true;
744    return false;
745  }
746
747
748  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
749    // For a comparison where the LHS is outside this block, it's possible
750    // that we've branched on it before.  Used LVI to see if we can simplify
751    // the branch based on that.
752    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
753    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
754    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
755    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
756        (!isa<Instruction>(CondCmp->getOperand(0)) ||
757         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
758      // For predecessor edge, determine if the comparison is true or false
759      // on that edge.  If they're all true or all false, we can simplify the
760      // branch.
761      // FIXME: We could handle mixed true/false by duplicating code.
762      LazyValueInfo::Tristate Baseline =
763        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
764                                CondConst, *PI, BB);
765      if (Baseline != LazyValueInfo::Unknown) {
766        // Check that all remaining incoming values match the first one.
767        while (++PI != PE) {
768          LazyValueInfo::Tristate Ret =
769            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
770                                    CondCmp->getOperand(0), CondConst, *PI, BB);
771          if (Ret != Baseline) break;
772        }
773
774        // If we terminated early, then one of the values didn't match.
775        if (PI == PE) {
776          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
777          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
778          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
779          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
780          CondBr->eraseFromParent();
781          return true;
782        }
783      }
784
785    }
786
787    if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
788      return true;
789  }
790
791  // Check for some cases that are worth simplifying.  Right now we want to look
792  // for loads that are used by a switch or by the condition for the branch.  If
793  // we see one, check to see if it's partially redundant.  If so, insert a PHI
794  // which can then be used to thread the values.
795  //
796  Value *SimplifyValue = CondInst;
797  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
798    if (isa<Constant>(CondCmp->getOperand(1)))
799      SimplifyValue = CondCmp->getOperand(0);
800
801  // TODO: There are other places where load PRE would be profitable, such as
802  // more complex comparisons.
803  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
804    if (SimplifyPartiallyRedundantLoad(LI))
805      return true;
806
807
808  // Handle a variety of cases where we are branching on something derived from
809  // a PHI node in the current block.  If we can prove that any predecessors
810  // compute a predictable value based on a PHI node, thread those predecessors.
811  //
812  if (ProcessThreadableEdges(CondInst, BB, Preference))
813    return true;
814
815  // If this is an otherwise-unfoldable branch on a phi node in the current
816  // block, see if we can simplify.
817  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
818    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
819      return ProcessBranchOnPHI(PN);
820
821
822  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
823  if (CondInst->getOpcode() == Instruction::Xor &&
824      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
825    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
826
827
828  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
829  // "(X == 4)", thread through this block.
830
831  return false;
832}
833
834/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
835/// load instruction, eliminate it by replacing it with a PHI node.  This is an
836/// important optimization that encourages jump threading, and needs to be run
837/// interlaced with other jump threading tasks.
838bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
839  // Don't hack volatile/atomic loads.
840  if (!LI->isSimple()) return false;
841
842  // If the load is defined in a block with exactly one predecessor, it can't be
843  // partially redundant.
844  BasicBlock *LoadBB = LI->getParent();
845  if (LoadBB->getSinglePredecessor())
846    return false;
847
848  // If the load is defined in a landing pad, it can't be partially redundant,
849  // because the edges between the invoke and the landing pad cannot have other
850  // instructions between them.
851  if (LoadBB->isLandingPad())
852    return false;
853
854  Value *LoadedPtr = LI->getOperand(0);
855
856  // If the loaded operand is defined in the LoadBB, it can't be available.
857  // TODO: Could do simple PHI translation, that would be fun :)
858  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
859    if (PtrOp->getParent() == LoadBB)
860      return false;
861
862  // Scan a few instructions up from the load, to see if it is obviously live at
863  // the entry to its block.
864  BasicBlock::iterator BBIt = LI;
865
866  if (Value *AvailableVal =
867        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
868    // If the value if the load is locally available within the block, just use
869    // it.  This frequently occurs for reg2mem'd allocas.
870    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
871
872    // If the returned value is the load itself, replace with an undef. This can
873    // only happen in dead loops.
874    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
875    LI->replaceAllUsesWith(AvailableVal);
876    LI->eraseFromParent();
877    return true;
878  }
879
880  // Otherwise, if we scanned the whole block and got to the top of the block,
881  // we know the block is locally transparent to the load.  If not, something
882  // might clobber its value.
883  if (BBIt != LoadBB->begin())
884    return false;
885
886  // If all of the loads and stores that feed the value have the same TBAA tag,
887  // then we can propagate it onto any newly inserted loads.
888  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
889
890  SmallPtrSet<BasicBlock*, 8> PredsScanned;
891  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
892  AvailablePredsTy AvailablePreds;
893  BasicBlock *OneUnavailablePred = 0;
894
895  // If we got here, the loaded value is transparent through to the start of the
896  // block.  Check to see if it is available in any of the predecessor blocks.
897  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
898       PI != PE; ++PI) {
899    BasicBlock *PredBB = *PI;
900
901    // If we already scanned this predecessor, skip it.
902    if (!PredsScanned.insert(PredBB))
903      continue;
904
905    // Scan the predecessor to see if the value is available in the pred.
906    BBIt = PredBB->end();
907    MDNode *ThisTBAATag = 0;
908    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
909                                                    0, &ThisTBAATag);
910    if (!PredAvailable) {
911      OneUnavailablePred = PredBB;
912      continue;
913    }
914
915    // If tbaa tags disagree or are not present, forget about them.
916    if (TBAATag != ThisTBAATag) TBAATag = 0;
917
918    // If so, this load is partially redundant.  Remember this info so that we
919    // can create a PHI node.
920    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
921  }
922
923  // If the loaded value isn't available in any predecessor, it isn't partially
924  // redundant.
925  if (AvailablePreds.empty()) return false;
926
927  // Okay, the loaded value is available in at least one (and maybe all!)
928  // predecessors.  If the value is unavailable in more than one unique
929  // predecessor, we want to insert a merge block for those common predecessors.
930  // This ensures that we only have to insert one reload, thus not increasing
931  // code size.
932  BasicBlock *UnavailablePred = 0;
933
934  // If there is exactly one predecessor where the value is unavailable, the
935  // already computed 'OneUnavailablePred' block is it.  If it ends in an
936  // unconditional branch, we know that it isn't a critical edge.
937  if (PredsScanned.size() == AvailablePreds.size()+1 &&
938      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
939    UnavailablePred = OneUnavailablePred;
940  } else if (PredsScanned.size() != AvailablePreds.size()) {
941    // Otherwise, we had multiple unavailable predecessors or we had a critical
942    // edge from the one.
943    SmallVector<BasicBlock*, 8> PredsToSplit;
944    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
945
946    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
947      AvailablePredSet.insert(AvailablePreds[i].first);
948
949    // Add all the unavailable predecessors to the PredsToSplit list.
950    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
951         PI != PE; ++PI) {
952      BasicBlock *P = *PI;
953      // If the predecessor is an indirect goto, we can't split the edge.
954      if (isa<IndirectBrInst>(P->getTerminator()))
955        return false;
956
957      if (!AvailablePredSet.count(P))
958        PredsToSplit.push_back(P);
959    }
960
961    // Split them out to their own block.
962    UnavailablePred =
963      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
964  }
965
966  // If the value isn't available in all predecessors, then there will be
967  // exactly one where it isn't available.  Insert a load on that edge and add
968  // it to the AvailablePreds list.
969  if (UnavailablePred) {
970    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
971           "Can't handle critical edge here!");
972    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
973                                 LI->getAlignment(),
974                                 UnavailablePred->getTerminator());
975    NewVal->setDebugLoc(LI->getDebugLoc());
976    if (TBAATag)
977      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
978
979    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
980  }
981
982  // Now we know that each predecessor of this block has a value in
983  // AvailablePreds, sort them for efficient access as we're walking the preds.
984  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
985
986  // Create a PHI node at the start of the block for the PRE'd load value.
987  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
988  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
989                                LoadBB->begin());
990  PN->takeName(LI);
991  PN->setDebugLoc(LI->getDebugLoc());
992
993  // Insert new entries into the PHI for each predecessor.  A single block may
994  // have multiple entries here.
995  for (pred_iterator PI = PB; PI != PE; ++PI) {
996    BasicBlock *P = *PI;
997    AvailablePredsTy::iterator I =
998      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
999                       std::make_pair(P, (Value*)0));
1000
1001    assert(I != AvailablePreds.end() && I->first == P &&
1002           "Didn't find entry for predecessor!");
1003
1004    PN->addIncoming(I->second, I->first);
1005  }
1006
1007  //cerr << "PRE: " << *LI << *PN << "\n";
1008
1009  LI->replaceAllUsesWith(PN);
1010  LI->eraseFromParent();
1011
1012  return true;
1013}
1014
1015/// FindMostPopularDest - The specified list contains multiple possible
1016/// threadable destinations.  Pick the one that occurs the most frequently in
1017/// the list.
1018static BasicBlock *
1019FindMostPopularDest(BasicBlock *BB,
1020                    const SmallVectorImpl<std::pair<BasicBlock*,
1021                                  BasicBlock*> > &PredToDestList) {
1022  assert(!PredToDestList.empty());
1023
1024  // Determine popularity.  If there are multiple possible destinations, we
1025  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1026  // blocks with known and real destinations to threading undef.  We'll handle
1027  // them later if interesting.
1028  DenseMap<BasicBlock*, unsigned> DestPopularity;
1029  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1030    if (PredToDestList[i].second)
1031      DestPopularity[PredToDestList[i].second]++;
1032
1033  // Find the most popular dest.
1034  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1035  BasicBlock *MostPopularDest = DPI->first;
1036  unsigned Popularity = DPI->second;
1037  SmallVector<BasicBlock*, 4> SamePopularity;
1038
1039  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1040    // If the popularity of this entry isn't higher than the popularity we've
1041    // seen so far, ignore it.
1042    if (DPI->second < Popularity)
1043      ; // ignore.
1044    else if (DPI->second == Popularity) {
1045      // If it is the same as what we've seen so far, keep track of it.
1046      SamePopularity.push_back(DPI->first);
1047    } else {
1048      // If it is more popular, remember it.
1049      SamePopularity.clear();
1050      MostPopularDest = DPI->first;
1051      Popularity = DPI->second;
1052    }
1053  }
1054
1055  // Okay, now we know the most popular destination.  If there is more than one
1056  // destination, we need to determine one.  This is arbitrary, but we need
1057  // to make a deterministic decision.  Pick the first one that appears in the
1058  // successor list.
1059  if (!SamePopularity.empty()) {
1060    SamePopularity.push_back(MostPopularDest);
1061    TerminatorInst *TI = BB->getTerminator();
1062    for (unsigned i = 0; ; ++i) {
1063      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1064
1065      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1066                    TI->getSuccessor(i)) == SamePopularity.end())
1067        continue;
1068
1069      MostPopularDest = TI->getSuccessor(i);
1070      break;
1071    }
1072  }
1073
1074  // Okay, we have finally picked the most popular destination.
1075  return MostPopularDest;
1076}
1077
1078bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1079                                           ConstantPreference Preference) {
1080  // If threading this would thread across a loop header, don't even try to
1081  // thread the edge.
1082  if (LoopHeaders.count(BB))
1083    return false;
1084
1085  PredValueInfoTy PredValues;
1086  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1087    return false;
1088
1089  assert(!PredValues.empty() &&
1090         "ComputeValueKnownInPredecessors returned true with no values");
1091
1092  DEBUG(dbgs() << "IN BB: " << *BB;
1093        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1094          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1095            << *PredValues[i].first
1096            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1097        });
1098
1099  // Decide what we want to thread through.  Convert our list of known values to
1100  // a list of known destinations for each pred.  This also discards duplicate
1101  // predecessors and keeps track of the undefined inputs (which are represented
1102  // as a null dest in the PredToDestList).
1103  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1104  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1105
1106  BasicBlock *OnlyDest = 0;
1107  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1108
1109  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1110    BasicBlock *Pred = PredValues[i].second;
1111    if (!SeenPreds.insert(Pred))
1112      continue;  // Duplicate predecessor entry.
1113
1114    // If the predecessor ends with an indirect goto, we can't change its
1115    // destination.
1116    if (isa<IndirectBrInst>(Pred->getTerminator()))
1117      continue;
1118
1119    Constant *Val = PredValues[i].first;
1120
1121    BasicBlock *DestBB;
1122    if (isa<UndefValue>(Val))
1123      DestBB = 0;
1124    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1125      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1126    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1127      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1128    } else {
1129      assert(isa<IndirectBrInst>(BB->getTerminator())
1130              && "Unexpected terminator");
1131      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1132    }
1133
1134    // If we have exactly one destination, remember it for efficiency below.
1135    if (PredToDestList.empty())
1136      OnlyDest = DestBB;
1137    else if (OnlyDest != DestBB)
1138      OnlyDest = MultipleDestSentinel;
1139
1140    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1141  }
1142
1143  // If all edges were unthreadable, we fail.
1144  if (PredToDestList.empty())
1145    return false;
1146
1147  // Determine which is the most common successor.  If we have many inputs and
1148  // this block is a switch, we want to start by threading the batch that goes
1149  // to the most popular destination first.  If we only know about one
1150  // threadable destination (the common case) we can avoid this.
1151  BasicBlock *MostPopularDest = OnlyDest;
1152
1153  if (MostPopularDest == MultipleDestSentinel)
1154    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1155
1156  // Now that we know what the most popular destination is, factor all
1157  // predecessors that will jump to it into a single predecessor.
1158  SmallVector<BasicBlock*, 16> PredsToFactor;
1159  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1160    if (PredToDestList[i].second == MostPopularDest) {
1161      BasicBlock *Pred = PredToDestList[i].first;
1162
1163      // This predecessor may be a switch or something else that has multiple
1164      // edges to the block.  Factor each of these edges by listing them
1165      // according to # occurrences in PredsToFactor.
1166      TerminatorInst *PredTI = Pred->getTerminator();
1167      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1168        if (PredTI->getSuccessor(i) == BB)
1169          PredsToFactor.push_back(Pred);
1170    }
1171
1172  // If the threadable edges are branching on an undefined value, we get to pick
1173  // the destination that these predecessors should get to.
1174  if (MostPopularDest == 0)
1175    MostPopularDest = BB->getTerminator()->
1176                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1177
1178  // Ok, try to thread it!
1179  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1180}
1181
1182/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1183/// a PHI node in the current block.  See if there are any simplifications we
1184/// can do based on inputs to the phi node.
1185///
1186bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1187  BasicBlock *BB = PN->getParent();
1188
1189  // TODO: We could make use of this to do it once for blocks with common PHI
1190  // values.
1191  SmallVector<BasicBlock*, 1> PredBBs;
1192  PredBBs.resize(1);
1193
1194  // If any of the predecessor blocks end in an unconditional branch, we can
1195  // *duplicate* the conditional branch into that block in order to further
1196  // encourage jump threading and to eliminate cases where we have branch on a
1197  // phi of an icmp (branch on icmp is much better).
1198  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1199    BasicBlock *PredBB = PN->getIncomingBlock(i);
1200    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1201      if (PredBr->isUnconditional()) {
1202        PredBBs[0] = PredBB;
1203        // Try to duplicate BB into PredBB.
1204        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1205          return true;
1206      }
1207  }
1208
1209  return false;
1210}
1211
1212/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1213/// a xor instruction in the current block.  See if there are any
1214/// simplifications we can do based on inputs to the xor.
1215///
1216bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1217  BasicBlock *BB = BO->getParent();
1218
1219  // If either the LHS or RHS of the xor is a constant, don't do this
1220  // optimization.
1221  if (isa<ConstantInt>(BO->getOperand(0)) ||
1222      isa<ConstantInt>(BO->getOperand(1)))
1223    return false;
1224
1225  // If the first instruction in BB isn't a phi, we won't be able to infer
1226  // anything special about any particular predecessor.
1227  if (!isa<PHINode>(BB->front()))
1228    return false;
1229
1230  // If we have a xor as the branch input to this block, and we know that the
1231  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1232  // the condition into the predecessor and fix that value to true, saving some
1233  // logical ops on that path and encouraging other paths to simplify.
1234  //
1235  // This copies something like this:
1236  //
1237  //  BB:
1238  //    %X = phi i1 [1],  [%X']
1239  //    %Y = icmp eq i32 %A, %B
1240  //    %Z = xor i1 %X, %Y
1241  //    br i1 %Z, ...
1242  //
1243  // Into:
1244  //  BB':
1245  //    %Y = icmp ne i32 %A, %B
1246  //    br i1 %Z, ...
1247
1248  PredValueInfoTy XorOpValues;
1249  bool isLHS = true;
1250  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1251                                       WantInteger)) {
1252    assert(XorOpValues.empty());
1253    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1254                                         WantInteger))
1255      return false;
1256    isLHS = false;
1257  }
1258
1259  assert(!XorOpValues.empty() &&
1260         "ComputeValueKnownInPredecessors returned true with no values");
1261
1262  // Scan the information to see which is most popular: true or false.  The
1263  // predecessors can be of the set true, false, or undef.
1264  unsigned NumTrue = 0, NumFalse = 0;
1265  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1266    if (isa<UndefValue>(XorOpValues[i].first))
1267      // Ignore undefs for the count.
1268      continue;
1269    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1270      ++NumFalse;
1271    else
1272      ++NumTrue;
1273  }
1274
1275  // Determine which value to split on, true, false, or undef if neither.
1276  ConstantInt *SplitVal = 0;
1277  if (NumTrue > NumFalse)
1278    SplitVal = ConstantInt::getTrue(BB->getContext());
1279  else if (NumTrue != 0 || NumFalse != 0)
1280    SplitVal = ConstantInt::getFalse(BB->getContext());
1281
1282  // Collect all of the blocks that this can be folded into so that we can
1283  // factor this once and clone it once.
1284  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1285  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1286    if (XorOpValues[i].first != SplitVal &&
1287        !isa<UndefValue>(XorOpValues[i].first))
1288      continue;
1289
1290    BlocksToFoldInto.push_back(XorOpValues[i].second);
1291  }
1292
1293  // If we inferred a value for all of the predecessors, then duplication won't
1294  // help us.  However, we can just replace the LHS or RHS with the constant.
1295  if (BlocksToFoldInto.size() ==
1296      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1297    if (SplitVal == 0) {
1298      // If all preds provide undef, just nuke the xor, because it is undef too.
1299      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1300      BO->eraseFromParent();
1301    } else if (SplitVal->isZero()) {
1302      // If all preds provide 0, replace the xor with the other input.
1303      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1304      BO->eraseFromParent();
1305    } else {
1306      // If all preds provide 1, set the computed value to 1.
1307      BO->setOperand(!isLHS, SplitVal);
1308    }
1309
1310    return true;
1311  }
1312
1313  // Try to duplicate BB into PredBB.
1314  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1315}
1316
1317
1318/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1319/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1320/// NewPred using the entries from OldPred (suitably mapped).
1321static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1322                                            BasicBlock *OldPred,
1323                                            BasicBlock *NewPred,
1324                                     DenseMap<Instruction*, Value*> &ValueMap) {
1325  for (BasicBlock::iterator PNI = PHIBB->begin();
1326       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1327    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1328    // DestBlock.
1329    Value *IV = PN->getIncomingValueForBlock(OldPred);
1330
1331    // Remap the value if necessary.
1332    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1333      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1334      if (I != ValueMap.end())
1335        IV = I->second;
1336    }
1337
1338    PN->addIncoming(IV, NewPred);
1339  }
1340}
1341
1342/// ThreadEdge - We have decided that it is safe and profitable to factor the
1343/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1344/// across BB.  Transform the IR to reflect this change.
1345bool JumpThreading::ThreadEdge(BasicBlock *BB,
1346                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1347                               BasicBlock *SuccBB) {
1348  // If threading to the same block as we come from, we would infinite loop.
1349  if (SuccBB == BB) {
1350    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1351          << "' - would thread to self!\n");
1352    return false;
1353  }
1354
1355  // If threading this would thread across a loop header, don't thread the edge.
1356  // See the comments above FindLoopHeaders for justifications and caveats.
1357  if (LoopHeaders.count(BB)) {
1358    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1359          << "' to dest BB '" << SuccBB->getName()
1360          << "' - it might create an irreducible loop!\n");
1361    return false;
1362  }
1363
1364  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
1365  if (JumpThreadCost > Threshold) {
1366    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1367          << "' - Cost is too high: " << JumpThreadCost << "\n");
1368    return false;
1369  }
1370
1371  // And finally, do it!  Start by factoring the predecessors is needed.
1372  BasicBlock *PredBB;
1373  if (PredBBs.size() == 1)
1374    PredBB = PredBBs[0];
1375  else {
1376    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1377          << " common predecessors.\n");
1378    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1379  }
1380
1381  // And finally, do it!
1382  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1383        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1384        << ", across block:\n    "
1385        << *BB << "\n");
1386
1387  LVI->threadEdge(PredBB, BB, SuccBB);
1388
1389  // We are going to have to map operands from the original BB block to the new
1390  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1391  // account for entry from PredBB.
1392  DenseMap<Instruction*, Value*> ValueMapping;
1393
1394  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1395                                         BB->getName()+".thread",
1396                                         BB->getParent(), BB);
1397  NewBB->moveAfter(PredBB);
1398
1399  BasicBlock::iterator BI = BB->begin();
1400  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1401    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1402
1403  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1404  // mapping and using it to remap operands in the cloned instructions.
1405  for (; !isa<TerminatorInst>(BI); ++BI) {
1406    Instruction *New = BI->clone();
1407    New->setName(BI->getName());
1408    NewBB->getInstList().push_back(New);
1409    ValueMapping[BI] = New;
1410
1411    // Remap operands to patch up intra-block references.
1412    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1413      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1414        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1415        if (I != ValueMapping.end())
1416          New->setOperand(i, I->second);
1417      }
1418  }
1419
1420  // We didn't copy the terminator from BB over to NewBB, because there is now
1421  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1422  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1423  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1424
1425  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1426  // PHI nodes for NewBB now.
1427  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1428
1429  // If there were values defined in BB that are used outside the block, then we
1430  // now have to update all uses of the value to use either the original value,
1431  // the cloned value, or some PHI derived value.  This can require arbitrary
1432  // PHI insertion, of which we are prepared to do, clean these up now.
1433  SSAUpdater SSAUpdate;
1434  SmallVector<Use*, 16> UsesToRename;
1435  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1436    // Scan all uses of this instruction to see if it is used outside of its
1437    // block, and if so, record them in UsesToRename.
1438    for (Use &U : I->uses()) {
1439      Instruction *User = cast<Instruction>(U.getUser());
1440      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1441        if (UserPN->getIncomingBlock(U) == BB)
1442          continue;
1443      } else if (User->getParent() == BB)
1444        continue;
1445
1446      UsesToRename.push_back(&U);
1447    }
1448
1449    // If there are no uses outside the block, we're done with this instruction.
1450    if (UsesToRename.empty())
1451      continue;
1452
1453    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1454
1455    // We found a use of I outside of BB.  Rename all uses of I that are outside
1456    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1457    // with the two values we know.
1458    SSAUpdate.Initialize(I->getType(), I->getName());
1459    SSAUpdate.AddAvailableValue(BB, I);
1460    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1461
1462    while (!UsesToRename.empty())
1463      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1464    DEBUG(dbgs() << "\n");
1465  }
1466
1467
1468  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1469  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1470  // us to simplify any PHI nodes in BB.
1471  TerminatorInst *PredTerm = PredBB->getTerminator();
1472  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1473    if (PredTerm->getSuccessor(i) == BB) {
1474      BB->removePredecessor(PredBB, true);
1475      PredTerm->setSuccessor(i, NewBB);
1476    }
1477
1478  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1479  // over the new instructions and zap any that are constants or dead.  This
1480  // frequently happens because of phi translation.
1481  SimplifyInstructionsInBlock(NewBB, DL, TLI);
1482
1483  // Threaded an edge!
1484  ++NumThreads;
1485  return true;
1486}
1487
1488/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1489/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1490/// If we can duplicate the contents of BB up into PredBB do so now, this
1491/// improves the odds that the branch will be on an analyzable instruction like
1492/// a compare.
1493bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1494                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1495  assert(!PredBBs.empty() && "Can't handle an empty set");
1496
1497  // If BB is a loop header, then duplicating this block outside the loop would
1498  // cause us to transform this into an irreducible loop, don't do this.
1499  // See the comments above FindLoopHeaders for justifications and caveats.
1500  if (LoopHeaders.count(BB)) {
1501    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1502          << "' into predecessor block '" << PredBBs[0]->getName()
1503          << "' - it might create an irreducible loop!\n");
1504    return false;
1505  }
1506
1507  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
1508  if (DuplicationCost > Threshold) {
1509    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1510          << "' - Cost is too high: " << DuplicationCost << "\n");
1511    return false;
1512  }
1513
1514  // And finally, do it!  Start by factoring the predecessors is needed.
1515  BasicBlock *PredBB;
1516  if (PredBBs.size() == 1)
1517    PredBB = PredBBs[0];
1518  else {
1519    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1520          << " common predecessors.\n");
1521    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1522  }
1523
1524  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1525  // of PredBB.
1526  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1527        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1528        << DuplicationCost << " block is:" << *BB << "\n");
1529
1530  // Unless PredBB ends with an unconditional branch, split the edge so that we
1531  // can just clone the bits from BB into the end of the new PredBB.
1532  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1533
1534  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1535    PredBB = SplitEdge(PredBB, BB, this);
1536    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1537  }
1538
1539  // We are going to have to map operands from the original BB block into the
1540  // PredBB block.  Evaluate PHI nodes in BB.
1541  DenseMap<Instruction*, Value*> ValueMapping;
1542
1543  BasicBlock::iterator BI = BB->begin();
1544  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1545    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1546
1547  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1548  // mapping and using it to remap operands in the cloned instructions.
1549  for (; BI != BB->end(); ++BI) {
1550    Instruction *New = BI->clone();
1551
1552    // Remap operands to patch up intra-block references.
1553    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1554      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1555        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1556        if (I != ValueMapping.end())
1557          New->setOperand(i, I->second);
1558      }
1559
1560    // If this instruction can be simplified after the operands are updated,
1561    // just use the simplified value instead.  This frequently happens due to
1562    // phi translation.
1563    if (Value *IV = SimplifyInstruction(New, DL)) {
1564      delete New;
1565      ValueMapping[BI] = IV;
1566    } else {
1567      // Otherwise, insert the new instruction into the block.
1568      New->setName(BI->getName());
1569      PredBB->getInstList().insert(OldPredBranch, New);
1570      ValueMapping[BI] = New;
1571    }
1572  }
1573
1574  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1575  // add entries to the PHI nodes for branch from PredBB now.
1576  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1577  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1578                                  ValueMapping);
1579  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1580                                  ValueMapping);
1581
1582  // If there were values defined in BB that are used outside the block, then we
1583  // now have to update all uses of the value to use either the original value,
1584  // the cloned value, or some PHI derived value.  This can require arbitrary
1585  // PHI insertion, of which we are prepared to do, clean these up now.
1586  SSAUpdater SSAUpdate;
1587  SmallVector<Use*, 16> UsesToRename;
1588  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1589    // Scan all uses of this instruction to see if it is used outside of its
1590    // block, and if so, record them in UsesToRename.
1591    for (Use &U : I->uses()) {
1592      Instruction *User = cast<Instruction>(U.getUser());
1593      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1594        if (UserPN->getIncomingBlock(U) == BB)
1595          continue;
1596      } else if (User->getParent() == BB)
1597        continue;
1598
1599      UsesToRename.push_back(&U);
1600    }
1601
1602    // If there are no uses outside the block, we're done with this instruction.
1603    if (UsesToRename.empty())
1604      continue;
1605
1606    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1607
1608    // We found a use of I outside of BB.  Rename all uses of I that are outside
1609    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1610    // with the two values we know.
1611    SSAUpdate.Initialize(I->getType(), I->getName());
1612    SSAUpdate.AddAvailableValue(BB, I);
1613    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1614
1615    while (!UsesToRename.empty())
1616      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1617    DEBUG(dbgs() << "\n");
1618  }
1619
1620  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1621  // that we nuked.
1622  BB->removePredecessor(PredBB, true);
1623
1624  // Remove the unconditional branch at the end of the PredBB block.
1625  OldPredBranch->eraseFromParent();
1626
1627  ++NumDupes;
1628  return true;
1629}
1630
1631/// TryToUnfoldSelect - Look for blocks of the form
1632/// bb1:
1633///   %a = select
1634///   br bb
1635///
1636/// bb2:
1637///   %p = phi [%a, %bb] ...
1638///   %c = icmp %p
1639///   br i1 %c
1640///
1641/// And expand the select into a branch structure if one of its arms allows %c
1642/// to be folded. This later enables threading from bb1 over bb2.
1643bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1644  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1645  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1646  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1647
1648  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1649      CondLHS->getParent() != BB)
1650    return false;
1651
1652  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1653    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1654    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1655
1656    // Look if one of the incoming values is a select in the corresponding
1657    // predecessor.
1658    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1659      continue;
1660
1661    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1662    if (!PredTerm || !PredTerm->isUnconditional())
1663      continue;
1664
1665    // Now check if one of the select values would allow us to constant fold the
1666    // terminator in BB. We don't do the transform if both sides fold, those
1667    // cases will be threaded in any case.
1668    LazyValueInfo::Tristate LHSFolds =
1669        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1670                                CondRHS, Pred, BB);
1671    LazyValueInfo::Tristate RHSFolds =
1672        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1673                                CondRHS, Pred, BB);
1674    if ((LHSFolds != LazyValueInfo::Unknown ||
1675         RHSFolds != LazyValueInfo::Unknown) &&
1676        LHSFolds != RHSFolds) {
1677      // Expand the select.
1678      //
1679      // Pred --
1680      //  |    v
1681      //  |  NewBB
1682      //  |    |
1683      //  |-----
1684      //  v
1685      // BB
1686      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1687                                             BB->getParent(), BB);
1688      // Move the unconditional branch to NewBB.
1689      PredTerm->removeFromParent();
1690      NewBB->getInstList().insert(NewBB->end(), PredTerm);
1691      // Create a conditional branch and update PHI nodes.
1692      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1693      CondLHS->setIncomingValue(I, SI->getFalseValue());
1694      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1695      // The select is now dead.
1696      SI->eraseFromParent();
1697
1698      // Update any other PHI nodes in BB.
1699      for (BasicBlock::iterator BI = BB->begin();
1700           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1701        if (Phi != CondLHS)
1702          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1703      return true;
1704    }
1705  }
1706  return false;
1707}
1708