JumpThreading.cpp revision c11b107f21f8f1baf1021999fc7d01b93e00922b
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/LazyValueInfo.h"
26#include "llvm/Analysis/Loads.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLibraryInfo.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Transforms/Utils/SSAUpdater.h"
39using namespace llvm;
40
41STATISTIC(NumThreads, "Number of jumps threaded");
42STATISTIC(NumFolds,   "Number of terminators folded");
43STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
44
45static cl::opt<unsigned>
46Threshold("jump-threading-threshold",
47          cl::desc("Max block size to duplicate for jump threading"),
48          cl::init(6), cl::Hidden);
49
50namespace {
51  // These are at global scope so static functions can use them too.
52  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
53  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
54
55  // This is used to keep track of what kind of constant we're currently hoping
56  // to find.
57  enum ConstantPreference {
58    WantInteger,
59    WantBlockAddress
60  };
61
62  /// This pass performs 'jump threading', which looks at blocks that have
63  /// multiple predecessors and multiple successors.  If one or more of the
64  /// predecessors of the block can be proven to always jump to one of the
65  /// successors, we forward the edge from the predecessor to the successor by
66  /// duplicating the contents of this block.
67  ///
68  /// An example of when this can occur is code like this:
69  ///
70  ///   if () { ...
71  ///     X = 4;
72  ///   }
73  ///   if (X < 3) {
74  ///
75  /// In this case, the unconditional branch at the end of the first if can be
76  /// revectored to the false side of the second if.
77  ///
78  class JumpThreading : public FunctionPass {
79    DataLayout *TD;
80    TargetLibraryInfo *TLI;
81    LazyValueInfo *LVI;
82#ifdef NDEBUG
83    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
84#else
85    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
86#endif
87    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
88
89    // RAII helper for updating the recursion stack.
90    struct RecursionSetRemover {
91      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
92      std::pair<Value*, BasicBlock*> ThePair;
93
94      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
95                          std::pair<Value*, BasicBlock*> P)
96        : TheSet(S), ThePair(P) { }
97
98      ~RecursionSetRemover() {
99        TheSet.erase(ThePair);
100      }
101    };
102  public:
103    static char ID; // Pass identification
104    JumpThreading() : FunctionPass(ID) {
105      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
106    }
107
108    bool runOnFunction(Function &F);
109
110    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
111      AU.addRequired<LazyValueInfo>();
112      AU.addPreserved<LazyValueInfo>();
113      AU.addRequired<TargetLibraryInfo>();
114    }
115
116    void FindLoopHeaders(Function &F);
117    bool ProcessBlock(BasicBlock *BB);
118    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
119                    BasicBlock *SuccBB);
120    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
121                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
122
123    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
124                                         PredValueInfo &Result,
125                                         ConstantPreference Preference);
126    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
127                                ConstantPreference Preference);
128
129    bool ProcessBranchOnPHI(PHINode *PN);
130    bool ProcessBranchOnXOR(BinaryOperator *BO);
131
132    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
133    bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
134  };
135}
136
137char JumpThreading::ID = 0;
138INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
139                "Jump Threading", false, false)
140INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
141INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
142INITIALIZE_PASS_END(JumpThreading, "jump-threading",
143                "Jump Threading", false, false)
144
145// Public interface to the Jump Threading pass
146FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
147
148/// runOnFunction - Top level algorithm.
149///
150bool JumpThreading::runOnFunction(Function &F) {
151  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
152  TD = getAnalysisIfAvailable<DataLayout>();
153  TLI = &getAnalysis<TargetLibraryInfo>();
154  LVI = &getAnalysis<LazyValueInfo>();
155
156  FindLoopHeaders(F);
157
158  bool Changed, EverChanged = false;
159  do {
160    Changed = false;
161    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
162      BasicBlock *BB = I;
163      // Thread all of the branches we can over this block.
164      while (ProcessBlock(BB))
165        Changed = true;
166
167      ++I;
168
169      // If the block is trivially dead, zap it.  This eliminates the successor
170      // edges which simplifies the CFG.
171      if (pred_begin(BB) == pred_end(BB) &&
172          BB != &BB->getParent()->getEntryBlock()) {
173        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
174              << "' with terminator: " << *BB->getTerminator() << '\n');
175        LoopHeaders.erase(BB);
176        LVI->eraseBlock(BB);
177        DeleteDeadBlock(BB);
178        Changed = true;
179        continue;
180      }
181
182      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
183
184      // Can't thread an unconditional jump, but if the block is "almost
185      // empty", we can replace uses of it with uses of the successor and make
186      // this dead.
187      if (BI && BI->isUnconditional() &&
188          BB != &BB->getParent()->getEntryBlock() &&
189          // If the terminator is the only non-phi instruction, try to nuke it.
190          BB->getFirstNonPHIOrDbg()->isTerminator()) {
191        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
192        // block, we have to make sure it isn't in the LoopHeaders set.  We
193        // reinsert afterward if needed.
194        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
195        BasicBlock *Succ = BI->getSuccessor(0);
196
197        // FIXME: It is always conservatively correct to drop the info
198        // for a block even if it doesn't get erased.  This isn't totally
199        // awesome, but it allows us to use AssertingVH to prevent nasty
200        // dangling pointer issues within LazyValueInfo.
201        LVI->eraseBlock(BB);
202        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
203          Changed = true;
204          // If we deleted BB and BB was the header of a loop, then the
205          // successor is now the header of the loop.
206          BB = Succ;
207        }
208
209        if (ErasedFromLoopHeaders)
210          LoopHeaders.insert(BB);
211      }
212    }
213    EverChanged |= Changed;
214  } while (Changed);
215
216  LoopHeaders.clear();
217  return EverChanged;
218}
219
220/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
221/// thread across it. Stop scanning the block when passing the threshold.
222static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
223                                             unsigned Threshold) {
224  /// Ignore PHI nodes, these will be flattened when duplication happens.
225  BasicBlock::const_iterator I = BB->getFirstNonPHI();
226
227  // FIXME: THREADING will delete values that are just used to compute the
228  // branch, so they shouldn't count against the duplication cost.
229
230  // Sum up the cost of each instruction until we get to the terminator.  Don't
231  // include the terminator because the copy won't include it.
232  unsigned Size = 0;
233  for (; !isa<TerminatorInst>(I); ++I) {
234
235    // Stop scanning the block if we've reached the threshold.
236    if (Size > Threshold)
237      return Size;
238
239    // Debugger intrinsics don't incur code size.
240    if (isa<DbgInfoIntrinsic>(I)) continue;
241
242    // If this is a pointer->pointer bitcast, it is free.
243    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
244      continue;
245
246    // All other instructions count for at least one unit.
247    ++Size;
248
249    // Calls are more expensive.  If they are non-intrinsic calls, we model them
250    // as having cost of 4.  If they are a non-vector intrinsic, we model them
251    // as having cost of 2 total, and if they are a vector intrinsic, we model
252    // them as having cost 1.
253    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
254      if (CI->hasFnAttr(Attribute::NoDuplicate))
255        // Blocks with NoDuplicate are modelled as having infinite cost, so they
256        // are never duplicated.
257        return ~0U;
258      else if (!isa<IntrinsicInst>(CI))
259        Size += 3;
260      else if (!CI->getType()->isVectorTy())
261        Size += 1;
262    }
263  }
264
265  // Threading through a switch statement is particularly profitable.  If this
266  // block ends in a switch, decrease its cost to make it more likely to happen.
267  if (isa<SwitchInst>(I))
268    Size = Size > 6 ? Size-6 : 0;
269
270  // The same holds for indirect branches, but slightly more so.
271  if (isa<IndirectBrInst>(I))
272    Size = Size > 8 ? Size-8 : 0;
273
274  return Size;
275}
276
277/// FindLoopHeaders - We do not want jump threading to turn proper loop
278/// structures into irreducible loops.  Doing this breaks up the loop nesting
279/// hierarchy and pessimizes later transformations.  To prevent this from
280/// happening, we first have to find the loop headers.  Here we approximate this
281/// by finding targets of backedges in the CFG.
282///
283/// Note that there definitely are cases when we want to allow threading of
284/// edges across a loop header.  For example, threading a jump from outside the
285/// loop (the preheader) to an exit block of the loop is definitely profitable.
286/// It is also almost always profitable to thread backedges from within the loop
287/// to exit blocks, and is often profitable to thread backedges to other blocks
288/// within the loop (forming a nested loop).  This simple analysis is not rich
289/// enough to track all of these properties and keep it up-to-date as the CFG
290/// mutates, so we don't allow any of these transformations.
291///
292void JumpThreading::FindLoopHeaders(Function &F) {
293  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
294  FindFunctionBackedges(F, Edges);
295
296  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
297    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
298}
299
300/// getKnownConstant - Helper method to determine if we can thread over a
301/// terminator with the given value as its condition, and if so what value to
302/// use for that. What kind of value this is depends on whether we want an
303/// integer or a block address, but an undef is always accepted.
304/// Returns null if Val is null or not an appropriate constant.
305static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
306  if (!Val)
307    return 0;
308
309  // Undef is "known" enough.
310  if (UndefValue *U = dyn_cast<UndefValue>(Val))
311    return U;
312
313  if (Preference == WantBlockAddress)
314    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
315
316  return dyn_cast<ConstantInt>(Val);
317}
318
319/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
320/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
321/// in any of our predecessors.  If so, return the known list of value and pred
322/// BB in the result vector.
323///
324/// This returns true if there were any known values.
325///
326bool JumpThreading::
327ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
328                                ConstantPreference Preference) {
329  // This method walks up use-def chains recursively.  Because of this, we could
330  // get into an infinite loop going around loops in the use-def chain.  To
331  // prevent this, keep track of what (value, block) pairs we've already visited
332  // and terminate the search if we loop back to them
333  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
334    return false;
335
336  // An RAII help to remove this pair from the recursion set once the recursion
337  // stack pops back out again.
338  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
339
340  // If V is a constant, then it is known in all predecessors.
341  if (Constant *KC = getKnownConstant(V, Preference)) {
342    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
343      Result.push_back(std::make_pair(KC, *PI));
344
345    return true;
346  }
347
348  // If V is a non-instruction value, or an instruction in a different block,
349  // then it can't be derived from a PHI.
350  Instruction *I = dyn_cast<Instruction>(V);
351  if (I == 0 || I->getParent() != BB) {
352
353    // Okay, if this is a live-in value, see if it has a known value at the end
354    // of any of our predecessors.
355    //
356    // FIXME: This should be an edge property, not a block end property.
357    /// TODO: Per PR2563, we could infer value range information about a
358    /// predecessor based on its terminator.
359    //
360    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
361    // "I" is a non-local compare-with-a-constant instruction.  This would be
362    // able to handle value inequalities better, for example if the compare is
363    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
364    // Perhaps getConstantOnEdge should be smart enough to do this?
365
366    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
367      BasicBlock *P = *PI;
368      // If the value is known by LazyValueInfo to be a constant in a
369      // predecessor, use that information to try to thread this block.
370      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
371      if (Constant *KC = getKnownConstant(PredCst, Preference))
372        Result.push_back(std::make_pair(KC, P));
373    }
374
375    return !Result.empty();
376  }
377
378  /// If I is a PHI node, then we know the incoming values for any constants.
379  if (PHINode *PN = dyn_cast<PHINode>(I)) {
380    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
381      Value *InVal = PN->getIncomingValue(i);
382      if (Constant *KC = getKnownConstant(InVal, Preference)) {
383        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
384      } else {
385        Constant *CI = LVI->getConstantOnEdge(InVal,
386                                              PN->getIncomingBlock(i), BB);
387        if (Constant *KC = getKnownConstant(CI, Preference))
388          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
389      }
390    }
391
392    return !Result.empty();
393  }
394
395  PredValueInfoTy LHSVals, RHSVals;
396
397  // Handle some boolean conditions.
398  if (I->getType()->getPrimitiveSizeInBits() == 1) {
399    assert(Preference == WantInteger && "One-bit non-integer type?");
400    // X | true -> true
401    // X & false -> false
402    if (I->getOpcode() == Instruction::Or ||
403        I->getOpcode() == Instruction::And) {
404      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
405                                      WantInteger);
406      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
407                                      WantInteger);
408
409      if (LHSVals.empty() && RHSVals.empty())
410        return false;
411
412      ConstantInt *InterestingVal;
413      if (I->getOpcode() == Instruction::Or)
414        InterestingVal = ConstantInt::getTrue(I->getContext());
415      else
416        InterestingVal = ConstantInt::getFalse(I->getContext());
417
418      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
419
420      // Scan for the sentinel.  If we find an undef, force it to the
421      // interesting value: x|undef -> true and x&undef -> false.
422      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
423        if (LHSVals[i].first == InterestingVal ||
424            isa<UndefValue>(LHSVals[i].first)) {
425          Result.push_back(LHSVals[i]);
426          Result.back().first = InterestingVal;
427          LHSKnownBBs.insert(LHSVals[i].second);
428        }
429      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
430        if (RHSVals[i].first == InterestingVal ||
431            isa<UndefValue>(RHSVals[i].first)) {
432          // If we already inferred a value for this block on the LHS, don't
433          // re-add it.
434          if (!LHSKnownBBs.count(RHSVals[i].second)) {
435            Result.push_back(RHSVals[i]);
436            Result.back().first = InterestingVal;
437          }
438        }
439
440      return !Result.empty();
441    }
442
443    // Handle the NOT form of XOR.
444    if (I->getOpcode() == Instruction::Xor &&
445        isa<ConstantInt>(I->getOperand(1)) &&
446        cast<ConstantInt>(I->getOperand(1))->isOne()) {
447      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
448                                      WantInteger);
449      if (Result.empty())
450        return false;
451
452      // Invert the known values.
453      for (unsigned i = 0, e = Result.size(); i != e; ++i)
454        Result[i].first = ConstantExpr::getNot(Result[i].first);
455
456      return true;
457    }
458
459  // Try to simplify some other binary operator values.
460  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
461    assert(Preference != WantBlockAddress
462            && "A binary operator creating a block address?");
463    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
464      PredValueInfoTy LHSVals;
465      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
466                                      WantInteger);
467
468      // Try to use constant folding to simplify the binary operator.
469      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
470        Constant *V = LHSVals[i].first;
471        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
472
473        if (Constant *KC = getKnownConstant(Folded, WantInteger))
474          Result.push_back(std::make_pair(KC, LHSVals[i].second));
475      }
476    }
477
478    return !Result.empty();
479  }
480
481  // Handle compare with phi operand, where the PHI is defined in this block.
482  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
483    assert(Preference == WantInteger && "Compares only produce integers");
484    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
485    if (PN && PN->getParent() == BB) {
486      // We can do this simplification if any comparisons fold to true or false.
487      // See if any do.
488      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
489        BasicBlock *PredBB = PN->getIncomingBlock(i);
490        Value *LHS = PN->getIncomingValue(i);
491        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
492
493        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
494        if (Res == 0) {
495          if (!isa<Constant>(RHS))
496            continue;
497
498          LazyValueInfo::Tristate
499            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
500                                           cast<Constant>(RHS), PredBB, BB);
501          if (ResT == LazyValueInfo::Unknown)
502            continue;
503          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
504        }
505
506        if (Constant *KC = getKnownConstant(Res, WantInteger))
507          Result.push_back(std::make_pair(KC, PredBB));
508      }
509
510      return !Result.empty();
511    }
512
513
514    // If comparing a live-in value against a constant, see if we know the
515    // live-in value on any predecessors.
516    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
517      if (!isa<Instruction>(Cmp->getOperand(0)) ||
518          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
519        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
520
521        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
522          BasicBlock *P = *PI;
523          // If the value is known by LazyValueInfo to be a constant in a
524          // predecessor, use that information to try to thread this block.
525          LazyValueInfo::Tristate Res =
526            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
527                                    RHSCst, P, BB);
528          if (Res == LazyValueInfo::Unknown)
529            continue;
530
531          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
532          Result.push_back(std::make_pair(ResC, P));
533        }
534
535        return !Result.empty();
536      }
537
538      // Try to find a constant value for the LHS of a comparison,
539      // and evaluate it statically if we can.
540      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
541        PredValueInfoTy LHSVals;
542        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
543                                        WantInteger);
544
545        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
546          Constant *V = LHSVals[i].first;
547          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
548                                                      V, CmpConst);
549          if (Constant *KC = getKnownConstant(Folded, WantInteger))
550            Result.push_back(std::make_pair(KC, LHSVals[i].second));
551        }
552
553        return !Result.empty();
554      }
555    }
556  }
557
558  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
559    // Handle select instructions where at least one operand is a known constant
560    // and we can figure out the condition value for any predecessor block.
561    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
562    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
563    PredValueInfoTy Conds;
564    if ((TrueVal || FalseVal) &&
565        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
566                                        WantInteger)) {
567      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
568        Constant *Cond = Conds[i].first;
569
570        // Figure out what value to use for the condition.
571        bool KnownCond;
572        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
573          // A known boolean.
574          KnownCond = CI->isOne();
575        } else {
576          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
577          // Either operand will do, so be sure to pick the one that's a known
578          // constant.
579          // FIXME: Do this more cleverly if both values are known constants?
580          KnownCond = (TrueVal != 0);
581        }
582
583        // See if the select has a known constant value for this predecessor.
584        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
585          Result.push_back(std::make_pair(Val, Conds[i].second));
586      }
587
588      return !Result.empty();
589    }
590  }
591
592  // If all else fails, see if LVI can figure out a constant value for us.
593  Constant *CI = LVI->getConstant(V, BB);
594  if (Constant *KC = getKnownConstant(CI, Preference)) {
595    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
596      Result.push_back(std::make_pair(KC, *PI));
597  }
598
599  return !Result.empty();
600}
601
602
603
604/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
605/// in an undefined jump, decide which block is best to revector to.
606///
607/// Since we can pick an arbitrary destination, we pick the successor with the
608/// fewest predecessors.  This should reduce the in-degree of the others.
609///
610static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
611  TerminatorInst *BBTerm = BB->getTerminator();
612  unsigned MinSucc = 0;
613  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
614  // Compute the successor with the minimum number of predecessors.
615  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
616  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
617    TestBB = BBTerm->getSuccessor(i);
618    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
619    if (NumPreds < MinNumPreds) {
620      MinSucc = i;
621      MinNumPreds = NumPreds;
622    }
623  }
624
625  return MinSucc;
626}
627
628static bool hasAddressTakenAndUsed(BasicBlock *BB) {
629  if (!BB->hasAddressTaken()) return false;
630
631  // If the block has its address taken, it may be a tree of dead constants
632  // hanging off of it.  These shouldn't keep the block alive.
633  BlockAddress *BA = BlockAddress::get(BB);
634  BA->removeDeadConstantUsers();
635  return !BA->use_empty();
636}
637
638/// ProcessBlock - If there are any predecessors whose control can be threaded
639/// through to a successor, transform them now.
640bool JumpThreading::ProcessBlock(BasicBlock *BB) {
641  // If the block is trivially dead, just return and let the caller nuke it.
642  // This simplifies other transformations.
643  if (pred_begin(BB) == pred_end(BB) &&
644      BB != &BB->getParent()->getEntryBlock())
645    return false;
646
647  // If this block has a single predecessor, and if that pred has a single
648  // successor, merge the blocks.  This encourages recursive jump threading
649  // because now the condition in this block can be threaded through
650  // predecessors of our predecessor block.
651  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
652    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
653        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
654      // If SinglePred was a loop header, BB becomes one.
655      if (LoopHeaders.erase(SinglePred))
656        LoopHeaders.insert(BB);
657
658      // Remember if SinglePred was the entry block of the function.  If so, we
659      // will need to move BB back to the entry position.
660      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
661      LVI->eraseBlock(SinglePred);
662      MergeBasicBlockIntoOnlyPred(BB);
663
664      if (isEntry && BB != &BB->getParent()->getEntryBlock())
665        BB->moveBefore(&BB->getParent()->getEntryBlock());
666      return true;
667    }
668  }
669
670  // What kind of constant we're looking for.
671  ConstantPreference Preference = WantInteger;
672
673  // Look to see if the terminator is a conditional branch, switch or indirect
674  // branch, if not we can't thread it.
675  Value *Condition;
676  Instruction *Terminator = BB->getTerminator();
677  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
678    // Can't thread an unconditional jump.
679    if (BI->isUnconditional()) return false;
680    Condition = BI->getCondition();
681  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
682    Condition = SI->getCondition();
683  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
684    // Can't thread indirect branch with no successors.
685    if (IB->getNumSuccessors() == 0) return false;
686    Condition = IB->getAddress()->stripPointerCasts();
687    Preference = WantBlockAddress;
688  } else {
689    return false; // Must be an invoke.
690  }
691
692  // Run constant folding to see if we can reduce the condition to a simple
693  // constant.
694  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
695    Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
696    if (SimpleVal) {
697      I->replaceAllUsesWith(SimpleVal);
698      I->eraseFromParent();
699      Condition = SimpleVal;
700    }
701  }
702
703  // If the terminator is branching on an undef, we can pick any of the
704  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
705  if (isa<UndefValue>(Condition)) {
706    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
707
708    // Fold the branch/switch.
709    TerminatorInst *BBTerm = BB->getTerminator();
710    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
711      if (i == BestSucc) continue;
712      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
713    }
714
715    DEBUG(dbgs() << "  In block '" << BB->getName()
716          << "' folding undef terminator: " << *BBTerm << '\n');
717    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
718    BBTerm->eraseFromParent();
719    return true;
720  }
721
722  // If the terminator of this block is branching on a constant, simplify the
723  // terminator to an unconditional branch.  This can occur due to threading in
724  // other blocks.
725  if (getKnownConstant(Condition, Preference)) {
726    DEBUG(dbgs() << "  In block '" << BB->getName()
727          << "' folding terminator: " << *BB->getTerminator() << '\n');
728    ++NumFolds;
729    ConstantFoldTerminator(BB, true);
730    return true;
731  }
732
733  Instruction *CondInst = dyn_cast<Instruction>(Condition);
734
735  // All the rest of our checks depend on the condition being an instruction.
736  if (CondInst == 0) {
737    // FIXME: Unify this with code below.
738    if (ProcessThreadableEdges(Condition, BB, Preference))
739      return true;
740    return false;
741  }
742
743
744  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
745    // For a comparison where the LHS is outside this block, it's possible
746    // that we've branched on it before.  Used LVI to see if we can simplify
747    // the branch based on that.
748    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
749    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
750    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
751    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
752        (!isa<Instruction>(CondCmp->getOperand(0)) ||
753         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
754      // For predecessor edge, determine if the comparison is true or false
755      // on that edge.  If they're all true or all false, we can simplify the
756      // branch.
757      // FIXME: We could handle mixed true/false by duplicating code.
758      LazyValueInfo::Tristate Baseline =
759        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
760                                CondConst, *PI, BB);
761      if (Baseline != LazyValueInfo::Unknown) {
762        // Check that all remaining incoming values match the first one.
763        while (++PI != PE) {
764          LazyValueInfo::Tristate Ret =
765            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
766                                    CondCmp->getOperand(0), CondConst, *PI, BB);
767          if (Ret != Baseline) break;
768        }
769
770        // If we terminated early, then one of the values didn't match.
771        if (PI == PE) {
772          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
773          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
774          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
775          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
776          CondBr->eraseFromParent();
777          return true;
778        }
779      }
780
781    }
782
783    if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
784      return true;
785  }
786
787  // Check for some cases that are worth simplifying.  Right now we want to look
788  // for loads that are used by a switch or by the condition for the branch.  If
789  // we see one, check to see if it's partially redundant.  If so, insert a PHI
790  // which can then be used to thread the values.
791  //
792  Value *SimplifyValue = CondInst;
793  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
794    if (isa<Constant>(CondCmp->getOperand(1)))
795      SimplifyValue = CondCmp->getOperand(0);
796
797  // TODO: There are other places where load PRE would be profitable, such as
798  // more complex comparisons.
799  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
800    if (SimplifyPartiallyRedundantLoad(LI))
801      return true;
802
803
804  // Handle a variety of cases where we are branching on something derived from
805  // a PHI node in the current block.  If we can prove that any predecessors
806  // compute a predictable value based on a PHI node, thread those predecessors.
807  //
808  if (ProcessThreadableEdges(CondInst, BB, Preference))
809    return true;
810
811  // If this is an otherwise-unfoldable branch on a phi node in the current
812  // block, see if we can simplify.
813  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
814    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
815      return ProcessBranchOnPHI(PN);
816
817
818  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
819  if (CondInst->getOpcode() == Instruction::Xor &&
820      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
821    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
822
823
824  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
825  // "(X == 4)", thread through this block.
826
827  return false;
828}
829
830
831/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
832/// load instruction, eliminate it by replacing it with a PHI node.  This is an
833/// important optimization that encourages jump threading, and needs to be run
834/// interlaced with other jump threading tasks.
835bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
836  // Don't hack volatile/atomic loads.
837  if (!LI->isSimple()) return false;
838
839  // If the load is defined in a block with exactly one predecessor, it can't be
840  // partially redundant.
841  BasicBlock *LoadBB = LI->getParent();
842  if (LoadBB->getSinglePredecessor())
843    return false;
844
845  Value *LoadedPtr = LI->getOperand(0);
846
847  // If the loaded operand is defined in the LoadBB, it can't be available.
848  // TODO: Could do simple PHI translation, that would be fun :)
849  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
850    if (PtrOp->getParent() == LoadBB)
851      return false;
852
853  // Scan a few instructions up from the load, to see if it is obviously live at
854  // the entry to its block.
855  BasicBlock::iterator BBIt = LI;
856
857  if (Value *AvailableVal =
858        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
859    // If the value if the load is locally available within the block, just use
860    // it.  This frequently occurs for reg2mem'd allocas.
861    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
862
863    // If the returned value is the load itself, replace with an undef. This can
864    // only happen in dead loops.
865    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
866    LI->replaceAllUsesWith(AvailableVal);
867    LI->eraseFromParent();
868    return true;
869  }
870
871  // Otherwise, if we scanned the whole block and got to the top of the block,
872  // we know the block is locally transparent to the load.  If not, something
873  // might clobber its value.
874  if (BBIt != LoadBB->begin())
875    return false;
876
877  // If all of the loads and stores that feed the value have the same TBAA tag,
878  // then we can propagate it onto any newly inserted loads.
879  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
880
881  SmallPtrSet<BasicBlock*, 8> PredsScanned;
882  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
883  AvailablePredsTy AvailablePreds;
884  BasicBlock *OneUnavailablePred = 0;
885
886  // If we got here, the loaded value is transparent through to the start of the
887  // block.  Check to see if it is available in any of the predecessor blocks.
888  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
889       PI != PE; ++PI) {
890    BasicBlock *PredBB = *PI;
891
892    // If we already scanned this predecessor, skip it.
893    if (!PredsScanned.insert(PredBB))
894      continue;
895
896    // Scan the predecessor to see if the value is available in the pred.
897    BBIt = PredBB->end();
898    MDNode *ThisTBAATag = 0;
899    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
900                                                    0, &ThisTBAATag);
901    if (!PredAvailable) {
902      OneUnavailablePred = PredBB;
903      continue;
904    }
905
906    // If tbaa tags disagree or are not present, forget about them.
907    if (TBAATag != ThisTBAATag) TBAATag = 0;
908
909    // If so, this load is partially redundant.  Remember this info so that we
910    // can create a PHI node.
911    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
912  }
913
914  // If the loaded value isn't available in any predecessor, it isn't partially
915  // redundant.
916  if (AvailablePreds.empty()) return false;
917
918  // Okay, the loaded value is available in at least one (and maybe all!)
919  // predecessors.  If the value is unavailable in more than one unique
920  // predecessor, we want to insert a merge block for those common predecessors.
921  // This ensures that we only have to insert one reload, thus not increasing
922  // code size.
923  BasicBlock *UnavailablePred = 0;
924
925  // If there is exactly one predecessor where the value is unavailable, the
926  // already computed 'OneUnavailablePred' block is it.  If it ends in an
927  // unconditional branch, we know that it isn't a critical edge.
928  if (PredsScanned.size() == AvailablePreds.size()+1 &&
929      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
930    UnavailablePred = OneUnavailablePred;
931  } else if (PredsScanned.size() != AvailablePreds.size()) {
932    // Otherwise, we had multiple unavailable predecessors or we had a critical
933    // edge from the one.
934    SmallVector<BasicBlock*, 8> PredsToSplit;
935    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
936
937    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
938      AvailablePredSet.insert(AvailablePreds[i].first);
939
940    // Add all the unavailable predecessors to the PredsToSplit list.
941    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
942         PI != PE; ++PI) {
943      BasicBlock *P = *PI;
944      // If the predecessor is an indirect goto, we can't split the edge.
945      if (isa<IndirectBrInst>(P->getTerminator()))
946        return false;
947
948      if (!AvailablePredSet.count(P))
949        PredsToSplit.push_back(P);
950    }
951
952    // Split them out to their own block.
953    UnavailablePred =
954      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
955  }
956
957  // If the value isn't available in all predecessors, then there will be
958  // exactly one where it isn't available.  Insert a load on that edge and add
959  // it to the AvailablePreds list.
960  if (UnavailablePred) {
961    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
962           "Can't handle critical edge here!");
963    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
964                                 LI->getAlignment(),
965                                 UnavailablePred->getTerminator());
966    NewVal->setDebugLoc(LI->getDebugLoc());
967    if (TBAATag)
968      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
969
970    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
971  }
972
973  // Now we know that each predecessor of this block has a value in
974  // AvailablePreds, sort them for efficient access as we're walking the preds.
975  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
976
977  // Create a PHI node at the start of the block for the PRE'd load value.
978  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
979  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
980                                LoadBB->begin());
981  PN->takeName(LI);
982  PN->setDebugLoc(LI->getDebugLoc());
983
984  // Insert new entries into the PHI for each predecessor.  A single block may
985  // have multiple entries here.
986  for (pred_iterator PI = PB; PI != PE; ++PI) {
987    BasicBlock *P = *PI;
988    AvailablePredsTy::iterator I =
989      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
990                       std::make_pair(P, (Value*)0));
991
992    assert(I != AvailablePreds.end() && I->first == P &&
993           "Didn't find entry for predecessor!");
994
995    PN->addIncoming(I->second, I->first);
996  }
997
998  //cerr << "PRE: " << *LI << *PN << "\n";
999
1000  LI->replaceAllUsesWith(PN);
1001  LI->eraseFromParent();
1002
1003  return true;
1004}
1005
1006/// FindMostPopularDest - The specified list contains multiple possible
1007/// threadable destinations.  Pick the one that occurs the most frequently in
1008/// the list.
1009static BasicBlock *
1010FindMostPopularDest(BasicBlock *BB,
1011                    const SmallVectorImpl<std::pair<BasicBlock*,
1012                                  BasicBlock*> > &PredToDestList) {
1013  assert(!PredToDestList.empty());
1014
1015  // Determine popularity.  If there are multiple possible destinations, we
1016  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1017  // blocks with known and real destinations to threading undef.  We'll handle
1018  // them later if interesting.
1019  DenseMap<BasicBlock*, unsigned> DestPopularity;
1020  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1021    if (PredToDestList[i].second)
1022      DestPopularity[PredToDestList[i].second]++;
1023
1024  // Find the most popular dest.
1025  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1026  BasicBlock *MostPopularDest = DPI->first;
1027  unsigned Popularity = DPI->second;
1028  SmallVector<BasicBlock*, 4> SamePopularity;
1029
1030  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1031    // If the popularity of this entry isn't higher than the popularity we've
1032    // seen so far, ignore it.
1033    if (DPI->second < Popularity)
1034      ; // ignore.
1035    else if (DPI->second == Popularity) {
1036      // If it is the same as what we've seen so far, keep track of it.
1037      SamePopularity.push_back(DPI->first);
1038    } else {
1039      // If it is more popular, remember it.
1040      SamePopularity.clear();
1041      MostPopularDest = DPI->first;
1042      Popularity = DPI->second;
1043    }
1044  }
1045
1046  // Okay, now we know the most popular destination.  If there is more than one
1047  // destination, we need to determine one.  This is arbitrary, but we need
1048  // to make a deterministic decision.  Pick the first one that appears in the
1049  // successor list.
1050  if (!SamePopularity.empty()) {
1051    SamePopularity.push_back(MostPopularDest);
1052    TerminatorInst *TI = BB->getTerminator();
1053    for (unsigned i = 0; ; ++i) {
1054      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1055
1056      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1057                    TI->getSuccessor(i)) == SamePopularity.end())
1058        continue;
1059
1060      MostPopularDest = TI->getSuccessor(i);
1061      break;
1062    }
1063  }
1064
1065  // Okay, we have finally picked the most popular destination.
1066  return MostPopularDest;
1067}
1068
1069bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1070                                           ConstantPreference Preference) {
1071  // If threading this would thread across a loop header, don't even try to
1072  // thread the edge.
1073  if (LoopHeaders.count(BB))
1074    return false;
1075
1076  PredValueInfoTy PredValues;
1077  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1078    return false;
1079
1080  assert(!PredValues.empty() &&
1081         "ComputeValueKnownInPredecessors returned true with no values");
1082
1083  DEBUG(dbgs() << "IN BB: " << *BB;
1084        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1085          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1086            << *PredValues[i].first
1087            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1088        });
1089
1090  // Decide what we want to thread through.  Convert our list of known values to
1091  // a list of known destinations for each pred.  This also discards duplicate
1092  // predecessors and keeps track of the undefined inputs (which are represented
1093  // as a null dest in the PredToDestList).
1094  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1095  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1096
1097  BasicBlock *OnlyDest = 0;
1098  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1099
1100  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1101    BasicBlock *Pred = PredValues[i].second;
1102    if (!SeenPreds.insert(Pred))
1103      continue;  // Duplicate predecessor entry.
1104
1105    // If the predecessor ends with an indirect goto, we can't change its
1106    // destination.
1107    if (isa<IndirectBrInst>(Pred->getTerminator()))
1108      continue;
1109
1110    Constant *Val = PredValues[i].first;
1111
1112    BasicBlock *DestBB;
1113    if (isa<UndefValue>(Val))
1114      DestBB = 0;
1115    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1116      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1117    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1118      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1119    } else {
1120      assert(isa<IndirectBrInst>(BB->getTerminator())
1121              && "Unexpected terminator");
1122      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1123    }
1124
1125    // If we have exactly one destination, remember it for efficiency below.
1126    if (PredToDestList.empty())
1127      OnlyDest = DestBB;
1128    else if (OnlyDest != DestBB)
1129      OnlyDest = MultipleDestSentinel;
1130
1131    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1132  }
1133
1134  // If all edges were unthreadable, we fail.
1135  if (PredToDestList.empty())
1136    return false;
1137
1138  // Determine which is the most common successor.  If we have many inputs and
1139  // this block is a switch, we want to start by threading the batch that goes
1140  // to the most popular destination first.  If we only know about one
1141  // threadable destination (the common case) we can avoid this.
1142  BasicBlock *MostPopularDest = OnlyDest;
1143
1144  if (MostPopularDest == MultipleDestSentinel)
1145    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1146
1147  // Now that we know what the most popular destination is, factor all
1148  // predecessors that will jump to it into a single predecessor.
1149  SmallVector<BasicBlock*, 16> PredsToFactor;
1150  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1151    if (PredToDestList[i].second == MostPopularDest) {
1152      BasicBlock *Pred = PredToDestList[i].first;
1153
1154      // This predecessor may be a switch or something else that has multiple
1155      // edges to the block.  Factor each of these edges by listing them
1156      // according to # occurrences in PredsToFactor.
1157      TerminatorInst *PredTI = Pred->getTerminator();
1158      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1159        if (PredTI->getSuccessor(i) == BB)
1160          PredsToFactor.push_back(Pred);
1161    }
1162
1163  // If the threadable edges are branching on an undefined value, we get to pick
1164  // the destination that these predecessors should get to.
1165  if (MostPopularDest == 0)
1166    MostPopularDest = BB->getTerminator()->
1167                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1168
1169  // Ok, try to thread it!
1170  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1171}
1172
1173/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1174/// a PHI node in the current block.  See if there are any simplifications we
1175/// can do based on inputs to the phi node.
1176///
1177bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1178  BasicBlock *BB = PN->getParent();
1179
1180  // TODO: We could make use of this to do it once for blocks with common PHI
1181  // values.
1182  SmallVector<BasicBlock*, 1> PredBBs;
1183  PredBBs.resize(1);
1184
1185  // If any of the predecessor blocks end in an unconditional branch, we can
1186  // *duplicate* the conditional branch into that block in order to further
1187  // encourage jump threading and to eliminate cases where we have branch on a
1188  // phi of an icmp (branch on icmp is much better).
1189  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1190    BasicBlock *PredBB = PN->getIncomingBlock(i);
1191    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1192      if (PredBr->isUnconditional()) {
1193        PredBBs[0] = PredBB;
1194        // Try to duplicate BB into PredBB.
1195        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1196          return true;
1197      }
1198  }
1199
1200  return false;
1201}
1202
1203/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1204/// a xor instruction in the current block.  See if there are any
1205/// simplifications we can do based on inputs to the xor.
1206///
1207bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1208  BasicBlock *BB = BO->getParent();
1209
1210  // If either the LHS or RHS of the xor is a constant, don't do this
1211  // optimization.
1212  if (isa<ConstantInt>(BO->getOperand(0)) ||
1213      isa<ConstantInt>(BO->getOperand(1)))
1214    return false;
1215
1216  // If the first instruction in BB isn't a phi, we won't be able to infer
1217  // anything special about any particular predecessor.
1218  if (!isa<PHINode>(BB->front()))
1219    return false;
1220
1221  // If we have a xor as the branch input to this block, and we know that the
1222  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1223  // the condition into the predecessor and fix that value to true, saving some
1224  // logical ops on that path and encouraging other paths to simplify.
1225  //
1226  // This copies something like this:
1227  //
1228  //  BB:
1229  //    %X = phi i1 [1],  [%X']
1230  //    %Y = icmp eq i32 %A, %B
1231  //    %Z = xor i1 %X, %Y
1232  //    br i1 %Z, ...
1233  //
1234  // Into:
1235  //  BB':
1236  //    %Y = icmp ne i32 %A, %B
1237  //    br i1 %Z, ...
1238
1239  PredValueInfoTy XorOpValues;
1240  bool isLHS = true;
1241  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1242                                       WantInteger)) {
1243    assert(XorOpValues.empty());
1244    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1245                                         WantInteger))
1246      return false;
1247    isLHS = false;
1248  }
1249
1250  assert(!XorOpValues.empty() &&
1251         "ComputeValueKnownInPredecessors returned true with no values");
1252
1253  // Scan the information to see which is most popular: true or false.  The
1254  // predecessors can be of the set true, false, or undef.
1255  unsigned NumTrue = 0, NumFalse = 0;
1256  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1257    if (isa<UndefValue>(XorOpValues[i].first))
1258      // Ignore undefs for the count.
1259      continue;
1260    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1261      ++NumFalse;
1262    else
1263      ++NumTrue;
1264  }
1265
1266  // Determine which value to split on, true, false, or undef if neither.
1267  ConstantInt *SplitVal = 0;
1268  if (NumTrue > NumFalse)
1269    SplitVal = ConstantInt::getTrue(BB->getContext());
1270  else if (NumTrue != 0 || NumFalse != 0)
1271    SplitVal = ConstantInt::getFalse(BB->getContext());
1272
1273  // Collect all of the blocks that this can be folded into so that we can
1274  // factor this once and clone it once.
1275  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1276  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1277    if (XorOpValues[i].first != SplitVal &&
1278        !isa<UndefValue>(XorOpValues[i].first))
1279      continue;
1280
1281    BlocksToFoldInto.push_back(XorOpValues[i].second);
1282  }
1283
1284  // If we inferred a value for all of the predecessors, then duplication won't
1285  // help us.  However, we can just replace the LHS or RHS with the constant.
1286  if (BlocksToFoldInto.size() ==
1287      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1288    if (SplitVal == 0) {
1289      // If all preds provide undef, just nuke the xor, because it is undef too.
1290      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1291      BO->eraseFromParent();
1292    } else if (SplitVal->isZero()) {
1293      // If all preds provide 0, replace the xor with the other input.
1294      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1295      BO->eraseFromParent();
1296    } else {
1297      // If all preds provide 1, set the computed value to 1.
1298      BO->setOperand(!isLHS, SplitVal);
1299    }
1300
1301    return true;
1302  }
1303
1304  // Try to duplicate BB into PredBB.
1305  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1306}
1307
1308
1309/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1310/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1311/// NewPred using the entries from OldPred (suitably mapped).
1312static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1313                                            BasicBlock *OldPred,
1314                                            BasicBlock *NewPred,
1315                                     DenseMap<Instruction*, Value*> &ValueMap) {
1316  for (BasicBlock::iterator PNI = PHIBB->begin();
1317       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1318    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1319    // DestBlock.
1320    Value *IV = PN->getIncomingValueForBlock(OldPred);
1321
1322    // Remap the value if necessary.
1323    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1324      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1325      if (I != ValueMap.end())
1326        IV = I->second;
1327    }
1328
1329    PN->addIncoming(IV, NewPred);
1330  }
1331}
1332
1333/// ThreadEdge - We have decided that it is safe and profitable to factor the
1334/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1335/// across BB.  Transform the IR to reflect this change.
1336bool JumpThreading::ThreadEdge(BasicBlock *BB,
1337                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1338                               BasicBlock *SuccBB) {
1339  // If threading to the same block as we come from, we would infinite loop.
1340  if (SuccBB == BB) {
1341    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1342          << "' - would thread to self!\n");
1343    return false;
1344  }
1345
1346  // If threading this would thread across a loop header, don't thread the edge.
1347  // See the comments above FindLoopHeaders for justifications and caveats.
1348  if (LoopHeaders.count(BB)) {
1349    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1350          << "' to dest BB '" << SuccBB->getName()
1351          << "' - it might create an irreducible loop!\n");
1352    return false;
1353  }
1354
1355  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
1356  if (JumpThreadCost > Threshold) {
1357    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1358          << "' - Cost is too high: " << JumpThreadCost << "\n");
1359    return false;
1360  }
1361
1362  // And finally, do it!  Start by factoring the predecessors is needed.
1363  BasicBlock *PredBB;
1364  if (PredBBs.size() == 1)
1365    PredBB = PredBBs[0];
1366  else {
1367    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1368          << " common predecessors.\n");
1369    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1370  }
1371
1372  // And finally, do it!
1373  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1374        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1375        << ", across block:\n    "
1376        << *BB << "\n");
1377
1378  LVI->threadEdge(PredBB, BB, SuccBB);
1379
1380  // We are going to have to map operands from the original BB block to the new
1381  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1382  // account for entry from PredBB.
1383  DenseMap<Instruction*, Value*> ValueMapping;
1384
1385  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1386                                         BB->getName()+".thread",
1387                                         BB->getParent(), BB);
1388  NewBB->moveAfter(PredBB);
1389
1390  BasicBlock::iterator BI = BB->begin();
1391  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1392    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1393
1394  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1395  // mapping and using it to remap operands in the cloned instructions.
1396  for (; !isa<TerminatorInst>(BI); ++BI) {
1397    Instruction *New = BI->clone();
1398    New->setName(BI->getName());
1399    NewBB->getInstList().push_back(New);
1400    ValueMapping[BI] = New;
1401
1402    // Remap operands to patch up intra-block references.
1403    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1404      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1405        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1406        if (I != ValueMapping.end())
1407          New->setOperand(i, I->second);
1408      }
1409  }
1410
1411  // We didn't copy the terminator from BB over to NewBB, because there is now
1412  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1413  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1414  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1415
1416  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1417  // PHI nodes for NewBB now.
1418  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1419
1420  // If there were values defined in BB that are used outside the block, then we
1421  // now have to update all uses of the value to use either the original value,
1422  // the cloned value, or some PHI derived value.  This can require arbitrary
1423  // PHI insertion, of which we are prepared to do, clean these up now.
1424  SSAUpdater SSAUpdate;
1425  SmallVector<Use*, 16> UsesToRename;
1426  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1427    // Scan all uses of this instruction to see if it is used outside of its
1428    // block, and if so, record them in UsesToRename.
1429    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1430         ++UI) {
1431      Instruction *User = cast<Instruction>(*UI);
1432      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1433        if (UserPN->getIncomingBlock(UI) == BB)
1434          continue;
1435      } else if (User->getParent() == BB)
1436        continue;
1437
1438      UsesToRename.push_back(&UI.getUse());
1439    }
1440
1441    // If there are no uses outside the block, we're done with this instruction.
1442    if (UsesToRename.empty())
1443      continue;
1444
1445    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1446
1447    // We found a use of I outside of BB.  Rename all uses of I that are outside
1448    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1449    // with the two values we know.
1450    SSAUpdate.Initialize(I->getType(), I->getName());
1451    SSAUpdate.AddAvailableValue(BB, I);
1452    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1453
1454    while (!UsesToRename.empty())
1455      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1456    DEBUG(dbgs() << "\n");
1457  }
1458
1459
1460  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1461  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1462  // us to simplify any PHI nodes in BB.
1463  TerminatorInst *PredTerm = PredBB->getTerminator();
1464  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1465    if (PredTerm->getSuccessor(i) == BB) {
1466      BB->removePredecessor(PredBB, true);
1467      PredTerm->setSuccessor(i, NewBB);
1468    }
1469
1470  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1471  // over the new instructions and zap any that are constants or dead.  This
1472  // frequently happens because of phi translation.
1473  SimplifyInstructionsInBlock(NewBB, TD, TLI);
1474
1475  // Threaded an edge!
1476  ++NumThreads;
1477  return true;
1478}
1479
1480/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1481/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1482/// If we can duplicate the contents of BB up into PredBB do so now, this
1483/// improves the odds that the branch will be on an analyzable instruction like
1484/// a compare.
1485bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1486                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1487  assert(!PredBBs.empty() && "Can't handle an empty set");
1488
1489  // If BB is a loop header, then duplicating this block outside the loop would
1490  // cause us to transform this into an irreducible loop, don't do this.
1491  // See the comments above FindLoopHeaders for justifications and caveats.
1492  if (LoopHeaders.count(BB)) {
1493    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1494          << "' into predecessor block '" << PredBBs[0]->getName()
1495          << "' - it might create an irreducible loop!\n");
1496    return false;
1497  }
1498
1499  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
1500  if (DuplicationCost > Threshold) {
1501    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1502          << "' - Cost is too high: " << DuplicationCost << "\n");
1503    return false;
1504  }
1505
1506  // And finally, do it!  Start by factoring the predecessors is needed.
1507  BasicBlock *PredBB;
1508  if (PredBBs.size() == 1)
1509    PredBB = PredBBs[0];
1510  else {
1511    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1512          << " common predecessors.\n");
1513    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1514  }
1515
1516  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1517  // of PredBB.
1518  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1519        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1520        << DuplicationCost << " block is:" << *BB << "\n");
1521
1522  // Unless PredBB ends with an unconditional branch, split the edge so that we
1523  // can just clone the bits from BB into the end of the new PredBB.
1524  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1525
1526  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1527    PredBB = SplitEdge(PredBB, BB, this);
1528    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1529  }
1530
1531  // We are going to have to map operands from the original BB block into the
1532  // PredBB block.  Evaluate PHI nodes in BB.
1533  DenseMap<Instruction*, Value*> ValueMapping;
1534
1535  BasicBlock::iterator BI = BB->begin();
1536  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1537    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1538
1539  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1540  // mapping and using it to remap operands in the cloned instructions.
1541  for (; BI != BB->end(); ++BI) {
1542    Instruction *New = BI->clone();
1543
1544    // Remap operands to patch up intra-block references.
1545    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1546      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1547        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1548        if (I != ValueMapping.end())
1549          New->setOperand(i, I->second);
1550      }
1551
1552    // If this instruction can be simplified after the operands are updated,
1553    // just use the simplified value instead.  This frequently happens due to
1554    // phi translation.
1555    if (Value *IV = SimplifyInstruction(New, TD)) {
1556      delete New;
1557      ValueMapping[BI] = IV;
1558    } else {
1559      // Otherwise, insert the new instruction into the block.
1560      New->setName(BI->getName());
1561      PredBB->getInstList().insert(OldPredBranch, New);
1562      ValueMapping[BI] = New;
1563    }
1564  }
1565
1566  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1567  // add entries to the PHI nodes for branch from PredBB now.
1568  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1569  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1570                                  ValueMapping);
1571  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1572                                  ValueMapping);
1573
1574  // If there were values defined in BB that are used outside the block, then we
1575  // now have to update all uses of the value to use either the original value,
1576  // the cloned value, or some PHI derived value.  This can require arbitrary
1577  // PHI insertion, of which we are prepared to do, clean these up now.
1578  SSAUpdater SSAUpdate;
1579  SmallVector<Use*, 16> UsesToRename;
1580  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1581    // Scan all uses of this instruction to see if it is used outside of its
1582    // block, and if so, record them in UsesToRename.
1583    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1584         ++UI) {
1585      Instruction *User = cast<Instruction>(*UI);
1586      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1587        if (UserPN->getIncomingBlock(UI) == BB)
1588          continue;
1589      } else if (User->getParent() == BB)
1590        continue;
1591
1592      UsesToRename.push_back(&UI.getUse());
1593    }
1594
1595    // If there are no uses outside the block, we're done with this instruction.
1596    if (UsesToRename.empty())
1597      continue;
1598
1599    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1600
1601    // We found a use of I outside of BB.  Rename all uses of I that are outside
1602    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1603    // with the two values we know.
1604    SSAUpdate.Initialize(I->getType(), I->getName());
1605    SSAUpdate.AddAvailableValue(BB, I);
1606    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1607
1608    while (!UsesToRename.empty())
1609      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1610    DEBUG(dbgs() << "\n");
1611  }
1612
1613  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1614  // that we nuked.
1615  BB->removePredecessor(PredBB, true);
1616
1617  // Remove the unconditional branch at the end of the PredBB block.
1618  OldPredBranch->eraseFromParent();
1619
1620  ++NumDupes;
1621  return true;
1622}
1623
1624/// TryToUnfoldSelect - Look for blocks of the form
1625/// bb1:
1626///   %a = select
1627///   br bb
1628///
1629/// bb2:
1630///   %p = phi [%a, %bb] ...
1631///   %c = icmp %p
1632///   br i1 %c
1633///
1634/// And expand the select into a branch structure if one of its arms allows %c
1635/// to be folded. This later enables threading from bb1 over bb2.
1636bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1637  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1638  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1639  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1640
1641  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1642      CondLHS->getParent() != BB)
1643    return false;
1644
1645  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1646    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1647    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1648
1649    // Look if one of the incoming values is a select in the corresponding
1650    // predecessor.
1651    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1652      continue;
1653
1654    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1655    if (!PredTerm || !PredTerm->isUnconditional())
1656      continue;
1657
1658    // Now check if one of the select values would allow us to constant fold the
1659    // terminator in BB. We don't do the transform if both sides fold, those
1660    // cases will be threaded in any case.
1661    LazyValueInfo::Tristate LHSFolds =
1662        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1663                                CondRHS, Pred, BB);
1664    LazyValueInfo::Tristate RHSFolds =
1665        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1666                                CondRHS, Pred, BB);
1667    if ((LHSFolds != LazyValueInfo::Unknown ||
1668         RHSFolds != LazyValueInfo::Unknown) &&
1669        LHSFolds != RHSFolds) {
1670      // Expand the select.
1671      //
1672      // Pred --
1673      //  |    v
1674      //  |  NewBB
1675      //  |    |
1676      //  |-----
1677      //  v
1678      // BB
1679      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1680                                             BB->getParent(), BB);
1681      // Move the unconditional branch to NewBB.
1682      PredTerm->removeFromParent();
1683      NewBB->getInstList().insert(NewBB->end(), PredTerm);
1684      // Create a conditional branch and update PHI nodes.
1685      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1686      CondLHS->setIncomingValue(I, SI->getFalseValue());
1687      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1688      // The select is now dead.
1689      SI->eraseFromParent();
1690
1691      // Update any other PHI nodes in BB.
1692      for (BasicBlock::iterator BI = BB->begin();
1693           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1694        if (Phi != CondLHS)
1695          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1696      return true;
1697    }
1698  }
1699  return false;
1700}
1701