JumpThreading.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/CFG.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LazyValueInfo.h"
25#include "llvm/Analysis/Loads.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/ValueHandle.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetLibraryInfo.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/SSAUpdater.h"
38using namespace llvm;
39
40#define DEBUG_TYPE "jump-threading"
41
42STATISTIC(NumThreads, "Number of jumps threaded");
43STATISTIC(NumFolds,   "Number of terminators folded");
44STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
45
46static cl::opt<unsigned>
47Threshold("jump-threading-threshold",
48          cl::desc("Max block size to duplicate for jump threading"),
49          cl::init(6), cl::Hidden);
50
51namespace {
52  // These are at global scope so static functions can use them too.
53  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
54  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
55
56  // This is used to keep track of what kind of constant we're currently hoping
57  // to find.
58  enum ConstantPreference {
59    WantInteger,
60    WantBlockAddress
61  };
62
63  /// This pass performs 'jump threading', which looks at blocks that have
64  /// multiple predecessors and multiple successors.  If one or more of the
65  /// predecessors of the block can be proven to always jump to one of the
66  /// successors, we forward the edge from the predecessor to the successor by
67  /// duplicating the contents of this block.
68  ///
69  /// An example of when this can occur is code like this:
70  ///
71  ///   if () { ...
72  ///     X = 4;
73  ///   }
74  ///   if (X < 3) {
75  ///
76  /// In this case, the unconditional branch at the end of the first if can be
77  /// revectored to the false side of the second if.
78  ///
79  class JumpThreading : public FunctionPass {
80    const DataLayout *DL;
81    TargetLibraryInfo *TLI;
82    LazyValueInfo *LVI;
83#ifdef NDEBUG
84    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
85#else
86    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
87#endif
88    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
89
90    // RAII helper for updating the recursion stack.
91    struct RecursionSetRemover {
92      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
93      std::pair<Value*, BasicBlock*> ThePair;
94
95      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
96                          std::pair<Value*, BasicBlock*> P)
97        : TheSet(S), ThePair(P) { }
98
99      ~RecursionSetRemover() {
100        TheSet.erase(ThePair);
101      }
102    };
103  public:
104    static char ID; // Pass identification
105    JumpThreading() : FunctionPass(ID) {
106      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
107    }
108
109    bool runOnFunction(Function &F) override;
110
111    void getAnalysisUsage(AnalysisUsage &AU) const override {
112      AU.addRequired<LazyValueInfo>();
113      AU.addPreserved<LazyValueInfo>();
114      AU.addRequired<TargetLibraryInfo>();
115    }
116
117    void FindLoopHeaders(Function &F);
118    bool ProcessBlock(BasicBlock *BB);
119    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
120                    BasicBlock *SuccBB);
121    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
122                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
123
124    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
125                                         PredValueInfo &Result,
126                                         ConstantPreference Preference);
127    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
128                                ConstantPreference Preference);
129
130    bool ProcessBranchOnPHI(PHINode *PN);
131    bool ProcessBranchOnXOR(BinaryOperator *BO);
132
133    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
134    bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
135  };
136}
137
138char JumpThreading::ID = 0;
139INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
140                "Jump Threading", false, false)
141INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
142INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
143INITIALIZE_PASS_END(JumpThreading, "jump-threading",
144                "Jump Threading", false, false)
145
146// Public interface to the Jump Threading pass
147FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
148
149/// runOnFunction - Top level algorithm.
150///
151bool JumpThreading::runOnFunction(Function &F) {
152  if (skipOptnoneFunction(F))
153    return false;
154
155  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
156  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
157  DL = DLP ? &DLP->getDataLayout() : nullptr;
158  TLI = &getAnalysis<TargetLibraryInfo>();
159  LVI = &getAnalysis<LazyValueInfo>();
160
161  FindLoopHeaders(F);
162
163  bool Changed, EverChanged = false;
164  do {
165    Changed = false;
166    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
167      BasicBlock *BB = I;
168      // Thread all of the branches we can over this block.
169      while (ProcessBlock(BB))
170        Changed = true;
171
172      ++I;
173
174      // If the block is trivially dead, zap it.  This eliminates the successor
175      // edges which simplifies the CFG.
176      if (pred_begin(BB) == pred_end(BB) &&
177          BB != &BB->getParent()->getEntryBlock()) {
178        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
179              << "' with terminator: " << *BB->getTerminator() << '\n');
180        LoopHeaders.erase(BB);
181        LVI->eraseBlock(BB);
182        DeleteDeadBlock(BB);
183        Changed = true;
184        continue;
185      }
186
187      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
188
189      // Can't thread an unconditional jump, but if the block is "almost
190      // empty", we can replace uses of it with uses of the successor and make
191      // this dead.
192      if (BI && BI->isUnconditional() &&
193          BB != &BB->getParent()->getEntryBlock() &&
194          // If the terminator is the only non-phi instruction, try to nuke it.
195          BB->getFirstNonPHIOrDbg()->isTerminator()) {
196        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
197        // block, we have to make sure it isn't in the LoopHeaders set.  We
198        // reinsert afterward if needed.
199        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
200        BasicBlock *Succ = BI->getSuccessor(0);
201
202        // FIXME: It is always conservatively correct to drop the info
203        // for a block even if it doesn't get erased.  This isn't totally
204        // awesome, but it allows us to use AssertingVH to prevent nasty
205        // dangling pointer issues within LazyValueInfo.
206        LVI->eraseBlock(BB);
207        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
208          Changed = true;
209          // If we deleted BB and BB was the header of a loop, then the
210          // successor is now the header of the loop.
211          BB = Succ;
212        }
213
214        if (ErasedFromLoopHeaders)
215          LoopHeaders.insert(BB);
216      }
217    }
218    EverChanged |= Changed;
219  } while (Changed);
220
221  LoopHeaders.clear();
222  return EverChanged;
223}
224
225/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
226/// thread across it. Stop scanning the block when passing the threshold.
227static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
228                                             unsigned Threshold) {
229  /// Ignore PHI nodes, these will be flattened when duplication happens.
230  BasicBlock::const_iterator I = BB->getFirstNonPHI();
231
232  // FIXME: THREADING will delete values that are just used to compute the
233  // branch, so they shouldn't count against the duplication cost.
234
235  // Sum up the cost of each instruction until we get to the terminator.  Don't
236  // include the terminator because the copy won't include it.
237  unsigned Size = 0;
238  for (; !isa<TerminatorInst>(I); ++I) {
239
240    // Stop scanning the block if we've reached the threshold.
241    if (Size > Threshold)
242      return Size;
243
244    // Debugger intrinsics don't incur code size.
245    if (isa<DbgInfoIntrinsic>(I)) continue;
246
247    // If this is a pointer->pointer bitcast, it is free.
248    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
249      continue;
250
251    // All other instructions count for at least one unit.
252    ++Size;
253
254    // Calls are more expensive.  If they are non-intrinsic calls, we model them
255    // as having cost of 4.  If they are a non-vector intrinsic, we model them
256    // as having cost of 2 total, and if they are a vector intrinsic, we model
257    // them as having cost 1.
258    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
259      if (CI->cannotDuplicate())
260        // Blocks with NoDuplicate are modelled as having infinite cost, so they
261        // are never duplicated.
262        return ~0U;
263      else if (!isa<IntrinsicInst>(CI))
264        Size += 3;
265      else if (!CI->getType()->isVectorTy())
266        Size += 1;
267    }
268  }
269
270  // Threading through a switch statement is particularly profitable.  If this
271  // block ends in a switch, decrease its cost to make it more likely to happen.
272  if (isa<SwitchInst>(I))
273    Size = Size > 6 ? Size-6 : 0;
274
275  // The same holds for indirect branches, but slightly more so.
276  if (isa<IndirectBrInst>(I))
277    Size = Size > 8 ? Size-8 : 0;
278
279  return Size;
280}
281
282/// FindLoopHeaders - We do not want jump threading to turn proper loop
283/// structures into irreducible loops.  Doing this breaks up the loop nesting
284/// hierarchy and pessimizes later transformations.  To prevent this from
285/// happening, we first have to find the loop headers.  Here we approximate this
286/// by finding targets of backedges in the CFG.
287///
288/// Note that there definitely are cases when we want to allow threading of
289/// edges across a loop header.  For example, threading a jump from outside the
290/// loop (the preheader) to an exit block of the loop is definitely profitable.
291/// It is also almost always profitable to thread backedges from within the loop
292/// to exit blocks, and is often profitable to thread backedges to other blocks
293/// within the loop (forming a nested loop).  This simple analysis is not rich
294/// enough to track all of these properties and keep it up-to-date as the CFG
295/// mutates, so we don't allow any of these transformations.
296///
297void JumpThreading::FindLoopHeaders(Function &F) {
298  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
299  FindFunctionBackedges(F, Edges);
300
301  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
302    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
303}
304
305/// getKnownConstant - Helper method to determine if we can thread over a
306/// terminator with the given value as its condition, and if so what value to
307/// use for that. What kind of value this is depends on whether we want an
308/// integer or a block address, but an undef is always accepted.
309/// Returns null if Val is null or not an appropriate constant.
310static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
311  if (!Val)
312    return nullptr;
313
314  // Undef is "known" enough.
315  if (UndefValue *U = dyn_cast<UndefValue>(Val))
316    return U;
317
318  if (Preference == WantBlockAddress)
319    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
320
321  return dyn_cast<ConstantInt>(Val);
322}
323
324/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
325/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
326/// in any of our predecessors.  If so, return the known list of value and pred
327/// BB in the result vector.
328///
329/// This returns true if there were any known values.
330///
331bool JumpThreading::
332ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
333                                ConstantPreference Preference) {
334  // This method walks up use-def chains recursively.  Because of this, we could
335  // get into an infinite loop going around loops in the use-def chain.  To
336  // prevent this, keep track of what (value, block) pairs we've already visited
337  // and terminate the search if we loop back to them
338  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
339    return false;
340
341  // An RAII help to remove this pair from the recursion set once the recursion
342  // stack pops back out again.
343  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
344
345  // If V is a constant, then it is known in all predecessors.
346  if (Constant *KC = getKnownConstant(V, Preference)) {
347    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
348      Result.push_back(std::make_pair(KC, *PI));
349
350    return true;
351  }
352
353  // If V is a non-instruction value, or an instruction in a different block,
354  // then it can't be derived from a PHI.
355  Instruction *I = dyn_cast<Instruction>(V);
356  if (!I || I->getParent() != BB) {
357
358    // Okay, if this is a live-in value, see if it has a known value at the end
359    // of any of our predecessors.
360    //
361    // FIXME: This should be an edge property, not a block end property.
362    /// TODO: Per PR2563, we could infer value range information about a
363    /// predecessor based on its terminator.
364    //
365    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
366    // "I" is a non-local compare-with-a-constant instruction.  This would be
367    // able to handle value inequalities better, for example if the compare is
368    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
369    // Perhaps getConstantOnEdge should be smart enough to do this?
370
371    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
372      BasicBlock *P = *PI;
373      // If the value is known by LazyValueInfo to be a constant in a
374      // predecessor, use that information to try to thread this block.
375      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
376      if (Constant *KC = getKnownConstant(PredCst, Preference))
377        Result.push_back(std::make_pair(KC, P));
378    }
379
380    return !Result.empty();
381  }
382
383  /// If I is a PHI node, then we know the incoming values for any constants.
384  if (PHINode *PN = dyn_cast<PHINode>(I)) {
385    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
386      Value *InVal = PN->getIncomingValue(i);
387      if (Constant *KC = getKnownConstant(InVal, Preference)) {
388        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
389      } else {
390        Constant *CI = LVI->getConstantOnEdge(InVal,
391                                              PN->getIncomingBlock(i), BB);
392        if (Constant *KC = getKnownConstant(CI, Preference))
393          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
394      }
395    }
396
397    return !Result.empty();
398  }
399
400  PredValueInfoTy LHSVals, RHSVals;
401
402  // Handle some boolean conditions.
403  if (I->getType()->getPrimitiveSizeInBits() == 1) {
404    assert(Preference == WantInteger && "One-bit non-integer type?");
405    // X | true -> true
406    // X & false -> false
407    if (I->getOpcode() == Instruction::Or ||
408        I->getOpcode() == Instruction::And) {
409      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
410                                      WantInteger);
411      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
412                                      WantInteger);
413
414      if (LHSVals.empty() && RHSVals.empty())
415        return false;
416
417      ConstantInt *InterestingVal;
418      if (I->getOpcode() == Instruction::Or)
419        InterestingVal = ConstantInt::getTrue(I->getContext());
420      else
421        InterestingVal = ConstantInt::getFalse(I->getContext());
422
423      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
424
425      // Scan for the sentinel.  If we find an undef, force it to the
426      // interesting value: x|undef -> true and x&undef -> false.
427      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
428        if (LHSVals[i].first == InterestingVal ||
429            isa<UndefValue>(LHSVals[i].first)) {
430          Result.push_back(LHSVals[i]);
431          Result.back().first = InterestingVal;
432          LHSKnownBBs.insert(LHSVals[i].second);
433        }
434      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
435        if (RHSVals[i].first == InterestingVal ||
436            isa<UndefValue>(RHSVals[i].first)) {
437          // If we already inferred a value for this block on the LHS, don't
438          // re-add it.
439          if (!LHSKnownBBs.count(RHSVals[i].second)) {
440            Result.push_back(RHSVals[i]);
441            Result.back().first = InterestingVal;
442          }
443        }
444
445      return !Result.empty();
446    }
447
448    // Handle the NOT form of XOR.
449    if (I->getOpcode() == Instruction::Xor &&
450        isa<ConstantInt>(I->getOperand(1)) &&
451        cast<ConstantInt>(I->getOperand(1))->isOne()) {
452      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
453                                      WantInteger);
454      if (Result.empty())
455        return false;
456
457      // Invert the known values.
458      for (unsigned i = 0, e = Result.size(); i != e; ++i)
459        Result[i].first = ConstantExpr::getNot(Result[i].first);
460
461      return true;
462    }
463
464  // Try to simplify some other binary operator values.
465  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
466    assert(Preference != WantBlockAddress
467            && "A binary operator creating a block address?");
468    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
469      PredValueInfoTy LHSVals;
470      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
471                                      WantInteger);
472
473      // Try to use constant folding to simplify the binary operator.
474      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
475        Constant *V = LHSVals[i].first;
476        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
477
478        if (Constant *KC = getKnownConstant(Folded, WantInteger))
479          Result.push_back(std::make_pair(KC, LHSVals[i].second));
480      }
481    }
482
483    return !Result.empty();
484  }
485
486  // Handle compare with phi operand, where the PHI is defined in this block.
487  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
488    assert(Preference == WantInteger && "Compares only produce integers");
489    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
490    if (PN && PN->getParent() == BB) {
491      // We can do this simplification if any comparisons fold to true or false.
492      // See if any do.
493      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
494        BasicBlock *PredBB = PN->getIncomingBlock(i);
495        Value *LHS = PN->getIncomingValue(i);
496        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
497
498        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
499        if (!Res) {
500          if (!isa<Constant>(RHS))
501            continue;
502
503          LazyValueInfo::Tristate
504            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
505                                           cast<Constant>(RHS), PredBB, BB);
506          if (ResT == LazyValueInfo::Unknown)
507            continue;
508          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
509        }
510
511        if (Constant *KC = getKnownConstant(Res, WantInteger))
512          Result.push_back(std::make_pair(KC, PredBB));
513      }
514
515      return !Result.empty();
516    }
517
518
519    // If comparing a live-in value against a constant, see if we know the
520    // live-in value on any predecessors.
521    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
522      if (!isa<Instruction>(Cmp->getOperand(0)) ||
523          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
524        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
525
526        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
527          BasicBlock *P = *PI;
528          // If the value is known by LazyValueInfo to be a constant in a
529          // predecessor, use that information to try to thread this block.
530          LazyValueInfo::Tristate Res =
531            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
532                                    RHSCst, P, BB);
533          if (Res == LazyValueInfo::Unknown)
534            continue;
535
536          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
537          Result.push_back(std::make_pair(ResC, P));
538        }
539
540        return !Result.empty();
541      }
542
543      // Try to find a constant value for the LHS of a comparison,
544      // and evaluate it statically if we can.
545      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
546        PredValueInfoTy LHSVals;
547        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
548                                        WantInteger);
549
550        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
551          Constant *V = LHSVals[i].first;
552          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
553                                                      V, CmpConst);
554          if (Constant *KC = getKnownConstant(Folded, WantInteger))
555            Result.push_back(std::make_pair(KC, LHSVals[i].second));
556        }
557
558        return !Result.empty();
559      }
560    }
561  }
562
563  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
564    // Handle select instructions where at least one operand is a known constant
565    // and we can figure out the condition value for any predecessor block.
566    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
567    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
568    PredValueInfoTy Conds;
569    if ((TrueVal || FalseVal) &&
570        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
571                                        WantInteger)) {
572      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
573        Constant *Cond = Conds[i].first;
574
575        // Figure out what value to use for the condition.
576        bool KnownCond;
577        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
578          // A known boolean.
579          KnownCond = CI->isOne();
580        } else {
581          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
582          // Either operand will do, so be sure to pick the one that's a known
583          // constant.
584          // FIXME: Do this more cleverly if both values are known constants?
585          KnownCond = (TrueVal != nullptr);
586        }
587
588        // See if the select has a known constant value for this predecessor.
589        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
590          Result.push_back(std::make_pair(Val, Conds[i].second));
591      }
592
593      return !Result.empty();
594    }
595  }
596
597  // If all else fails, see if LVI can figure out a constant value for us.
598  Constant *CI = LVI->getConstant(V, BB);
599  if (Constant *KC = getKnownConstant(CI, Preference)) {
600    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
601      Result.push_back(std::make_pair(KC, *PI));
602  }
603
604  return !Result.empty();
605}
606
607
608
609/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
610/// in an undefined jump, decide which block is best to revector to.
611///
612/// Since we can pick an arbitrary destination, we pick the successor with the
613/// fewest predecessors.  This should reduce the in-degree of the others.
614///
615static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
616  TerminatorInst *BBTerm = BB->getTerminator();
617  unsigned MinSucc = 0;
618  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
619  // Compute the successor with the minimum number of predecessors.
620  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
621  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
622    TestBB = BBTerm->getSuccessor(i);
623    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
624    if (NumPreds < MinNumPreds) {
625      MinSucc = i;
626      MinNumPreds = NumPreds;
627    }
628  }
629
630  return MinSucc;
631}
632
633static bool hasAddressTakenAndUsed(BasicBlock *BB) {
634  if (!BB->hasAddressTaken()) return false;
635
636  // If the block has its address taken, it may be a tree of dead constants
637  // hanging off of it.  These shouldn't keep the block alive.
638  BlockAddress *BA = BlockAddress::get(BB);
639  BA->removeDeadConstantUsers();
640  return !BA->use_empty();
641}
642
643/// ProcessBlock - If there are any predecessors whose control can be threaded
644/// through to a successor, transform them now.
645bool JumpThreading::ProcessBlock(BasicBlock *BB) {
646  // If the block is trivially dead, just return and let the caller nuke it.
647  // This simplifies other transformations.
648  if (pred_begin(BB) == pred_end(BB) &&
649      BB != &BB->getParent()->getEntryBlock())
650    return false;
651
652  // If this block has a single predecessor, and if that pred has a single
653  // successor, merge the blocks.  This encourages recursive jump threading
654  // because now the condition in this block can be threaded through
655  // predecessors of our predecessor block.
656  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
657    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
658        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
659      // If SinglePred was a loop header, BB becomes one.
660      if (LoopHeaders.erase(SinglePred))
661        LoopHeaders.insert(BB);
662
663      // Remember if SinglePred was the entry block of the function.  If so, we
664      // will need to move BB back to the entry position.
665      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
666      LVI->eraseBlock(SinglePred);
667      MergeBasicBlockIntoOnlyPred(BB);
668
669      if (isEntry && BB != &BB->getParent()->getEntryBlock())
670        BB->moveBefore(&BB->getParent()->getEntryBlock());
671      return true;
672    }
673  }
674
675  // What kind of constant we're looking for.
676  ConstantPreference Preference = WantInteger;
677
678  // Look to see if the terminator is a conditional branch, switch or indirect
679  // branch, if not we can't thread it.
680  Value *Condition;
681  Instruction *Terminator = BB->getTerminator();
682  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
683    // Can't thread an unconditional jump.
684    if (BI->isUnconditional()) return false;
685    Condition = BI->getCondition();
686  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
687    Condition = SI->getCondition();
688  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
689    // Can't thread indirect branch with no successors.
690    if (IB->getNumSuccessors() == 0) return false;
691    Condition = IB->getAddress()->stripPointerCasts();
692    Preference = WantBlockAddress;
693  } else {
694    return false; // Must be an invoke.
695  }
696
697  // Run constant folding to see if we can reduce the condition to a simple
698  // constant.
699  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
700    Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
701    if (SimpleVal) {
702      I->replaceAllUsesWith(SimpleVal);
703      I->eraseFromParent();
704      Condition = SimpleVal;
705    }
706  }
707
708  // If the terminator is branching on an undef, we can pick any of the
709  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
710  if (isa<UndefValue>(Condition)) {
711    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
712
713    // Fold the branch/switch.
714    TerminatorInst *BBTerm = BB->getTerminator();
715    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
716      if (i == BestSucc) continue;
717      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
718    }
719
720    DEBUG(dbgs() << "  In block '" << BB->getName()
721          << "' folding undef terminator: " << *BBTerm << '\n');
722    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
723    BBTerm->eraseFromParent();
724    return true;
725  }
726
727  // If the terminator of this block is branching on a constant, simplify the
728  // terminator to an unconditional branch.  This can occur due to threading in
729  // other blocks.
730  if (getKnownConstant(Condition, Preference)) {
731    DEBUG(dbgs() << "  In block '" << BB->getName()
732          << "' folding terminator: " << *BB->getTerminator() << '\n');
733    ++NumFolds;
734    ConstantFoldTerminator(BB, true);
735    return true;
736  }
737
738  Instruction *CondInst = dyn_cast<Instruction>(Condition);
739
740  // All the rest of our checks depend on the condition being an instruction.
741  if (!CondInst) {
742    // FIXME: Unify this with code below.
743    if (ProcessThreadableEdges(Condition, BB, Preference))
744      return true;
745    return false;
746  }
747
748
749  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
750    // For a comparison where the LHS is outside this block, it's possible
751    // that we've branched on it before.  Used LVI to see if we can simplify
752    // the branch based on that.
753    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
754    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
755    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
756    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
757        (!isa<Instruction>(CondCmp->getOperand(0)) ||
758         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
759      // For predecessor edge, determine if the comparison is true or false
760      // on that edge.  If they're all true or all false, we can simplify the
761      // branch.
762      // FIXME: We could handle mixed true/false by duplicating code.
763      LazyValueInfo::Tristate Baseline =
764        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
765                                CondConst, *PI, BB);
766      if (Baseline != LazyValueInfo::Unknown) {
767        // Check that all remaining incoming values match the first one.
768        while (++PI != PE) {
769          LazyValueInfo::Tristate Ret =
770            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
771                                    CondCmp->getOperand(0), CondConst, *PI, BB);
772          if (Ret != Baseline) break;
773        }
774
775        // If we terminated early, then one of the values didn't match.
776        if (PI == PE) {
777          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
778          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
779          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
780          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
781          CondBr->eraseFromParent();
782          return true;
783        }
784      }
785
786    }
787
788    if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
789      return true;
790  }
791
792  // Check for some cases that are worth simplifying.  Right now we want to look
793  // for loads that are used by a switch or by the condition for the branch.  If
794  // we see one, check to see if it's partially redundant.  If so, insert a PHI
795  // which can then be used to thread the values.
796  //
797  Value *SimplifyValue = CondInst;
798  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
799    if (isa<Constant>(CondCmp->getOperand(1)))
800      SimplifyValue = CondCmp->getOperand(0);
801
802  // TODO: There are other places where load PRE would be profitable, such as
803  // more complex comparisons.
804  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
805    if (SimplifyPartiallyRedundantLoad(LI))
806      return true;
807
808
809  // Handle a variety of cases where we are branching on something derived from
810  // a PHI node in the current block.  If we can prove that any predecessors
811  // compute a predictable value based on a PHI node, thread those predecessors.
812  //
813  if (ProcessThreadableEdges(CondInst, BB, Preference))
814    return true;
815
816  // If this is an otherwise-unfoldable branch on a phi node in the current
817  // block, see if we can simplify.
818  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
819    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
820      return ProcessBranchOnPHI(PN);
821
822
823  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
824  if (CondInst->getOpcode() == Instruction::Xor &&
825      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
826    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
827
828
829  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
830  // "(X == 4)", thread through this block.
831
832  return false;
833}
834
835/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
836/// load instruction, eliminate it by replacing it with a PHI node.  This is an
837/// important optimization that encourages jump threading, and needs to be run
838/// interlaced with other jump threading tasks.
839bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
840  // Don't hack volatile/atomic loads.
841  if (!LI->isSimple()) return false;
842
843  // If the load is defined in a block with exactly one predecessor, it can't be
844  // partially redundant.
845  BasicBlock *LoadBB = LI->getParent();
846  if (LoadBB->getSinglePredecessor())
847    return false;
848
849  // If the load is defined in a landing pad, it can't be partially redundant,
850  // because the edges between the invoke and the landing pad cannot have other
851  // instructions between them.
852  if (LoadBB->isLandingPad())
853    return false;
854
855  Value *LoadedPtr = LI->getOperand(0);
856
857  // If the loaded operand is defined in the LoadBB, it can't be available.
858  // TODO: Could do simple PHI translation, that would be fun :)
859  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
860    if (PtrOp->getParent() == LoadBB)
861      return false;
862
863  // Scan a few instructions up from the load, to see if it is obviously live at
864  // the entry to its block.
865  BasicBlock::iterator BBIt = LI;
866
867  if (Value *AvailableVal =
868        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
869    // If the value if the load is locally available within the block, just use
870    // it.  This frequently occurs for reg2mem'd allocas.
871    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
872
873    // If the returned value is the load itself, replace with an undef. This can
874    // only happen in dead loops.
875    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
876    LI->replaceAllUsesWith(AvailableVal);
877    LI->eraseFromParent();
878    return true;
879  }
880
881  // Otherwise, if we scanned the whole block and got to the top of the block,
882  // we know the block is locally transparent to the load.  If not, something
883  // might clobber its value.
884  if (BBIt != LoadBB->begin())
885    return false;
886
887  // If all of the loads and stores that feed the value have the same TBAA tag,
888  // then we can propagate it onto any newly inserted loads.
889  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
890
891  SmallPtrSet<BasicBlock*, 8> PredsScanned;
892  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
893  AvailablePredsTy AvailablePreds;
894  BasicBlock *OneUnavailablePred = nullptr;
895
896  // If we got here, the loaded value is transparent through to the start of the
897  // block.  Check to see if it is available in any of the predecessor blocks.
898  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
899       PI != PE; ++PI) {
900    BasicBlock *PredBB = *PI;
901
902    // If we already scanned this predecessor, skip it.
903    if (!PredsScanned.insert(PredBB))
904      continue;
905
906    // Scan the predecessor to see if the value is available in the pred.
907    BBIt = PredBB->end();
908    MDNode *ThisTBAATag = nullptr;
909    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
910                                                    nullptr, &ThisTBAATag);
911    if (!PredAvailable) {
912      OneUnavailablePred = PredBB;
913      continue;
914    }
915
916    // If tbaa tags disagree or are not present, forget about them.
917    if (TBAATag != ThisTBAATag) TBAATag = nullptr;
918
919    // If so, this load is partially redundant.  Remember this info so that we
920    // can create a PHI node.
921    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
922  }
923
924  // If the loaded value isn't available in any predecessor, it isn't partially
925  // redundant.
926  if (AvailablePreds.empty()) return false;
927
928  // Okay, the loaded value is available in at least one (and maybe all!)
929  // predecessors.  If the value is unavailable in more than one unique
930  // predecessor, we want to insert a merge block for those common predecessors.
931  // This ensures that we only have to insert one reload, thus not increasing
932  // code size.
933  BasicBlock *UnavailablePred = nullptr;
934
935  // If there is exactly one predecessor where the value is unavailable, the
936  // already computed 'OneUnavailablePred' block is it.  If it ends in an
937  // unconditional branch, we know that it isn't a critical edge.
938  if (PredsScanned.size() == AvailablePreds.size()+1 &&
939      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
940    UnavailablePred = OneUnavailablePred;
941  } else if (PredsScanned.size() != AvailablePreds.size()) {
942    // Otherwise, we had multiple unavailable predecessors or we had a critical
943    // edge from the one.
944    SmallVector<BasicBlock*, 8> PredsToSplit;
945    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
946
947    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
948      AvailablePredSet.insert(AvailablePreds[i].first);
949
950    // Add all the unavailable predecessors to the PredsToSplit list.
951    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
952         PI != PE; ++PI) {
953      BasicBlock *P = *PI;
954      // If the predecessor is an indirect goto, we can't split the edge.
955      if (isa<IndirectBrInst>(P->getTerminator()))
956        return false;
957
958      if (!AvailablePredSet.count(P))
959        PredsToSplit.push_back(P);
960    }
961
962    // Split them out to their own block.
963    UnavailablePred =
964      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
965  }
966
967  // If the value isn't available in all predecessors, then there will be
968  // exactly one where it isn't available.  Insert a load on that edge and add
969  // it to the AvailablePreds list.
970  if (UnavailablePred) {
971    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
972           "Can't handle critical edge here!");
973    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
974                                 LI->getAlignment(),
975                                 UnavailablePred->getTerminator());
976    NewVal->setDebugLoc(LI->getDebugLoc());
977    if (TBAATag)
978      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
979
980    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
981  }
982
983  // Now we know that each predecessor of this block has a value in
984  // AvailablePreds, sort them for efficient access as we're walking the preds.
985  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
986
987  // Create a PHI node at the start of the block for the PRE'd load value.
988  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
989  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
990                                LoadBB->begin());
991  PN->takeName(LI);
992  PN->setDebugLoc(LI->getDebugLoc());
993
994  // Insert new entries into the PHI for each predecessor.  A single block may
995  // have multiple entries here.
996  for (pred_iterator PI = PB; PI != PE; ++PI) {
997    BasicBlock *P = *PI;
998    AvailablePredsTy::iterator I =
999      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1000                       std::make_pair(P, (Value*)nullptr));
1001
1002    assert(I != AvailablePreds.end() && I->first == P &&
1003           "Didn't find entry for predecessor!");
1004
1005    PN->addIncoming(I->second, I->first);
1006  }
1007
1008  //cerr << "PRE: " << *LI << *PN << "\n";
1009
1010  LI->replaceAllUsesWith(PN);
1011  LI->eraseFromParent();
1012
1013  return true;
1014}
1015
1016/// FindMostPopularDest - The specified list contains multiple possible
1017/// threadable destinations.  Pick the one that occurs the most frequently in
1018/// the list.
1019static BasicBlock *
1020FindMostPopularDest(BasicBlock *BB,
1021                    const SmallVectorImpl<std::pair<BasicBlock*,
1022                                  BasicBlock*> > &PredToDestList) {
1023  assert(!PredToDestList.empty());
1024
1025  // Determine popularity.  If there are multiple possible destinations, we
1026  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1027  // blocks with known and real destinations to threading undef.  We'll handle
1028  // them later if interesting.
1029  DenseMap<BasicBlock*, unsigned> DestPopularity;
1030  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1031    if (PredToDestList[i].second)
1032      DestPopularity[PredToDestList[i].second]++;
1033
1034  // Find the most popular dest.
1035  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1036  BasicBlock *MostPopularDest = DPI->first;
1037  unsigned Popularity = DPI->second;
1038  SmallVector<BasicBlock*, 4> SamePopularity;
1039
1040  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1041    // If the popularity of this entry isn't higher than the popularity we've
1042    // seen so far, ignore it.
1043    if (DPI->second < Popularity)
1044      ; // ignore.
1045    else if (DPI->second == Popularity) {
1046      // If it is the same as what we've seen so far, keep track of it.
1047      SamePopularity.push_back(DPI->first);
1048    } else {
1049      // If it is more popular, remember it.
1050      SamePopularity.clear();
1051      MostPopularDest = DPI->first;
1052      Popularity = DPI->second;
1053    }
1054  }
1055
1056  // Okay, now we know the most popular destination.  If there is more than one
1057  // destination, we need to determine one.  This is arbitrary, but we need
1058  // to make a deterministic decision.  Pick the first one that appears in the
1059  // successor list.
1060  if (!SamePopularity.empty()) {
1061    SamePopularity.push_back(MostPopularDest);
1062    TerminatorInst *TI = BB->getTerminator();
1063    for (unsigned i = 0; ; ++i) {
1064      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1065
1066      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1067                    TI->getSuccessor(i)) == SamePopularity.end())
1068        continue;
1069
1070      MostPopularDest = TI->getSuccessor(i);
1071      break;
1072    }
1073  }
1074
1075  // Okay, we have finally picked the most popular destination.
1076  return MostPopularDest;
1077}
1078
1079bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1080                                           ConstantPreference Preference) {
1081  // If threading this would thread across a loop header, don't even try to
1082  // thread the edge.
1083  if (LoopHeaders.count(BB))
1084    return false;
1085
1086  PredValueInfoTy PredValues;
1087  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1088    return false;
1089
1090  assert(!PredValues.empty() &&
1091         "ComputeValueKnownInPredecessors returned true with no values");
1092
1093  DEBUG(dbgs() << "IN BB: " << *BB;
1094        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1095          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1096            << *PredValues[i].first
1097            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1098        });
1099
1100  // Decide what we want to thread through.  Convert our list of known values to
1101  // a list of known destinations for each pred.  This also discards duplicate
1102  // predecessors and keeps track of the undefined inputs (which are represented
1103  // as a null dest in the PredToDestList).
1104  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1105  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1106
1107  BasicBlock *OnlyDest = nullptr;
1108  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1109
1110  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1111    BasicBlock *Pred = PredValues[i].second;
1112    if (!SeenPreds.insert(Pred))
1113      continue;  // Duplicate predecessor entry.
1114
1115    // If the predecessor ends with an indirect goto, we can't change its
1116    // destination.
1117    if (isa<IndirectBrInst>(Pred->getTerminator()))
1118      continue;
1119
1120    Constant *Val = PredValues[i].first;
1121
1122    BasicBlock *DestBB;
1123    if (isa<UndefValue>(Val))
1124      DestBB = nullptr;
1125    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1126      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1127    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1128      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1129    } else {
1130      assert(isa<IndirectBrInst>(BB->getTerminator())
1131              && "Unexpected terminator");
1132      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1133    }
1134
1135    // If we have exactly one destination, remember it for efficiency below.
1136    if (PredToDestList.empty())
1137      OnlyDest = DestBB;
1138    else if (OnlyDest != DestBB)
1139      OnlyDest = MultipleDestSentinel;
1140
1141    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1142  }
1143
1144  // If all edges were unthreadable, we fail.
1145  if (PredToDestList.empty())
1146    return false;
1147
1148  // Determine which is the most common successor.  If we have many inputs and
1149  // this block is a switch, we want to start by threading the batch that goes
1150  // to the most popular destination first.  If we only know about one
1151  // threadable destination (the common case) we can avoid this.
1152  BasicBlock *MostPopularDest = OnlyDest;
1153
1154  if (MostPopularDest == MultipleDestSentinel)
1155    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1156
1157  // Now that we know what the most popular destination is, factor all
1158  // predecessors that will jump to it into a single predecessor.
1159  SmallVector<BasicBlock*, 16> PredsToFactor;
1160  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1161    if (PredToDestList[i].second == MostPopularDest) {
1162      BasicBlock *Pred = PredToDestList[i].first;
1163
1164      // This predecessor may be a switch or something else that has multiple
1165      // edges to the block.  Factor each of these edges by listing them
1166      // according to # occurrences in PredsToFactor.
1167      TerminatorInst *PredTI = Pred->getTerminator();
1168      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1169        if (PredTI->getSuccessor(i) == BB)
1170          PredsToFactor.push_back(Pred);
1171    }
1172
1173  // If the threadable edges are branching on an undefined value, we get to pick
1174  // the destination that these predecessors should get to.
1175  if (!MostPopularDest)
1176    MostPopularDest = BB->getTerminator()->
1177                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1178
1179  // Ok, try to thread it!
1180  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1181}
1182
1183/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1184/// a PHI node in the current block.  See if there are any simplifications we
1185/// can do based on inputs to the phi node.
1186///
1187bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1188  BasicBlock *BB = PN->getParent();
1189
1190  // TODO: We could make use of this to do it once for blocks with common PHI
1191  // values.
1192  SmallVector<BasicBlock*, 1> PredBBs;
1193  PredBBs.resize(1);
1194
1195  // If any of the predecessor blocks end in an unconditional branch, we can
1196  // *duplicate* the conditional branch into that block in order to further
1197  // encourage jump threading and to eliminate cases where we have branch on a
1198  // phi of an icmp (branch on icmp is much better).
1199  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1200    BasicBlock *PredBB = PN->getIncomingBlock(i);
1201    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1202      if (PredBr->isUnconditional()) {
1203        PredBBs[0] = PredBB;
1204        // Try to duplicate BB into PredBB.
1205        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1206          return true;
1207      }
1208  }
1209
1210  return false;
1211}
1212
1213/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1214/// a xor instruction in the current block.  See if there are any
1215/// simplifications we can do based on inputs to the xor.
1216///
1217bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1218  BasicBlock *BB = BO->getParent();
1219
1220  // If either the LHS or RHS of the xor is a constant, don't do this
1221  // optimization.
1222  if (isa<ConstantInt>(BO->getOperand(0)) ||
1223      isa<ConstantInt>(BO->getOperand(1)))
1224    return false;
1225
1226  // If the first instruction in BB isn't a phi, we won't be able to infer
1227  // anything special about any particular predecessor.
1228  if (!isa<PHINode>(BB->front()))
1229    return false;
1230
1231  // If we have a xor as the branch input to this block, and we know that the
1232  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1233  // the condition into the predecessor and fix that value to true, saving some
1234  // logical ops on that path and encouraging other paths to simplify.
1235  //
1236  // This copies something like this:
1237  //
1238  //  BB:
1239  //    %X = phi i1 [1],  [%X']
1240  //    %Y = icmp eq i32 %A, %B
1241  //    %Z = xor i1 %X, %Y
1242  //    br i1 %Z, ...
1243  //
1244  // Into:
1245  //  BB':
1246  //    %Y = icmp ne i32 %A, %B
1247  //    br i1 %Z, ...
1248
1249  PredValueInfoTy XorOpValues;
1250  bool isLHS = true;
1251  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1252                                       WantInteger)) {
1253    assert(XorOpValues.empty());
1254    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1255                                         WantInteger))
1256      return false;
1257    isLHS = false;
1258  }
1259
1260  assert(!XorOpValues.empty() &&
1261         "ComputeValueKnownInPredecessors returned true with no values");
1262
1263  // Scan the information to see which is most popular: true or false.  The
1264  // predecessors can be of the set true, false, or undef.
1265  unsigned NumTrue = 0, NumFalse = 0;
1266  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1267    if (isa<UndefValue>(XorOpValues[i].first))
1268      // Ignore undefs for the count.
1269      continue;
1270    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1271      ++NumFalse;
1272    else
1273      ++NumTrue;
1274  }
1275
1276  // Determine which value to split on, true, false, or undef if neither.
1277  ConstantInt *SplitVal = nullptr;
1278  if (NumTrue > NumFalse)
1279    SplitVal = ConstantInt::getTrue(BB->getContext());
1280  else if (NumTrue != 0 || NumFalse != 0)
1281    SplitVal = ConstantInt::getFalse(BB->getContext());
1282
1283  // Collect all of the blocks that this can be folded into so that we can
1284  // factor this once and clone it once.
1285  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1286  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1287    if (XorOpValues[i].first != SplitVal &&
1288        !isa<UndefValue>(XorOpValues[i].first))
1289      continue;
1290
1291    BlocksToFoldInto.push_back(XorOpValues[i].second);
1292  }
1293
1294  // If we inferred a value for all of the predecessors, then duplication won't
1295  // help us.  However, we can just replace the LHS or RHS with the constant.
1296  if (BlocksToFoldInto.size() ==
1297      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1298    if (!SplitVal) {
1299      // If all preds provide undef, just nuke the xor, because it is undef too.
1300      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1301      BO->eraseFromParent();
1302    } else if (SplitVal->isZero()) {
1303      // If all preds provide 0, replace the xor with the other input.
1304      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1305      BO->eraseFromParent();
1306    } else {
1307      // If all preds provide 1, set the computed value to 1.
1308      BO->setOperand(!isLHS, SplitVal);
1309    }
1310
1311    return true;
1312  }
1313
1314  // Try to duplicate BB into PredBB.
1315  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1316}
1317
1318
1319/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1320/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1321/// NewPred using the entries from OldPred (suitably mapped).
1322static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1323                                            BasicBlock *OldPred,
1324                                            BasicBlock *NewPred,
1325                                     DenseMap<Instruction*, Value*> &ValueMap) {
1326  for (BasicBlock::iterator PNI = PHIBB->begin();
1327       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1328    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1329    // DestBlock.
1330    Value *IV = PN->getIncomingValueForBlock(OldPred);
1331
1332    // Remap the value if necessary.
1333    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1334      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1335      if (I != ValueMap.end())
1336        IV = I->second;
1337    }
1338
1339    PN->addIncoming(IV, NewPred);
1340  }
1341}
1342
1343/// ThreadEdge - We have decided that it is safe and profitable to factor the
1344/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1345/// across BB.  Transform the IR to reflect this change.
1346bool JumpThreading::ThreadEdge(BasicBlock *BB,
1347                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1348                               BasicBlock *SuccBB) {
1349  // If threading to the same block as we come from, we would infinite loop.
1350  if (SuccBB == BB) {
1351    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1352          << "' - would thread to self!\n");
1353    return false;
1354  }
1355
1356  // If threading this would thread across a loop header, don't thread the edge.
1357  // See the comments above FindLoopHeaders for justifications and caveats.
1358  if (LoopHeaders.count(BB)) {
1359    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1360          << "' to dest BB '" << SuccBB->getName()
1361          << "' - it might create an irreducible loop!\n");
1362    return false;
1363  }
1364
1365  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
1366  if (JumpThreadCost > Threshold) {
1367    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1368          << "' - Cost is too high: " << JumpThreadCost << "\n");
1369    return false;
1370  }
1371
1372  // And finally, do it!  Start by factoring the predecessors is needed.
1373  BasicBlock *PredBB;
1374  if (PredBBs.size() == 1)
1375    PredBB = PredBBs[0];
1376  else {
1377    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1378          << " common predecessors.\n");
1379    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1380  }
1381
1382  // And finally, do it!
1383  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1384        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1385        << ", across block:\n    "
1386        << *BB << "\n");
1387
1388  LVI->threadEdge(PredBB, BB, SuccBB);
1389
1390  // We are going to have to map operands from the original BB block to the new
1391  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1392  // account for entry from PredBB.
1393  DenseMap<Instruction*, Value*> ValueMapping;
1394
1395  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1396                                         BB->getName()+".thread",
1397                                         BB->getParent(), BB);
1398  NewBB->moveAfter(PredBB);
1399
1400  BasicBlock::iterator BI = BB->begin();
1401  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1402    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1403
1404  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1405  // mapping and using it to remap operands in the cloned instructions.
1406  for (; !isa<TerminatorInst>(BI); ++BI) {
1407    Instruction *New = BI->clone();
1408    New->setName(BI->getName());
1409    NewBB->getInstList().push_back(New);
1410    ValueMapping[BI] = New;
1411
1412    // Remap operands to patch up intra-block references.
1413    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1414      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1415        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1416        if (I != ValueMapping.end())
1417          New->setOperand(i, I->second);
1418      }
1419  }
1420
1421  // We didn't copy the terminator from BB over to NewBB, because there is now
1422  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1423  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1424  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1425
1426  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1427  // PHI nodes for NewBB now.
1428  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1429
1430  // If there were values defined in BB that are used outside the block, then we
1431  // now have to update all uses of the value to use either the original value,
1432  // the cloned value, or some PHI derived value.  This can require arbitrary
1433  // PHI insertion, of which we are prepared to do, clean these up now.
1434  SSAUpdater SSAUpdate;
1435  SmallVector<Use*, 16> UsesToRename;
1436  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1437    // Scan all uses of this instruction to see if it is used outside of its
1438    // block, and if so, record them in UsesToRename.
1439    for (Use &U : I->uses()) {
1440      Instruction *User = cast<Instruction>(U.getUser());
1441      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1442        if (UserPN->getIncomingBlock(U) == BB)
1443          continue;
1444      } else if (User->getParent() == BB)
1445        continue;
1446
1447      UsesToRename.push_back(&U);
1448    }
1449
1450    // If there are no uses outside the block, we're done with this instruction.
1451    if (UsesToRename.empty())
1452      continue;
1453
1454    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1455
1456    // We found a use of I outside of BB.  Rename all uses of I that are outside
1457    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1458    // with the two values we know.
1459    SSAUpdate.Initialize(I->getType(), I->getName());
1460    SSAUpdate.AddAvailableValue(BB, I);
1461    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1462
1463    while (!UsesToRename.empty())
1464      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1465    DEBUG(dbgs() << "\n");
1466  }
1467
1468
1469  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1470  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1471  // us to simplify any PHI nodes in BB.
1472  TerminatorInst *PredTerm = PredBB->getTerminator();
1473  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1474    if (PredTerm->getSuccessor(i) == BB) {
1475      BB->removePredecessor(PredBB, true);
1476      PredTerm->setSuccessor(i, NewBB);
1477    }
1478
1479  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1480  // over the new instructions and zap any that are constants or dead.  This
1481  // frequently happens because of phi translation.
1482  SimplifyInstructionsInBlock(NewBB, DL, TLI);
1483
1484  // Threaded an edge!
1485  ++NumThreads;
1486  return true;
1487}
1488
1489/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1490/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1491/// If we can duplicate the contents of BB up into PredBB do so now, this
1492/// improves the odds that the branch will be on an analyzable instruction like
1493/// a compare.
1494bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1495                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1496  assert(!PredBBs.empty() && "Can't handle an empty set");
1497
1498  // If BB is a loop header, then duplicating this block outside the loop would
1499  // cause us to transform this into an irreducible loop, don't do this.
1500  // See the comments above FindLoopHeaders for justifications and caveats.
1501  if (LoopHeaders.count(BB)) {
1502    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1503          << "' into predecessor block '" << PredBBs[0]->getName()
1504          << "' - it might create an irreducible loop!\n");
1505    return false;
1506  }
1507
1508  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
1509  if (DuplicationCost > Threshold) {
1510    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1511          << "' - Cost is too high: " << DuplicationCost << "\n");
1512    return false;
1513  }
1514
1515  // And finally, do it!  Start by factoring the predecessors is needed.
1516  BasicBlock *PredBB;
1517  if (PredBBs.size() == 1)
1518    PredBB = PredBBs[0];
1519  else {
1520    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1521          << " common predecessors.\n");
1522    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1523  }
1524
1525  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1526  // of PredBB.
1527  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1528        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1529        << DuplicationCost << " block is:" << *BB << "\n");
1530
1531  // Unless PredBB ends with an unconditional branch, split the edge so that we
1532  // can just clone the bits from BB into the end of the new PredBB.
1533  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1534
1535  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1536    PredBB = SplitEdge(PredBB, BB, this);
1537    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1538  }
1539
1540  // We are going to have to map operands from the original BB block into the
1541  // PredBB block.  Evaluate PHI nodes in BB.
1542  DenseMap<Instruction*, Value*> ValueMapping;
1543
1544  BasicBlock::iterator BI = BB->begin();
1545  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1546    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1547
1548  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1549  // mapping and using it to remap operands in the cloned instructions.
1550  for (; BI != BB->end(); ++BI) {
1551    Instruction *New = BI->clone();
1552
1553    // Remap operands to patch up intra-block references.
1554    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1555      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1556        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1557        if (I != ValueMapping.end())
1558          New->setOperand(i, I->second);
1559      }
1560
1561    // If this instruction can be simplified after the operands are updated,
1562    // just use the simplified value instead.  This frequently happens due to
1563    // phi translation.
1564    if (Value *IV = SimplifyInstruction(New, DL)) {
1565      delete New;
1566      ValueMapping[BI] = IV;
1567    } else {
1568      // Otherwise, insert the new instruction into the block.
1569      New->setName(BI->getName());
1570      PredBB->getInstList().insert(OldPredBranch, New);
1571      ValueMapping[BI] = New;
1572    }
1573  }
1574
1575  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1576  // add entries to the PHI nodes for branch from PredBB now.
1577  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1578  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1579                                  ValueMapping);
1580  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1581                                  ValueMapping);
1582
1583  // If there were values defined in BB that are used outside the block, then we
1584  // now have to update all uses of the value to use either the original value,
1585  // the cloned value, or some PHI derived value.  This can require arbitrary
1586  // PHI insertion, of which we are prepared to do, clean these up now.
1587  SSAUpdater SSAUpdate;
1588  SmallVector<Use*, 16> UsesToRename;
1589  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1590    // Scan all uses of this instruction to see if it is used outside of its
1591    // block, and if so, record them in UsesToRename.
1592    for (Use &U : I->uses()) {
1593      Instruction *User = cast<Instruction>(U.getUser());
1594      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1595        if (UserPN->getIncomingBlock(U) == BB)
1596          continue;
1597      } else if (User->getParent() == BB)
1598        continue;
1599
1600      UsesToRename.push_back(&U);
1601    }
1602
1603    // If there are no uses outside the block, we're done with this instruction.
1604    if (UsesToRename.empty())
1605      continue;
1606
1607    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1608
1609    // We found a use of I outside of BB.  Rename all uses of I that are outside
1610    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1611    // with the two values we know.
1612    SSAUpdate.Initialize(I->getType(), I->getName());
1613    SSAUpdate.AddAvailableValue(BB, I);
1614    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1615
1616    while (!UsesToRename.empty())
1617      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1618    DEBUG(dbgs() << "\n");
1619  }
1620
1621  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1622  // that we nuked.
1623  BB->removePredecessor(PredBB, true);
1624
1625  // Remove the unconditional branch at the end of the PredBB block.
1626  OldPredBranch->eraseFromParent();
1627
1628  ++NumDupes;
1629  return true;
1630}
1631
1632/// TryToUnfoldSelect - Look for blocks of the form
1633/// bb1:
1634///   %a = select
1635///   br bb
1636///
1637/// bb2:
1638///   %p = phi [%a, %bb] ...
1639///   %c = icmp %p
1640///   br i1 %c
1641///
1642/// And expand the select into a branch structure if one of its arms allows %c
1643/// to be folded. This later enables threading from bb1 over bb2.
1644bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1645  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1646  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1647  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1648
1649  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1650      CondLHS->getParent() != BB)
1651    return false;
1652
1653  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1654    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1655    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1656
1657    // Look if one of the incoming values is a select in the corresponding
1658    // predecessor.
1659    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1660      continue;
1661
1662    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1663    if (!PredTerm || !PredTerm->isUnconditional())
1664      continue;
1665
1666    // Now check if one of the select values would allow us to constant fold the
1667    // terminator in BB. We don't do the transform if both sides fold, those
1668    // cases will be threaded in any case.
1669    LazyValueInfo::Tristate LHSFolds =
1670        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1671                                CondRHS, Pred, BB);
1672    LazyValueInfo::Tristate RHSFolds =
1673        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1674                                CondRHS, Pred, BB);
1675    if ((LHSFolds != LazyValueInfo::Unknown ||
1676         RHSFolds != LazyValueInfo::Unknown) &&
1677        LHSFolds != RHSFolds) {
1678      // Expand the select.
1679      //
1680      // Pred --
1681      //  |    v
1682      //  |  NewBB
1683      //  |    |
1684      //  |-----
1685      //  v
1686      // BB
1687      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1688                                             BB->getParent(), BB);
1689      // Move the unconditional branch to NewBB.
1690      PredTerm->removeFromParent();
1691      NewBB->getInstList().insert(NewBB->end(), PredTerm);
1692      // Create a conditional branch and update PHI nodes.
1693      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1694      CondLHS->setIncomingValue(I, SI->getFalseValue());
1695      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1696      // The select is now dead.
1697      SI->eraseFromParent();
1698
1699      // Update any other PHI nodes in BB.
1700      for (BasicBlock::iterator BI = BB->begin();
1701           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1702        if (Phi != CondLHS)
1703          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1704      return true;
1705    }
1706  }
1707  return false;
1708}
1709