LICM.cpp revision 91d22c8b1ec2ad8f2f29804b729473ccf720fb3e
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/PromoteMemToReg.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61namespace {
62  cl::opt<bool>
63  DisablePromotion("disable-licm-promotion", cl::Hidden,
64                   cl::desc("Disable memory promotion in LICM pass"));
65
66  struct VISIBILITY_HIDDEN LICM : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LICM() : LoopPass((intptr_t)&ID) {}
69
70    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
71
72    /// This transformation requires natural loop information & requires that
73    /// loop preheaders be inserted into the CFG...
74    ///
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77      AU.addRequiredID(LoopSimplifyID);
78      AU.addRequired<LoopInfo>();
79      AU.addRequired<DominatorTree>();
80      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
81      AU.addRequired<AliasAnalysis>();
82      AU.addPreserved<ScalarEvolution>();
83      AU.addPreserved<DominanceFrontier>();
84    }
85
86    bool doFinalization() {
87      LoopToAliasMap.clear();
88      return false;
89    }
90
91  private:
92    // Various analyses that we use...
93    AliasAnalysis *AA;       // Current AliasAnalysis information
94    LoopInfo      *LI;       // Current LoopInfo
95    DominatorTree *DT;       // Dominator Tree for the current Loop...
96    DominanceFrontier *DF;   // Current Dominance Frontier
97
98    // State that is updated as we process loops
99    bool Changed;            // Set to true when we change anything.
100    BasicBlock *Preheader;   // The preheader block of the current loop...
101    Loop *CurLoop;           // The current loop we are working on...
102    AliasSetTracker *CurAST; // AliasSet information for the current loop...
103    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
104
105    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
106    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
107
108    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
109    /// set.
110    void deleteAnalysisValue(Value *V, Loop *L);
111
112    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
113    /// dominated by the specified block, and that are in the current loop) in
114    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
115    /// visit uses before definitions, allowing us to sink a loop body in one
116    /// pass without iteration.
117    ///
118    void SinkRegion(DomTreeNode *N);
119
120    /// HoistRegion - Walk the specified region of the CFG (defined by all
121    /// blocks dominated by the specified block, and that are in the current
122    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
123    /// visit definitions before uses, allowing us to hoist a loop body in one
124    /// pass without iteration.
125    ///
126    void HoistRegion(DomTreeNode *N);
127
128    /// inSubLoop - Little predicate that returns true if the specified basic
129    /// block is in a subloop of the current one, not the current one itself.
130    ///
131    bool inSubLoop(BasicBlock *BB) {
132      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
133      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
134        if ((*I)->contains(BB))
135          return true;  // A subloop actually contains this block!
136      return false;
137    }
138
139    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
140    /// specified exit block of the loop is dominated by the specified block
141    /// that is in the body of the loop.  We use these constraints to
142    /// dramatically limit the amount of the dominator tree that needs to be
143    /// searched.
144    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
145                                           BasicBlock *BlockInLoop) const {
146      // If the block in the loop is the loop header, it must be dominated!
147      BasicBlock *LoopHeader = CurLoop->getHeader();
148      if (BlockInLoop == LoopHeader)
149        return true;
150
151      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
152      DomTreeNode *IDom            = DT->getNode(ExitBlock);
153
154      // Because the exit block is not in the loop, we know we have to get _at
155      // least_ its immediate dominator.
156      do {
157        // Get next Immediate Dominator.
158        IDom = IDom->getIDom();
159
160        // If we have got to the header of the loop, then the instructions block
161        // did not dominate the exit node, so we can't hoist it.
162        if (IDom->getBlock() == LoopHeader)
163          return false;
164
165      } while (IDom != BlockInLoopNode);
166
167      return true;
168    }
169
170    /// sink - When an instruction is found to only be used outside of the loop,
171    /// this function moves it to the exit blocks and patches up SSA form as
172    /// needed.
173    ///
174    void sink(Instruction &I);
175
176    /// hoist - When an instruction is found to only use loop invariant operands
177    /// that is safe to hoist, this instruction is called to do the dirty work.
178    ///
179    void hoist(Instruction &I);
180
181    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
182    /// is not a trapping instruction or if it is a trapping instruction and is
183    /// guaranteed to execute.
184    ///
185    bool isSafeToExecuteUnconditionally(Instruction &I);
186
187    /// pointerInvalidatedByLoop - Return true if the body of this loop may
188    /// store into the memory location pointed to by V.
189    ///
190    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
191      // Check to see if any of the basic blocks in CurLoop invalidate *V.
192      return CurAST->getAliasSetForPointer(V, Size).isMod();
193    }
194
195    bool canSinkOrHoistInst(Instruction &I);
196    bool isLoopInvariantInst(Instruction &I);
197    bool isNotUsedInLoop(Instruction &I);
198
199    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
200    /// to scalars as we can.
201    ///
202    void PromoteValuesInLoop();
203
204    /// FindPromotableValuesInLoop - Check the current loop for stores to
205    /// definite pointers, which are not loaded and stored through may aliases.
206    /// If these are found, create an alloca for the value, add it to the
207    /// PromotedValues list, and keep track of the mapping from value to
208    /// alloca...
209    ///
210    void FindPromotableValuesInLoop(
211                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
212                                    std::map<Value*, AllocaInst*> &Val2AlMap);
213  };
214
215  char LICM::ID = 0;
216  RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
217}
218
219LoopPass *llvm::createLICMPass() { return new LICM(); }
220
221/// Hoist expressions out of the specified loop...
222///
223bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
224  Changed = false;
225
226  // Get our Loop and Alias Analysis information...
227  LI = &getAnalysis<LoopInfo>();
228  AA = &getAnalysis<AliasAnalysis>();
229  DF = &getAnalysis<DominanceFrontier>();
230  DT = &getAnalysis<DominatorTree>();
231
232  CurAST = new AliasSetTracker(*AA);
233  // Collect Alias info from subloops
234  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
235       LoopItr != LoopItrE; ++LoopItr) {
236    Loop *InnerL = *LoopItr;
237    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
238    assert (InnerAST && "Where is my AST?");
239
240    // What if InnerLoop was modified by other passes ?
241    CurAST->add(*InnerAST);
242  }
243
244  CurLoop = L;
245
246  // Get the preheader block to move instructions into...
247  Preheader = L->getLoopPreheader();
248  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
249
250  // Loop over the body of this loop, looking for calls, invokes, and stores.
251  // Because subloops have already been incorporated into AST, we skip blocks in
252  // subloops.
253  //
254  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
255         E = L->getBlocks().end(); I != E; ++I)
256    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
257      CurAST->add(**I);                 // Incorporate the specified basic block
258
259  // We want to visit all of the instructions in this loop... that are not parts
260  // of our subloops (they have already had their invariants hoisted out of
261  // their loop, into this loop, so there is no need to process the BODIES of
262  // the subloops).
263  //
264  // Traverse the body of the loop in depth first order on the dominator tree so
265  // that we are guaranteed to see definitions before we see uses.  This allows
266  // us to sink instructions in one pass, without iteration.  AFter sinking
267  // instructions, we perform another pass to hoist them out of the loop.
268  //
269  SinkRegion(DT->getNode(L->getHeader()));
270  HoistRegion(DT->getNode(L->getHeader()));
271
272  // Now that all loop invariants have been removed from the loop, promote any
273  // memory references to scalars that we can...
274  if (!DisablePromotion)
275    PromoteValuesInLoop();
276
277  // Clear out loops state information for the next iteration
278  CurLoop = 0;
279  Preheader = 0;
280
281  LoopToAliasMap[L] = CurAST;
282  return Changed;
283}
284
285/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
286/// dominated by the specified block, and that are in the current loop) in
287/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
288/// uses before definitions, allowing us to sink a loop body in one pass without
289/// iteration.
290///
291void LICM::SinkRegion(DomTreeNode *N) {
292  assert(N != 0 && "Null dominator tree node?");
293  BasicBlock *BB = N->getBlock();
294
295  // If this subregion is not in the top level loop at all, exit.
296  if (!CurLoop->contains(BB)) return;
297
298  // We are processing blocks in reverse dfo, so process children first...
299  const std::vector<DomTreeNode*> &Children = N->getChildren();
300  for (unsigned i = 0, e = Children.size(); i != e; ++i)
301    SinkRegion(Children[i]);
302
303  // Only need to process the contents of this block if it is not part of a
304  // subloop (which would already have been processed).
305  if (inSubLoop(BB)) return;
306
307  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
308    Instruction &I = *--II;
309
310    // Check to see if we can sink this instruction to the exit blocks
311    // of the loop.  We can do this if the all users of the instruction are
312    // outside of the loop.  In this case, it doesn't even matter if the
313    // operands of the instruction are loop invariant.
314    //
315    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
316      ++II;
317      sink(I);
318    }
319  }
320}
321
322
323/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
324/// dominated by the specified block, and that are in the current loop) in depth
325/// first order w.r.t the DominatorTree.  This allows us to visit definitions
326/// before uses, allowing us to hoist a loop body in one pass without iteration.
327///
328void LICM::HoistRegion(DomTreeNode *N) {
329  assert(N != 0 && "Null dominator tree node?");
330  BasicBlock *BB = N->getBlock();
331
332  // If this subregion is not in the top level loop at all, exit.
333  if (!CurLoop->contains(BB)) return;
334
335  // Only need to process the contents of this block if it is not part of a
336  // subloop (which would already have been processed).
337  if (!inSubLoop(BB))
338    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
339      Instruction &I = *II++;
340
341      // Try hoisting the instruction out to the preheader.  We can only do this
342      // if all of the operands of the instruction are loop invariant and if it
343      // is safe to hoist the instruction.
344      //
345      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
346          isSafeToExecuteUnconditionally(I))
347        hoist(I);
348      }
349
350  const std::vector<DomTreeNode*> &Children = N->getChildren();
351  for (unsigned i = 0, e = Children.size(); i != e; ++i)
352    HoistRegion(Children[i]);
353}
354
355/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
356/// instruction.
357///
358bool LICM::canSinkOrHoistInst(Instruction &I) {
359  // Loads have extra constraints we have to verify before we can hoist them.
360  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
361    if (LI->isVolatile())
362      return false;        // Don't hoist volatile loads!
363
364    // Don't hoist loads which have may-aliased stores in loop.
365    unsigned Size = 0;
366    if (LI->getType()->isSized())
367      Size = AA->getTargetData().getTypeSize(LI->getType());
368    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
369  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
370    // Handle obvious cases efficiently.
371    if (Function *Callee = CI->getCalledFunction()) {
372      AliasAnalysis::ModRefBehavior Behavior =AA->getModRefBehavior(Callee, CI);
373      if (Behavior == AliasAnalysis::DoesNotAccessMemory)
374        return true;
375      else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
376        // If this call only reads from memory and there are no writes to memory
377        // in the loop, we can hoist or sink the call as appropriate.
378        bool FoundMod = false;
379        for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
380             I != E; ++I) {
381          AliasSet &AS = *I;
382          if (!AS.isForwardingAliasSet() && AS.isMod()) {
383            FoundMod = true;
384            break;
385          }
386        }
387        if (!FoundMod) return true;
388      }
389    }
390
391    // FIXME: This should use mod/ref information to see if we can hoist or sink
392    // the call.
393
394    return false;
395  }
396
397  // Otherwise these instructions are hoistable/sinkable
398  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
399         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
400         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
401         isa<ShuffleVectorInst>(I);
402}
403
404/// isNotUsedInLoop - Return true if the only users of this instruction are
405/// outside of the loop.  If this is true, we can sink the instruction to the
406/// exit blocks of the loop.
407///
408bool LICM::isNotUsedInLoop(Instruction &I) {
409  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
410    Instruction *User = cast<Instruction>(*UI);
411    if (PHINode *PN = dyn_cast<PHINode>(User)) {
412      // PHI node uses occur in predecessor blocks!
413      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
414        if (PN->getIncomingValue(i) == &I)
415          if (CurLoop->contains(PN->getIncomingBlock(i)))
416            return false;
417    } else if (CurLoop->contains(User->getParent())) {
418      return false;
419    }
420  }
421  return true;
422}
423
424
425/// isLoopInvariantInst - Return true if all operands of this instruction are
426/// loop invariant.  We also filter out non-hoistable instructions here just for
427/// efficiency.
428///
429bool LICM::isLoopInvariantInst(Instruction &I) {
430  // The instruction is loop invariant if all of its operands are loop-invariant
431  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
432    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
433      return false;
434
435  // If we got this far, the instruction is loop invariant!
436  return true;
437}
438
439/// sink - When an instruction is found to only be used outside of the loop,
440/// this function moves it to the exit blocks and patches up SSA form as needed.
441/// This method is guaranteed to remove the original instruction from its
442/// position, and may either delete it or move it to outside of the loop.
443///
444void LICM::sink(Instruction &I) {
445  DOUT << "LICM sinking instruction: " << I;
446
447  std::vector<BasicBlock*> ExitBlocks;
448  CurLoop->getExitBlocks(ExitBlocks);
449
450  if (isa<LoadInst>(I)) ++NumMovedLoads;
451  else if (isa<CallInst>(I)) ++NumMovedCalls;
452  ++NumSunk;
453  Changed = true;
454
455  // The case where there is only a single exit node of this loop is common
456  // enough that we handle it as a special (more efficient) case.  It is more
457  // efficient to handle because there are no PHI nodes that need to be placed.
458  if (ExitBlocks.size() == 1) {
459    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
460      // Instruction is not used, just delete it.
461      CurAST->deleteValue(&I);
462      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
463        I.replaceAllUsesWith(UndefValue::get(I.getType()));
464      I.eraseFromParent();
465    } else {
466      // Move the instruction to the start of the exit block, after any PHI
467      // nodes in it.
468      I.removeFromParent();
469
470      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
471      while (isa<PHINode>(InsertPt)) ++InsertPt;
472      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
473    }
474  } else if (ExitBlocks.size() == 0) {
475    // The instruction is actually dead if there ARE NO exit blocks.
476    CurAST->deleteValue(&I);
477    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
478      I.replaceAllUsesWith(UndefValue::get(I.getType()));
479    I.eraseFromParent();
480  } else {
481    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
482    // do all of the hard work of inserting PHI nodes as necessary.  We convert
483    // the value into a stack object to get it to do this.
484
485    // Firstly, we create a stack object to hold the value...
486    AllocaInst *AI = 0;
487
488    if (I.getType() != Type::VoidTy) {
489      AI = new AllocaInst(I.getType(), 0, I.getName(),
490                          I.getParent()->getParent()->getEntryBlock().begin());
491      CurAST->add(AI);
492    }
493
494    // Secondly, insert load instructions for each use of the instruction
495    // outside of the loop.
496    while (!I.use_empty()) {
497      Instruction *U = cast<Instruction>(I.use_back());
498
499      // If the user is a PHI Node, we actually have to insert load instructions
500      // in all predecessor blocks, not in the PHI block itself!
501      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
502        // Only insert into each predecessor once, so that we don't have
503        // different incoming values from the same block!
504        std::map<BasicBlock*, Value*> InsertedBlocks;
505        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
506          if (UPN->getIncomingValue(i) == &I) {
507            BasicBlock *Pred = UPN->getIncomingBlock(i);
508            Value *&PredVal = InsertedBlocks[Pred];
509            if (!PredVal) {
510              // Insert a new load instruction right before the terminator in
511              // the predecessor block.
512              PredVal = new LoadInst(AI, "", Pred->getTerminator());
513              CurAST->add(cast<LoadInst>(PredVal));
514            }
515
516            UPN->setIncomingValue(i, PredVal);
517          }
518
519      } else {
520        LoadInst *L = new LoadInst(AI, "", U);
521        U->replaceUsesOfWith(&I, L);
522        CurAST->add(L);
523      }
524    }
525
526    // Thirdly, insert a copy of the instruction in each exit block of the loop
527    // that is dominated by the instruction, storing the result into the memory
528    // location.  Be careful not to insert the instruction into any particular
529    // basic block more than once.
530    std::set<BasicBlock*> InsertedBlocks;
531    BasicBlock *InstOrigBB = I.getParent();
532
533    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
534      BasicBlock *ExitBlock = ExitBlocks[i];
535
536      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
537        // If we haven't already processed this exit block, do so now.
538        if (InsertedBlocks.insert(ExitBlock).second) {
539          // Insert the code after the last PHI node...
540          BasicBlock::iterator InsertPt = ExitBlock->begin();
541          while (isa<PHINode>(InsertPt)) ++InsertPt;
542
543          // If this is the first exit block processed, just move the original
544          // instruction, otherwise clone the original instruction and insert
545          // the copy.
546          Instruction *New;
547          if (InsertedBlocks.size() == 1) {
548            I.removeFromParent();
549            ExitBlock->getInstList().insert(InsertPt, &I);
550            New = &I;
551          } else {
552            New = I.clone();
553            CurAST->copyValue(&I, New);
554            if (!I.getName().empty())
555              New->setName(I.getName()+".le");
556            ExitBlock->getInstList().insert(InsertPt, New);
557          }
558
559          // Now that we have inserted the instruction, store it into the alloca
560          if (AI) new StoreInst(New, AI, InsertPt);
561        }
562      }
563    }
564
565    // If the instruction doesn't dominate any exit blocks, it must be dead.
566    if (InsertedBlocks.empty()) {
567      CurAST->deleteValue(&I);
568      I.eraseFromParent();
569    }
570
571    // Finally, promote the fine value to SSA form.
572    if (AI) {
573      std::vector<AllocaInst*> Allocas;
574      Allocas.push_back(AI);
575      PromoteMemToReg(Allocas, *DT, *DF, CurAST);
576    }
577  }
578}
579
580/// hoist - When an instruction is found to only use loop invariant operands
581/// that is safe to hoist, this instruction is called to do the dirty work.
582///
583void LICM::hoist(Instruction &I) {
584  DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
585
586  // Remove the instruction from its current basic block... but don't delete the
587  // instruction.
588  I.removeFromParent();
589
590  // Insert the new node in Preheader, before the terminator.
591  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
592
593  if (isa<LoadInst>(I)) ++NumMovedLoads;
594  else if (isa<CallInst>(I)) ++NumMovedCalls;
595  ++NumHoisted;
596  Changed = true;
597}
598
599/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
600/// not a trapping instruction or if it is a trapping instruction and is
601/// guaranteed to execute.
602///
603bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
604  // If it is not a trapping instruction, it is always safe to hoist.
605  if (!Inst.isTrapping()) return true;
606
607  // Otherwise we have to check to make sure that the instruction dominates all
608  // of the exit blocks.  If it doesn't, then there is a path out of the loop
609  // which does not execute this instruction, so we can't hoist it.
610
611  // If the instruction is in the header block for the loop (which is very
612  // common), it is always guaranteed to dominate the exit blocks.  Since this
613  // is a common case, and can save some work, check it now.
614  if (Inst.getParent() == CurLoop->getHeader())
615    return true;
616
617  // It's always safe to load from a global or alloca.
618  if (isa<LoadInst>(Inst))
619    if (isa<AllocationInst>(Inst.getOperand(0)) ||
620        isa<GlobalVariable>(Inst.getOperand(0)))
621      return true;
622
623  // Get the exit blocks for the current loop.
624  std::vector<BasicBlock*> ExitBlocks;
625  CurLoop->getExitBlocks(ExitBlocks);
626
627  // For each exit block, get the DT node and walk up the DT until the
628  // instruction's basic block is found or we exit the loop.
629  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
630    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
631      return false;
632
633  return true;
634}
635
636
637/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
638/// stores out of the loop and moving loads to before the loop.  We do this by
639/// looping over the stores in the loop, looking for stores to Must pointers
640/// which are loop invariant.  We promote these memory locations to use allocas
641/// instead.  These allocas can easily be raised to register values by the
642/// PromoteMem2Reg functionality.
643///
644void LICM::PromoteValuesInLoop() {
645  // PromotedValues - List of values that are promoted out of the loop.  Each
646  // value has an alloca instruction for it, and a canonical version of the
647  // pointer.
648  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
649  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
650
651  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
652  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
653
654  Changed = true;
655  NumPromoted += PromotedValues.size();
656
657  std::vector<Value*> PointerValueNumbers;
658
659  // Emit a copy from the value into the alloca'd value in the loop preheader
660  TerminatorInst *LoopPredInst = Preheader->getTerminator();
661  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
662    Value *Ptr = PromotedValues[i].second;
663
664    // If we are promoting a pointer value, update alias information for the
665    // inserted load.
666    Value *LoadValue = 0;
667    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
668      // Locate a load or store through the pointer, and assign the same value
669      // to LI as we are loading or storing.  Since we know that the value is
670      // stored in this loop, this will always succeed.
671      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
672           UI != E; ++UI)
673        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
674          LoadValue = LI;
675          break;
676        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
677          if (SI->getOperand(1) == Ptr) {
678            LoadValue = SI->getOperand(0);
679            break;
680          }
681        }
682      assert(LoadValue && "No store through the pointer found!");
683      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
684    }
685
686    // Load from the memory we are promoting.
687    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
688
689    if (LoadValue) CurAST->copyValue(LoadValue, LI);
690
691    // Store into the temporary alloca.
692    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
693  }
694
695  // Scan the basic blocks in the loop, replacing uses of our pointers with
696  // uses of the allocas in question.
697  //
698  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
699  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
700         E = LoopBBs.end(); I != E; ++I) {
701    // Rewrite all loads and stores in the block of the pointer...
702    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
703         II != E; ++II) {
704      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
705        std::map<Value*, AllocaInst*>::iterator
706          I = ValueToAllocaMap.find(L->getOperand(0));
707        if (I != ValueToAllocaMap.end())
708          L->setOperand(0, I->second);    // Rewrite load instruction...
709      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
710        std::map<Value*, AllocaInst*>::iterator
711          I = ValueToAllocaMap.find(S->getOperand(1));
712        if (I != ValueToAllocaMap.end())
713          S->setOperand(1, I->second);    // Rewrite store instruction...
714      }
715    }
716  }
717
718  // Now that the body of the loop uses the allocas instead of the original
719  // memory locations, insert code to copy the alloca value back into the
720  // original memory location on all exits from the loop.  Note that we only
721  // want to insert one copy of the code in each exit block, though the loop may
722  // exit to the same block more than once.
723  //
724  std::set<BasicBlock*> ProcessedBlocks;
725
726  std::vector<BasicBlock*> ExitBlocks;
727  CurLoop->getExitBlocks(ExitBlocks);
728  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
729    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
730      // Copy all of the allocas into their memory locations.
731      BasicBlock::iterator BI = ExitBlocks[i]->begin();
732      while (isa<PHINode>(*BI))
733        ++BI;             // Skip over all of the phi nodes in the block.
734      Instruction *InsertPos = BI;
735      unsigned PVN = 0;
736      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
737        // Load from the alloca.
738        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
739
740        // If this is a pointer type, update alias info appropriately.
741        if (isa<PointerType>(LI->getType()))
742          CurAST->copyValue(PointerValueNumbers[PVN++], LI);
743
744        // Store into the memory we promoted.
745        new StoreInst(LI, PromotedValues[i].second, InsertPos);
746      }
747    }
748
749  // Now that we have done the deed, use the mem2reg functionality to promote
750  // all of the new allocas we just created into real SSA registers.
751  //
752  std::vector<AllocaInst*> PromotedAllocas;
753  PromotedAllocas.reserve(PromotedValues.size());
754  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
755    PromotedAllocas.push_back(PromotedValues[i].first);
756  PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
757}
758
759/// FindPromotableValuesInLoop - Check the current loop for stores to definite
760/// pointers, which are not loaded and stored through may aliases.  If these are
761/// found, create an alloca for the value, add it to the PromotedValues list,
762/// and keep track of the mapping from value to alloca.
763///
764void LICM::FindPromotableValuesInLoop(
765                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
766                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
767  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
768
769  // Loop over all of the alias sets in the tracker object.
770  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
771       I != E; ++I) {
772    AliasSet &AS = *I;
773    // We can promote this alias set if it has a store, if it is a "Must" alias
774    // set, if the pointer is loop invariant, and if we are not eliminating any
775    // volatile loads or stores.
776    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
777        !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
778      assert(AS.begin() != AS.end() &&
779             "Must alias set should have at least one pointer element in it!");
780      Value *V = AS.begin()->first;
781
782      // Check that all of the pointers in the alias set have the same type.  We
783      // cannot (yet) promote a memory location that is loaded and stored in
784      // different sizes.
785      bool PointerOk = true;
786      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
787        if (V->getType() != I->first->getType()) {
788          PointerOk = false;
789          break;
790        }
791
792      if (PointerOk) {
793        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
794        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
795        PromotedValues.push_back(std::make_pair(AI, V));
796
797        // Update the AST and alias analysis.
798        CurAST->copyValue(V, AI);
799
800        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
801          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
802
803        DOUT << "LICM: Promoting value: " << *V << "\n";
804      }
805    }
806  }
807}
808
809/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
810void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
811  AliasSetTracker *AST = LoopToAliasMap[L];
812  if (!AST)
813    return;
814
815  AST->copyValue(From, To);
816}
817
818/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
819/// set.
820void LICM::deleteAnalysisValue(Value *V, Loop *L) {
821  AliasSetTracker *AST = LoopToAliasMap[L];
822  if (!AST)
823    return;
824
825  AST->deleteValue(V);
826}
827