LICM.cpp revision 9ccaf53ada99c63737547c0235baeb8454b04e80
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Instructions.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/LoopPass.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/Analysis/AliasSetTracker.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Analysis/ScalarEvolution.h"
47#include "llvm/Transforms/Utils/PromoteMemToReg.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66namespace {
67  struct LICM : public LoopPass {
68    static char ID; // Pass identification, replacement for typeid
69    LICM() : LoopPass(ID) {}
70
71    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
72
73    /// This transformation requires natural loop information & requires that
74    /// loop preheaders be inserted into the CFG...
75    ///
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<DominatorTree>();
79      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
80      AU.addRequired<LoopInfo>();
81      AU.addRequiredID(LoopSimplifyID);
82      AU.addRequired<AliasAnalysis>();
83      AU.addPreserved<ScalarEvolution>();
84      AU.addPreserved<DominanceFrontier>();
85      AU.addPreservedID(LoopSimplifyID);
86    }
87
88    bool doFinalization() {
89      // Free the values stored in the map
90      for (std::map<Loop *, AliasSetTracker *>::iterator
91             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
92        delete I->second;
93
94      LoopToAliasMap.clear();
95      return false;
96    }
97
98  private:
99    // Various analyses that we use...
100    AliasAnalysis *AA;       // Current AliasAnalysis information
101    LoopInfo      *LI;       // Current LoopInfo
102    DominatorTree *DT;       // Dominator Tree for the current Loop...
103    DominanceFrontier *DF;   // Current Dominance Frontier
104
105    // State that is updated as we process loops
106    bool Changed;            // Set to true when we change anything.
107    BasicBlock *Preheader;   // The preheader block of the current loop...
108    Loop *CurLoop;           // The current loop we are working on...
109    AliasSetTracker *CurAST; // AliasSet information for the current loop...
110    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
111
112    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
113    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
114
115    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
116    /// set.
117    void deleteAnalysisValue(Value *V, Loop *L);
118
119    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
120    /// dominated by the specified block, and that are in the current loop) in
121    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
122    /// visit uses before definitions, allowing us to sink a loop body in one
123    /// pass without iteration.
124    ///
125    void SinkRegion(DomTreeNode *N);
126
127    /// HoistRegion - Walk the specified region of the CFG (defined by all
128    /// blocks dominated by the specified block, and that are in the current
129    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
130    /// visit definitions before uses, allowing us to hoist a loop body in one
131    /// pass without iteration.
132    ///
133    void HoistRegion(DomTreeNode *N);
134
135    /// inSubLoop - Little predicate that returns true if the specified basic
136    /// block is in a subloop of the current one, not the current one itself.
137    ///
138    bool inSubLoop(BasicBlock *BB) {
139      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
140      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
141        if ((*I)->contains(BB))
142          return true;  // A subloop actually contains this block!
143      return false;
144    }
145
146    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
147    /// specified exit block of the loop is dominated by the specified block
148    /// that is in the body of the loop.  We use these constraints to
149    /// dramatically limit the amount of the dominator tree that needs to be
150    /// searched.
151    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
152                                           BasicBlock *BlockInLoop) const {
153      // If the block in the loop is the loop header, it must be dominated!
154      BasicBlock *LoopHeader = CurLoop->getHeader();
155      if (BlockInLoop == LoopHeader)
156        return true;
157
158      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
159      DomTreeNode *IDom            = DT->getNode(ExitBlock);
160
161      // Because the exit block is not in the loop, we know we have to get _at
162      // least_ its immediate dominator.
163      IDom = IDom->getIDom();
164
165      while (IDom && IDom != BlockInLoopNode) {
166        // If we have got to the header of the loop, then the instructions block
167        // did not dominate the exit node, so we can't hoist it.
168        if (IDom->getBlock() == LoopHeader)
169          return false;
170
171        // Get next Immediate Dominator.
172        IDom = IDom->getIDom();
173      };
174
175      return true;
176    }
177
178    /// sink - When an instruction is found to only be used outside of the loop,
179    /// this function moves it to the exit blocks and patches up SSA form as
180    /// needed.
181    ///
182    void sink(Instruction &I);
183
184    /// hoist - When an instruction is found to only use loop invariant operands
185    /// that is safe to hoist, this instruction is called to do the dirty work.
186    ///
187    void hoist(Instruction &I);
188
189    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
190    /// is not a trapping instruction or if it is a trapping instruction and is
191    /// guaranteed to execute.
192    ///
193    bool isSafeToExecuteUnconditionally(Instruction &I);
194
195    /// pointerInvalidatedByLoop - Return true if the body of this loop may
196    /// store into the memory location pointed to by V.
197    ///
198    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
199      // Check to see if any of the basic blocks in CurLoop invalidate *V.
200      return CurAST->getAliasSetForPointer(V, Size).isMod();
201    }
202
203    bool canSinkOrHoistInst(Instruction &I);
204    bool isLoopInvariantInst(Instruction &I);
205    bool isNotUsedInLoop(Instruction &I);
206
207    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
208    /// to scalars as we can.
209    ///
210    void PromoteValuesInLoop();
211
212    /// FindPromotableValuesInLoop - Check the current loop for stores to
213    /// definite pointers, which are not loaded and stored through may aliases.
214    /// If these are found, create an alloca for the value, add it to the
215    /// PromotedValues list, and keep track of the mapping from value to
216    /// alloca...
217    ///
218    void FindPromotableValuesInLoop(
219                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
220                                    std::map<Value*, AllocaInst*> &Val2AlMap);
221  };
222}
223
224char LICM::ID = 0;
225INITIALIZE_PASS(LICM, "licm", "Loop Invariant Code Motion", false, false);
226
227Pass *llvm::createLICMPass() { return new LICM(); }
228
229/// Hoist expressions out of the specified loop. Note, alias info for inner
230/// loop is not preserved so it is not a good idea to run LICM multiple
231/// times on one loop.
232///
233bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
234  Changed = false;
235
236  // Get our Loop and Alias Analysis information...
237  LI = &getAnalysis<LoopInfo>();
238  AA = &getAnalysis<AliasAnalysis>();
239  DF = &getAnalysis<DominanceFrontier>();
240  DT = &getAnalysis<DominatorTree>();
241
242  CurAST = new AliasSetTracker(*AA);
243  // Collect Alias info from subloops
244  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
245       LoopItr != LoopItrE; ++LoopItr) {
246    Loop *InnerL = *LoopItr;
247    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
248    assert (InnerAST && "Where is my AST?");
249
250    // What if InnerLoop was modified by other passes ?
251    CurAST->add(*InnerAST);
252  }
253
254  CurLoop = L;
255
256  // Get the preheader block to move instructions into...
257  Preheader = L->getLoopPreheader();
258
259  // Loop over the body of this loop, looking for calls, invokes, and stores.
260  // Because subloops have already been incorporated into AST, we skip blocks in
261  // subloops.
262  //
263  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
264       I != E; ++I) {
265    BasicBlock *BB = *I;
266    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops...
267      CurAST->add(*BB);                 // Incorporate the specified basic block
268  }
269
270  // We want to visit all of the instructions in this loop... that are not parts
271  // of our subloops (they have already had their invariants hoisted out of
272  // their loop, into this loop, so there is no need to process the BODIES of
273  // the subloops).
274  //
275  // Traverse the body of the loop in depth first order on the dominator tree so
276  // that we are guaranteed to see definitions before we see uses.  This allows
277  // us to sink instructions in one pass, without iteration.  After sinking
278  // instructions, we perform another pass to hoist them out of the loop.
279  //
280  if (L->hasDedicatedExits())
281    SinkRegion(DT->getNode(L->getHeader()));
282  if (Preheader)
283    HoistRegion(DT->getNode(L->getHeader()));
284
285  // Now that all loop invariants have been removed from the loop, promote any
286  // memory references to scalars that we can...
287  if (!DisablePromotion && Preheader && L->hasDedicatedExits())
288    PromoteValuesInLoop();
289
290  // Clear out loops state information for the next iteration
291  CurLoop = 0;
292  Preheader = 0;
293
294  LoopToAliasMap[L] = CurAST;
295  return Changed;
296}
297
298/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
299/// dominated by the specified block, and that are in the current loop) in
300/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
301/// uses before definitions, allowing us to sink a loop body in one pass without
302/// iteration.
303///
304void LICM::SinkRegion(DomTreeNode *N) {
305  assert(N != 0 && "Null dominator tree node?");
306  BasicBlock *BB = N->getBlock();
307
308  // If this subregion is not in the top level loop at all, exit.
309  if (!CurLoop->contains(BB)) return;
310
311  // We are processing blocks in reverse dfo, so process children first...
312  const std::vector<DomTreeNode*> &Children = N->getChildren();
313  for (unsigned i = 0, e = Children.size(); i != e; ++i)
314    SinkRegion(Children[i]);
315
316  // Only need to process the contents of this block if it is not part of a
317  // subloop (which would already have been processed).
318  if (inSubLoop(BB)) return;
319
320  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
321    Instruction &I = *--II;
322
323    // Check to see if we can sink this instruction to the exit blocks
324    // of the loop.  We can do this if the all users of the instruction are
325    // outside of the loop.  In this case, it doesn't even matter if the
326    // operands of the instruction are loop invariant.
327    //
328    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
329      ++II;
330      sink(I);
331    }
332  }
333}
334
335/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
336/// dominated by the specified block, and that are in the current loop) in depth
337/// first order w.r.t the DominatorTree.  This allows us to visit definitions
338/// before uses, allowing us to hoist a loop body in one pass without iteration.
339///
340void LICM::HoistRegion(DomTreeNode *N) {
341  assert(N != 0 && "Null dominator tree node?");
342  BasicBlock *BB = N->getBlock();
343
344  // If this subregion is not in the top level loop at all, exit.
345  if (!CurLoop->contains(BB)) return;
346
347  // Only need to process the contents of this block if it is not part of a
348  // subloop (which would already have been processed).
349  if (!inSubLoop(BB))
350    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
351      Instruction &I = *II++;
352
353      // Try hoisting the instruction out to the preheader.  We can only do this
354      // if all of the operands of the instruction are loop invariant and if it
355      // is safe to hoist the instruction.
356      //
357      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
358          isSafeToExecuteUnconditionally(I))
359        hoist(I);
360      }
361
362  const std::vector<DomTreeNode*> &Children = N->getChildren();
363  for (unsigned i = 0, e = Children.size(); i != e; ++i)
364    HoistRegion(Children[i]);
365}
366
367/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
368/// instruction.
369///
370bool LICM::canSinkOrHoistInst(Instruction &I) {
371  // Loads have extra constraints we have to verify before we can hoist them.
372  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
373    if (LI->isVolatile())
374      return false;        // Don't hoist volatile loads!
375
376    // Loads from constant memory are always safe to move, even if they end up
377    // in the same alias set as something that ends up being modified.
378    if (AA->pointsToConstantMemory(LI->getOperand(0)))
379      return true;
380
381    // Don't hoist loads which have may-aliased stores in loop.
382    unsigned Size = 0;
383    if (LI->getType()->isSized())
384      Size = AA->getTypeStoreSize(LI->getType());
385    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
386  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
387    // Handle obvious cases efficiently.
388    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
389    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
390      return true;
391    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
392      // If this call only reads from memory and there are no writes to memory
393      // in the loop, we can hoist or sink the call as appropriate.
394      bool FoundMod = false;
395      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
396           I != E; ++I) {
397        AliasSet &AS = *I;
398        if (!AS.isForwardingAliasSet() && AS.isMod()) {
399          FoundMod = true;
400          break;
401        }
402      }
403      if (!FoundMod) return true;
404    }
405
406    // FIXME: This should use mod/ref information to see if we can hoist or sink
407    // the call.
408
409    return false;
410  }
411
412  // Otherwise these instructions are hoistable/sinkable
413  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
414         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
415         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
416         isa<ShuffleVectorInst>(I);
417}
418
419/// isNotUsedInLoop - Return true if the only users of this instruction are
420/// outside of the loop.  If this is true, we can sink the instruction to the
421/// exit blocks of the loop.
422///
423bool LICM::isNotUsedInLoop(Instruction &I) {
424  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
425    Instruction *User = cast<Instruction>(*UI);
426    if (PHINode *PN = dyn_cast<PHINode>(User)) {
427      // PHI node uses occur in predecessor blocks!
428      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
429        if (PN->getIncomingValue(i) == &I)
430          if (CurLoop->contains(PN->getIncomingBlock(i)))
431            return false;
432    } else if (CurLoop->contains(User)) {
433      return false;
434    }
435  }
436  return true;
437}
438
439
440/// isLoopInvariantInst - Return true if all operands of this instruction are
441/// loop invariant.  We also filter out non-hoistable instructions here just for
442/// efficiency.
443///
444bool LICM::isLoopInvariantInst(Instruction &I) {
445  // The instruction is loop invariant if all of its operands are loop-invariant
446  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
447    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
448      return false;
449
450  // If we got this far, the instruction is loop invariant!
451  return true;
452}
453
454/// sink - When an instruction is found to only be used outside of the loop,
455/// this function moves it to the exit blocks and patches up SSA form as needed.
456/// This method is guaranteed to remove the original instruction from its
457/// position, and may either delete it or move it to outside of the loop.
458///
459void LICM::sink(Instruction &I) {
460  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
461
462  SmallVector<BasicBlock*, 8> ExitBlocks;
463  CurLoop->getExitBlocks(ExitBlocks);
464
465  if (isa<LoadInst>(I)) ++NumMovedLoads;
466  else if (isa<CallInst>(I)) ++NumMovedCalls;
467  ++NumSunk;
468  Changed = true;
469
470  // The case where there is only a single exit node of this loop is common
471  // enough that we handle it as a special (more efficient) case.  It is more
472  // efficient to handle because there are no PHI nodes that need to be placed.
473  if (ExitBlocks.size() == 1) {
474    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
475      // Instruction is not used, just delete it.
476      CurAST->deleteValue(&I);
477      // If I has users in unreachable blocks, eliminate.
478      // If I is not void type then replaceAllUsesWith undef.
479      // This allows ValueHandlers and custom metadata to adjust itself.
480      if (!I.getType()->isVoidTy())
481        I.replaceAllUsesWith(UndefValue::get(I.getType()));
482      I.eraseFromParent();
483    } else {
484      // Move the instruction to the start of the exit block, after any PHI
485      // nodes in it.
486      I.removeFromParent();
487      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
488      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
489    }
490  } else if (ExitBlocks.empty()) {
491    // The instruction is actually dead if there ARE NO exit blocks.
492    CurAST->deleteValue(&I);
493    // If I has users in unreachable blocks, eliminate.
494    // If I is not void type then replaceAllUsesWith undef.
495    // This allows ValueHandlers and custom metadata to adjust itself.
496    if (!I.getType()->isVoidTy())
497      I.replaceAllUsesWith(UndefValue::get(I.getType()));
498    I.eraseFromParent();
499  } else {
500    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
501    // do all of the hard work of inserting PHI nodes as necessary.  We convert
502    // the value into a stack object to get it to do this.
503
504    // Firstly, we create a stack object to hold the value...
505    AllocaInst *AI = 0;
506
507    if (!I.getType()->isVoidTy()) {
508      AI = new AllocaInst(I.getType(), 0, I.getName(),
509                          I.getParent()->getParent()->getEntryBlock().begin());
510      CurAST->add(AI);
511    }
512
513    // Secondly, insert load instructions for each use of the instruction
514    // outside of the loop.
515    while (!I.use_empty()) {
516      Instruction *U = cast<Instruction>(I.use_back());
517
518      // If the user is a PHI Node, we actually have to insert load instructions
519      // in all predecessor blocks, not in the PHI block itself!
520      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
521        // Only insert into each predecessor once, so that we don't have
522        // different incoming values from the same block!
523        std::map<BasicBlock*, Value*> InsertedBlocks;
524        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
525          if (UPN->getIncomingValue(i) == &I) {
526            BasicBlock *Pred = UPN->getIncomingBlock(i);
527            Value *&PredVal = InsertedBlocks[Pred];
528            if (!PredVal) {
529              // Insert a new load instruction right before the terminator in
530              // the predecessor block.
531              PredVal = new LoadInst(AI, "", Pred->getTerminator());
532              CurAST->add(cast<LoadInst>(PredVal));
533            }
534
535            UPN->setIncomingValue(i, PredVal);
536          }
537
538      } else {
539        LoadInst *L = new LoadInst(AI, "", U);
540        U->replaceUsesOfWith(&I, L);
541        CurAST->add(L);
542      }
543    }
544
545    // Thirdly, insert a copy of the instruction in each exit block of the loop
546    // that is dominated by the instruction, storing the result into the memory
547    // location.  Be careful not to insert the instruction into any particular
548    // basic block more than once.
549    std::set<BasicBlock*> InsertedBlocks;
550    BasicBlock *InstOrigBB = I.getParent();
551
552    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
553      BasicBlock *ExitBlock = ExitBlocks[i];
554
555      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
556        // If we haven't already processed this exit block, do so now.
557        if (InsertedBlocks.insert(ExitBlock).second) {
558          // Insert the code after the last PHI node...
559          BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
560
561          // If this is the first exit block processed, just move the original
562          // instruction, otherwise clone the original instruction and insert
563          // the copy.
564          Instruction *New;
565          if (InsertedBlocks.size() == 1) {
566            I.removeFromParent();
567            ExitBlock->getInstList().insert(InsertPt, &I);
568            New = &I;
569          } else {
570            New = I.clone();
571            CurAST->copyValue(&I, New);
572            if (!I.getName().empty())
573              New->setName(I.getName()+".le");
574            ExitBlock->getInstList().insert(InsertPt, New);
575          }
576
577          // Now that we have inserted the instruction, store it into the alloca
578          if (AI) new StoreInst(New, AI, InsertPt);
579        }
580      }
581    }
582
583    // If the instruction doesn't dominate any exit blocks, it must be dead.
584    if (InsertedBlocks.empty()) {
585      CurAST->deleteValue(&I);
586      I.eraseFromParent();
587    }
588
589    // Finally, promote the fine value to SSA form.
590    if (AI) {
591      std::vector<AllocaInst*> Allocas;
592      Allocas.push_back(AI);
593      PromoteMemToReg(Allocas, *DT, *DF, CurAST);
594    }
595  }
596}
597
598/// hoist - When an instruction is found to only use loop invariant operands
599/// that is safe to hoist, this instruction is called to do the dirty work.
600///
601void LICM::hoist(Instruction &I) {
602  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
603        << I << "\n");
604
605  // Remove the instruction from its current basic block... but don't delete the
606  // instruction.
607  I.removeFromParent();
608
609  // Insert the new node in Preheader, before the terminator.
610  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
611
612  if (isa<LoadInst>(I)) ++NumMovedLoads;
613  else if (isa<CallInst>(I)) ++NumMovedCalls;
614  ++NumHoisted;
615  Changed = true;
616}
617
618/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
619/// not a trapping instruction or if it is a trapping instruction and is
620/// guaranteed to execute.
621///
622bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
623  // If it is not a trapping instruction, it is always safe to hoist.
624  if (Inst.isSafeToSpeculativelyExecute())
625    return true;
626
627  // Otherwise we have to check to make sure that the instruction dominates all
628  // of the exit blocks.  If it doesn't, then there is a path out of the loop
629  // which does not execute this instruction, so we can't hoist it.
630
631  // If the instruction is in the header block for the loop (which is very
632  // common), it is always guaranteed to dominate the exit blocks.  Since this
633  // is a common case, and can save some work, check it now.
634  if (Inst.getParent() == CurLoop->getHeader())
635    return true;
636
637  // Get the exit blocks for the current loop.
638  SmallVector<BasicBlock*, 8> ExitBlocks;
639  CurLoop->getExitBlocks(ExitBlocks);
640
641  // For each exit block, get the DT node and walk up the DT until the
642  // instruction's basic block is found or we exit the loop.
643  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
644    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
645      return false;
646
647  return true;
648}
649
650
651/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
652/// stores out of the loop and moving loads to before the loop.  We do this by
653/// looping over the stores in the loop, looking for stores to Must pointers
654/// which are loop invariant.  We promote these memory locations to use allocas
655/// instead.  These allocas can easily be raised to register values by the
656/// PromoteMem2Reg functionality.
657///
658void LICM::PromoteValuesInLoop() {
659  // PromotedValues - List of values that are promoted out of the loop.  Each
660  // value has an alloca instruction for it, and a canonical version of the
661  // pointer.
662  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
663  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
664
665  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
666  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
667
668  Changed = true;
669  NumPromoted += PromotedValues.size();
670
671  std::vector<Value*> PointerValueNumbers;
672
673  // Emit a copy from the value into the alloca'd value in the loop preheader
674  TerminatorInst *LoopPredInst = Preheader->getTerminator();
675  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
676    Value *Ptr = PromotedValues[i].second;
677
678    // If we are promoting a pointer value, update alias information for the
679    // inserted load.
680    Value *LoadValue = 0;
681    if (cast<PointerType>(Ptr->getType())->getElementType()->isPointerTy()) {
682      // Locate a load or store through the pointer, and assign the same value
683      // to LI as we are loading or storing.  Since we know that the value is
684      // stored in this loop, this will always succeed.
685      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
686           UI != E; ++UI) {
687        User *U = *UI;
688        if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
689          LoadValue = LI;
690          break;
691        } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
692          if (SI->getOperand(1) == Ptr) {
693            LoadValue = SI->getOperand(0);
694            break;
695          }
696        }
697      }
698      assert(LoadValue && "No store through the pointer found!");
699      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
700    }
701
702    // Load from the memory we are promoting.
703    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
704
705    if (LoadValue) CurAST->copyValue(LoadValue, LI);
706
707    // Store into the temporary alloca.
708    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
709  }
710
711  // Scan the basic blocks in the loop, replacing uses of our pointers with
712  // uses of the allocas in question.
713  //
714  for (Loop::block_iterator I = CurLoop->block_begin(),
715         E = CurLoop->block_end(); I != E; ++I) {
716    BasicBlock *BB = *I;
717    // Rewrite all loads and stores in the block of the pointer...
718    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
719      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
720        std::map<Value*, AllocaInst*>::iterator
721          I = ValueToAllocaMap.find(L->getOperand(0));
722        if (I != ValueToAllocaMap.end())
723          L->setOperand(0, I->second);    // Rewrite load instruction...
724      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
725        std::map<Value*, AllocaInst*>::iterator
726          I = ValueToAllocaMap.find(S->getOperand(1));
727        if (I != ValueToAllocaMap.end())
728          S->setOperand(1, I->second);    // Rewrite store instruction...
729      }
730    }
731  }
732
733  // Now that the body of the loop uses the allocas instead of the original
734  // memory locations, insert code to copy the alloca value back into the
735  // original memory location on all exits from the loop.  Note that we only
736  // want to insert one copy of the code in each exit block, though the loop may
737  // exit to the same block more than once.
738  //
739  SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
740
741  SmallVector<BasicBlock*, 8> ExitBlocks;
742  CurLoop->getExitBlocks(ExitBlocks);
743  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
744    if (!ProcessedBlocks.insert(ExitBlocks[i]))
745      continue;
746
747    // Copy all of the allocas into their memory locations.
748    BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
749    Instruction *InsertPos = BI;
750    unsigned PVN = 0;
751    for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
752      // Load from the alloca.
753      LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
754
755      // If this is a pointer type, update alias info appropriately.
756      if (LI->getType()->isPointerTy())
757        CurAST->copyValue(PointerValueNumbers[PVN++], LI);
758
759      // Store into the memory we promoted.
760      new StoreInst(LI, PromotedValues[i].second, InsertPos);
761    }
762  }
763
764  // Now that we have done the deed, use the mem2reg functionality to promote
765  // all of the new allocas we just created into real SSA registers.
766  //
767  std::vector<AllocaInst*> PromotedAllocas;
768  PromotedAllocas.reserve(PromotedValues.size());
769  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
770    PromotedAllocas.push_back(PromotedValues[i].first);
771  PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
772}
773
774/// FindPromotableValuesInLoop - Check the current loop for stores to definite
775/// pointers, which are not loaded and stored through may aliases and are safe
776/// for promotion.  If these are found, create an alloca for the value, add it
777/// to the PromotedValues list, and keep track of the mapping from value to
778/// alloca.
779void LICM::FindPromotableValuesInLoop(
780                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
781                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
782  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
783
784  // Loop over all of the alias sets in the tracker object.
785  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
786       I != E; ++I) {
787    AliasSet &AS = *I;
788    // We can promote this alias set if it has a store, if it is a "Must" alias
789    // set, if the pointer is loop invariant, and if we are not eliminating any
790    // volatile loads or stores.
791    if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
792        AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
793      continue;
794
795    assert(!AS.empty() &&
796           "Must alias set should have at least one pointer element in it!");
797    Value *V = AS.begin()->getValue();
798
799    // Check that all of the pointers in the alias set have the same type.  We
800    // cannot (yet) promote a memory location that is loaded and stored in
801    // different sizes.
802    {
803      bool PointerOk = true;
804      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
805        if (V->getType() != I->getValue()->getType()) {
806          PointerOk = false;
807          break;
808        }
809      if (!PointerOk)
810        continue;
811    }
812
813    // It isn't safe to promote a load/store from the loop if the load/store is
814    // conditional.  For example, turning:
815    //
816    //    for () { if (c) *P += 1; }
817    //
818    // into:
819    //
820    //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
821    //
822    // is not safe, because *P may only be valid to access if 'c' is true.
823    //
824    // It is safe to promote P if all uses are direct load/stores and if at
825    // least one is guaranteed to be executed.
826    bool GuaranteedToExecute = false;
827    bool InvalidInst = false;
828    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
829         UI != UE; ++UI) {
830      // Ignore instructions not in this loop.
831      Instruction *Use = dyn_cast<Instruction>(*UI);
832      if (!Use || !CurLoop->contains(Use))
833        continue;
834
835      if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
836        InvalidInst = true;
837        break;
838      }
839
840      if (!GuaranteedToExecute)
841        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
842    }
843
844    // If there is an non-load/store instruction in the loop, we can't promote
845    // it.  If there isn't a guaranteed-to-execute instruction, we can't
846    // promote.
847    if (InvalidInst || !GuaranteedToExecute)
848      continue;
849
850    const Type *Ty = cast<PointerType>(V->getType())->getElementType();
851    AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
852    PromotedValues.push_back(std::make_pair(AI, V));
853
854    // Update the AST and alias analysis.
855    CurAST->copyValue(V, AI);
856
857    for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
858      ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
859
860    DEBUG(dbgs() << "LICM: Promoting value: " << *V << "\n");
861  }
862}
863
864/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
865void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
866  AliasSetTracker *AST = LoopToAliasMap[L];
867  if (!AST)
868    return;
869
870  AST->copyValue(From, To);
871}
872
873/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
874/// set.
875void LICM::deleteAnalysisValue(Value *V, Loop *L) {
876  AliasSetTracker *AST = LoopToAliasMap[L];
877  if (!AST)
878    return;
879
880  AST->deleteValue(V);
881}
882