LICM.cpp revision a6275ccdf5e1aa208afde56c498e2b13e16442f0
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// This pass is a simple loop invariant code motion pass.
4//
5// Note that this pass does NOT require pre-headers to exist on loops in the
6// CFG, but if there is not distinct preheader for a loop, the hoisted code will
7// be *DUPLICATED* in every basic block, outside of the loop, that preceeds the
8// loop header.  Additionally, any use of one of these hoisted expressions
9// cannot be loop invariant itself, because the expression hoisted gets a PHI
10// node that is loop variant.
11//
12// For these reasons, and many more, it makes sense to run a pass before this
13// that ensures that there are preheaders on all loops.  That said, we don't
14// REQUIRE it. :)
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/Transforms/Utils/Local.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/iOperators.h"
22#include "llvm/iPHINode.h"
23#include "llvm/Support/InstVisitor.h"
24#include "llvm/Support/CFG.h"
25#include "Support/STLExtras.h"
26#include "Support/StatisticReporter.h"
27#include <algorithm>
28using std::string;
29
30static Statistic<> NumHoistedNPH("licm\t\t- Number of insts hoisted to multiple"
31                                 " loop preds (bad, no loop pre-header)");
32static Statistic<> NumHoistedPH("licm\t\t- Number of insts hoisted to a loop "
33                                "pre-header");
34
35namespace {
36  struct LICM : public FunctionPass, public InstVisitor<LICM> {
37    virtual bool runOnFunction(Function &F);
38
39    // This transformation requires natural loop information...
40    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
41      AU.preservesCFG();
42      AU.addRequired(LoopInfo::ID);
43    }
44
45  private:
46    // List of predecessor blocks for the current loop - These blocks are where
47    // we hoist loop invariants to for the current loop.
48    //
49    std::vector<BasicBlock*> LoopPreds, LoopBackEdges;
50
51    Loop *CurLoop;  // The current loop we are working on...
52    bool Changed;   // Set to true when we change anything.
53
54    // visitLoop - Hoist expressions out of the specified loop...
55    void visitLoop(Loop *L);
56
57    // notInCurrentLoop - Little predicate that returns true if the specified
58    // basic block is in a subloop of the current one, not the current one
59    // itself.
60    //
61    bool notInCurrentLoop(BasicBlock *BB) {
62      for (unsigned i = 0, e = CurLoop->getSubLoops().size(); i != e; ++i)
63        if (CurLoop->getSubLoops()[i]->contains(BB))
64          return true;  // A subloop actually contains this block!
65      return false;
66    }
67
68    // hoist - When an instruction is found to only use loop invariant operands
69    // that is safe to hoist, this instruction is called to do the dirty work.
70    //
71    void hoist(Instruction &I);
72
73    // isLoopInvariant - Return true if the specified value is loop invariant
74    inline bool isLoopInvariant(Value *V) {
75      if (Instruction *I = dyn_cast<Instruction>(V))
76        return !CurLoop->contains(I->getParent());
77      return true;  // All non-instructions are loop invariant
78    }
79
80    // visitBasicBlock - Run LICM on a particular block.
81    void visitBasicBlock(BasicBlock *BB);
82
83    // Instruction visitation handlers... these basically control whether or not
84    // the specified instruction types are hoisted.
85    //
86    friend class InstVisitor<LICM>;
87    void visitUnaryOperator(Instruction &I) {
88      if (isLoopInvariant(I.getOperand(0))) hoist(I);
89    }
90    void visitBinaryOperator(Instruction &I) {
91      if (isLoopInvariant(I.getOperand(0)) && isLoopInvariant(I.getOperand(1)))
92        hoist(I);
93    }
94
95    void visitCastInst(CastInst &I) { visitUnaryOperator((Instruction&)I); }
96    void visitShiftInst(ShiftInst &I) { visitBinaryOperator((Instruction&)I); }
97
98    void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
99      Instruction &I = (Instruction&)GEPI;
100      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
101        if (!isLoopInvariant(I.getOperand(i))) return;
102      hoist(I);
103    }
104  };
105
106  RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
107}
108
109Pass *createLICMPass() { return new LICM(); }
110
111bool LICM::runOnFunction(Function &) {
112  // get our loop information...
113  const std::vector<Loop*> &TopLevelLoops =
114    getAnalysis<LoopInfo>().getTopLevelLoops();
115
116  // Traverse loops in postorder, hoisting expressions out of the deepest loops
117  // first.
118  //
119  Changed = false;
120  std::for_each(TopLevelLoops.begin(), TopLevelLoops.end(),
121                bind_obj(this, &LICM::visitLoop));
122  return Changed;
123}
124
125void LICM::visitLoop(Loop *L) {
126  // Recurse through all subloops before we process this loop...
127  std::for_each(L->getSubLoops().begin(), L->getSubLoops().end(),
128                bind_obj(this, &LICM::visitLoop));
129  CurLoop = L;
130
131  // Calculate the set of predecessors for this loop.  The predecessors for this
132  // loop are equal to the predecessors for the header node of the loop that are
133  // not themselves in the loop.
134  //
135  BasicBlock *Header = L->getHeader();
136
137  // Calculate the sets of predecessors and backedges of the loop...
138  LoopBackEdges.insert(LoopBackEdges.end(),pred_begin(Header),pred_end(Header));
139
140  std::vector<BasicBlock*>::iterator LPI =
141    std::partition(LoopBackEdges.begin(), LoopBackEdges.end(),
142                   bind_obj(CurLoop, &Loop::contains));
143
144  // Move all predecessors to the LoopPreds vector...
145  LoopPreds.insert(LoopPreds.end(), LPI, LoopBackEdges.end());
146
147  // Remove predecessors from backedges list...
148  LoopBackEdges.erase(LPI, LoopBackEdges.end());
149
150
151  // The only way that there could be no predecessors to a loop is if the loop
152  // is not reachable.  Since we don't care about optimizing dead loops,
153  // summarily ignore them.
154  //
155  if (LoopPreds.empty()) return;
156
157  // We want to visit all of the instructions in this loop... that are not parts
158  // of our subloops (they have already had their invariants hoisted out of
159  // their loop, into this loop, so there is no need to process the BODIES of
160  // the subloops).
161  //
162  std::vector<BasicBlock*> BBs(L->getBlocks().begin(), L->getBlocks().end());
163
164  // Remove blocks that are actually in subloops...
165  BBs.erase(std::remove_if(BBs.begin(), BBs.end(),
166                           bind_obj(this, &LICM::notInCurrentLoop)), BBs.end());
167
168  // Visit all of the basic blocks we have chosen, hoisting out the instructions
169  // as neccesary.  This leaves dead copies of the instruction in the loop
170  // unfortunately...
171  //
172  for_each(BBs.begin(), BBs.end(), bind_obj(this, &LICM::visitBasicBlock));
173
174  // Clear out loops state information for the next iteration
175  CurLoop = 0;
176  LoopPreds.clear();
177  LoopBackEdges.clear();
178}
179
180void LICM::visitBasicBlock(BasicBlock *BB) {
181  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
182    visit(*I);
183
184    if (dceInstruction(I))
185      Changed = true;
186    else
187      ++I;
188  }
189}
190
191
192void LICM::hoist(Instruction &Inst) {
193  if (Inst.use_empty()) return;  // Don't (re) hoist dead instructions!
194  //cerr << "Hoisting " << Inst;
195
196  BasicBlock *Header = CurLoop->getHeader();
197
198  // Old instruction will be removed, so take it's name...
199  string InstName = Inst.getName();
200  Inst.setName("");
201
202  // The common case is that we have a pre-header.  Generate special case code
203  // that is faster if that is the case.
204  //
205  if (LoopPreds.size() == 1) {
206    BasicBlock *Pred = LoopPreds[0];
207
208    // Create a new copy of the instruction, for insertion into Pred.
209    Instruction *New = Inst.clone();
210    New->setName(InstName);
211
212    // Insert the new node in Pred, before the terminator.
213    Pred->getInstList().insert(--Pred->end(), New);
214
215    // Kill the old instruction...
216    Inst.replaceAllUsesWith(New);
217    ++NumHoistedPH;
218
219  } else {
220    // No loop pre-header, insert a PHI node into header to capture all of the
221    // incoming versions of the value.
222    //
223    PHINode *LoopVal = new PHINode(Inst.getType(), InstName+".phi");
224
225    // Insert the new PHI node into the loop header...
226    Header->getInstList().push_front(LoopVal);
227
228    // Insert cloned versions of the instruction into all of the loop preds.
229    for (unsigned i = 0, e = LoopPreds.size(); i != e; ++i) {
230      BasicBlock *Pred = LoopPreds[i];
231
232      // Create a new copy of the instruction, for insertion into Pred.
233      Instruction *New = Inst.clone();
234      New->setName(InstName);
235
236      // Insert the new node in Pred, before the terminator.
237      Pred->getInstList().insert(--Pred->end(), New);
238
239      // Add the incoming value to the PHI node.
240      LoopVal->addIncoming(New, Pred);
241    }
242
243    // Add incoming values to the PHI node for all backedges in the loop...
244    for (unsigned i = 0, e = LoopBackEdges.size(); i != e; ++i)
245      LoopVal->addIncoming(LoopVal, LoopBackEdges[i]);
246
247    // Replace all uses of the old version of the instruction in the loop with
248    // the new version that is out of the loop.  We know that this is ok,
249    // because the new definition is in the loop header, which dominates the
250    // entire loop body.  The old definition was defined _inside_ of the loop,
251    // so the scope cannot extend outside of the loop, so we're ok.
252    //
253    Inst.replaceAllUsesWith(LoopVal);
254    ++NumHoistedNPH;
255  }
256
257  Changed = true;
258}
259
260