LICM.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/ConstantFolding.h"
38#include "llvm/Analysis/LoopInfo.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Analysis/ScalarEvolution.h"
41#include "llvm/Analysis/ValueTracking.h"
42#include "llvm/IR/CFG.h"
43#include "llvm/IR/Constants.h"
44#include "llvm/IR/DataLayout.h"
45#include "llvm/IR/DerivedTypes.h"
46#include "llvm/IR/Dominators.h"
47#include "llvm/IR/Instructions.h"
48#include "llvm/IR/IntrinsicInst.h"
49#include "llvm/IR/LLVMContext.h"
50#include "llvm/IR/Metadata.h"
51#include "llvm/IR/PredIteratorCache.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetLibraryInfo.h"
56#include "llvm/Transforms/Utils/Local.h"
57#include "llvm/Transforms/Utils/LoopUtils.h"
58#include "llvm/Transforms/Utils/SSAUpdater.h"
59#include <algorithm>
60using namespace llvm;
61
62#define DEBUG_TYPE "licm"
63
64STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
65STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
66STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
67STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
68STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
69
70static cl::opt<bool>
71DisablePromotion("disable-licm-promotion", cl::Hidden,
72                 cl::desc("Disable memory promotion in LICM pass"));
73
74namespace {
75  struct LICM : public LoopPass {
76    static char ID; // Pass identification, replacement for typeid
77    LICM() : LoopPass(ID) {
78      initializeLICMPass(*PassRegistry::getPassRegistry());
79    }
80
81    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
82
83    /// This transformation requires natural loop information & requires that
84    /// loop preheaders be inserted into the CFG...
85    ///
86    void getAnalysisUsage(AnalysisUsage &AU) const override {
87      AU.setPreservesCFG();
88      AU.addRequired<DominatorTreeWrapperPass>();
89      AU.addRequired<LoopInfo>();
90      AU.addRequiredID(LoopSimplifyID);
91      AU.addPreservedID(LoopSimplifyID);
92      AU.addRequiredID(LCSSAID);
93      AU.addPreservedID(LCSSAID);
94      AU.addRequired<AliasAnalysis>();
95      AU.addPreserved<AliasAnalysis>();
96      AU.addPreserved<ScalarEvolution>();
97      AU.addRequired<TargetLibraryInfo>();
98    }
99
100    using llvm::Pass::doFinalization;
101
102    bool doFinalization() override {
103      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
104      return false;
105    }
106
107  private:
108    AliasAnalysis *AA;       // Current AliasAnalysis information
109    LoopInfo      *LI;       // Current LoopInfo
110    DominatorTree *DT;       // Dominator Tree for the current Loop.
111
112    const DataLayout *DL;    // DataLayout for constant folding.
113    TargetLibraryInfo *TLI;  // TargetLibraryInfo for constant folding.
114
115    // State that is updated as we process loops.
116    bool Changed;            // Set to true when we change anything.
117    BasicBlock *Preheader;   // The preheader block of the current loop...
118    Loop *CurLoop;           // The current loop we are working on...
119    AliasSetTracker *CurAST; // AliasSet information for the current loop...
120    bool MayThrow;           // The current loop contains an instruction which
121                             // may throw, thus preventing code motion of
122                             // instructions with side effects.
123    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
124
125    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
126    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
127                                 Loop *L) override;
128
129    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
130    /// set.
131    void deleteAnalysisValue(Value *V, Loop *L) override;
132
133    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
134    /// dominated by the specified block, and that are in the current loop) in
135    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
136    /// visit uses before definitions, allowing us to sink a loop body in one
137    /// pass without iteration.
138    ///
139    void SinkRegion(DomTreeNode *N);
140
141    /// HoistRegion - Walk the specified region of the CFG (defined by all
142    /// blocks dominated by the specified block, and that are in the current
143    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
144    /// visit definitions before uses, allowing us to hoist a loop body in one
145    /// pass without iteration.
146    ///
147    void HoistRegion(DomTreeNode *N);
148
149    /// inSubLoop - Little predicate that returns true if the specified basic
150    /// block is in a subloop of the current one, not the current one itself.
151    ///
152    bool inSubLoop(BasicBlock *BB) {
153      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
154      return LI->getLoopFor(BB) != CurLoop;
155    }
156
157    /// sink - When an instruction is found to only be used outside of the loop,
158    /// this function moves it to the exit blocks and patches up SSA form as
159    /// needed.
160    ///
161    void sink(Instruction &I);
162
163    /// hoist - When an instruction is found to only use loop invariant operands
164    /// that is safe to hoist, this instruction is called to do the dirty work.
165    ///
166    void hoist(Instruction &I);
167
168    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
169    /// is not a trapping instruction or if it is a trapping instruction and is
170    /// guaranteed to execute.
171    ///
172    bool isSafeToExecuteUnconditionally(Instruction &I);
173
174    /// isGuaranteedToExecute - Check that the instruction is guaranteed to
175    /// execute.
176    ///
177    bool isGuaranteedToExecute(Instruction &I);
178
179    /// pointerInvalidatedByLoop - Return true if the body of this loop may
180    /// store into the memory location pointed to by V.
181    ///
182    bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
183                                  const MDNode *TBAAInfo) {
184      // Check to see if any of the basic blocks in CurLoop invalidate *V.
185      return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
186    }
187
188    bool canSinkOrHoistInst(Instruction &I);
189    bool isNotUsedInLoop(Instruction &I);
190
191    void PromoteAliasSet(AliasSet &AS,
192                         SmallVectorImpl<BasicBlock*> &ExitBlocks,
193                         SmallVectorImpl<Instruction*> &InsertPts,
194                         PredIteratorCache &PIC);
195  };
196}
197
198char LICM::ID = 0;
199INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
200INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
201INITIALIZE_PASS_DEPENDENCY(LoopInfo)
202INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
203INITIALIZE_PASS_DEPENDENCY(LCSSA)
204INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
205INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
206INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
207INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
208
209Pass *llvm::createLICMPass() { return new LICM(); }
210
211/// Hoist expressions out of the specified loop. Note, alias info for inner
212/// loop is not preserved so it is not a good idea to run LICM multiple
213/// times on one loop.
214///
215bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
216  if (skipOptnoneFunction(L))
217    return false;
218
219  Changed = false;
220
221  // Get our Loop and Alias Analysis information...
222  LI = &getAnalysis<LoopInfo>();
223  AA = &getAnalysis<AliasAnalysis>();
224  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
225
226  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
227  DL = DLP ? &DLP->getDataLayout() : nullptr;
228  TLI = &getAnalysis<TargetLibraryInfo>();
229
230  assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
231
232  CurAST = new AliasSetTracker(*AA);
233  // Collect Alias info from subloops.
234  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
235       LoopItr != LoopItrE; ++LoopItr) {
236    Loop *InnerL = *LoopItr;
237    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
238    assert(InnerAST && "Where is my AST?");
239
240    // What if InnerLoop was modified by other passes ?
241    CurAST->add(*InnerAST);
242
243    // Once we've incorporated the inner loop's AST into ours, we don't need the
244    // subloop's anymore.
245    delete InnerAST;
246    LoopToAliasSetMap.erase(InnerL);
247  }
248
249  CurLoop = L;
250
251  // Get the preheader block to move instructions into...
252  Preheader = L->getLoopPreheader();
253
254  // Loop over the body of this loop, looking for calls, invokes, and stores.
255  // Because subloops have already been incorporated into AST, we skip blocks in
256  // subloops.
257  //
258  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
259       I != E; ++I) {
260    BasicBlock *BB = *I;
261    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
262      CurAST->add(*BB);                 // Incorporate the specified basic block
263  }
264
265  MayThrow = false;
266  // TODO: We've already searched for instructions which may throw in subloops.
267  // We may want to reuse this information.
268  for (Loop::block_iterator BB = L->block_begin(), BBE = L->block_end();
269       (BB != BBE) && !MayThrow ; ++BB)
270    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end();
271         (I != E) && !MayThrow; ++I)
272      MayThrow |= I->mayThrow();
273
274  // We want to visit all of the instructions in this loop... that are not parts
275  // of our subloops (they have already had their invariants hoisted out of
276  // their loop, into this loop, so there is no need to process the BODIES of
277  // the subloops).
278  //
279  // Traverse the body of the loop in depth first order on the dominator tree so
280  // that we are guaranteed to see definitions before we see uses.  This allows
281  // us to sink instructions in one pass, without iteration.  After sinking
282  // instructions, we perform another pass to hoist them out of the loop.
283  //
284  if (L->hasDedicatedExits())
285    SinkRegion(DT->getNode(L->getHeader()));
286  if (Preheader)
287    HoistRegion(DT->getNode(L->getHeader()));
288
289  // Now that all loop invariants have been removed from the loop, promote any
290  // memory references to scalars that we can.
291  if (!DisablePromotion && (Preheader || L->hasDedicatedExits())) {
292    SmallVector<BasicBlock *, 8> ExitBlocks;
293    SmallVector<Instruction *, 8> InsertPts;
294    PredIteratorCache PIC;
295
296    // Loop over all of the alias sets in the tracker object.
297    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
298         I != E; ++I)
299      PromoteAliasSet(*I, ExitBlocks, InsertPts, PIC);
300
301    // Once we have promoted values across the loop body we have to recursively
302    // reform LCSSA as any nested loop may now have values defined within the
303    // loop used in the outer loop.
304    // FIXME: This is really heavy handed. It would be a bit better to use an
305    // SSAUpdater strategy during promotion that was LCSSA aware and reformed
306    // it as it went.
307    if (Changed)
308      formLCSSARecursively(*L, *DT, getAnalysisIfAvailable<ScalarEvolution>());
309  }
310
311  // Check that neither this loop nor its parent have had LCSSA broken. LICM is
312  // specifically moving instructions across the loop boundary and so it is
313  // especially in need of sanity checking here.
314  assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
315  assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
316         "Parent loop not left in LCSSA form after LICM!");
317
318  // Clear out loops state information for the next iteration
319  CurLoop = nullptr;
320  Preheader = nullptr;
321
322  // If this loop is nested inside of another one, save the alias information
323  // for when we process the outer loop.
324  if (L->getParentLoop())
325    LoopToAliasSetMap[L] = CurAST;
326  else
327    delete CurAST;
328  return Changed;
329}
330
331/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
332/// dominated by the specified block, and that are in the current loop) in
333/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
334/// uses before definitions, allowing us to sink a loop body in one pass without
335/// iteration.
336///
337void LICM::SinkRegion(DomTreeNode *N) {
338  assert(N != nullptr && "Null dominator tree node?");
339  BasicBlock *BB = N->getBlock();
340
341  // If this subregion is not in the top level loop at all, exit.
342  if (!CurLoop->contains(BB)) return;
343
344  // We are processing blocks in reverse dfo, so process children first.
345  const std::vector<DomTreeNode*> &Children = N->getChildren();
346  for (unsigned i = 0, e = Children.size(); i != e; ++i)
347    SinkRegion(Children[i]);
348
349  // Only need to process the contents of this block if it is not part of a
350  // subloop (which would already have been processed).
351  if (inSubLoop(BB)) return;
352
353  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
354    Instruction &I = *--II;
355
356    // If the instruction is dead, we would try to sink it because it isn't used
357    // in the loop, instead, just delete it.
358    if (isInstructionTriviallyDead(&I, TLI)) {
359      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
360      ++II;
361      CurAST->deleteValue(&I);
362      I.eraseFromParent();
363      Changed = true;
364      continue;
365    }
366
367    // Check to see if we can sink this instruction to the exit blocks
368    // of the loop.  We can do this if the all users of the instruction are
369    // outside of the loop.  In this case, it doesn't even matter if the
370    // operands of the instruction are loop invariant.
371    //
372    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
373      ++II;
374      sink(I);
375    }
376  }
377}
378
379/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
380/// dominated by the specified block, and that are in the current loop) in depth
381/// first order w.r.t the DominatorTree.  This allows us to visit definitions
382/// before uses, allowing us to hoist a loop body in one pass without iteration.
383///
384void LICM::HoistRegion(DomTreeNode *N) {
385  assert(N != nullptr && "Null dominator tree node?");
386  BasicBlock *BB = N->getBlock();
387
388  // If this subregion is not in the top level loop at all, exit.
389  if (!CurLoop->contains(BB)) return;
390
391  // Only need to process the contents of this block if it is not part of a
392  // subloop (which would already have been processed).
393  if (!inSubLoop(BB))
394    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
395      Instruction &I = *II++;
396
397      // Try constant folding this instruction.  If all the operands are
398      // constants, it is technically hoistable, but it would be better to just
399      // fold it.
400      if (Constant *C = ConstantFoldInstruction(&I, DL, TLI)) {
401        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
402        CurAST->copyValue(&I, C);
403        CurAST->deleteValue(&I);
404        I.replaceAllUsesWith(C);
405        I.eraseFromParent();
406        continue;
407      }
408
409      // Try hoisting the instruction out to the preheader.  We can only do this
410      // if all of the operands of the instruction are loop invariant and if it
411      // is safe to hoist the instruction.
412      //
413      if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
414          isSafeToExecuteUnconditionally(I))
415        hoist(I);
416    }
417
418  const std::vector<DomTreeNode*> &Children = N->getChildren();
419  for (unsigned i = 0, e = Children.size(); i != e; ++i)
420    HoistRegion(Children[i]);
421}
422
423/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
424/// instruction.
425///
426bool LICM::canSinkOrHoistInst(Instruction &I) {
427  // Loads have extra constraints we have to verify before we can hoist them.
428  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
429    if (!LI->isUnordered())
430      return false;        // Don't hoist volatile/atomic loads!
431
432    // Loads from constant memory are always safe to move, even if they end up
433    // in the same alias set as something that ends up being modified.
434    if (AA->pointsToConstantMemory(LI->getOperand(0)))
435      return true;
436    if (LI->getMetadata("invariant.load"))
437      return true;
438
439    // Don't hoist loads which have may-aliased stores in loop.
440    uint64_t Size = 0;
441    if (LI->getType()->isSized())
442      Size = AA->getTypeStoreSize(LI->getType());
443    return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
444                                     LI->getMetadata(LLVMContext::MD_tbaa));
445  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
446    // Don't sink or hoist dbg info; it's legal, but not useful.
447    if (isa<DbgInfoIntrinsic>(I))
448      return false;
449
450    // Handle simple cases by querying alias analysis.
451    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
452    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
453      return true;
454    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
455      // If this call only reads from memory and there are no writes to memory
456      // in the loop, we can hoist or sink the call as appropriate.
457      bool FoundMod = false;
458      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
459           I != E; ++I) {
460        AliasSet &AS = *I;
461        if (!AS.isForwardingAliasSet() && AS.isMod()) {
462          FoundMod = true;
463          break;
464        }
465      }
466      if (!FoundMod) return true;
467    }
468
469    // FIXME: This should use mod/ref information to see if we can hoist or
470    // sink the call.
471
472    return false;
473  }
474
475  // Only these instructions are hoistable/sinkable.
476  if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) &&
477      !isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) &&
478      !isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
479      !isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) &&
480      !isa<InsertValueInst>(I))
481    return false;
482
483  return isSafeToExecuteUnconditionally(I);
484}
485
486/// \brief Returns true if a PHINode is a trivially replaceable with an
487/// Instruction.
488///
489/// This is true when all incoming values are that instruction. This pattern
490/// occurs most often with LCSSA PHI nodes.
491static bool isTriviallyReplacablePHI(PHINode &PN, Instruction &I) {
492  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
493    if (PN.getIncomingValue(i) != &I)
494      return false;
495
496  return true;
497}
498
499/// isNotUsedInLoop - Return true if the only users of this instruction are
500/// outside of the loop.  If this is true, we can sink the instruction to the
501/// exit blocks of the loop.
502///
503bool LICM::isNotUsedInLoop(Instruction &I) {
504  for (User *U : I.users()) {
505    Instruction *UI = cast<Instruction>(U);
506    if (PHINode *PN = dyn_cast<PHINode>(UI)) {
507      // A PHI node where all of the incoming values are this instruction are
508      // special -- they can just be RAUW'ed with the instruction and thus
509      // don't require a use in the predecessor. This is a particular important
510      // special case because it is the pattern found in LCSSA form.
511      if (isTriviallyReplacablePHI(*PN, I)) {
512        if (CurLoop->contains(PN))
513          return false;
514        else
515          continue;
516      }
517
518      // Otherwise, PHI node uses occur in predecessor blocks if the incoming
519      // values. Check for such a use being inside the loop.
520      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
521        if (PN->getIncomingValue(i) == &I)
522          if (CurLoop->contains(PN->getIncomingBlock(i)))
523            return false;
524
525      continue;
526    }
527
528    if (CurLoop->contains(UI))
529      return false;
530  }
531  return true;
532}
533
534/// sink - When an instruction is found to only be used outside of the loop,
535/// this function moves it to the exit blocks and patches up SSA form as needed.
536/// This method is guaranteed to remove the original instruction from its
537/// position, and may either delete it or move it to outside of the loop.
538///
539void LICM::sink(Instruction &I) {
540  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
541
542  if (isa<LoadInst>(I)) ++NumMovedLoads;
543  else if (isa<CallInst>(I)) ++NumMovedCalls;
544  ++NumSunk;
545  Changed = true;
546
547#ifndef NDEBUG
548  SmallVector<BasicBlock *, 32> ExitBlocks;
549  CurLoop->getUniqueExitBlocks(ExitBlocks);
550  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
551#endif
552
553  // If this instruction is only used outside of the loop, then all users are
554  // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
555  // the instruction.
556  while (!I.use_empty()) {
557    // The user must be a PHI node.
558    PHINode *PN = cast<PHINode>(I.user_back());
559
560    BasicBlock *ExitBlock = PN->getParent();
561    assert(ExitBlockSet.count(ExitBlock) &&
562           "The LCSSA PHI is not in an exit block!");
563
564    Instruction *New = I.clone();
565    ExitBlock->getInstList().insert(ExitBlock->getFirstInsertionPt(), New);
566    if (!I.getName().empty())
567      New->setName(I.getName() + ".le");
568
569    // Build LCSSA PHI nodes for any in-loop operands. Note that this is
570    // particularly cheap because we can rip off the PHI node that we're
571    // replacing for the number and blocks of the predecessors.
572    // OPT: If this shows up in a profile, we can instead finish sinking all
573    // invariant instructions, and then walk their operands to re-establish
574    // LCSSA. That will eliminate creating PHI nodes just to nuke them when
575    // sinking bottom-up.
576    for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
577         ++OI)
578      if (Instruction *OInst = dyn_cast<Instruction>(*OI))
579        if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
580          if (!OLoop->contains(PN)) {
581            PHINode *OpPN = PHINode::Create(
582                OInst->getType(), PN->getNumIncomingValues(),
583                OInst->getName() + ".lcssa", ExitBlock->begin());
584            for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
585              OpPN->addIncoming(OInst, PN->getIncomingBlock(i));
586            *OI = OpPN;
587          }
588
589    PN->replaceAllUsesWith(New);
590    PN->eraseFromParent();
591  }
592
593  CurAST->deleteValue(&I);
594  I.eraseFromParent();
595}
596
597/// hoist - When an instruction is found to only use loop invariant operands
598/// that is safe to hoist, this instruction is called to do the dirty work.
599///
600void LICM::hoist(Instruction &I) {
601  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
602        << I << "\n");
603
604  // Move the new node to the Preheader, before its terminator.
605  I.moveBefore(Preheader->getTerminator());
606
607  if (isa<LoadInst>(I)) ++NumMovedLoads;
608  else if (isa<CallInst>(I)) ++NumMovedCalls;
609  ++NumHoisted;
610  Changed = true;
611}
612
613/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
614/// not a trapping instruction or if it is a trapping instruction and is
615/// guaranteed to execute.
616///
617bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
618  // If it is not a trapping instruction, it is always safe to hoist.
619  if (isSafeToSpeculativelyExecute(&Inst))
620    return true;
621
622  return isGuaranteedToExecute(Inst);
623}
624
625bool LICM::isGuaranteedToExecute(Instruction &Inst) {
626
627  // Somewhere in this loop there is an instruction which may throw and make us
628  // exit the loop.
629  if (MayThrow)
630    return false;
631
632  // Otherwise we have to check to make sure that the instruction dominates all
633  // of the exit blocks.  If it doesn't, then there is a path out of the loop
634  // which does not execute this instruction, so we can't hoist it.
635
636  // If the instruction is in the header block for the loop (which is very
637  // common), it is always guaranteed to dominate the exit blocks.  Since this
638  // is a common case, and can save some work, check it now.
639  if (Inst.getParent() == CurLoop->getHeader())
640    return true;
641
642  // Get the exit blocks for the current loop.
643  SmallVector<BasicBlock*, 8> ExitBlocks;
644  CurLoop->getExitBlocks(ExitBlocks);
645
646  // Verify that the block dominates each of the exit blocks of the loop.
647  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
648    if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
649      return false;
650
651  // As a degenerate case, if the loop is statically infinite then we haven't
652  // proven anything since there are no exit blocks.
653  if (ExitBlocks.empty())
654    return false;
655
656  return true;
657}
658
659namespace {
660  class LoopPromoter : public LoadAndStorePromoter {
661    Value *SomePtr;  // Designated pointer to store to.
662    SmallPtrSet<Value*, 4> &PointerMustAliases;
663    SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
664    SmallVectorImpl<Instruction*> &LoopInsertPts;
665    PredIteratorCache &PredCache;
666    AliasSetTracker &AST;
667    LoopInfo &LI;
668    DebugLoc DL;
669    int Alignment;
670    MDNode *TBAATag;
671
672    Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
673      if (Instruction *I = dyn_cast<Instruction>(V))
674        if (Loop *L = LI.getLoopFor(I->getParent()))
675          if (!L->contains(BB)) {
676            // We need to create an LCSSA PHI node for the incoming value and
677            // store that.
678            PHINode *PN = PHINode::Create(
679                I->getType(), PredCache.GetNumPreds(BB),
680                I->getName() + ".lcssa", BB->begin());
681            for (BasicBlock **PI = PredCache.GetPreds(BB); *PI; ++PI)
682              PN->addIncoming(I, *PI);
683            return PN;
684          }
685      return V;
686    }
687
688  public:
689    LoopPromoter(Value *SP, const SmallVectorImpl<Instruction *> &Insts,
690                 SSAUpdater &S, SmallPtrSet<Value *, 4> &PMA,
691                 SmallVectorImpl<BasicBlock *> &LEB,
692                 SmallVectorImpl<Instruction *> &LIP, PredIteratorCache &PIC,
693                 AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment,
694                 MDNode *TBAATag)
695        : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
696          LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast),
697          LI(li), DL(dl), Alignment(alignment), TBAATag(TBAATag) {}
698
699    bool isInstInList(Instruction *I,
700                      const SmallVectorImpl<Instruction*> &) const override {
701      Value *Ptr;
702      if (LoadInst *LI = dyn_cast<LoadInst>(I))
703        Ptr = LI->getOperand(0);
704      else
705        Ptr = cast<StoreInst>(I)->getPointerOperand();
706      return PointerMustAliases.count(Ptr);
707    }
708
709    void doExtraRewritesBeforeFinalDeletion() const override {
710      // Insert stores after in the loop exit blocks.  Each exit block gets a
711      // store of the live-out values that feed them.  Since we've already told
712      // the SSA updater about the defs in the loop and the preheader
713      // definition, it is all set and we can start using it.
714      for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
715        BasicBlock *ExitBlock = LoopExitBlocks[i];
716        Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
717        LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
718        Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
719        Instruction *InsertPos = LoopInsertPts[i];
720        StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
721        NewSI->setAlignment(Alignment);
722        NewSI->setDebugLoc(DL);
723        if (TBAATag) NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
724      }
725    }
726
727    void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
728      // Update alias analysis.
729      AST.copyValue(LI, V);
730    }
731    void instructionDeleted(Instruction *I) const override {
732      AST.deleteValue(I);
733    }
734  };
735} // end anon namespace
736
737/// PromoteAliasSet - Try to promote memory values to scalars by sinking
738/// stores out of the loop and moving loads to before the loop.  We do this by
739/// looping over the stores in the loop, looking for stores to Must pointers
740/// which are loop invariant.
741///
742void LICM::PromoteAliasSet(AliasSet &AS,
743                           SmallVectorImpl<BasicBlock*> &ExitBlocks,
744                           SmallVectorImpl<Instruction*> &InsertPts,
745                           PredIteratorCache &PIC) {
746  // We can promote this alias set if it has a store, if it is a "Must" alias
747  // set, if the pointer is loop invariant, and if we are not eliminating any
748  // volatile loads or stores.
749  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
750      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
751    return;
752
753  assert(!AS.empty() &&
754         "Must alias set should have at least one pointer element in it!");
755  Value *SomePtr = AS.begin()->getValue();
756
757  // It isn't safe to promote a load/store from the loop if the load/store is
758  // conditional.  For example, turning:
759  //
760  //    for () { if (c) *P += 1; }
761  //
762  // into:
763  //
764  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
765  //
766  // is not safe, because *P may only be valid to access if 'c' is true.
767  //
768  // It is safe to promote P if all uses are direct load/stores and if at
769  // least one is guaranteed to be executed.
770  bool GuaranteedToExecute = false;
771
772  SmallVector<Instruction*, 64> LoopUses;
773  SmallPtrSet<Value*, 4> PointerMustAliases;
774
775  // We start with an alignment of one and try to find instructions that allow
776  // us to prove better alignment.
777  unsigned Alignment = 1;
778  MDNode *TBAATag = nullptr;
779
780  // Check that all of the pointers in the alias set have the same type.  We
781  // cannot (yet) promote a memory location that is loaded and stored in
782  // different sizes.  While we are at it, collect alignment and TBAA info.
783  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
784    Value *ASIV = ASI->getValue();
785    PointerMustAliases.insert(ASIV);
786
787    // Check that all of the pointers in the alias set have the same type.  We
788    // cannot (yet) promote a memory location that is loaded and stored in
789    // different sizes.
790    if (SomePtr->getType() != ASIV->getType())
791      return;
792
793    for (User *U : ASIV->users()) {
794      // Ignore instructions that are outside the loop.
795      Instruction *UI = dyn_cast<Instruction>(U);
796      if (!UI || !CurLoop->contains(UI))
797        continue;
798
799      // If there is an non-load/store instruction in the loop, we can't promote
800      // it.
801      if (LoadInst *load = dyn_cast<LoadInst>(UI)) {
802        assert(!load->isVolatile() && "AST broken");
803        if (!load->isSimple())
804          return;
805      } else if (StoreInst *store = dyn_cast<StoreInst>(UI)) {
806        // Stores *of* the pointer are not interesting, only stores *to* the
807        // pointer.
808        if (UI->getOperand(1) != ASIV)
809          continue;
810        assert(!store->isVolatile() && "AST broken");
811        if (!store->isSimple())
812          return;
813
814        // Note that we only check GuaranteedToExecute inside the store case
815        // so that we do not introduce stores where they did not exist before
816        // (which would break the LLVM concurrency model).
817
818        // If the alignment of this instruction allows us to specify a more
819        // restrictive (and performant) alignment and if we are sure this
820        // instruction will be executed, update the alignment.
821        // Larger is better, with the exception of 0 being the best alignment.
822        unsigned InstAlignment = store->getAlignment();
823        if ((InstAlignment > Alignment || InstAlignment == 0) && Alignment != 0)
824          if (isGuaranteedToExecute(*UI)) {
825            GuaranteedToExecute = true;
826            Alignment = InstAlignment;
827          }
828
829        if (!GuaranteedToExecute)
830          GuaranteedToExecute = isGuaranteedToExecute(*UI);
831
832      } else
833        return; // Not a load or store.
834
835      // Merge the TBAA tags.
836      if (LoopUses.empty()) {
837        // On the first load/store, just take its TBAA tag.
838        TBAATag = UI->getMetadata(LLVMContext::MD_tbaa);
839      } else if (TBAATag) {
840        TBAATag = MDNode::getMostGenericTBAA(TBAATag,
841                                       UI->getMetadata(LLVMContext::MD_tbaa));
842      }
843
844      LoopUses.push_back(UI);
845    }
846  }
847
848  // If there isn't a guaranteed-to-execute instruction, we can't promote.
849  if (!GuaranteedToExecute)
850    return;
851
852  // Otherwise, this is safe to promote, lets do it!
853  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
854  Changed = true;
855  ++NumPromoted;
856
857  // Grab a debug location for the inserted loads/stores; given that the
858  // inserted loads/stores have little relation to the original loads/stores,
859  // this code just arbitrarily picks a location from one, since any debug
860  // location is better than none.
861  DebugLoc DL = LoopUses[0]->getDebugLoc();
862
863  // Figure out the loop exits and their insertion points, if this is the
864  // first promotion.
865  if (ExitBlocks.empty()) {
866    CurLoop->getUniqueExitBlocks(ExitBlocks);
867    InsertPts.resize(ExitBlocks.size());
868    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
869      InsertPts[i] = ExitBlocks[i]->getFirstInsertionPt();
870  }
871
872  // We use the SSAUpdater interface to insert phi nodes as required.
873  SmallVector<PHINode*, 16> NewPHIs;
874  SSAUpdater SSA(&NewPHIs);
875  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
876                        InsertPts, PIC, *CurAST, *LI, DL, Alignment, TBAATag);
877
878  // Set up the preheader to have a definition of the value.  It is the live-out
879  // value from the preheader that uses in the loop will use.
880  LoadInst *PreheaderLoad =
881    new LoadInst(SomePtr, SomePtr->getName()+".promoted",
882                 Preheader->getTerminator());
883  PreheaderLoad->setAlignment(Alignment);
884  PreheaderLoad->setDebugLoc(DL);
885  if (TBAATag) PreheaderLoad->setMetadata(LLVMContext::MD_tbaa, TBAATag);
886  SSA.AddAvailableValue(Preheader, PreheaderLoad);
887
888  // Rewrite all the loads in the loop and remember all the definitions from
889  // stores in the loop.
890  Promoter.run(LoopUses);
891
892  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
893  if (PreheaderLoad->use_empty())
894    PreheaderLoad->eraseFromParent();
895}
896
897
898/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
899void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
900  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
901  if (!AST)
902    return;
903
904  AST->copyValue(From, To);
905}
906
907/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
908/// set.
909void LICM::deleteAnalysisValue(Value *V, Loop *L) {
910  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
911  if (!AST)
912    return;
913
914  AST->deleteValue(V);
915}
916