1//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Dead Loop Deletion Pass. This pass is responsible
11// for eliminating loops with non-infinite computable trip counts that have no
12// side effects or volatile instructions, and do not contribute to the
13// computation of the function's return value.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/LoopPass.h"
21#include "llvm/Analysis/ScalarEvolution.h"
22#include "llvm/IR/Dominators.h"
23using namespace llvm;
24
25#define DEBUG_TYPE "loop-delete"
26
27STATISTIC(NumDeleted, "Number of loops deleted");
28
29namespace {
30  class LoopDeletion : public LoopPass {
31  public:
32    static char ID; // Pass ID, replacement for typeid
33    LoopDeletion() : LoopPass(ID) {
34      initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
35    }
36
37    // Possibly eliminate loop L if it is dead.
38    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
39
40    void getAnalysisUsage(AnalysisUsage &AU) const override {
41      AU.addRequired<DominatorTreeWrapperPass>();
42      AU.addRequired<LoopInfo>();
43      AU.addRequired<ScalarEvolution>();
44      AU.addRequiredID(LoopSimplifyID);
45      AU.addRequiredID(LCSSAID);
46
47      AU.addPreserved<ScalarEvolution>();
48      AU.addPreserved<DominatorTreeWrapperPass>();
49      AU.addPreserved<LoopInfo>();
50      AU.addPreservedID(LoopSimplifyID);
51      AU.addPreservedID(LCSSAID);
52    }
53
54  private:
55    bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
56                    SmallVectorImpl<BasicBlock *> &exitBlocks,
57                    bool &Changed, BasicBlock *Preheader);
58
59  };
60}
61
62char LoopDeletion::ID = 0;
63INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
64                "Delete dead loops", false, false)
65INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
66INITIALIZE_PASS_DEPENDENCY(LoopInfo)
67INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
68INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
69INITIALIZE_PASS_DEPENDENCY(LCSSA)
70INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
71                "Delete dead loops", false, false)
72
73Pass *llvm::createLoopDeletionPass() {
74  return new LoopDeletion();
75}
76
77/// isLoopDead - Determined if a loop is dead.  This assumes that we've already
78/// checked for unique exit and exiting blocks, and that the code is in LCSSA
79/// form.
80bool LoopDeletion::isLoopDead(Loop *L,
81                              SmallVectorImpl<BasicBlock *> &exitingBlocks,
82                              SmallVectorImpl<BasicBlock *> &exitBlocks,
83                              bool &Changed, BasicBlock *Preheader) {
84  BasicBlock *exitBlock = exitBlocks[0];
85
86  // Make sure that all PHI entries coming from the loop are loop invariant.
87  // Because the code is in LCSSA form, any values used outside of the loop
88  // must pass through a PHI in the exit block, meaning that this check is
89  // sufficient to guarantee that no loop-variant values are used outside
90  // of the loop.
91  BasicBlock::iterator BI = exitBlock->begin();
92  while (PHINode *P = dyn_cast<PHINode>(BI)) {
93    Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
94
95    // Make sure all exiting blocks produce the same incoming value for the exit
96    // block.  If there are different incoming values for different exiting
97    // blocks, then it is impossible to statically determine which value should
98    // be used.
99    for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
100      if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
101        return false;
102    }
103
104    if (Instruction *I = dyn_cast<Instruction>(incoming))
105      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
106        return false;
107
108    ++BI;
109  }
110
111  // Make sure that no instructions in the block have potential side-effects.
112  // This includes instructions that could write to memory, and loads that are
113  // marked volatile.  This could be made more aggressive by using aliasing
114  // information to identify readonly and readnone calls.
115  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
116       LI != LE; ++LI) {
117    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
118         BI != BE; ++BI) {
119      if (BI->mayHaveSideEffects())
120        return false;
121    }
122  }
123
124  return true;
125}
126
127/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
128/// observable behavior of the program other than finite running time.  Note
129/// we do ensure that this never remove a loop that might be infinite, as doing
130/// so could change the halting/non-halting nature of a program.
131/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
132/// in order to make various safety checks work.
133bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
134  if (skipOptnoneFunction(L))
135    return false;
136
137  // We can only remove the loop if there is a preheader that we can
138  // branch from after removing it.
139  BasicBlock *preheader = L->getLoopPreheader();
140  if (!preheader)
141    return false;
142
143  // If LoopSimplify form is not available, stay out of trouble.
144  if (!L->hasDedicatedExits())
145    return false;
146
147  // We can't remove loops that contain subloops.  If the subloops were dead,
148  // they would already have been removed in earlier executions of this pass.
149  if (L->begin() != L->end())
150    return false;
151
152  SmallVector<BasicBlock*, 4> exitingBlocks;
153  L->getExitingBlocks(exitingBlocks);
154
155  SmallVector<BasicBlock*, 4> exitBlocks;
156  L->getUniqueExitBlocks(exitBlocks);
157
158  // We require that the loop only have a single exit block.  Otherwise, we'd
159  // be in the situation of needing to be able to solve statically which exit
160  // block will be branched to, or trying to preserve the branching logic in
161  // a loop invariant manner.
162  if (exitBlocks.size() != 1)
163    return false;
164
165  // Finally, we have to check that the loop really is dead.
166  bool Changed = false;
167  if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
168    return Changed;
169
170  // Don't remove loops for which we can't solve the trip count.
171  // They could be infinite, in which case we'd be changing program behavior.
172  ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
173  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
174  if (isa<SCEVCouldNotCompute>(S))
175    return Changed;
176
177  // Now that we know the removal is safe, remove the loop by changing the
178  // branch from the preheader to go to the single exit block.
179  BasicBlock *exitBlock = exitBlocks[0];
180
181  // Because we're deleting a large chunk of code at once, the sequence in which
182  // we remove things is very important to avoid invalidation issues.  Don't
183  // mess with this unless you have good reason and know what you're doing.
184
185  // Tell ScalarEvolution that the loop is deleted. Do this before
186  // deleting the loop so that ScalarEvolution can look at the loop
187  // to determine what it needs to clean up.
188  SE.forgetLoop(L);
189
190  // Connect the preheader directly to the exit block.
191  TerminatorInst *TI = preheader->getTerminator();
192  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
193
194  // Rewrite phis in the exit block to get their inputs from
195  // the preheader instead of the exiting block.
196  BasicBlock *exitingBlock = exitingBlocks[0];
197  BasicBlock::iterator BI = exitBlock->begin();
198  while (PHINode *P = dyn_cast<PHINode>(BI)) {
199    int j = P->getBasicBlockIndex(exitingBlock);
200    assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
201    P->setIncomingBlock(j, preheader);
202    for (unsigned i = 1; i < exitingBlocks.size(); ++i)
203      P->removeIncomingValue(exitingBlocks[i]);
204    ++BI;
205  }
206
207  // Update the dominator tree and remove the instructions and blocks that will
208  // be deleted from the reference counting scheme.
209  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
210  SmallVector<DomTreeNode*, 8> ChildNodes;
211  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
212       LI != LE; ++LI) {
213    // Move all of the block's children to be children of the preheader, which
214    // allows us to remove the domtree entry for the block.
215    ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
216    for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
217         DE = ChildNodes.end(); DI != DE; ++DI) {
218      DT.changeImmediateDominator(*DI, DT[preheader]);
219    }
220
221    ChildNodes.clear();
222    DT.eraseNode(*LI);
223
224    // Remove the block from the reference counting scheme, so that we can
225    // delete it freely later.
226    (*LI)->dropAllReferences();
227  }
228
229  // Erase the instructions and the blocks without having to worry
230  // about ordering because we already dropped the references.
231  // NOTE: This iteration is safe because erasing the block does not remove its
232  // entry from the loop's block list.  We do that in the next section.
233  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
234       LI != LE; ++LI)
235    (*LI)->eraseFromParent();
236
237  // Finally, the blocks from loopinfo.  This has to happen late because
238  // otherwise our loop iterators won't work.
239  LoopInfo &loopInfo = getAnalysis<LoopInfo>();
240  SmallPtrSet<BasicBlock*, 8> blocks;
241  blocks.insert(L->block_begin(), L->block_end());
242  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
243       E = blocks.end(); I != E; ++I)
244    loopInfo.removeBlock(*I);
245
246  // The last step is to inform the loop pass manager that we've
247  // eliminated this loop.
248  LPM.deleteLoopFromQueue(L);
249  Changed = true;
250
251  ++NumDeleted;
252
253  return Changed;
254}
255