LoopIdiomRecognize.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements an idiom recognizer that transforms simple loops into a
11// non-loop form.  In cases that this kicks in, it can be a significant
12// performance win.
13//
14//===----------------------------------------------------------------------===//
15//
16// TODO List:
17//
18// Future loop memory idioms to recognize:
19//   memcmp, memmove, strlen, etc.
20// Future floating point idioms to recognize in -ffast-math mode:
21//   fpowi
22// Future integer operation idioms to recognize:
23//   ctpop, ctlz, cttz
24//
25// Beware that isel's default lowering for ctpop is highly inefficient for
26// i64 and larger types when i64 is legal and the value has few bits set.  It
27// would be good to enhance isel to emit a loop for ctpop in this case.
28//
29// We should enhance the memset/memcpy recognition to handle multiple stores in
30// the loop.  This would handle things like:
31//   void foo(_Complex float *P)
32//     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
33//
34// We should enhance this to handle negative strides through memory.
35// Alternatively (and perhaps better) we could rely on an earlier pass to force
36// forward iteration through memory, which is generally better for cache
37// behavior.  Negative strides *do* happen for memset/memcpy loops.
38//
39// This could recognize common matrix multiplies and dot product idioms and
40// replace them with calls to BLAS (if linked in??).
41//
42//===----------------------------------------------------------------------===//
43
44#include "llvm/Transforms/Scalar.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Analysis/AliasAnalysis.h"
47#include "llvm/Analysis/LoopPass.h"
48#include "llvm/Analysis/ScalarEvolutionExpander.h"
49#include "llvm/Analysis/ScalarEvolutionExpressions.h"
50#include "llvm/Analysis/TargetTransformInfo.h"
51#include "llvm/Analysis/ValueTracking.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/Dominators.h"
54#include "llvm/IR/IRBuilder.h"
55#include "llvm/IR/IntrinsicInst.h"
56#include "llvm/IR/Module.h"
57#include "llvm/Support/Debug.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/Target/TargetLibraryInfo.h"
60#include "llvm/Transforms/Utils/Local.h"
61using namespace llvm;
62
63#define DEBUG_TYPE "loop-idiom"
64
65STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
66STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
67
68namespace {
69
70  class LoopIdiomRecognize;
71
72  /// This class defines some utility functions for loop idiom recognization.
73  class LIRUtil {
74  public:
75    /// Return true iff the block contains nothing but an uncondition branch
76    /// (aka goto instruction).
77    static bool isAlmostEmpty(BasicBlock *);
78
79    static BranchInst *getBranch(BasicBlock *BB) {
80      return dyn_cast<BranchInst>(BB->getTerminator());
81    }
82
83    /// Derive the precondition block (i.e the block that guards the loop
84    /// preheader) from the given preheader.
85    static BasicBlock *getPrecondBb(BasicBlock *PreHead);
86  };
87
88  /// This class is to recoginize idioms of population-count conducted in
89  /// a noncountable loop. Currently it only recognizes this pattern:
90  /// \code
91  ///   while(x) {cnt++; ...; x &= x - 1; ...}
92  /// \endcode
93  class NclPopcountRecognize {
94    LoopIdiomRecognize &LIR;
95    Loop *CurLoop;
96    BasicBlock *PreCondBB;
97
98    typedef IRBuilder<> IRBuilderTy;
99
100  public:
101    explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
102    bool recognize();
103
104  private:
105    /// Take a glimpse of the loop to see if we need to go ahead recoginizing
106    /// the idiom.
107    bool preliminaryScreen();
108
109    /// Check if the given conditional branch is based on the comparison
110    /// between a variable and zero, and if the variable is non-zero, the
111    /// control yields to the loop entry. If the branch matches the behavior,
112    /// the variable involved in the comparion is returned. This function will
113    /// be called to see if the precondition and postcondition of the loop
114    /// are in desirable form.
115    Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const;
116
117    /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
118    /// is set to the instruction counting the population bit. 2) \p CntPhi
119    /// is set to the corresponding phi node. 3) \p Var is set to the value
120    /// whose population bits are being counted.
121    bool detectIdiom
122      (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
123
124    /// Insert ctpop intrinsic function and some obviously dead instructions.
125    void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var);
126
127    /// Create llvm.ctpop.* intrinsic function.
128    CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
129  };
130
131  class LoopIdiomRecognize : public LoopPass {
132    Loop *CurLoop;
133    const DataLayout *DL;
134    DominatorTree *DT;
135    ScalarEvolution *SE;
136    TargetLibraryInfo *TLI;
137    const TargetTransformInfo *TTI;
138  public:
139    static char ID;
140    explicit LoopIdiomRecognize() : LoopPass(ID) {
141      initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
142      DL = nullptr; DT = nullptr; SE = nullptr; TLI = nullptr; TTI = nullptr;
143    }
144
145    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
146    bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
147                        SmallVectorImpl<BasicBlock*> &ExitBlocks);
148
149    bool processLoopStore(StoreInst *SI, const SCEV *BECount);
150    bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
151
152    bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
153                                 unsigned StoreAlignment,
154                                 Value *SplatValue, Instruction *TheStore,
155                                 const SCEVAddRecExpr *Ev,
156                                 const SCEV *BECount);
157    bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
158                                    const SCEVAddRecExpr *StoreEv,
159                                    const SCEVAddRecExpr *LoadEv,
160                                    const SCEV *BECount);
161
162    /// This transformation requires natural loop information & requires that
163    /// loop preheaders be inserted into the CFG.
164    ///
165    void getAnalysisUsage(AnalysisUsage &AU) const override {
166      AU.addRequired<LoopInfo>();
167      AU.addPreserved<LoopInfo>();
168      AU.addRequiredID(LoopSimplifyID);
169      AU.addPreservedID(LoopSimplifyID);
170      AU.addRequiredID(LCSSAID);
171      AU.addPreservedID(LCSSAID);
172      AU.addRequired<AliasAnalysis>();
173      AU.addPreserved<AliasAnalysis>();
174      AU.addRequired<ScalarEvolution>();
175      AU.addPreserved<ScalarEvolution>();
176      AU.addPreserved<DominatorTreeWrapperPass>();
177      AU.addRequired<DominatorTreeWrapperPass>();
178      AU.addRequired<TargetLibraryInfo>();
179      AU.addRequired<TargetTransformInfo>();
180    }
181
182    const DataLayout *getDataLayout() {
183      if (DL)
184        return DL;
185      DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
186      DL = DLP ? &DLP->getDataLayout() : nullptr;
187      return DL;
188    }
189
190    DominatorTree *getDominatorTree() {
191      return DT ? DT
192                : (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree());
193    }
194
195    ScalarEvolution *getScalarEvolution() {
196      return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
197    }
198
199    TargetLibraryInfo *getTargetLibraryInfo() {
200      return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
201    }
202
203    const TargetTransformInfo *getTargetTransformInfo() {
204      return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
205    }
206
207    Loop *getLoop() const { return CurLoop; }
208
209  private:
210    bool runOnNoncountableLoop();
211    bool runOnCountableLoop();
212  };
213}
214
215char LoopIdiomRecognize::ID = 0;
216INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
217                      false, false)
218INITIALIZE_PASS_DEPENDENCY(LoopInfo)
219INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
220INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
221INITIALIZE_PASS_DEPENDENCY(LCSSA)
222INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
223INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
224INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
225INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
226INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
227                    false, false)
228
229Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
230
231/// deleteDeadInstruction - Delete this instruction.  Before we do, go through
232/// and zero out all the operands of this instruction.  If any of them become
233/// dead, delete them and the computation tree that feeds them.
234///
235static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
236                                  const TargetLibraryInfo *TLI) {
237  SmallVector<Instruction*, 32> NowDeadInsts;
238
239  NowDeadInsts.push_back(I);
240
241  // Before we touch this instruction, remove it from SE!
242  do {
243    Instruction *DeadInst = NowDeadInsts.pop_back_val();
244
245    // This instruction is dead, zap it, in stages.  Start by removing it from
246    // SCEV.
247    SE.forgetValue(DeadInst);
248
249    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
250      Value *Op = DeadInst->getOperand(op);
251      DeadInst->setOperand(op, nullptr);
252
253      // If this operand just became dead, add it to the NowDeadInsts list.
254      if (!Op->use_empty()) continue;
255
256      if (Instruction *OpI = dyn_cast<Instruction>(Op))
257        if (isInstructionTriviallyDead(OpI, TLI))
258          NowDeadInsts.push_back(OpI);
259    }
260
261    DeadInst->eraseFromParent();
262
263  } while (!NowDeadInsts.empty());
264}
265
266/// deleteIfDeadInstruction - If the specified value is a dead instruction,
267/// delete it and any recursively used instructions.
268static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
269                                    const TargetLibraryInfo *TLI) {
270  if (Instruction *I = dyn_cast<Instruction>(V))
271    if (isInstructionTriviallyDead(I, TLI))
272      deleteDeadInstruction(I, SE, TLI);
273}
274
275//===----------------------------------------------------------------------===//
276//
277//          Implementation of LIRUtil
278//
279//===----------------------------------------------------------------------===//
280
281// This function will return true iff the given block contains nothing but goto.
282// A typical usage of this function is to check if the preheader function is
283// "almost" empty such that generated intrinsic functions can be moved across
284// the preheader and be placed at the end of the precondition block without
285// the concern of breaking data dependence.
286bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
287  if (BranchInst *Br = getBranch(BB)) {
288    return Br->isUnconditional() && BB->size() == 1;
289  }
290  return false;
291}
292
293BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
294  if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
295    BranchInst *Br = getBranch(BB);
296    return Br && Br->isConditional() ? BB : nullptr;
297  }
298  return nullptr;
299}
300
301//===----------------------------------------------------------------------===//
302//
303//          Implementation of NclPopcountRecognize
304//
305//===----------------------------------------------------------------------===//
306
307NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
308  LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) {
309}
310
311bool NclPopcountRecognize::preliminaryScreen() {
312  const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
313  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
314    return false;
315
316  // Counting population are usually conducted by few arithmetic instructions.
317  // Such instructions can be easilly "absorbed" by vacant slots in a
318  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
319  // in a compact loop.
320
321  // Give up if the loop has multiple blocks or multiple backedges.
322  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
323    return false;
324
325  BasicBlock *LoopBody = *(CurLoop->block_begin());
326  if (LoopBody->size() >= 20) {
327    // The loop is too big, bail out.
328    return false;
329  }
330
331  // It should have a preheader containing nothing but a goto instruction.
332  BasicBlock *PreHead = CurLoop->getLoopPreheader();
333  if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
334    return false;
335
336  // It should have a precondition block where the generated popcount instrinsic
337  // function will be inserted.
338  PreCondBB = LIRUtil::getPrecondBb(PreHead);
339  if (!PreCondBB)
340    return false;
341
342  return true;
343}
344
345Value *NclPopcountRecognize::matchCondition(BranchInst *Br,
346                                            BasicBlock *LoopEntry) const {
347  if (!Br || !Br->isConditional())
348    return nullptr;
349
350  ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
351  if (!Cond)
352    return nullptr;
353
354  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
355  if (!CmpZero || !CmpZero->isZero())
356    return nullptr;
357
358  ICmpInst::Predicate Pred = Cond->getPredicate();
359  if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
360      (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
361    return Cond->getOperand(0);
362
363  return nullptr;
364}
365
366bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
367                                       PHINode *&CntPhi,
368                                       Value *&Var) const {
369  // Following code tries to detect this idiom:
370  //
371  //    if (x0 != 0)
372  //      goto loop-exit // the precondition of the loop
373  //    cnt0 = init-val;
374  //    do {
375  //       x1 = phi (x0, x2);
376  //       cnt1 = phi(cnt0, cnt2);
377  //
378  //       cnt2 = cnt1 + 1;
379  //        ...
380  //       x2 = x1 & (x1 - 1);
381  //        ...
382  //    } while(x != 0);
383  //
384  // loop-exit:
385  //
386
387  // step 1: Check to see if the look-back branch match this pattern:
388  //    "if (a!=0) goto loop-entry".
389  BasicBlock *LoopEntry;
390  Instruction *DefX2, *CountInst;
391  Value *VarX1, *VarX0;
392  PHINode *PhiX, *CountPhi;
393
394  DefX2 = CountInst = nullptr;
395  VarX1 = VarX0 = nullptr;
396  PhiX = CountPhi = nullptr;
397  LoopEntry = *(CurLoop->block_begin());
398
399  // step 1: Check if the loop-back branch is in desirable form.
400  {
401    if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
402      DefX2 = dyn_cast<Instruction>(T);
403    else
404      return false;
405  }
406
407  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
408  {
409    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
410      return false;
411
412    BinaryOperator *SubOneOp;
413
414    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
415      VarX1 = DefX2->getOperand(1);
416    else {
417      VarX1 = DefX2->getOperand(0);
418      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
419    }
420    if (!SubOneOp)
421      return false;
422
423    Instruction *SubInst = cast<Instruction>(SubOneOp);
424    ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
425    if (!Dec ||
426        !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
427          (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
428      return false;
429    }
430  }
431
432  // step 3: Check the recurrence of variable X
433  {
434    PhiX = dyn_cast<PHINode>(VarX1);
435    if (!PhiX ||
436        (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
437      return false;
438    }
439  }
440
441  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
442  {
443    CountInst = nullptr;
444    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
445           IterE = LoopEntry->end(); Iter != IterE; Iter++) {
446      Instruction *Inst = Iter;
447      if (Inst->getOpcode() != Instruction::Add)
448        continue;
449
450      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
451      if (!Inc || !Inc->isOne())
452        continue;
453
454      PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
455      if (!Phi || Phi->getParent() != LoopEntry)
456        continue;
457
458      // Check if the result of the instruction is live of the loop.
459      bool LiveOutLoop = false;
460      for (User *U : Inst->users()) {
461        if ((cast<Instruction>(U))->getParent() != LoopEntry) {
462          LiveOutLoop = true; break;
463        }
464      }
465
466      if (LiveOutLoop) {
467        CountInst = Inst;
468        CountPhi = Phi;
469        break;
470      }
471    }
472
473    if (!CountInst)
474      return false;
475  }
476
477  // step 5: check if the precondition is in this form:
478  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
479  {
480    BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
481    Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
482    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
483      return false;
484
485    CntInst = CountInst;
486    CntPhi = CountPhi;
487    Var = T;
488  }
489
490  return true;
491}
492
493void NclPopcountRecognize::transform(Instruction *CntInst,
494                                     PHINode *CntPhi, Value *Var) {
495
496  ScalarEvolution *SE = LIR.getScalarEvolution();
497  TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
498  BasicBlock *PreHead = CurLoop->getLoopPreheader();
499  BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
500  const DebugLoc DL = CntInst->getDebugLoc();
501
502  // Assuming before transformation, the loop is following:
503  //  if (x) // the precondition
504  //     do { cnt++; x &= x - 1; } while(x);
505
506  // Step 1: Insert the ctpop instruction at the end of the precondition block
507  IRBuilderTy Builder(PreCondBr);
508  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
509  {
510    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
511    NewCount = PopCntZext =
512      Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
513
514    if (NewCount != PopCnt)
515      (cast<Instruction>(NewCount))->setDebugLoc(DL);
516
517    // TripCnt is exactly the number of iterations the loop has
518    TripCnt = NewCount;
519
520    // If the population counter's initial value is not zero, insert Add Inst.
521    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
522    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
523    if (!InitConst || !InitConst->isZero()) {
524      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
525      (cast<Instruction>(NewCount))->setDebugLoc(DL);
526    }
527  }
528
529  // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
530  //   "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
531  //   function would be partial dead code, and downstream passes will drag
532  //   it back from the precondition block to the preheader.
533  {
534    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
535
536    Value *Opnd0 = PopCntZext;
537    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
538    if (PreCond->getOperand(0) != Var)
539      std::swap(Opnd0, Opnd1);
540
541    ICmpInst *NewPreCond =
542      cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
543    PreCond->replaceAllUsesWith(NewPreCond);
544
545    deleteDeadInstruction(PreCond, *SE, TLI);
546  }
547
548  // Step 3: Note that the population count is exactly the trip count of the
549  // loop in question, which enble us to to convert the loop from noncountable
550  // loop into a countable one. The benefit is twofold:
551  //
552  //  - If the loop only counts population, the entire loop become dead after
553  //    the transformation. It is lots easier to prove a countable loop dead
554  //    than to prove a noncountable one. (In some C dialects, a infite loop
555  //    isn't dead even if it computes nothing useful. In general, DCE needs
556  //    to prove a noncountable loop finite before safely delete it.)
557  //
558  //  - If the loop also performs something else, it remains alive.
559  //    Since it is transformed to countable form, it can be aggressively
560  //    optimized by some optimizations which are in general not applicable
561  //    to a noncountable loop.
562  //
563  // After this step, this loop (conceptually) would look like following:
564  //   newcnt = __builtin_ctpop(x);
565  //   t = newcnt;
566  //   if (x)
567  //     do { cnt++; x &= x-1; t--) } while (t > 0);
568  BasicBlock *Body = *(CurLoop->block_begin());
569  {
570    BranchInst *LbBr = LIRUtil::getBranch(Body);
571    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
572    Type *Ty = TripCnt->getType();
573
574    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
575
576    Builder.SetInsertPoint(LbCond);
577    Value *Opnd1 = cast<Value>(TcPhi);
578    Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
579    Instruction *TcDec =
580      cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
581
582    TcPhi->addIncoming(TripCnt, PreHead);
583    TcPhi->addIncoming(TcDec, Body);
584
585    CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
586      CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
587    LbCond->setPredicate(Pred);
588    LbCond->setOperand(0, TcDec);
589    LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
590  }
591
592  // Step 4: All the references to the original population counter outside
593  //  the loop are replaced with the NewCount -- the value returned from
594  //  __builtin_ctpop().
595  {
596    SmallVector<Value *, 4> CntUses;
597    for (User *U : CntInst->users())
598      if (cast<Instruction>(U)->getParent() != Body)
599        CntUses.push_back(U);
600    for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
601      (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
602    }
603  }
604
605  // step 5: Forget the "non-computable" trip-count SCEV associated with the
606  //   loop. The loop would otherwise not be deleted even if it becomes empty.
607  SE->forgetLoop(CurLoop);
608}
609
610CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
611                                                      Value *Val, DebugLoc DL) {
612  Value *Ops[] = { Val };
613  Type *Tys[] = { Val->getType() };
614
615  Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
616  Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
617  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
618  CI->setDebugLoc(DL);
619
620  return CI;
621}
622
623/// recognize - detect population count idiom in a non-countable loop. If
624///   detected, transform the relevant code to popcount intrinsic function
625///   call, and return true; otherwise, return false.
626bool NclPopcountRecognize::recognize() {
627
628  if (!LIR.getTargetTransformInfo())
629    return false;
630
631  LIR.getScalarEvolution();
632
633  if (!preliminaryScreen())
634    return false;
635
636  Instruction *CntInst;
637  PHINode *CntPhi;
638  Value *Val;
639  if (!detectIdiom(CntInst, CntPhi, Val))
640    return false;
641
642  transform(CntInst, CntPhi, Val);
643  return true;
644}
645
646//===----------------------------------------------------------------------===//
647//
648//          Implementation of LoopIdiomRecognize
649//
650//===----------------------------------------------------------------------===//
651
652bool LoopIdiomRecognize::runOnCountableLoop() {
653  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
654  if (isa<SCEVCouldNotCompute>(BECount)) return false;
655
656  // If this loop executes exactly one time, then it should be peeled, not
657  // optimized by this pass.
658  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
659    if (BECst->getValue()->getValue() == 0)
660      return false;
661
662  // We require target data for now.
663  if (!getDataLayout())
664    return false;
665
666  // set DT
667  (void)getDominatorTree();
668
669  LoopInfo &LI = getAnalysis<LoopInfo>();
670  TLI = &getAnalysis<TargetLibraryInfo>();
671
672  // set TLI
673  (void)getTargetLibraryInfo();
674
675  SmallVector<BasicBlock*, 8> ExitBlocks;
676  CurLoop->getUniqueExitBlocks(ExitBlocks);
677
678  DEBUG(dbgs() << "loop-idiom Scanning: F["
679               << CurLoop->getHeader()->getParent()->getName()
680               << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
681
682  bool MadeChange = false;
683  // Scan all the blocks in the loop that are not in subloops.
684  for (Loop::block_iterator BI = CurLoop->block_begin(),
685         E = CurLoop->block_end(); BI != E; ++BI) {
686    // Ignore blocks in subloops.
687    if (LI.getLoopFor(*BI) != CurLoop)
688      continue;
689
690    MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
691  }
692  return MadeChange;
693}
694
695bool LoopIdiomRecognize::runOnNoncountableLoop() {
696  NclPopcountRecognize Popcount(*this);
697  if (Popcount.recognize())
698    return true;
699
700  return false;
701}
702
703bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
704  if (skipOptnoneFunction(L))
705    return false;
706
707  CurLoop = L;
708
709  // If the loop could not be converted to canonical form, it must have an
710  // indirectbr in it, just give up.
711  if (!L->getLoopPreheader())
712    return false;
713
714  // Disable loop idiom recognition if the function's name is a common idiom.
715  StringRef Name = L->getHeader()->getParent()->getName();
716  if (Name == "memset" || Name == "memcpy")
717    return false;
718
719  SE = &getAnalysis<ScalarEvolution>();
720  if (SE->hasLoopInvariantBackedgeTakenCount(L))
721    return runOnCountableLoop();
722  return runOnNoncountableLoop();
723}
724
725/// runOnLoopBlock - Process the specified block, which lives in a counted loop
726/// with the specified backedge count.  This block is known to be in the current
727/// loop and not in any subloops.
728bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
729                                     SmallVectorImpl<BasicBlock*> &ExitBlocks) {
730  // We can only promote stores in this block if they are unconditionally
731  // executed in the loop.  For a block to be unconditionally executed, it has
732  // to dominate all the exit blocks of the loop.  Verify this now.
733  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
734    if (!DT->dominates(BB, ExitBlocks[i]))
735      return false;
736
737  bool MadeChange = false;
738  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
739    Instruction *Inst = I++;
740    // Look for store instructions, which may be optimized to memset/memcpy.
741    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
742      WeakVH InstPtr(I);
743      if (!processLoopStore(SI, BECount)) continue;
744      MadeChange = true;
745
746      // If processing the store invalidated our iterator, start over from the
747      // top of the block.
748      if (!InstPtr)
749        I = BB->begin();
750      continue;
751    }
752
753    // Look for memset instructions, which may be optimized to a larger memset.
754    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
755      WeakVH InstPtr(I);
756      if (!processLoopMemSet(MSI, BECount)) continue;
757      MadeChange = true;
758
759      // If processing the memset invalidated our iterator, start over from the
760      // top of the block.
761      if (!InstPtr)
762        I = BB->begin();
763      continue;
764    }
765  }
766
767  return MadeChange;
768}
769
770
771/// processLoopStore - See if this store can be promoted to a memset or memcpy.
772bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
773  if (!SI->isSimple()) return false;
774
775  Value *StoredVal = SI->getValueOperand();
776  Value *StorePtr = SI->getPointerOperand();
777
778  // Reject stores that are so large that they overflow an unsigned.
779  uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
780  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
781    return false;
782
783  // See if the pointer expression is an AddRec like {base,+,1} on the current
784  // loop, which indicates a strided store.  If we have something else, it's a
785  // random store we can't handle.
786  const SCEVAddRecExpr *StoreEv =
787    dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
788  if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
789    return false;
790
791  // Check to see if the stride matches the size of the store.  If so, then we
792  // know that every byte is touched in the loop.
793  unsigned StoreSize = (unsigned)SizeInBits >> 3;
794  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
795
796  if (!Stride || StoreSize != Stride->getValue()->getValue()) {
797    // TODO: Could also handle negative stride here someday, that will require
798    // the validity check in mayLoopAccessLocation to be updated though.
799    // Enable this to print exact negative strides.
800    if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
801      dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
802      dbgs() << "BB: " << *SI->getParent();
803    }
804
805    return false;
806  }
807
808  // See if we can optimize just this store in isolation.
809  if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
810                              StoredVal, SI, StoreEv, BECount))
811    return true;
812
813  // If the stored value is a strided load in the same loop with the same stride
814  // this this may be transformable into a memcpy.  This kicks in for stuff like
815  //   for (i) A[i] = B[i];
816  if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
817    const SCEVAddRecExpr *LoadEv =
818      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
819    if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
820        StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
821      if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
822        return true;
823  }
824  //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
825
826  return false;
827}
828
829/// processLoopMemSet - See if this memset can be promoted to a large memset.
830bool LoopIdiomRecognize::
831processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
832  // We can only handle non-volatile memsets with a constant size.
833  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
834
835  // If we're not allowed to hack on memset, we fail.
836  if (!TLI->has(LibFunc::memset))
837    return false;
838
839  Value *Pointer = MSI->getDest();
840
841  // See if the pointer expression is an AddRec like {base,+,1} on the current
842  // loop, which indicates a strided store.  If we have something else, it's a
843  // random store we can't handle.
844  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
845  if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
846    return false;
847
848  // Reject memsets that are so large that they overflow an unsigned.
849  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
850  if ((SizeInBytes >> 32) != 0)
851    return false;
852
853  // Check to see if the stride matches the size of the memset.  If so, then we
854  // know that every byte is touched in the loop.
855  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
856
857  // TODO: Could also handle negative stride here someday, that will require the
858  // validity check in mayLoopAccessLocation to be updated though.
859  if (!Stride || MSI->getLength() != Stride->getValue())
860    return false;
861
862  return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
863                                 MSI->getAlignment(), MSI->getValue(),
864                                 MSI, Ev, BECount);
865}
866
867
868/// mayLoopAccessLocation - Return true if the specified loop might access the
869/// specified pointer location, which is a loop-strided access.  The 'Access'
870/// argument specifies what the verboten forms of access are (read or write).
871static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
872                                  Loop *L, const SCEV *BECount,
873                                  unsigned StoreSize, AliasAnalysis &AA,
874                                  Instruction *IgnoredStore) {
875  // Get the location that may be stored across the loop.  Since the access is
876  // strided positively through memory, we say that the modified location starts
877  // at the pointer and has infinite size.
878  uint64_t AccessSize = AliasAnalysis::UnknownSize;
879
880  // If the loop iterates a fixed number of times, we can refine the access size
881  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
882  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
883    AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
884
885  // TODO: For this to be really effective, we have to dive into the pointer
886  // operand in the store.  Store to &A[i] of 100 will always return may alias
887  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
888  // which will then no-alias a store to &A[100].
889  AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
890
891  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
892       ++BI)
893    for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
894      if (&*I != IgnoredStore &&
895          (AA.getModRefInfo(I, StoreLoc) & Access))
896        return true;
897
898  return false;
899}
900
901/// getMemSetPatternValue - If a strided store of the specified value is safe to
902/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
903/// be passed in.  Otherwise, return null.
904///
905/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
906/// just replicate their input array and then pass on to memset_pattern16.
907static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
908  // If the value isn't a constant, we can't promote it to being in a constant
909  // array.  We could theoretically do a store to an alloca or something, but
910  // that doesn't seem worthwhile.
911  Constant *C = dyn_cast<Constant>(V);
912  if (!C) return nullptr;
913
914  // Only handle simple values that are a power of two bytes in size.
915  uint64_t Size = DL.getTypeSizeInBits(V->getType());
916  if (Size == 0 || (Size & 7) || (Size & (Size-1)))
917    return nullptr;
918
919  // Don't care enough about darwin/ppc to implement this.
920  if (DL.isBigEndian())
921    return nullptr;
922
923  // Convert to size in bytes.
924  Size /= 8;
925
926  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
927  // if the top and bottom are the same (e.g. for vectors and large integers).
928  if (Size > 16) return nullptr;
929
930  // If the constant is exactly 16 bytes, just use it.
931  if (Size == 16) return C;
932
933  // Otherwise, we'll use an array of the constants.
934  unsigned ArraySize = 16/Size;
935  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
936  return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
937}
938
939
940/// processLoopStridedStore - We see a strided store of some value.  If we can
941/// transform this into a memset or memset_pattern in the loop preheader, do so.
942bool LoopIdiomRecognize::
943processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
944                        unsigned StoreAlignment, Value *StoredVal,
945                        Instruction *TheStore, const SCEVAddRecExpr *Ev,
946                        const SCEV *BECount) {
947
948  // If the stored value is a byte-wise value (like i32 -1), then it may be
949  // turned into a memset of i8 -1, assuming that all the consecutive bytes
950  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
951  // but it can be turned into memset_pattern if the target supports it.
952  Value *SplatValue = isBytewiseValue(StoredVal);
953  Constant *PatternValue = nullptr;
954
955  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
956
957  // If we're allowed to form a memset, and the stored value would be acceptable
958  // for memset, use it.
959  if (SplatValue && TLI->has(LibFunc::memset) &&
960      // Verify that the stored value is loop invariant.  If not, we can't
961      // promote the memset.
962      CurLoop->isLoopInvariant(SplatValue)) {
963    // Keep and use SplatValue.
964    PatternValue = nullptr;
965  } else if (DestAS == 0 &&
966             TLI->has(LibFunc::memset_pattern16) &&
967             (PatternValue = getMemSetPatternValue(StoredVal, *DL))) {
968    // Don't create memset_pattern16s with address spaces.
969    // It looks like we can use PatternValue!
970    SplatValue = nullptr;
971  } else {
972    // Otherwise, this isn't an idiom we can transform.  For example, we can't
973    // do anything with a 3-byte store.
974    return false;
975  }
976
977  // The trip count of the loop and the base pointer of the addrec SCEV is
978  // guaranteed to be loop invariant, which means that it should dominate the
979  // header.  This allows us to insert code for it in the preheader.
980  BasicBlock *Preheader = CurLoop->getLoopPreheader();
981  IRBuilder<> Builder(Preheader->getTerminator());
982  SCEVExpander Expander(*SE, "loop-idiom");
983
984  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
985
986  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
987  // this into a memset in the loop preheader now if we want.  However, this
988  // would be unsafe to do if there is anything else in the loop that may read
989  // or write to the aliased location.  Check for any overlap by generating the
990  // base pointer and checking the region.
991  Value *BasePtr =
992    Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
993                           Preheader->getTerminator());
994
995  if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
996                            CurLoop, BECount,
997                            StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
998    Expander.clear();
999    // If we generated new code for the base pointer, clean up.
1000    deleteIfDeadInstruction(BasePtr, *SE, TLI);
1001    return false;
1002  }
1003
1004  // Okay, everything looks good, insert the memset.
1005
1006  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1007  // pointer size if it isn't already.
1008  Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
1009  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1010
1011  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
1012                                         SCEV::FlagNUW);
1013  if (StoreSize != 1) {
1014    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1015                               SCEV::FlagNUW);
1016  }
1017
1018  Value *NumBytes =
1019    Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1020
1021  CallInst *NewCall;
1022  if (SplatValue) {
1023    NewCall = Builder.CreateMemSet(BasePtr,
1024                                   SplatValue,
1025                                   NumBytes,
1026                                   StoreAlignment);
1027  } else {
1028    // Everything is emitted in default address space
1029    Type *Int8PtrTy = DestInt8PtrTy;
1030
1031    Module *M = TheStore->getParent()->getParent()->getParent();
1032    Value *MSP = M->getOrInsertFunction("memset_pattern16",
1033                                        Builder.getVoidTy(),
1034                                        Int8PtrTy,
1035                                        Int8PtrTy,
1036                                        IntPtr,
1037                                        (void*)nullptr);
1038
1039    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1040    // an constant array of 16-bytes.  Plop the value into a mergable global.
1041    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1042                                            GlobalValue::InternalLinkage,
1043                                            PatternValue, ".memset_pattern");
1044    GV->setUnnamedAddr(true); // Ok to merge these.
1045    GV->setAlignment(16);
1046    Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1047    NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
1048  }
1049
1050  DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1051               << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
1052  NewCall->setDebugLoc(TheStore->getDebugLoc());
1053
1054  // Okay, the memset has been formed.  Zap the original store and anything that
1055  // feeds into it.
1056  deleteDeadInstruction(TheStore, *SE, TLI);
1057  ++NumMemSet;
1058  return true;
1059}
1060
1061/// processLoopStoreOfLoopLoad - We see a strided store whose value is a
1062/// same-strided load.
1063bool LoopIdiomRecognize::
1064processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
1065                           const SCEVAddRecExpr *StoreEv,
1066                           const SCEVAddRecExpr *LoadEv,
1067                           const SCEV *BECount) {
1068  // If we're not allowed to form memcpy, we fail.
1069  if (!TLI->has(LibFunc::memcpy))
1070    return false;
1071
1072  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1073
1074  // The trip count of the loop and the base pointer of the addrec SCEV is
1075  // guaranteed to be loop invariant, which means that it should dominate the
1076  // header.  This allows us to insert code for it in the preheader.
1077  BasicBlock *Preheader = CurLoop->getLoopPreheader();
1078  IRBuilder<> Builder(Preheader->getTerminator());
1079  SCEVExpander Expander(*SE, "loop-idiom");
1080
1081  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1082  // this into a memcpy in the loop preheader now if we want.  However, this
1083  // would be unsafe to do if there is anything else in the loop that may read
1084  // or write the memory region we're storing to.  This includes the load that
1085  // feeds the stores.  Check for an alias by generating the base address and
1086  // checking everything.
1087  Value *StoreBasePtr =
1088    Expander.expandCodeFor(StoreEv->getStart(),
1089                           Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
1090                           Preheader->getTerminator());
1091
1092  if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
1093                            CurLoop, BECount, StoreSize,
1094                            getAnalysis<AliasAnalysis>(), SI)) {
1095    Expander.clear();
1096    // If we generated new code for the base pointer, clean up.
1097    deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1098    return false;
1099  }
1100
1101  // For a memcpy, we have to make sure that the input array is not being
1102  // mutated by the loop.
1103  Value *LoadBasePtr =
1104    Expander.expandCodeFor(LoadEv->getStart(),
1105                           Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
1106                           Preheader->getTerminator());
1107
1108  if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
1109                            StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
1110    Expander.clear();
1111    // If we generated new code for the base pointer, clean up.
1112    deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
1113    deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1114    return false;
1115  }
1116
1117  // Okay, everything is safe, we can transform this!
1118
1119
1120  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1121  // pointer size if it isn't already.
1122  Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
1123  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
1124
1125  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
1126                                         SCEV::FlagNUW);
1127  if (StoreSize != 1)
1128    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
1129                               SCEV::FlagNUW);
1130
1131  Value *NumBytes =
1132    Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1133
1134  CallInst *NewCall =
1135    Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
1136                         std::min(SI->getAlignment(), LI->getAlignment()));
1137  NewCall->setDebugLoc(SI->getDebugLoc());
1138
1139  DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1140               << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1141               << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
1142
1143
1144  // Okay, the memset has been formed.  Zap the original store and anything that
1145  // feeds into it.
1146  deleteDeadInstruction(SI, *SE, TLI);
1147  ++NumMemCpy;
1148  return true;
1149}
1150