LoopRerollPass.cpp revision b7dabccbce5fc6fcf7b36669eb04abcb001e7f9e
1//===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a simple loop reroller.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "loop-reroll"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/AliasSetTracker.h"
21#include "llvm/Analysis/LoopPass.h"
22#include "llvm/Analysis/ScalarEvolution.h"
23#include "llvm/Analysis/ScalarEvolutionExpander.h"
24#include "llvm/Analysis/ScalarEvolutionExpressions.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetLibraryInfo.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Transforms/Utils/LoopUtils.h"
35
36using namespace llvm;
37
38STATISTIC(NumRerolledLoops, "Number of rerolled loops");
39
40static cl::opt<unsigned>
41MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
42  cl::desc("The maximum increment for loop rerolling"));
43
44// This loop re-rolling transformation aims to transform loops like this:
45//
46// int foo(int a);
47// void bar(int *x) {
48//   for (int i = 0; i < 500; i += 3) {
49//     foo(i);
50//     foo(i+1);
51//     foo(i+2);
52//   }
53// }
54//
55// into a loop like this:
56//
57// void bar(int *x) {
58//   for (int i = 0; i < 500; ++i)
59//     foo(i);
60// }
61//
62// It does this by looking for loops that, besides the latch code, are composed
63// of isomorphic DAGs of instructions, with each DAG rooted at some increment
64// to the induction variable, and where each DAG is isomorphic to the DAG
65// rooted at the induction variable (excepting the sub-DAGs which root the
66// other induction-variable increments). In other words, we're looking for loop
67// bodies of the form:
68//
69// %iv = phi [ (preheader, ...), (body, %iv.next) ]
70// f(%iv)
71// %iv.1 = add %iv, 1                <-- a root increment
72// f(%iv.1)
73// %iv.2 = add %iv, 2                <-- a root increment
74// f(%iv.2)
75// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
76// f(%iv.scale_m_1)
77// ...
78// %iv.next = add %iv, scale
79// %cmp = icmp(%iv, ...)
80// br %cmp, header, exit
81//
82// where each f(i) is a set of instructions that, collectively, are a function
83// only of i (and other loop-invariant values).
84//
85// As a special case, we can also reroll loops like this:
86//
87// int foo(int);
88// void bar(int *x) {
89//   for (int i = 0; i < 500; ++i) {
90//     x[3*i] = foo(0);
91//     x[3*i+1] = foo(0);
92//     x[3*i+2] = foo(0);
93//   }
94// }
95//
96// into this:
97//
98// void bar(int *x) {
99//   for (int i = 0; i < 1500; ++i)
100//     x[i] = foo(0);
101// }
102//
103// in which case, we're looking for inputs like this:
104//
105// %iv = phi [ (preheader, ...), (body, %iv.next) ]
106// %scaled.iv = mul %iv, scale
107// f(%scaled.iv)
108// %scaled.iv.1 = add %scaled.iv, 1
109// f(%scaled.iv.1)
110// %scaled.iv.2 = add %scaled.iv, 2
111// f(%scaled.iv.2)
112// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
113// f(%scaled.iv.scale_m_1)
114// ...
115// %iv.next = add %iv, 1
116// %cmp = icmp(%iv, ...)
117// br %cmp, header, exit
118
119namespace {
120  class LoopReroll : public LoopPass {
121  public:
122    static char ID; // Pass ID, replacement for typeid
123    LoopReroll() : LoopPass(ID) {
124      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
125    }
126
127    bool runOnLoop(Loop *L, LPPassManager &LPM);
128
129    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130      AU.addRequired<AliasAnalysis>();
131      AU.addRequired<LoopInfo>();
132      AU.addPreserved<LoopInfo>();
133      AU.addRequired<DominatorTree>();
134      AU.addPreserved<DominatorTree>();
135      AU.addRequired<ScalarEvolution>();
136      AU.addRequired<TargetLibraryInfo>();
137    }
138
139protected:
140    AliasAnalysis *AA;
141    LoopInfo *LI;
142    ScalarEvolution *SE;
143    DataLayout *DL;
144    TargetLibraryInfo *TLI;
145    DominatorTree *DT;
146
147    typedef SmallVector<Instruction *, 16> SmallInstructionVector;
148    typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
149
150    // A chain of isomorphic instructions, indentified by a single-use PHI,
151    // representing a reduction. Only the last value may be used outside the
152    // loop.
153    struct SimpleLoopReduction {
154      SimpleLoopReduction(Instruction *P, Loop *L)
155        : Valid(false), Instructions(1, P) {
156        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
157        add(L);
158      }
159
160      bool valid() const {
161        return Valid;
162      }
163
164      Instruction *getPHI() const {
165        assert(Valid && "Using invalid reduction");
166        return Instructions.front();
167      }
168
169      Instruction *getReducedValue() const {
170        assert(Valid && "Using invalid reduction");
171        return Instructions.back();
172      }
173
174      Instruction *get(size_t i) const {
175        assert(Valid && "Using invalid reduction");
176        return Instructions[i+1];
177      }
178
179      Instruction *operator [] (size_t i) const { return get(i); }
180
181      // The size, ignoring the initial PHI.
182      size_t size() const {
183        assert(Valid && "Using invalid reduction");
184        return Instructions.size()-1;
185      }
186
187      typedef SmallInstructionVector::iterator iterator;
188      typedef SmallInstructionVector::const_iterator const_iterator;
189
190      iterator begin() {
191        assert(Valid && "Using invalid reduction");
192        return llvm::next(Instructions.begin());
193      }
194
195      const_iterator begin() const {
196        assert(Valid && "Using invalid reduction");
197        return llvm::next(Instructions.begin());
198      }
199
200      iterator end() { return Instructions.end(); }
201      const_iterator end() const { return Instructions.end(); }
202
203    protected:
204      bool Valid;
205      SmallInstructionVector Instructions;
206
207      void add(Loop *L);
208    };
209
210    // The set of all reductions, and state tracking of possible reductions
211    // during loop instruction processing.
212    struct ReductionTracker {
213      typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
214
215      // Add a new possible reduction.
216      void addSLR(SimpleLoopReduction &SLR) {
217        PossibleReds.push_back(SLR);
218      }
219
220      // Setup to track possible reductions corresponding to the provided
221      // rerolling scale. Only reductions with a number of non-PHI instructions
222      // that is divisible by the scale are considered. Three instructions sets
223      // are filled in:
224      //   - A set of all possible instructions in eligible reductions.
225      //   - A set of all PHIs in eligible reductions
226      //   - A set of all reduced values (last instructions) in eligible reductions.
227      void restrictToScale(uint64_t Scale,
228                           SmallInstructionSet &PossibleRedSet,
229                           SmallInstructionSet &PossibleRedPHISet,
230                           SmallInstructionSet &PossibleRedLastSet) {
231        PossibleRedIdx.clear();
232        PossibleRedIter.clear();
233        Reds.clear();
234
235        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
236          if (PossibleReds[i].size() % Scale == 0) {
237            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
238            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
239
240            PossibleRedSet.insert(PossibleReds[i].getPHI());
241            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
242            for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
243                 JE = PossibleReds[i].end(); J != JE; ++J) {
244              PossibleRedSet.insert(*J);
245              PossibleRedIdx[*J] = i;
246            }
247          }
248      }
249
250      // The functions below are used while processing the loop instructions.
251
252      // Are the two instructions both from reductions, and furthermore, from
253      // the same reduction?
254      bool isPairInSame(Instruction *J1, Instruction *J2) {
255        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
256        if (J1I != PossibleRedIdx.end()) {
257          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
258          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
259            return true;
260        }
261
262        return false;
263      }
264
265      // The two provided instructions, the first from the base iteration, and
266      // the second from iteration i, form a matched pair. If these are part of
267      // a reduction, record that fact.
268      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
269        if (PossibleRedIdx.count(J1)) {
270          assert(PossibleRedIdx.count(J2) &&
271                 "Recording reduction vs. non-reduction instruction?");
272
273          PossibleRedIter[J1] = 0;
274          PossibleRedIter[J2] = i;
275
276          int Idx = PossibleRedIdx[J1];
277          assert(Idx == PossibleRedIdx[J2] &&
278                 "Recording pair from different reductions?");
279          Reds.insert(Idx);
280        }
281      }
282
283      // The functions below can be called after we've finished processing all
284      // instructions in the loop, and we know which reductions were selected.
285
286      // Is the provided instruction the PHI of a reduction selected for
287      // rerolling?
288      bool isSelectedPHI(Instruction *J) {
289        if (!isa<PHINode>(J))
290          return false;
291
292        for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
293             RI != RIE; ++RI) {
294          int i = *RI;
295          if (cast<Instruction>(J) == PossibleReds[i].getPHI())
296            return true;
297        }
298
299        return false;
300      }
301
302      bool validateSelected();
303      void replaceSelected();
304
305    protected:
306      // The vector of all possible reductions (for any scale).
307      SmallReductionVector PossibleReds;
308
309      DenseMap<Instruction *, int> PossibleRedIdx;
310      DenseMap<Instruction *, int> PossibleRedIter;
311      DenseSet<int> Reds;
312    };
313
314    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
315    void collectPossibleReductions(Loop *L,
316           ReductionTracker &Reductions);
317    void collectInLoopUserSet(Loop *L,
318           const SmallInstructionVector &Roots,
319           const SmallInstructionSet &Exclude,
320           const SmallInstructionSet &Final,
321           DenseSet<Instruction *> &Users);
322    void collectInLoopUserSet(Loop *L,
323           Instruction * Root,
324           const SmallInstructionSet &Exclude,
325           const SmallInstructionSet &Final,
326           DenseSet<Instruction *> &Users);
327    bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
328                          Instruction *&IV,
329                          SmallInstructionVector &LoopIncs);
330    bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
331                         SmallVector<SmallInstructionVector, 32> &Roots,
332                         SmallInstructionSet &AllRoots,
333                         SmallInstructionVector &LoopIncs);
334    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
335                ReductionTracker &Reductions);
336  };
337}
338
339char LoopReroll::ID = 0;
340INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
341INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
342INITIALIZE_PASS_DEPENDENCY(LoopInfo)
343INITIALIZE_PASS_DEPENDENCY(DominatorTree)
344INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
345INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
346INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
347
348Pass *llvm::createLoopRerollPass() {
349  return new LoopReroll;
350}
351
352// Returns true if the provided instruction is used outside the given loop.
353// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
354// non-loop blocks to be outside the loop.
355static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
356  for (Value::use_iterator UI = I->use_begin(),
357       UIE = I->use_end(); UI != UIE; ++UI) {
358    Instruction *User = cast<Instruction>(*UI);
359    if (!L->contains(User))
360      return true;
361  }
362
363  return false;
364}
365
366// Collect the list of loop induction variables with respect to which it might
367// be possible to reroll the loop.
368void LoopReroll::collectPossibleIVs(Loop *L,
369                                    SmallInstructionVector &PossibleIVs) {
370  BasicBlock *Header = L->getHeader();
371  for (BasicBlock::iterator I = Header->begin(),
372       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
373    if (!isa<PHINode>(I))
374      continue;
375    if (!I->getType()->isIntegerTy())
376      continue;
377
378    if (const SCEVAddRecExpr *PHISCEV =
379        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
380      if (PHISCEV->getLoop() != L)
381        continue;
382      if (!PHISCEV->isAffine())
383        continue;
384      if (const SCEVConstant *IncSCEV =
385          dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
386        if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
387          continue;
388        if (IncSCEV->getValue()->uge(MaxInc))
389          continue;
390
391        DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
392              *PHISCEV << "\n");
393        PossibleIVs.push_back(I);
394      }
395    }
396  }
397}
398
399// Add the remainder of the reduction-variable chain to the instruction vector
400// (the initial PHINode has already been added). If successful, the object is
401// marked as valid.
402void LoopReroll::SimpleLoopReduction::add(Loop *L) {
403  assert(!Valid && "Cannot add to an already-valid chain");
404
405  // The reduction variable must be a chain of single-use instructions
406  // (including the PHI), except for the last value (which is used by the PHI
407  // and also outside the loop).
408  Instruction *C = Instructions.front();
409
410  do {
411    C = cast<Instruction>(*C->use_begin());
412    if (C->hasOneUse()) {
413      if (!C->isBinaryOp())
414        return;
415
416      if (!(isa<PHINode>(Instructions.back()) ||
417            C->isSameOperationAs(Instructions.back())))
418        return;
419
420      Instructions.push_back(C);
421    }
422  } while (C->hasOneUse());
423
424  if (Instructions.size() < 2 ||
425      !C->isSameOperationAs(Instructions.back()) ||
426      C->use_begin() == C->use_end())
427    return;
428
429  // C is now the (potential) last instruction in the reduction chain.
430  for (Value::use_iterator UI = C->use_begin(), UIE = C->use_end();
431       UI != UIE; ++UI) {
432    // The only in-loop user can be the initial PHI.
433    if (L->contains(cast<Instruction>(*UI)))
434      if (cast<Instruction>(*UI ) != Instructions.front())
435        return;
436  }
437
438  Instructions.push_back(C);
439  Valid = true;
440}
441
442// Collect the vector of possible reduction variables.
443void LoopReroll::collectPossibleReductions(Loop *L,
444  ReductionTracker &Reductions) {
445  BasicBlock *Header = L->getHeader();
446  for (BasicBlock::iterator I = Header->begin(),
447       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
448    if (!isa<PHINode>(I))
449      continue;
450    if (!I->getType()->isSingleValueType())
451      continue;
452
453    SimpleLoopReduction SLR(I, L);
454    if (!SLR.valid())
455      continue;
456
457    DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
458          SLR.size() << " chained instructions)\n");
459    Reductions.addSLR(SLR);
460  }
461}
462
463// Collect the set of all users of the provided root instruction. This set of
464// users contains not only the direct users of the root instruction, but also
465// all users of those users, and so on. There are two exceptions:
466//
467//   1. Instructions in the set of excluded instructions are never added to the
468//   use set (even if they are users). This is used, for example, to exclude
469//   including root increments in the use set of the primary IV.
470//
471//   2. Instructions in the set of final instructions are added to the use set
472//   if they are users, but their users are not added. This is used, for
473//   example, to prevent a reduction update from forcing all later reduction
474//   updates into the use set.
475void LoopReroll::collectInLoopUserSet(Loop *L,
476  Instruction *Root, const SmallInstructionSet &Exclude,
477  const SmallInstructionSet &Final,
478  DenseSet<Instruction *> &Users) {
479  SmallInstructionVector Queue(1, Root);
480  while (!Queue.empty()) {
481    Instruction *I = Queue.pop_back_val();
482    if (!Users.insert(I).second)
483      continue;
484
485    if (!Final.count(I))
486      for (Value::use_iterator UI = I->use_begin(),
487           UIE = I->use_end(); UI != UIE; ++UI) {
488        Instruction *User = cast<Instruction>(*UI);
489        if (PHINode *PN = dyn_cast<PHINode>(User)) {
490          // Ignore "wrap-around" uses to PHIs of this loop's header.
491          if (PN->getIncomingBlock(UI) == L->getHeader())
492            continue;
493        }
494
495        if (L->contains(User) && !Exclude.count(User)) {
496          Queue.push_back(User);
497        }
498      }
499
500    // We also want to collect single-user "feeder" values.
501    for (User::op_iterator OI = I->op_begin(),
502         OIE = I->op_end(); OI != OIE; ++OI) {
503      if (Instruction *Op = dyn_cast<Instruction>(*OI))
504        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
505            !Final.count(Op))
506          Queue.push_back(Op);
507    }
508  }
509}
510
511// Collect all of the users of all of the provided root instructions (combined
512// into a single set).
513void LoopReroll::collectInLoopUserSet(Loop *L,
514  const SmallInstructionVector &Roots,
515  const SmallInstructionSet &Exclude,
516  const SmallInstructionSet &Final,
517  DenseSet<Instruction *> &Users) {
518  for (SmallInstructionVector::const_iterator I = Roots.begin(),
519       IE = Roots.end(); I != IE; ++I)
520    collectInLoopUserSet(L, *I, Exclude, Final, Users);
521}
522
523static bool isSimpleLoadStore(Instruction *I) {
524  if (LoadInst *LI = dyn_cast<LoadInst>(I))
525    return LI->isSimple();
526  if (StoreInst *SI = dyn_cast<StoreInst>(I))
527    return SI->isSimple();
528  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
529    return !MI->isVolatile();
530  return false;
531}
532
533// Recognize loops that are setup like this:
534//
535// %iv = phi [ (preheader, ...), (body, %iv.next) ]
536// %scaled.iv = mul %iv, scale
537// f(%scaled.iv)
538// %scaled.iv.1 = add %scaled.iv, 1
539// f(%scaled.iv.1)
540// %scaled.iv.2 = add %scaled.iv, 2
541// f(%scaled.iv.2)
542// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
543// f(%scaled.iv.scale_m_1)
544// ...
545// %iv.next = add %iv, 1
546// %cmp = icmp(%iv, ...)
547// br %cmp, header, exit
548//
549// and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
550bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
551                                  Instruction *&IV,
552                                  SmallInstructionVector &LoopIncs) {
553  // This is a special case: here we're looking for all uses (except for
554  // the increment) to be multiplied by a common factor. The increment must
555  // be by one. This is to capture loops like:
556  //   for (int i = 0; i < 500; ++i) {
557  //     foo(3*i); foo(3*i+1); foo(3*i+2);
558  //   }
559  if (RealIV->getNumUses() != 2)
560    return false;
561  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
562  Instruction *User1 = cast<Instruction>(*RealIV->use_begin()),
563              *User2 = cast<Instruction>(*llvm::next(RealIV->use_begin()));
564  if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
565    return false;
566  const SCEVAddRecExpr *User1SCEV =
567                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
568                       *User2SCEV =
569                         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
570  if (!User1SCEV || !User1SCEV->isAffine() ||
571      !User2SCEV || !User2SCEV->isAffine())
572    return false;
573
574  // We assume below that User1 is the scale multiply and User2 is the
575  // increment. If this can't be true, then swap them.
576  if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
577    std::swap(User1, User2);
578    std::swap(User1SCEV, User2SCEV);
579  }
580
581  if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
582    return false;
583  assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
584         "Invalid non-unit step for multiplicative scaling");
585  LoopIncs.push_back(User2);
586
587  if (const SCEVConstant *MulScale =
588      dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
589    // Make sure that both the start and step have the same multiplier.
590    if (RealIVSCEV->getStart()->getType() != MulScale->getType())
591      return false;
592    if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
593        User1SCEV->getStart())
594      return false;
595
596    ConstantInt *MulScaleCI = MulScale->getValue();
597    if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
598      return false;
599    Scale = MulScaleCI->getZExtValue();
600    IV = User1;
601  } else
602    return false;
603
604  DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
605  return true;
606}
607
608// Collect all root increments with respect to the provided induction variable
609// (normally the PHI, but sometimes a multiply). A root increment is an
610// instruction, normally an add, with a positive constant less than Scale. In a
611// rerollable loop, each of these increments is the root of an instruction
612// graph isomorphic to the others. Also, we collect the final induction
613// increment (the increment equal to the Scale), and its users in LoopIncs.
614bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
615                                 Instruction *IV,
616                                 SmallVector<SmallInstructionVector, 32> &Roots,
617                                 SmallInstructionSet &AllRoots,
618                                 SmallInstructionVector &LoopIncs) {
619  for (Value::use_iterator UI = IV->use_begin(),
620       UIE = IV->use_end(); UI != UIE; ++UI) {
621    Instruction *User = cast<Instruction>(*UI);
622    if (!SE->isSCEVable(User->getType()))
623      continue;
624    if (User->getType() != IV->getType())
625      continue;
626    if (!L->contains(User))
627      continue;
628    if (hasUsesOutsideLoop(User, L))
629      continue;
630
631    if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
632          SE->getSCEV(User), SE->getSCEV(IV)))) {
633      uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
634      if (Idx > 0 && Idx < Scale) {
635        Roots[Idx-1].push_back(User);
636        AllRoots.insert(User);
637      } else if (Idx == Scale && Inc > 1) {
638        LoopIncs.push_back(User);
639      }
640    }
641  }
642
643  if (Roots[0].empty())
644    return false;
645  bool AllSame = true;
646  for (unsigned i = 1; i < Scale-1; ++i)
647    if (Roots[i].size() != Roots[0].size()) {
648      AllSame = false;
649      break;
650    }
651
652  if (!AllSame)
653    return false;
654
655  return true;
656}
657
658// Validate the selected reductions. All iterations must have an isomorphic
659// part of the reduction chain and, for non-associative reductions, the chain
660// entries must appear in order.
661bool LoopReroll::ReductionTracker::validateSelected() {
662  // For a non-associative reduction, the chain entries must appear in order.
663  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
664       RI != RIE; ++RI) {
665    int i = *RI;
666    int PrevIter = 0, BaseCount = 0, Count = 0;
667    for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
668         JE = PossibleReds[i].end(); J != JE; ++J) {
669	// Note that all instructions in the chain must have been found because
670	// all instructions in the function must have been assigned to some
671	// iteration.
672      int Iter = PossibleRedIter[*J];
673      if (Iter != PrevIter && Iter != PrevIter + 1 &&
674          !PossibleReds[i].getReducedValue()->isAssociative()) {
675        DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
676                        *J << "\n");
677        return false;
678      }
679
680      if (Iter != PrevIter) {
681        if (Count != BaseCount) {
682          DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
683                " reduction use count " << Count <<
684                " is not equal to the base use count " <<
685                BaseCount << "\n");
686          return false;
687        }
688
689        Count = 0;
690      }
691
692      ++Count;
693      if (Iter == 0)
694        ++BaseCount;
695
696      PrevIter = Iter;
697    }
698  }
699
700  return true;
701}
702
703// For all selected reductions, remove all parts except those in the first
704// iteration (and the PHI). Replace outside uses of the reduced value with uses
705// of the first-iteration reduced value (in other words, reroll the selected
706// reductions).
707void LoopReroll::ReductionTracker::replaceSelected() {
708  // Fixup reductions to refer to the last instruction associated with the
709  // first iteration (not the last).
710  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
711       RI != RIE; ++RI) {
712    int i = *RI;
713    int j = 0;
714    for (int e = PossibleReds[i].size(); j != e; ++j)
715      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
716        --j;
717        break;
718      }
719
720    // Replace users with the new end-of-chain value.
721    SmallInstructionVector Users;
722    for (Value::use_iterator UI =
723           PossibleReds[i].getReducedValue()->use_begin(),
724         UIE = PossibleReds[i].getReducedValue()->use_end(); UI != UIE; ++UI)
725      Users.push_back(cast<Instruction>(*UI));
726
727    for (SmallInstructionVector::iterator J = Users.begin(),
728         JE = Users.end(); J != JE; ++J)
729      (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
730                              PossibleReds[i][j]);
731  }
732}
733
734// Reroll the provided loop with respect to the provided induction variable.
735// Generally, we're looking for a loop like this:
736//
737// %iv = phi [ (preheader, ...), (body, %iv.next) ]
738// f(%iv)
739// %iv.1 = add %iv, 1                <-- a root increment
740// f(%iv.1)
741// %iv.2 = add %iv, 2                <-- a root increment
742// f(%iv.2)
743// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
744// f(%iv.scale_m_1)
745// ...
746// %iv.next = add %iv, scale
747// %cmp = icmp(%iv, ...)
748// br %cmp, header, exit
749//
750// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
751// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
752// be intermixed with eachother. The restriction imposed by this algorithm is
753// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
754// etc. be the same.
755//
756// First, we collect the use set of %iv, excluding the other increment roots.
757// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
758// times, having collected the use set of f(%iv.(i+1)), during which we:
759//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
760//     the next unmatched instruction in f(%iv.(i+1)).
761//   - Ensure that both matched instructions don't have any external users
762//     (with the exception of last-in-chain reduction instructions).
763//   - Track the (aliasing) write set, and other side effects, of all
764//     instructions that belong to future iterations that come before the matched
765//     instructions. If the matched instructions read from that write set, then
766//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
767//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
768//     if any of these future instructions had side effects (could not be
769//     speculatively executed), and so do the matched instructions, when we
770//     cannot reorder those side-effect-producing instructions, and rerolling
771//     fails.
772//
773// Finally, we make sure that all loop instructions are either loop increment
774// roots, belong to simple latch code, parts of validated reductions, part of
775// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
776// have been validated), then we reroll the loop.
777bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
778                        const SCEV *IterCount,
779                        ReductionTracker &Reductions) {
780  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
781  uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
782                   getValue()->getZExtValue();
783  // The collection of loop increment instructions.
784  SmallInstructionVector LoopIncs;
785  uint64_t Scale = Inc;
786
787  // The effective induction variable, IV, is normally also the real induction
788  // variable. When we're dealing with a loop like:
789  //   for (int i = 0; i < 500; ++i)
790  //     x[3*i] = ...;
791  //     x[3*i+1] = ...;
792  //     x[3*i+2] = ...;
793  // then the real IV is still i, but the effective IV is (3*i).
794  Instruction *RealIV = IV;
795  if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
796    return false;
797
798  assert(Scale <= MaxInc && "Scale is too large");
799  assert(Scale > 1 && "Scale must be at least 2");
800
801  // The set of increment instructions for each increment value.
802  SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
803  SmallInstructionSet AllRoots;
804  if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
805    return false;
806
807  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
808                  *RealIV << "\n");
809
810  // An array of just the possible reductions for this scale factor. When we
811  // collect the set of all users of some root instructions, these reduction
812  // instructions are treated as 'final' (their uses are not considered).
813  // This is important because we don't want the root use set to search down
814  // the reduction chain.
815  SmallInstructionSet PossibleRedSet;
816  SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
817  Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
818                             PossibleRedLastSet);
819
820  // We now need to check for equivalence of the use graph of each root with
821  // that of the primary induction variable (excluding the roots). Our goal
822  // here is not to solve the full graph isomorphism problem, but rather to
823  // catch common cases without a lot of work. As a result, we will assume
824  // that the relative order of the instructions in each unrolled iteration
825  // is the same (although we will not make an assumption about how the
826  // different iterations are intermixed). Note that while the order must be
827  // the same, the instructions may not be in the same basic block.
828  SmallInstructionSet Exclude(AllRoots);
829  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
830
831  DenseSet<Instruction *> BaseUseSet;
832  collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
833
834  DenseSet<Instruction *> AllRootUses;
835  std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
836
837  bool MatchFailed = false;
838  for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
839    DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
840    collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
841                         PossibleRedSet, RootUseSet);
842
843    DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
844                    " vs. iteration increment " << (i+1) <<
845                    " use set size: " << RootUseSet.size() << "\n");
846
847    if (BaseUseSet.size() != RootUseSet.size()) {
848      MatchFailed = true;
849      break;
850    }
851
852    // In addition to regular aliasing information, we need to look for
853    // instructions from later (future) iterations that have side effects
854    // preventing us from reordering them past other instructions with side
855    // effects.
856    bool FutureSideEffects = false;
857    AliasSetTracker AST(*AA);
858
859    // The map between instructions in f(%iv.(i+1)) and f(%iv).
860    DenseMap<Value *, Value *> BaseMap;
861
862    assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
863    for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
864         JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
865      if (cast<Instruction>(J1) == RealIV)
866        continue;
867      if (cast<Instruction>(J1) == IV)
868        continue;
869      if (!BaseUseSet.count(J1))
870        continue;
871      if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
872        continue;
873
874      while (J2 != JE && (!RootUseSet.count(J2) ||
875             std::find(Roots[i].begin(), Roots[i].end(), J2) !=
876               Roots[i].end())) {
877        // As we iterate through the instructions, instructions that don't
878        // belong to previous iterations (or the base case), must belong to
879        // future iterations. We want to track the alias set of writes from
880        // previous iterations.
881        if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
882            !AllRootUses.count(J2)) {
883          if (J2->mayWriteToMemory())
884            AST.add(J2);
885
886          // Note: This is specifically guarded by a check on isa<PHINode>,
887          // which while a valid (somewhat arbitrary) micro-optimization, is
888          // needed because otherwise isSafeToSpeculativelyExecute returns
889          // false on PHI nodes.
890          if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
891            FutureSideEffects = true;
892        }
893
894        ++J2;
895      }
896
897      if (!J1->isSameOperationAs(J2)) {
898        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
899                        " vs. " << *J2 << "\n");
900        MatchFailed = true;
901        break;
902      }
903
904      // Make sure that this instruction, which is in the use set of this
905      // root instruction, does not also belong to the base set or the set of
906      // some previous root instruction.
907      if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
908        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
909                        " vs. " << *J2 << " (prev. case overlap)\n");
910        MatchFailed = true;
911        break;
912      }
913
914      // Make sure that we don't alias with any instruction in the alias set
915      // tracker. If we do, then we depend on a future iteration, and we
916      // can't reroll.
917      if (J2->mayReadFromMemory()) {
918        for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
919             K != KE && !MatchFailed; ++K) {
920          if (K->aliasesUnknownInst(J2, *AA)) {
921            DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
922                            " vs. " << *J2 << " (depends on future store)\n");
923            MatchFailed = true;
924            break;
925          }
926        }
927      }
928
929      // If we've past an instruction from a future iteration that may have
930      // side effects, and this instruction might also, then we can't reorder
931      // them, and this matching fails. As an exception, we allow the alias
932      // set tracker to handle regular (simple) load/store dependencies.
933      if (FutureSideEffects &&
934            ((!isSimpleLoadStore(J1) && !isSafeToSpeculativelyExecute(J1)) ||
935             (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2)))) {
936        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
937                        " vs. " << *J2 <<
938                        " (side effects prevent reordering)\n");
939        MatchFailed = true;
940        break;
941      }
942
943      // For instructions that are part of a reduction, if the operation is
944      // associative, then don't bother matching the operands (because we
945      // already know that the instructions are isomorphic, and the order
946      // within the iteration does not matter). For non-associative reductions,
947      // we do need to match the operands, because we need to reject
948      // out-of-order instructions within an iteration!
949      // For example (assume floating-point addition), we need to reject this:
950      //   x += a[i]; x += b[i];
951      //   x += a[i+1]; x += b[i+1];
952      //   x += b[i+2]; x += a[i+2];
953      bool InReduction = Reductions.isPairInSame(J1, J2);
954
955      if (!(InReduction && J1->isAssociative())) {
956        bool Swapped = false, SomeOpMatched = false;;
957        for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
958          Value *Op2 = J2->getOperand(j);
959
960	  // If this is part of a reduction (and the operation is not
961	  // associatve), then we match all operands, but not those that are
962	  // part of the reduction.
963          if (InReduction)
964            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
965              if (Reductions.isPairInSame(J2, Op2I))
966                continue;
967
968          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
969          if (BMI != BaseMap.end())
970            Op2 = BMI->second;
971          else if (std::find(Roots[i].begin(), Roots[i].end(),
972                             (Instruction*) Op2) != Roots[i].end())
973            Op2 = IV;
974
975          if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
976	    // If we've not already decided to swap the matched operands, and
977	    // we've not already matched our first operand (note that we could
978	    // have skipped matching the first operand because it is part of a
979	    // reduction above), and the instruction is commutative, then try
980	    // the swapped match.
981            if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
982                J1->getOperand(!j) == Op2) {
983              Swapped = true;
984            } else {
985              DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
986                              " vs. " << *J2 << " (operand " << j << ")\n");
987              MatchFailed = true;
988              break;
989            }
990          }
991
992          SomeOpMatched = true;
993        }
994      }
995
996      if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
997          (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
998        DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
999                        " vs. " << *J2 << " (uses outside loop)\n");
1000        MatchFailed = true;
1001        break;
1002      }
1003
1004      if (!MatchFailed)
1005        BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
1006
1007      AllRootUses.insert(J2);
1008      Reductions.recordPair(J1, J2, i+1);
1009
1010      ++J2;
1011    }
1012  }
1013
1014  if (MatchFailed)
1015    return false;
1016
1017  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
1018                  *RealIV << "\n");
1019
1020  DenseSet<Instruction *> LoopIncUseSet;
1021  collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
1022                       SmallInstructionSet(), LoopIncUseSet);
1023  DEBUG(dbgs() << "LRR: Loop increment set size: " <<
1024                  LoopIncUseSet.size() << "\n");
1025
1026  // Make sure that all instructions in the loop have been included in some
1027  // use set.
1028  for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
1029       J != JE; ++J) {
1030    if (isa<DbgInfoIntrinsic>(J))
1031      continue;
1032    if (cast<Instruction>(J) == RealIV)
1033      continue;
1034    if (cast<Instruction>(J) == IV)
1035      continue;
1036    if (BaseUseSet.count(J) || AllRootUses.count(J) ||
1037        (LoopIncUseSet.count(J) && (J->isTerminator() ||
1038                                    isSafeToSpeculativelyExecute(J, DL))))
1039      continue;
1040
1041    if (AllRoots.count(J))
1042      continue;
1043
1044    if (Reductions.isSelectedPHI(J))
1045      continue;
1046
1047    DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
1048                    " unprocessed instruction found: " << *J << "\n");
1049    MatchFailed = true;
1050    break;
1051  }
1052
1053  if (MatchFailed)
1054    return false;
1055
1056  DEBUG(dbgs() << "LRR: all instructions processed from " <<
1057                  *RealIV << "\n");
1058
1059  if (!Reductions.validateSelected())
1060    return false;
1061
1062  // At this point, we've validated the rerolling, and we're committed to
1063  // making changes!
1064
1065  Reductions.replaceSelected();
1066
1067  // Remove instructions associated with non-base iterations.
1068  for (BasicBlock::reverse_iterator J = Header->rbegin();
1069       J != Header->rend();) {
1070    if (AllRootUses.count(&*J)) {
1071      Instruction *D = &*J;
1072      DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
1073      D->eraseFromParent();
1074      continue;
1075    }
1076
1077    ++J;
1078  }
1079
1080  // Insert the new induction variable.
1081  const SCEV *Start = RealIVSCEV->getStart();
1082  if (Inc == 1)
1083    Start = SE->getMulExpr(Start,
1084                           SE->getConstant(Start->getType(), Scale));
1085  const SCEVAddRecExpr *H =
1086    cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
1087                           SE->getConstant(RealIVSCEV->getType(), 1),
1088                           L, SCEV::FlagAnyWrap));
1089  { // Limit the lifetime of SCEVExpander.
1090    SCEVExpander Expander(*SE, "reroll");
1091    PHINode *NewIV =
1092      cast<PHINode>(Expander.expandCodeFor(H, IV->getType(),
1093                                           Header->begin()));
1094    for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
1095         JE = BaseUseSet.end(); J != JE; ++J)
1096      (*J)->replaceUsesOfWith(IV, NewIV);
1097
1098    if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
1099      if (LoopIncUseSet.count(BI)) {
1100        const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1101        if (Inc == 1)
1102          ICSCEV =
1103            SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
1104        Value *IC;
1105        if (isa<SCEVConstant>(ICSCEV)) {
1106          IC = Expander.expandCodeFor(ICSCEV, NewIV->getType(), BI);
1107        } else {
1108          BasicBlock *Preheader = L->getLoopPreheader();
1109          if (!Preheader)
1110            Preheader = InsertPreheaderForLoop(L, this);
1111
1112          IC = Expander.expandCodeFor(ICSCEV, NewIV->getType(),
1113                                      Preheader->getTerminator());
1114        }
1115
1116        Value *NewIVNext = NewIV->getIncomingValueForBlock(Header);
1117        Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIVNext, IC,
1118                                   "exitcond");
1119        BI->setCondition(Cond);
1120
1121        if (BI->getSuccessor(1) != Header)
1122          BI->swapSuccessors();
1123      }
1124    }
1125  }
1126
1127  SimplifyInstructionsInBlock(Header, DL, TLI);
1128  DeleteDeadPHIs(Header, TLI);
1129  ++NumRerolledLoops;
1130  return true;
1131}
1132
1133bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1134  AA = &getAnalysis<AliasAnalysis>();
1135  LI = &getAnalysis<LoopInfo>();
1136  SE = &getAnalysis<ScalarEvolution>();
1137  TLI = &getAnalysis<TargetLibraryInfo>();
1138  DL = getAnalysisIfAvailable<DataLayout>();
1139  DT = &getAnalysis<DominatorTree>();
1140
1141  BasicBlock *Header = L->getHeader();
1142  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
1143        "] Loop %" << Header->getName() << " (" <<
1144        L->getNumBlocks() << " block(s))\n");
1145
1146  bool Changed = false;
1147
1148  // For now, we'll handle only single BB loops.
1149  if (L->getNumBlocks() > 1)
1150    return Changed;
1151
1152  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1153    return Changed;
1154
1155  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
1156  const SCEV *IterCount =
1157    SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
1158  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
1159
1160  // First, we need to find the induction variable with respect to which we can
1161  // reroll (there may be several possible options).
1162  SmallInstructionVector PossibleIVs;
1163  collectPossibleIVs(L, PossibleIVs);
1164
1165  if (PossibleIVs.empty()) {
1166    DEBUG(dbgs() << "LRR: No possible IVs found\n");
1167    return Changed;
1168  }
1169
1170  ReductionTracker Reductions;
1171  collectPossibleReductions(L, Reductions);
1172
1173  // For each possible IV, collect the associated possible set of 'root' nodes
1174  // (i+1, i+2, etc.).
1175  for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
1176       IE = PossibleIVs.end(); I != IE; ++I)
1177    if (reroll(*I, L, Header, IterCount, Reductions)) {
1178      Changed = true;
1179      break;
1180    }
1181
1182  return Changed;
1183}
1184
1185